THE PRODUCT OF OPERATORS WITH CLOSED RANGE AND AN EXTENSION OF THE REVERSE ORDER LAW

SAICHI IZUMINO

(Received March 7, 1981)

1. Introduction. Let A be a (bounded linear) operator on a Hilbert space H. If A has closed range, then there is a unique operator A^{\dagger} called the Moore-Penrose inverse or generalized inverse of A, which satisfies the following four identities [2, p. 321]:

$$AA^{\dagger}A=A$$
 , $A^{\dagger}AA^{\dagger}=A^{\dagger}$, $(A^{\dagger}A)^{*}=A^{\dagger}A$ and $(AA^{\dagger})^{*}=AA^{\dagger}$.

We denote by (CR) the set of all operators on H with closed range (or equivalently, that of all operators with Moore-Penrose inverses). For two operators A and B in (CR), one problem is to find the condition under which the product AB is in (CR). Bouldin [3] [5] gave a geometric characterization of the condition in terms of the angle between two linear subspaces, and recently Nikaido [16] showed a topological characterization of it (for Banach space operators). Another problem is to represent the Moore-Penrose inverse $(AB)^{\dagger}$ in a reasonable form, that is, to generalize the reverse order law $(AB)^{-1} = B^{-1}A^{-1}$ for invertible operators. Many authors [1], [4], [6], [9], [10], [18]-[20], etc. (some of them in the setting of matrices) studied this problem. Barwick and Gilbert [1], Bouldin [4] [6], Galperin and Waksman [9], etc. proved some necessary and sufficient conditions which guarantee the "generalized" reverse order law $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ holds.

In this paper we shall treat the product of two operators with closed range. In Section 2 we shall show some norm inequalities for the product to have closed range, which enable us to refine the results in [3] and [16]. In Section 3, using our result in [12], we shall present an extension of the (generalized) reverse order law, and extend some main results in [1], [4], [6] and [9].

Throughout this paper all operators are bounded linear. A projection is a selfadjoint idempotent operator, and it is an orthogonal projection onto a closed linear subspace of H. For projections P and Q onto the closed linear subspaces M and N, we write, in lattice theoretic notations, P^{\perp} , $P \vee Q$ and $P \wedge Q$ the projections onto the orthocomplement M^{\perp} of *M*, the norm closure $(M + N)^-$ of M + N and the intersection $M \cap N$, respectively. For an operator *A* we shall denote by ker *A* and ran *A* the kernel and the range, respectively. The lower bound $\gamma(A)$ of *A* $(A \neq 0)$ is defined by

$$\gamma(A) = \inf \{ \|Ax\| : x \in (\ker A)^{\perp}, \|x\| = 1 \}.$$

It is well-known [2, p. 311] that $A \in (CR)$ if and only if $\gamma(A) > 0$, and in this case [2, p. 325]

(1.1)
$$\gamma(A) = ||A^{\dagger}||^{-1}$$

If $A \in (CR)$, then $A^* \in (CR)$ and $A^{*(\dagger)} = A^{\dagger(*)}$ [2, p. 320] $(A^{\alpha(\beta)}$ means $(A^{\alpha)\beta})$. Moreover, $A^{\dagger}A$ $(=A^*A^{*(\dagger)})$ and AA^{\dagger} $(=A^{*(\dagger)}A^*)$ are the projections onto $(\ker A)^{\perp}$ $(=\operatorname{ran} A^*)$ and $\operatorname{ran} A$ $(=(\ker A^*)^{\perp})$, respectively. For further basic properties of Moore-Penrose inverses we refer to [2], [11] or [15].

We would like to express our thanks to the referee for his kind advice.

2. The closedness of range of the product operator. An operator $A \in (CR)$ is easily characterized as an operator satisfying AXA = A for some operator X (cf. $AA^{\dagger}A = A$ for such an A), i.e., a relatively regular element of the operator algebra on H. Hence by [17, Result 3.1] (cf. [14, Theorem 1]) on relative regularity we, at once, have the following proposition, which shows that the problem on the closedness of ran AB is reduced to that of ran $A^{\dagger}ABB^{\dagger}$, the range of the product of two projections.

PROPOSITION 2.1. Let A, $B \in (CR)$. Then $AB \in (CR)$ if and only if $A^{\dagger}ABB^{\dagger} \in (CR)$.

