THE PRODUCT OF OPERATORS WITH CLOSED RANGE AND AN EXTENSION OF THE REVERSE ORDER LAW

Saichi Izumino

(Received March 7, 1981)

1. Introduction. Let A be a (bounded linear) operator on a Hilbert space H. If A has closed range, then there is a unique operator A^{\dagger} called the Moore-Penrose inverse or generalized inverse of A, which satisfies the following four identities [2, p. 321]:

$$
\begin{aligned}
& A A^{\dagger} A=A, \quad A^{\dagger} A A^{\dagger}=A^{\dagger}, \quad\left(A^{\dagger} A\right)^{*}=A^{\dagger} A \quad \text { and } \\
& \left(A A^{\dagger}\right)^{*}=A A^{\dagger} .
\end{aligned}
$$

We denote by $(C R)$ the set of all operators on H with closed range (or equivalently, that of all operators with Moore-Penrose inverses). For two operators A and B in $(C R)$, one problem is to find the condition under which the product $A B$ is in (CR). Bouldin [3] [5] gave a geometric characterization of the condition in terms of the angle between two linear subspaces, and recently Nikaido [16] showed a topological characterization of it (for Banach space operators). Another problem is to represent the Moore-Penrose inverse $(A B)^{\dagger}$ in a reasonable form, that is, to generalize the reverse order law $(A B)^{-1}=B^{-1} A^{-1}$ for invertible operators. Many authors [1], [4], [6], [9], [10], [18]-[20], etc. (some of them in the setting of matrices) studied this problem. Barwick and Gilbert [1], Bouldin [4] [6], Galperin and Waksman [9], etc. proved some necessary and sufficient conditions which guarantee the "generalized" reverse order law $(A B)^{\dagger}=$ $B^{\dagger} A^{\dagger}$ holds.

In this paper we shall treat the product of two operators with closed range. In Section 2 we shall show some norm inequalities for the product to have closed range, which enable us to refine the results in [3] and [16]. In Section 3, using our result in [12], we shall present an extension of the (generalized) reverse order law, and extend some main results in [1], [4], [6] and [9].

Throughout this paper all operators are bounded linear. A projection is a selfadjoint idempotent operator, and it is an orthogonal projection onto a closed linear subspace of H. For projections P and Q onto the closed linear subspaces M and N, we write, in lattice theoretic notations, $P^{\perp}, P \vee Q$ and $P \wedge Q$ the projections onto the orthocomplement M^{\perp} of
M, the norm closure $(M+N)^{-}$of $M+N$ and the intersection $M \cap N$, respectively. For an operator A we shall denote by $\operatorname{ker} A$ and $\operatorname{ran} A$ the kernel and the range, respectively. The lower bound $\gamma(A)$ of A $(A \neq 0)$ is defined by

$$
\gamma(A)=\inf \left\{\|A x\|: x \in(\operatorname{ker} A)^{\perp},\|x\|=1\right\}
$$

It is well-known [2, p. 311] that $A \in(C R)$ if and only if $\gamma(A)>0$, and in this case [2, p. 325]

$$
\begin{equation*}
\gamma(A)=\left\|A^{\dagger}\right\|^{-1} \tag{1.1}
\end{equation*}
$$

If $A \in(C R)$, then $A^{*} \in(C R)$ and $A^{*(\dagger)}=A^{+(*)}[2, \mathrm{p} .320]\left(A^{\alpha(\beta)}\right.$ means $\left.\left(A^{\alpha}\right)^{\beta}\right)$. Moreover, $A^{\dagger} A\left(=A^{*} A^{*(\dagger)}\right)$ and $A A^{\dagger}\left(=A^{*(\dagger)} A^{*}\right)$ are the projections onto $(\operatorname{ker} A)^{\perp}\left(=\operatorname{ran} A^{*}\right)$ and $\operatorname{ran} A\left(=\left(\operatorname{ker} A^{*}\right)^{\perp}\right)$, respectively. For further basic properties of Moore-Penrose inverses we refer to [2], [11] or [15].

We would like to express our thanks to the referee for his kind advice.
2. The closedness of range of the product operator. An operator $A \in(C R)$ is easily characterized as an operator satisfying $A X A=A$ for some operator X (cf. $A A^{\dagger} A=A$ for such an A), i.e., a relatively regular element of the operator algebra on H. Hence by [17, Result 3.1] (cf. [14, Theorem 1]) on relative regularity we, at once, have the following proposition, which shows that the problem on the closedness of $\operatorname{ran} A B$ is reduced to that of $\operatorname{ran} A^{\dagger} A B B^{\dagger}$, the range of the product of two projections.

Proposition 2.1. Let $A, B \in(C R)$. Then $A B \in(C R)$ if and only if $A^{\dagger} A B B^{\dagger} \in(C R)$.

The following result shows a norm characterization of the closedness of $\operatorname{ran} P Q$ for two projections P and Q.

Proposition 2.2. Let P and Q be projections. If $P Q \neq 0$, then

$$
\begin{equation*}
\gamma(P Q)^{2}+\left\|P^{\perp} Q\left(P \vee Q^{\perp}\right)\right\|^{2}=1 \tag{2.1}
\end{equation*}
$$

Hence (even if $P Q=0) P Q \in(C R)$ if and only if

$$
\begin{equation*}
\left\|P^{\perp} Q\left(P \vee Q^{\perp}\right)\right\|<1 \tag{2.2}
\end{equation*}
$$

Proof. Since $\operatorname{ran} Q P \subset \operatorname{ran} Q\left(Q^{\perp} \vee P\right) \subset(\operatorname{ran} Q P)^{-}=(\operatorname{ker} P Q)^{\perp}$, we have

$$
\begin{equation*}
(\operatorname{ker} P Q)^{\perp}=\operatorname{ran} Q\left(Q^{\perp} \vee P\right) \tag{2.3}
\end{equation*}
$$

Let $x \in(\operatorname{ker} P Q)^{\perp}$ and $\|x\|=1$. Then, since $x=Q\left(Q^{\perp} \vee P\right) x=Q x$, we
have $\|P Q x\|^{2}+\left\|P^{\perp} Q\left(P \vee Q^{\perp}\right)\right\|^{2} \geqq\|P Q x\|^{2}+\left\|P^{\perp} Q x\right\|^{2}=\|Q x\|^{2}=1 . \quad$ By definition, the infimum of $\|P Q x\|$ is $\gamma(P Q)$. Hence we have $\gamma(P Q)^{2}+$ $\left\|P^{\perp} Q\left(P \vee Q^{\perp}\right)\right\|^{2} \geqq 1$. To show the converse inequality, note $\gamma(P Q) \leqq$ $\|P Q x\|\left(x \in(\operatorname{ker} P Q)^{\perp},\|x\|=1\right)$. Hence $\gamma(P Q)^{2}+\left\|P^{\perp} Q x\right\|^{2} \leqq\|P Q x\|^{2}+$ $\left\|P^{\perp} Q x\right\|^{2}=1$. Since the supremum of $\left\|P^{\perp} Q x\right\|$ is $\left\|P^{\perp} Q\left(P \vee Q^{\perp}\right)\right\|$, we obtain $\gamma(P Q)^{2}+\left\|P^{\perp} Q\left(P \vee Q^{\perp}\right)\right\|^{2} \leqq 1$. Now, the equivalence $P Q \in(C R) \Leftrightarrow$ (2.2) (between $P Q \in(C R)$ and (2.2)) is clear if $P Q \neq 0$. If $P Q=0$, then $Q\left(P \vee Q^{\perp}\right)=0$ (say, by (2.3)), so that (2.2) is clear. q.e.d.

By (1.1) we easily see $\gamma(A)=\gamma\left(A^{*}\right)$ for an operator $A \neq 0$, in perticular, $\gamma(P Q)=\gamma(Q P)(P Q \neq 0)$. Hence by (2.1) we have (even if $P Q=0$)

$$
\begin{equation*}
\left\|P^{\perp} Q\left(P \vee Q^{\perp}\right)\right\|=\left\|Q^{\perp} P\left(Q \vee P^{\perp}\right)\right\| . \tag{2.4}
\end{equation*}
$$

Between two closed linear subspaces M and N we define the angle $\alpha(M, N)(0 \leqq \alpha(M, N) \leqq \pi / 2)$ as the arccosine of

$$
\sup \{|(x, y)|:\|x\|=\|y\|=1, x \in M, y \in N\}
$$

and $\alpha(M, N)=\pi / 2$ when either M or N is $\{0\}$.
Suppose $A, B \in(C R)$, and write $P=A^{\dagger} A, Q=B B^{\dagger}$. Then $P^{\perp}\left(P \vee Q^{\perp}\right)=$ $P^{\perp} \wedge\left(P^{\perp} \wedge Q\right)^{\perp}$ is the projection onto $L:=\operatorname{ker} A \cap(\operatorname{ker} A \cap \operatorname{ran} B)^{\perp}$. If neither L nor $\operatorname{ran} B$ is $\{0\}$, then

$$
\begin{aligned}
\left\|P^{\perp} Q\left(P \vee Q^{\perp}\right)\right\| & =\left\|Q P^{\perp}\left(P \vee Q^{\perp}\right)\right\| \\
& =\sup \left\{\left|\left(P^{\perp}\left(P \vee Q^{\perp}\right) x, Q y\right)\right|:\|x\|=\|y\|=1\right\} \\
& =\sup \{|(x, y)|:\|x\|=\|y\|=1, x \in L, y \in \operatorname{ran} B\}
\end{aligned}
$$

Hence, by Propositions 2.1 and 2.2 we have the following result due to Bouldin [3] (cf. [5]).

Corollary 2.3 [3, Theorem]. Let $A, B \in(C R)$. Then $A B \in(C R)$ if and only if $\alpha\left(\operatorname{ker} A \cap(\operatorname{ker} A \cap \operatorname{ran} B)^{\perp}, \operatorname{ran} B\right)>0$.