The following result shows a norm characterization of the closedness of ran PQ for two projections P and Q.

PROPOSITION 2.2. Let P and Q be projections. If $PQ \neq 0$, then

(2.1)
$$\gamma(PQ)^2 + \|P^{\perp}Q(P \vee Q^{\perp})\|^2 = 1$$
.

Hence (even if PQ = 0) $PQ \in (CR)$ if and only if

$$\|P^{\scriptscriptstyle \perp}Q(P\vee Q^{\scriptscriptstyle \perp})\|<1\;.$$

PROOF. Since ran $QP \subset \operatorname{ran} Q(Q^{\perp} \lor P) \subset (\operatorname{ran} QP)^{-} = (\ker PQ)^{\perp}$, we have

(2.3)
$$(\ker PQ)^{\perp} = \operatorname{ran} Q(Q^{\perp} \vee P)$$
.

Let $x \in (\ker PQ)^{\perp}$ and ||x|| = 1. Then, since $x = Q(Q^{\perp} \vee P)x = Qx$, we

have $\|PQx\|^2 + \|P^{\perp}Q(P \vee Q^{\perp})\|^2 \ge \|PQx\|^2 + \|P^{\perp}Qx\|^2 = \|Qx\|^2 = 1$. By definition, the infimum of $\|PQx\|$ is $\gamma(PQ)$. Hence we have $\gamma(PQ)^2 + \|P^{\perp}Q(P \vee Q^{\perp})\|^2 \ge 1$. To show the converse inequality, note $\gamma(PQ) \le \|PQx\|$ ($x \in (\ker PQ)^{\perp}$, $\|x\| = 1$). Hence $\gamma(PQ)^2 + \|P^{\perp}Qx\|^2 \le \|PQx\|^2 + \|P^{\perp}Qx\|^2 \le \|PQx\|^2 + \|P^{\perp}Qx\|^2 = 1$. Since the supremum of $\|P^{\perp}Qx\|$ is $\|P^{\perp}Q(P \vee Q^{\perp})\|$, we obtain $\gamma(PQ)^2 + \|P^{\perp}Q(P \vee Q^{\perp})\|^2 \le 1$. Now, the equivalence $PQ \in (CR) \Leftrightarrow$ (2.2) (between $PQ \in (CR)$ and (2.2)) is clear if $PQ \neq 0$. If PQ = 0, then $Q(P \vee Q^{\perp}) = 0$ (say, by (2.3)), so that (2.2) is clear. q.e.d.

By (1.1) we easily see $\gamma(A) = \gamma(A^*)$ for an operator $A \neq 0$, in perticular, $\gamma(PQ) = \gamma(QP) \ (PQ \neq 0)$. Hence by (2.1) we have (even if PQ = 0)

$$(2.4) || P^{\perp}Q(P \lor Q^{\perp})|| = || Q^{\perp}P(Q \lor P^{\perp})|| .$$

Between two closed linear subspaces M and N we define the angle $\alpha(M, N)$ $(0 \leq \alpha(M, N) \leq \pi/2)$ as the arccosine of

$$\sup \{ |(x, y)| : ||x|| = ||y|| = 1, x \in M, y \in N \},$$

and $\alpha(M, N) = \pi/2$ when either M or N is $\{0\}$.

Suppose A, $B \in (CR)$, and write $P = A^{\dagger}A$, $Q = BB^{\dagger}$. Then $P^{\perp}(P \lor Q^{\perp}) = P^{\perp} \land (P^{\perp} \land Q)^{\perp}$ is the projection onto $L := \ker A \cap (\ker A \cap \operatorname{ran} B)^{\perp}$. If neither L nor ran B is $\{0\}$, then

$$\begin{split} \|P^{\perp}Q(P \vee Q^{\perp})\| &= \|QP^{\perp}(P \vee Q^{\perp})\| \\ &= \sup \{|(P^{\perp}(P \vee Q^{\perp})x, Qy)| \colon \|x\| = \|y\| = 1\} \\ &= \sup \{|(x, y)| \colon \|x\| = \|y\| = 1, x \in L, y \in \operatorname{ran} B\} \;. \end{split}$$

Hence, by Propositions 2.1 and 2.2 we have the following result due to Bouldin [3] (cf. [5]).