For another characterization of the closedness of ran $P Q$, we have
Proposition 2.4. Let P and Q be projections. If $P Q \neq 0$, then

$$
\begin{equation*}
\gamma(P Q) \geqq \gamma\left(P^{\perp}+Q\right) \geqq\left(1-\left\|P^{\perp} Q\left(P \vee Q^{\perp}\right)\right\|\right)^{2} \tag{2.5}
\end{equation*}
$$

Hence (even if $P Q=0) P Q \in(C R)$ if and only if $P^{\perp}+Q \in(C R)$.
Proof. Note first that $(\operatorname{ker} Q P)^{\perp}=\operatorname{ran} P\left(P^{\perp} \vee Q\right),\left(\operatorname{ker}\left(P^{\perp}+Q\right)\right)^{\perp}=$ $\operatorname{ran}\left(P^{\perp} \vee Q\right)$, and that both the subspaces are not $\{0\}$. Let $x \in(\operatorname{ker} Q P)^{\perp}$ and $\|x\|=1$. Then $x=P\left(P^{\perp} \vee Q\right) x=P x$ and

$$
\|Q P x\|=\left\|\left(P^{\perp}+Q\right) P x\right\|=\left\|\left(P^{\perp}+Q\right) x\right\| \geqq \gamma\left(P^{\perp}+Q\right) .
$$

The last inequality follows from the fact $x=\left(P^{\perp} \vee Q\right) x \in\left(\operatorname{ker}\left(P^{\perp}+Q\right)\right)^{\perp}$.

Hence we have $\gamma(Q P) \geqq \gamma\left(P^{\perp}+Q\right)$. Since $\gamma(P Q)=\gamma(Q P)$, we have the left hand side inequality of (2.5). Next, note $\left(\left(P^{\perp}+Q\right) x, x\right) \geqq\left(\left(P^{\perp} Q^{\perp} P^{\perp}+\right.\right.$ $Q) x, x)$ for any $x \in H$ and $P^{\perp} Q^{\perp} P^{\perp}+Q=1-\left(Q^{\perp} P+P Q^{\perp}\right)+P Q^{\perp} P$. Hence, if $x=\left(P^{\perp} \vee Q\right) x$ and $\|x\|=1$ then

$$
\begin{aligned}
\left\|\left(P^{\perp}+Q\right) x\right\| & \geqq\left(\left(P^{\perp}+Q\right) x, x\right) \geqq 1-2 \operatorname{Re}\left(Q^{\perp} P x, x\right)+\left(P Q^{\perp} P x, x\right) \\
& \geqq 1-2\left\|Q^{\perp} P x\right\|+\left\|Q^{\perp} P x\right\|^{2}=\left(1-\left\|Q^{\perp} P x\right\|^{2}\right. \\
& \geqq\left(1-\left\|Q^{\perp} P\left(P^{\perp} \vee Q\right)\right\|\right)^{2} .
\end{aligned}
$$

Hence $\gamma\left(P^{\perp}+Q\right) \geqq\left(1-\left\|Q^{\perp} P\left(Q \vee P^{\perp}\right)\right\|\right)^{2}$. By (2.4) this implies the right hand side inequality of (2.5). Now the equivalence $P Q \in(C R) \Leftrightarrow P^{\perp}+Q \in$ $(C R)$ is clear by (2.5) and (2.2) if $P Q \neq 0$. If $P Q=0$, then $\operatorname{ran}\left(P^{\perp}+Q\right)=$ $\operatorname{ran} P^{\perp}(1+Q)=\operatorname{ran} P^{\perp}$, so that $P^{\perp}+Q \in(C R)$.
q.e.d.

Before an application we remark that $A \in(C R)$ if and only if $A A^{*} \in(C R)$. This is seen by the facts $\operatorname{ran} A A^{*} \subset \operatorname{ran} A \subset\left(\operatorname{ran} A A^{*}\right)^{-}$, and $\operatorname{ran} A=\operatorname{ran} A \cdot\left(A^{\dagger} A\right)^{*}=\operatorname{ran} A A^{*} A^{+(*)} \subset \operatorname{ran} A A^{*} \subset \operatorname{ran} A$ for $A \in(C R)$.

The equivalence $(1) \Leftrightarrow(3)$ of the following corollary was shown by Nikaido [16, Corollary 1].

Corollary 2.5. Let $A, B \in(C R)$. Write $P=A^{\dagger} A$ and $Q=B B^{\dagger}$. Then the following conditions are equivalent.
(1) $A B \in(C R)$.
(2) $P^{\perp}+Q \in(C R)$.
(3) $\operatorname{ker} A+\operatorname{ran} B$ is closed.

Proof. (1) $\Leftrightarrow(2) \quad$ By Propositions 2.1 and 2.4.
(2) \Leftrightarrow (3) We employ a technique in [7, Theorem 2.2]. Let $T=$ $\left\{\begin{array}{ll}P^{\perp} & Q \\ 0 & 0\end{array}\right\}$ be a operator matrix on the product Hilbert space $H \oplus H$. Then $\operatorname{ran} T=\left(\operatorname{ran} P^{\perp}+\operatorname{ran} Q\right) \oplus\{0\}$ and $\operatorname{ran} T T^{*}=\operatorname{ran}\left(P^{\perp}+Q\right) \oplus\{0\}$. Hence by the above remark we have the desired equivalence. q.e.d.

Corollary 2.6. Let P and Q be projections. Then $\operatorname{ran} P+\operatorname{ran} Q$ is closed if and only if $\left\|P Q\left(P^{\perp} \vee Q^{\perp}\right)\right\|<1$.

Proof. By Corollary 2.5 and Proposition 2.4. q.e.d.

For a pair of two closed linear subspaces M and N, the gap $g(M, N)$ is defined (cf. [13, p. 219]) by

$$
g(M, N)=\inf \{d(x, N) / d(x, M \cap N): x \in M \backslash N\},
$$

where $d(x, L)$ is the distance from x to L. We set $g(M, N)=1$ when $M \subset N$. Let P and Q be the projections onto M and N, respectively. Then by a simple calculation we have $g(M, N)=\gamma\left(Q^{\perp} P\right)(M \not \subset N)$, or by
(2.1) (even if $M \subset N$)

$$
g(M, N)=\left(1-\left\|P Q\left(P^{\perp} \vee Q^{\perp}\right)\right\|^{2}\right)^{1 / 2}
$$

Clearly, Corollary 2.6 says that $g(M, N)>0$ if and only if $M+N$ is closed, which is a well-known result [13, IV, Theorem 4.3] (on a Banach space).
3. The reverse order law. We state a result which we proved in [12].

Lemma 3.1 [12, Lemmas 2.1 and 3.2]. Let $A \in(C R)$, and let R be a projection commuting with $A^{\dagger} A$. Then $A R \in(C R), C:=1-A R A^{\dagger}+A R A^{*}$ is invertible and

$$
\begin{equation*}
(A R)(A R)^{\dagger}=C^{-1} A R A^{*} \tag{3.1}
\end{equation*}
$$

Using the above lemma we have
Lemma 3.2. Let $A, B, A B \in(C R)$. Write $P=A^{\dagger} A$ and $Q=B B^{\dagger}$. Then $C:=1-A\left(P^{\perp} \vee Q\right) A^{\dagger}+A\left(P^{\perp} \vee Q\right) A^{*}$ is invertible, and

$$
\begin{equation*}
(A B)(A B)^{\dagger}=C^{-1} A\left(P^{\perp} \vee Q\right) A^{*} \tag{3.2}
\end{equation*}
$$

Proof. Put $R=P^{\perp} \vee Q$. Since $\operatorname{ran} A B=\operatorname{ran} A Q \subset \operatorname{ran} A R \subset(\operatorname{ran} A R)^{-}=$ $(\operatorname{ran} A Q)^{-}=\operatorname{ran} A B$, we have $\operatorname{ran} A B=\operatorname{ran} A R$, i.e., $(A B)(A B)^{\dagger}=(A R)(A R)^{\dagger}$. Since R commutes with $P=A^{\dagger} A$, we have, by Lemma 3.1, the required assertions. q.e.d.

Corollary 3.3. Let P and Q be projections. If $P Q \in(C R)$, then

$$
\begin{equation*}
(P Q)(P Q)^{\dagger}=P\left(P^{\perp} \vee Q\right), \quad(P Q)^{\dagger}(P Q)=Q\left(Q^{\perp} \vee P\right) \tag{3.3}
\end{equation*}
$$

We remark that the second identity of (3.3) can be also obtained from (2.3).

For the Moore-Penrose inverse of $(P Q)^{\dagger}$, we have the following result which is considered as an extention of [10, Theorem 3].

Lemma 3.4. Let P and Q be projections. If $P Q \in(C R)$, then $R:=$ $1-\left(P \vee Q^{\perp}\right) Q+P Q$ is invertible and

$$
\begin{equation*}
(P Q)^{\dagger}=R^{-1} P\left(P^{\perp} \vee Q\right) \tag{3.4}
\end{equation*}
$$

Proof. Since $R=1-\left(P \vee Q^{\perp}-P\right) Q=1-\left(P \vee Q^{\perp}\right) P^{\perp} Q$ and since $\left\|\left(P \vee Q^{\perp}\right) P^{\perp} Q\right\|<1$ by (2.1), we see that R is invertible. By (3.3) we see $\left(P \vee Q^{\perp}\right) Q(P Q)^{\dagger}=(P Q)^{\dagger}(P Q)(P Q)^{\dagger}=(P Q)^{\dagger}$. Hence we have

$$
R(P Q)^{\dagger}=(P Q)^{\dagger}-\left(P \vee Q^{\perp}\right) Q(P Q)^{\dagger}+P Q(P Q)^{\dagger}=(P Q)(P Q)^{\dagger}=P\left(P^{\perp} \vee Q\right)
$$

This implies the desired identity.
q.e.d.