COROLLARY 2.3 [3, Theorem]. Let $A, B \in (CR)$. Then $AB \in (CR)$ if and only if $\alpha(\ker A \cap (\ker A \cap \operatorname{ran} B)^{\perp}, \operatorname{ran} B) > 0$.

For another characterization of the closedness of ran PQ, we have

PROPOSITION 2.4. Let P and Q be projections. If $PQ \neq 0$, then

$$(2.5) \qquad \qquad \gamma(PQ) \geqq \gamma(P^{\perp} + Q) \geqq (1 - \|P^{\perp}Q(P \lor Q^{\perp})\|)^2 \,.$$

Hence (even if PQ = 0) $PQ \in (CR)$ if and only if $P^{\perp} + Q \in (CR)$.

PROOF. Note first that $(\ker QP)^{\perp} = \operatorname{ran} P(P^{\perp} \vee Q)$, $(\ker (P^{\perp} + Q))^{\perp} = \operatorname{ran} (P^{\perp} \vee Q)$, and that both the subspaces are not $\{0\}$. Let $x \in (\ker QP)^{\perp}$ and ||x|| = 1. Then $x = P(P^{\perp} \vee Q)x = Px$ and

$$\|QPx\| = \|(P^{\scriptscriptstyle \perp} + Q)Px\| = \|(P^{\scriptscriptstyle \perp} + Q)x\| \ge \gamma(P^{\scriptscriptstyle \perp} + Q) \;.$$

The last inequality follows from the fact $x = (P^{\perp} \lor Q)x \in (\ker (P^{\perp} + Q))^{\perp}$.

Hence we have $\gamma(QP) \ge \gamma(P^{\perp} + Q)$. Since $\gamma(PQ) = \gamma(QP)$, we have the left hand side inequality of (2.5). Next, note $((P^{\perp} + Q)x, x) \ge ((P^{\perp}Q^{\perp}P^{\perp} + Q)x, x)$ for any $x \in H$ and $P^{\perp}Q^{\perp}P^{\perp} + Q = 1 - (Q^{\perp}P + PQ^{\perp}) + PQ^{\perp}P$. Hence, if $x = (P^{\perp} \vee Q)x$ and ||x|| = 1 then

$$\begin{split} \|(P^{\scriptscriptstyle \perp} + Q)x\| &\ge ((P^{\scriptscriptstyle \perp} + Q)x, x) \ge 1 - 2 \operatorname{Re} \left(Q^{\scriptscriptstyle \perp} P x, x\right) + (PQ^{\scriptscriptstyle \perp} P x, x) \\ &\ge 1 - 2\|Q^{\scriptscriptstyle \perp} P x\| + \|Q^{\scriptscriptstyle \perp} P x\|^2 = (1 - \|Q^{\scriptscriptstyle \perp} P x\|)^2 \\ &\ge (1 - \|Q^{\scriptscriptstyle \perp} P(P^{\scriptscriptstyle \perp} \lor Q)\|)^2 \,. \end{split}$$

Hence $\gamma(P^{\perp} + Q) \ge (1 - ||Q^{\perp}P(Q \lor P^{\perp})||)^2$. By (2.4) this implies the right hand side inequality of (2.5). Now the equivalence $PQ \in (CR) \Leftrightarrow P^{\perp} + Q \in (CR)$ is clear by (2.5) and (2.2) if $PQ \ne 0$. If PQ = 0, then ran $(P^{\perp} + Q) =$ ran $P^{\perp}(1 + Q) =$ ran P^{\perp} , so that $P^{\perp} + Q \in (CR)$. q.e.d.

Before an application we remark that $A \in (CR)$ if and only if $AA^* \in (CR)$. This is seen by the facts ran $AA^* \subset \operatorname{ran} A \subset (\operatorname{ran} AA^*)^-$, and ran $A = \operatorname{ran} A \cdot (A^{\dagger}A)^* = \operatorname{ran} AA^*A^{\dagger(*)} \subset \operatorname{ran} AA^* \subset \operatorname{ran} A$ for $A \in (CR)$.

The equivalence $(1) \Leftrightarrow (3)$ of the following corollary was shown by Nikaido [16, Corollary 1].

COROLLARY 2.5. Let A, $B \in (CR)$. Write $P = A^{\dagger}A$ and $Q = BB^{\dagger}$. Then the following conditions are equivalent.