Now we state the main theorem of this section.
Theorem 3.5. Let $A, B \in(C R)$. If $A B \in(C R)$, then

$$
\begin{aligned}
(A B)^{\dagger}= & (A B)^{\dagger}(A B) \cdot B^{\dagger} \cdot \\
= & P Q)^{\dagger} \cdot A^{\dagger} \cdot(A B)(A B)^{\dagger} \\
= & f\left(B^{*}, Q^{\perp} \vee P\right) \cdot
\end{aligned} \quad B^{\dagger} \cdot\left\{1-\left(P \vee Q^{\perp}\right) Q+P Q\right\}^{-1},
$$

where $P=A^{\dagger} A, Q=B B^{\dagger}$ and $f(S, T)=\left(1-S T S^{\dagger}+S T S^{*}\right)^{-1} S T S^{*}$.
Proof. Note $P Q \in(C R)$ by Proposition 2.1. The first identity is obtained from the fact:

$$
\begin{aligned}
(A B) B^{\dagger}(P Q)^{\dagger} A^{\dagger}(A B) & =A\left(A^{\dagger} A B B^{\dagger}\right)\left(A^{\dagger} A B B^{\dagger}\right)^{\dagger}\left(A^{\dagger} A B B^{\dagger}\right) B \\
& =A\left(A^{\dagger} A B B^{\dagger}\right) B=A B .
\end{aligned}
$$

The second identity is shown by (3.2), (3.4) and the identity $(A B)^{\dagger}(A B)=$ $\left(B^{*} A^{*}\right)\left(B^{*} A^{*}\right)^{\dagger}$.
q.e.d.

In each of the following two corollaries, $(A B)^{\dagger}$ is represented by a rational function in $A, A^{\dagger}, B, B^{\dagger}$ and their adjoints under a certain condition which is satisfied for invertible operators. Hence our theorem is, in a sense, a reasonable extention of the reverse order law.

Corollary 3.6. Let $A, B, A B \in(C R)$. If $P:=A^{\dagger} A$ and $Q:=B B^{\dagger}$ commute, then

$$
(A B)^{\dagger}=f\left(B^{*}, P\right) B^{\dagger} A^{\dagger} f(A, Q) \quad(f \text { is defined in Theorem 3.5). }
$$

Proof. Since P and Q commute, we see that $P Q$ is a projection. Hence $(P Q)^{\dagger}=P Q(=Q P)$, because $R^{\dagger}=R$ for a projection R. Since $(A B)(A B)^{\dagger}=(A Q)(A Q)^{\dagger}$, and since Q commutes with $A^{\dagger} A=P$, we have, by (3.1), $(A B)(A B)^{\dagger}=f(A, Q)$. Similarly we have $(A B)^{\dagger}(A B)=f\left(B^{*}, P\right)$. Hence by the first identity of Theorem 3.5 we have the desired representation of $(A B)^{\dagger}$.
q.e.d.

We remark that the assumption $A B \in(C R)$ is not needed in Corollary 3.6. For, if P and Q commute then $P Q$ is a projection and $P Q \in(C R)$, so that $A B \in(C R)$ (say, by Proposition 2.1).

Corollary 3.7. Let $A, B, A B \in(C R)$. If $P^{\perp} \vee Q=P \vee Q^{\perp}=1$, i.e., $\operatorname{ker} A$ and $\operatorname{ran} B$ are complementary, then

$$
(A B)^{\dagger}=B^{\dagger}(1-Q+P Q)^{-1} A^{\dagger}
$$

Proof. By assumption $f\left(A, P^{\perp} \vee Q\right)=f(A, 1)=\left(1-A A^{\dagger}+A A^{*}\right)^{-1} A A^{*}$. Since $\left(1-A A^{\dagger}+A A^{*}\right) A A^{\dagger}=A A^{*}\left(\right.$ cf. $A^{*} A A^{\dagger}=A^{*}$), we have $f(A, 1)=$ $A A^{\dagger}$. Similarly we have $f\left(B^{*}, Q^{\perp} \vee P\right)=B^{\dagger} B$. Hence by the second
identity of Theorem 3.5 we have the required equation. q.e.d.
The following result was essentially shown in [16, Proposition 1] (for Banach space operators).

Corollary 3.8. Let $A, B \in(C R)$ and let $A B \neq 0$. Then

$$
\begin{equation*}
\gamma(A B) \geqq \gamma(A) \gamma(B) \gamma(P Q) \tag{3.5}
\end{equation*}
$$

Proof. If $A B \in(C R)$, then by Theorem $3.5\left\|(A B)^{\dagger}\right\| \leqq\left\|B^{\dagger}\right\|\left\|(P Q)^{\dagger}\right\|\left\|A^{\dagger}\right\|$. Hence by (1.1) we obtain (3.5). If $A B \notin(C R)$, then $P Q \notin(C R)$. Hence (3.5) is clear.
q.e.d.

The next two propositions extend (or refine) Bouldin [4, Theorem 3.1] [6, Theorem 3.3], Barwick and Gilbert [1, Theorems 1 and 2], Shinozaki and Sibuya [18, Propositions 3.2 and 4.3].

First we state a useful lemma for our discussion.
Lemma 3.9 [8, Theorem 2]. Let T be an idempotent operator with $\|T\| \leqq 1$. Then T is a projection.

Proposition 3.10. Let $A, B, A B \in(C R)$. Then the following conditions are equivalent.
(1) $A^{\dagger} A$ commutes with $B B^{*}$.
(2) $(A B)^{\dagger}(A B)=B^{\dagger} A^{\dagger} A B$.
(3) $C:=1-A^{*(\dagger)} B B^{\dagger} A^{*}+A B B^{\dagger} A^{*}$ is invertible, and $(A B)^{\dagger}=B^{\dagger} A^{*} C^{-1}$.
Proof. (1) \Rightarrow (2) Since $A^{*}=A^{\dagger} A A^{*}$ (and $B^{*}=B^{\dagger} B B^{*}$), we have
$(A B)^{\dagger}(A B)=(A B)^{*}(A B)^{\dagger(*)}=B^{*} A^{*}(A B)^{\dagger(*)}=B^{\dagger} B B^{*} \cdot A^{\dagger} A A^{*} \cdot(A B)^{\dagger(*)}$ $=B^{\dagger} A^{\dagger} A B B^{*} A^{*}(A B)^{\dagger(*)}=B^{\dagger} A^{\dagger}(A B)(A B)^{*}(A B)^{\dagger(*)}$ $=B^{\dagger} A^{\dagger}(A B)(A B)^{\dagger}(A B)=B^{\dagger} A^{\dagger} A B$.
(2) \Rightarrow (3) We first show that $P:=A^{\dagger} A$ and $Q:=B B^{\dagger}$ commute. Since $A B=(A B)(A B)^{\dagger}(A B)=A B \cdot B^{\dagger} A^{\dagger} A B$, we have $P Q=A^{\dagger} A B B=$ $A^{\dagger} \cdot A B B^{\dagger} A^{\dagger} A B \cdot B^{\dagger}=(P Q)^{2}$. Besides, clearly $\|P Q\| \leqq 1$. Hence by Lemma 3.9 $P Q$ is a projection, so that P and Q commute. Now by Corollary 3.6 we see $(A B)^{\dagger}=f\left(B^{*}, P\right) B^{\dagger} A^{\dagger} f(A, Q)$. Since $f\left(B^{*}, P\right)=(A B)^{\dagger}(A B)=$ $B^{\dagger} A^{\dagger} A B$, and since $f(A, Q)=f(A, Q)^{*}=A Q A^{*} C^{-1}$, we have $(A B)^{\dagger}=$ $B^{\dagger} A^{\dagger} A B B^{\dagger} A^{\dagger} A Q A^{*} C^{-1}=B^{\dagger} A^{*} C^{-1}$.
(3) \Rightarrow (1) Let $(A B)^{\dagger}=B^{\dagger} A^{*} C^{-1}$. Then $(A B)^{\dagger} C=B^{\dagger} A^{*}$ or

$$
\begin{equation*}
(A B)^{\dagger}-(A B)^{\dagger} A^{\dagger(*)} Q A^{*}+(A B)^{\dagger} A Q A^{*}=B^{\dagger} A^{*} \tag{3.6}
\end{equation*}
$$

Since $(A B)(A B)^{\dagger} A Q A^{*}=A B B^{\dagger} A^{*}$, multiplying (3.6) by $A B$ from the left, we have $(A B)(A B)^{\dagger}-(A B)(A B)^{\dagger} A^{\dagger(*)} Q A^{*}+A B B^{\dagger} A^{*}=A B B^{\dagger} A^{*}$. Hence

$$
\begin{equation*}
(A B)(A B)^{\dagger}=(A B)(A B)^{\dagger} A^{\dagger(*)} Q A^{*} \tag{3.7}
\end{equation*}
$$

If we multiply (3.7) by $(A B)^{\dagger}$ from the left, then we obtain $(A B)^{\dagger}=$ $(A B)^{\dagger} A^{\dagger(*)} Q A^{*}$. Hence by (3.6) we see

$$
\begin{equation*}
(A B)^{\dagger} A Q A^{*}=B^{\dagger} A^{*} \tag{3.8}
\end{equation*}
$$

Now, if we assume that P and Q commute, then by (3.8)

$$
\begin{aligned}
P B B^{*} & =P Q B B^{*}=Q P B B^{*}=B B^{\dagger} A^{\dagger} A B B^{*}=B B^{\dagger} A^{*} A^{\dagger(*)} B B^{*} \\
& =B \cdot(A B)^{\dagger} A Q A^{*} \cdot A^{\dagger(*)} B B^{*}=B(A B)^{\dagger} A Q A^{\dagger} A B B^{*} \\
& =B(A B)^{\dagger}(A B) B^{*} .
\end{aligned}
$$

This shows that $P B B^{*}$ is selfadjoint. Hence P and $B B^{*}$ commute, which is the assertion (1). To see that P and Q commute, take the adjoints in (3.7). Then we have $(A B)(A B)^{\dagger}=A Q A^{\dagger}(A B)(A B)^{\dagger}$. Multiplying by $A B$ from the right, we have $A B=A Q A^{\dagger} A B$. By this identity we easily see $P Q=(P Q)^{2}$, so that P and Q commute (cf. Proof of (2) $\Rightarrow(3)$). q.e.d.