- (1) $AB \in (CR).$
- $(2) P^{\perp} + Q \in (CR).$
- (3) ker A + ran B is closed.

PROOF. $(1) \Leftrightarrow (2)$ By Propositions 2.1 and 2.4.

 $(2) \Leftrightarrow (3)$ We employ a technique in [7, Theorem 2.2]. Let $T = \begin{cases} P^{\perp} & Q \\ 0 & 0 \end{cases}$ be a operator matrix on the product Hilbert space $H \bigoplus H$. Then ran $T = (\operatorname{ran} P^{\perp} + \operatorname{ran} Q) \bigoplus \{0\}$ and ran $TT^* = \operatorname{ran} (P^{\perp} + Q) \bigoplus \{0\}$. Hence by the above remark we have the desired equivalence. q.e.d.

COROLLARY 2.6. Let P and Q be projections. Then ran $P + \operatorname{ran} Q$ is closed if and only if $\|PQ(P^{\perp} \vee Q^{\perp})\| < 1$.

PROOF. By Corollary 2.5 and Proposition 2.4. q.e.d.

For a pair of two closed linear subspaces M and N, the gap g(M, N) is defined (cf. [13, p. 219]) by

$$g(M, N) = \inf \left\{ d(x, N) / d(x, M \cap N) \colon x \in M \setminus N \right\},\$$

where d(x, L) is the distance from x to L. We set g(M, N) = 1 when $M \subset N$. Let P and Q be the projections onto M and N, respectively. Then by a simple calculation we have $g(M, N) = \gamma(Q^{\perp}P)$ $(M \not\subset N)$, or by (2.1) (even if $M \subset N$)

 $g(M, N) = (1 - \|PQ(P^{\perp} \vee Q^{\perp})\|^2)^{1/2}$.

Clearly, Corollary 2.6 says that g(M, N) > 0 if and only if M + N is closed, which is a well-known result [13, IV, Theorem 4.3] (on a Banach space).

The reverse order law. We state a result which we proved in 3. [12].

LEMMA 3.1 [12, Lemmas 2.1 and 3.2]. Let $A \in (CR)$, and let R be a projection commuting with $A^{\dagger}A$. Then $AR \in (CR)$, $C := 1 - ARA^{\dagger} + ARA^{*}$ is invertible and

$$(3.1) (AR)(AR)^{\dagger} = C^{-1}ARA^* .$$

Using the above lemma we have

LEMMA 3.2. Let A, B, $AB \in (CR)$. Write $P = A^{\dagger}A$ and $Q = BB^{\dagger}$. Then $C := 1 - A(P^{\perp} \vee Q)A^{\dagger} + A(P^{\perp} \vee Q)A^{*}$ is invertible, and $(AB)(AB)^{\dagger} = C^{-1}A(P^{\perp} \vee Q)A^{*}$. (3.2)

PROOF. Put $R = P^{\perp} \lor Q$. Since ran $AB = \operatorname{ran} AQ \subset \operatorname{ran} AR \subset (\operatorname{ran} AR)^{-} =$ $(\operatorname{ran} AQ)^{-} = \operatorname{ran} AB$, we have $\operatorname{ran} AB = \operatorname{ran} AR$, i.e., $(AB)(AB)^{\dagger} = (AR)(AR)^{\dagger}$. Since R commutes with $P = A^{\dagger}A$, we have, by Lemma 3.1, the required assertions. a.e.d.

COROLLARY 3.3. Let P and Q be projections. If $PQ \in (CR)$, then $(PQ)(PQ)^{\dagger} = P(P^{\perp} \lor Q)$, $(PQ)^{\dagger}(PQ) = Q(Q^{\perp} \lor P)$. (3.3)

We remark that the second identity of (3.3) can be also obtained from (2.3).

For the Moore-Penrose inverse of $(PQ)^{\dagger}$, we have the following result which is considered as an extention of [10, Theorem 3].