Similarly to Proposition 3.10 we have:
Proposition 3.10'. Let $A, B, A B \in(C R)$. Then the following conditions are equivalent.
(1) $B B^{\dagger}$ commutes with $A^{*} A$.
(2) $(A B)(A B)^{\dagger}=A B B^{\dagger} A^{\dagger}$.
(3) $D:=1-B^{*} A^{\dagger} A B^{*(\dagger)}+B^{*} A^{\dagger} A B$ is invertible, and

$$
(A B)^{\dagger}=D^{-1} B^{*} A^{\dagger}
$$

Proof. Replace, in Proposition 3.10, A and B by B^{*} and A^{*} respectively, and take the adjoints.
q.e.d.

Corollary 3.11 [6, Theorem 3.3]. Let $A, B, A B \in(C R)$. Then the following conditions are equivalent.
(1) $A^{\dagger} A$ commutes with $B B^{*}$ and $B B^{\dagger}$ commutes with $A^{*} A$.
(2) $(A B)^{\dagger}(A B)=B^{\dagger} A^{\dagger} A B$ and $(A B)(A B)^{\dagger}=A B B^{\dagger} A^{\dagger}$.
(3) $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$.

Proof. The equivalence $(1) \leftrightarrow(2)$ is clear by Propositions 3.10 and 3.10^{\prime}. If (2) is assumed, then $A^{\dagger} A$ and $B B^{\dagger}$ commute (cf. Proof of Proposition $3.10(2) \Rightarrow(3))$. Hence $(A B)^{\dagger}=(A B)^{\dagger}(A B)(A B)^{\dagger}=B^{\dagger} A^{\dagger} A B(A B)^{\dagger}=$ $B^{\dagger} A^{\dagger} A B B^{\dagger} A^{\dagger}=B^{\dagger} A^{\dagger}$, which is the assertion (3). The implication (3) $\Rightarrow(2)$ is clear.
q.e.d.

The following proposition is a Hilbert space version of a result due to Galperin and Waksman ([9, Theorem 2]).

Proposition 3.12. Let $A, B, A B \in(C R)$. Then the following conditions
are equivalent.
(1) $\operatorname{ran} B^{\dagger} A^{*}=\operatorname{ran} B^{*} A^{*}$ and $\operatorname{ran} A^{*(\dagger)} B=\operatorname{ran} A B$.
(2) $(A B)^{\dagger}=B^{\dagger}\left(A^{\dagger} A B B^{\dagger}\right)^{\dagger} A^{\dagger}$.

Proof. Note first that $B^{*} A^{*}, B^{\dagger} A^{*}, A^{*(\dagger)} B \in(C R)$, say, by Proposition 2.1. Write $P=A^{\dagger} A$ and $Q=B B^{\dagger}$, and let $X=B^{\dagger}(P Q)^{\dagger} A^{\dagger}$. Then clearly $X A B X=X$, so that $X \in(C R)$. Next we want to show

$$
\begin{equation*}
\operatorname{ran} X=\operatorname{ran} B^{\dagger} A^{*} \quad \text { and } \quad \operatorname{ran} X^{*}=\operatorname{ran} A^{*(\dagger)} B \tag{3.9}
\end{equation*}
$$

Since $(P Q)^{\dagger} P=(P Q)^{\dagger}$ by (3.4), and since $\operatorname{ran} B^{\dagger}\left(Q^{\perp} \vee P\right)=\operatorname{ran} B^{\dagger} P(c f$. Proof of Lemma 3.2), we have

$$
\begin{aligned}
\operatorname{ran} X & =\operatorname{ran} B^{\dagger}(P Q)^{\dagger} A^{\dagger}=\operatorname{ran} B^{\dagger}(P Q)^{\dagger} P=\operatorname{ran} B^{\dagger}(P Q)^{\dagger}=\operatorname{ran} B^{\dagger}(P Q)^{\dagger}(P Q) \\
& =\operatorname{ran} B^{\dagger}\left(Q^{\dagger} \vee P\right)=\operatorname{ran} B^{\dagger} P=\operatorname{ran} B^{\dagger} A^{*}
\end{aligned}
$$

Similarly we have the other identity of (3.9). Now, if we assume (1), then by (3.9) we obtain

$$
\begin{equation*}
\operatorname{ran} X=\operatorname{ran} B^{*} A^{*} \quad \text { and } \quad \operatorname{ran} X^{*}=\operatorname{ran} A B \tag{3.10}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
X X^{\dagger}=(A B)^{\dagger}(A B) \quad \text { and } \quad X^{\dagger} X=(A B)(A B)^{\dagger} \tag{3.11}
\end{equation*}
$$

Hence $X=X X^{\dagger} X X^{\dagger} X=(A B)^{\dagger}(A B) \cdot X \cdot(A B)(A B)^{\dagger}=(A B)^{\dagger}(A B)(A B)^{\dagger}=(A B)^{\dagger}$, which is the assertion (2). Conversely, if we assume (2), i.e., $X=(A B)^{\dagger}$, then clearly (3.11) and hence (3.10) are valid. Hence by (3.9) we have the assertion (1). q.e.d.

We remark that the condition $P^{\perp} \vee Q=P \vee Q^{\perp}=1\left(P=A^{\dagger} A, Q=\right.$ $B B^{\dagger}$) taken in Corollary 3.7 implies the assertion (2) (hence also (1)) of the above proposition.

The following result adds to Corollary 3.11 another condition in order that $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$ holds.

Corollary 3.13 (cf. [9, Theorem 3]). Let $A, B, A B \in(C R)$. Then $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$ if and only if

$$
\begin{equation*}
A^{\dagger} A \text { and } B B^{\dagger} \text { commute, and (1) (or equivalently (2)) } \tag{3.12}
\end{equation*}
$$

of Proposition 3.12 holds.
Proof. If $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$ then $(A B)^{\dagger} A B=B^{\dagger} A^{\dagger} A B$, so that $A^{\dagger} A$ and $B B^{\dagger}$ commute. Since $\left(A^{\dagger} A B B^{\dagger}\right)^{\dagger}=A^{\dagger} A B B^{\dagger}=B B^{\dagger} A^{\dagger} A$, we have $B^{\dagger}\left(A^{\dagger} A B B^{\dagger}\right)^{\dagger} A^{\dagger}=$ $B^{\dagger} A^{\dagger}=(A B)^{\dagger}$, the assertion (2) of Proposition 3.12. Conversely, if (3.12) is assumed then $(A B)^{\dagger}=B^{\dagger}\left(A^{\dagger} A B B^{\dagger}\right)^{\dagger} A^{\dagger}=B^{\dagger} B B^{\dagger} A^{\dagger} A A^{\dagger}=B^{\dagger} A^{\dagger}$, as desired. q.e.d.

References

[1] D. T. Barwick and J. D. Gilbert, On generalizations of reverse order law, SIAM J. Appl. Math. 27 (1974), 326-330.
[2] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Wiley, New York, 1974.
[3] R. Bouldin, The product of operotors with closed range, Tôhoku Math. J. 25 (1973), 359-363.
[4] R. Bouldin, The pseudo-inverse of a product, SIAM J. Appl. Math. 24 (1973), 489-495.
[5] R. Bouldin, Closed range and relativity for products, J. Math. Anal. Appl. 61 (1977), 397-403.
[6] R. Bouldin, Generalized inverses and factorizations, to appear in Recent Application of Generalized Inverses edited by M. Z. Nashed.
[7] P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254-281.
[8] T. Furuta and R. nakamoto, Some theorems on certain contraction operators, Proc. Japan Acad. 45 (1969), 565-566.
[9] A. M. Galperin and Z. Waksman, On pseudoinverses of operator products, Linear Algebra and Appl. 33 (1980), 123-131.
[10] T. N. E. Greville, Solutions of the matrix equation $X A X=X$, and relations between oblique and orthogonal projections, SIAM J. Appl. Math. 26 (1974), 828-832.
[11] C. W. Groetsch, Generalized Inverses of Linear Operators: Representation and Approximation, Marcel Dekker, New York and Basel, 1977.
[12] S. Izumino, Inequalities on operators with closed range, Math. Japon. 25 (1980), 423-429.
[13] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg and New York, 1966.
[14] J. J. Kolifa, The product of relatively regular operators, Commentationes Math. Univ. Carolinae 16 (1975), 531-539.
[15] M. Z. Nashed, Generalized Inverses and Applications, Academic Press, New York, San Francisco and London, 1976.
[16] G. Nikaido, Remarks on the lower bound of linear operators, Proc. Japan Acad. 56 (1980), 321-323.
[17] S. V. Phadke and N. T. Takare, Generalized inverses and operator equations, Linear Algebra and Appl. 23 (1979), 191-199.
[18] N. Shinozaki and M. Sibuya, The reverse order law $(A B)^{-}=B^{-} A^{-}$, Linear Algebra and Appl. 9 (1974), 29-40.
[19] N. Shinozari and M. Sibuya, Further results on the reverse order law, Linear Algebra and Appl. 27 (1979), 9-16.
[20] E. A. Wibeer, R. B. Howe and J. D. Gilbert, Explicit solutions to the reverse order law, $(A B)^{+}=B_{m r}^{-} A_{1}^{-}$, Linear Algebra and Appl. 25 (1979), 107-114.

Faculty of Education
Toyama University
Toyama, 930
Japan