LEMMA 3.4. Let P and Q be projections. If $PQ \in (CR)$, then R := $1 - (P \lor Q^{\perp})Q + PQ$ is invertible and

$$(3.4) (PQ)^{\dagger} = R^{-1}P(P^{\perp} \vee Q) \; .$$

PROOF. Since $R = 1 - (P \lor Q^{\perp} - P)Q = 1 - (P \lor Q^{\perp})P^{\perp}Q$ and since $||(P \lor Q^{\perp})P^{\perp}Q|| < 1$ by (2.1), we see that R is invertible. By (3.3) we see $(P \lor Q^{\perp})Q(PQ)^{\dagger} = (PQ)^{\dagger}(PQ)(PQ)^{\dagger} = (PQ)^{\dagger}$. Hence we have

$$R(PQ)^{\dagger} = (PQ)^{\dagger} - (P \lor Q^{\perp})Q(PQ)^{\dagger} + PQ(PQ)^{\dagger} = (PQ)(PQ)^{\dagger} = P(P^{\perp} \lor Q)$$
.
This implies the desired identity. q.e.d.

This implies the desired identity.

S. IZUMINO

Now we state the main theorem of this section.

THEOREM 3.5. Let
$$A, B \in (CR)$$
. If $AB \in (CR)$, then
 $(AB)^{\dagger} = (AB)^{\dagger}(AB) \cdot B^{\dagger} \cdot (PQ)^{\dagger} \cdot A^{\dagger} \cdot (AB)(AB)^{\dagger}$
 $= f(B^*, Q^{\perp} \vee P) \cdot B^{\dagger} \cdot \{1 - (P \vee Q^{\perp})Q + PQ\}^{-1}$
 $\times (P^{\perp} \vee Q) \cdot A^{\dagger} \cdot f(A, P^{\perp} \vee Q)$

where $P = A^{\dagger}A$, $Q = BB^{\dagger}$ and $f(S, T) = (1 - STS^{\dagger} + STS^{*})^{-1}STS^{*}$.

PROOF. Note $PQ \in (CR)$ by Proposition 2.1. The first identity is obtained from the fact:

$$(AB)B^{\dagger}(PQ)^{\dagger}A^{\dagger}(AB) = A(A^{\dagger}ABB^{\dagger})(A^{\dagger}ABB^{\dagger})^{\dagger}(A^{\dagger}ABB^{\dagger})B$$

= $A(A^{\dagger}ABB^{\dagger})B = AB$.

The second identity is shown by (3.2), (3.4) and the identity $(AB)^{\dagger}(AB) = (B^*A^*)(B^*A^*)^{\dagger}$. q.e.d.

In each of the following two corollaries, $(AB)^{\dagger}$ is represented by a rational function in A, A^{\dagger} , B, B^{\dagger} and their adjoints under a certain condition which is satisfied for invertible operators. Hence our theorem is, in a sense, a reasonable extention of the reverse order law.

COROLLARY 3.6. Let A, B, $AB \in (CR)$. If $P := A^{\dagger}A$ and $Q := BB^{\dagger}$ commute, then

 $(AB)^{\dagger} = f(B^*, P)B^{\dagger}A^{\dagger}f(A, Q)$ (f is defined in Theorem 3.5).

PROOF. Since P and Q commute, we see that PQ is a projection. Hence $(PQ)^{\dagger} = PQ$ (=QP), because $R^{\dagger} = R$ for a projection R. Since $(AB)(AB)^{\dagger} = (AQ)(AQ)^{\dagger}$, and since Q commutes with $A^{\dagger}A = P$, we have, by $(3.1), (AB)(AB)^{\dagger} = f(A, Q)$. Similarly we have $(AB)^{\dagger}(AB) = f(B^*, P)$. Hence by the first identity of Theorem 3.5 we have the desired representation of $(AB)^{\dagger}$.

We remark that the assumption $AB \in (CR)$ is not needed in Corollary 3.6. For, if P and Q commute then PQ is a projection and $PQ \in (CR)$, so that $AB \in (CR)$ (say, by Proposition 2.1).

COROLLARY 3.7. Let A, B, $AB \in (CR)$. If $P^{\perp} \vee Q = P \vee Q^{\perp} = 1$, i.e., ker A and ran B are complementary, then

$$(AB)^{\dagger}=B^{\dagger}(1-Q+PQ)^{\scriptscriptstyle -1}A^{\scriptscriptstyle \dagger}$$

PROOF. By assumption $f(A, P^{\perp} \lor Q) = f(A, 1) = (1 - AA^{\dagger} + AA^{*})^{-1}AA^{*}$. Since $(1 - AA^{\dagger} + AA^{*})AA^{\dagger} = AA^{*}$ (cf. $A^{*}AA^{\dagger} = A^{*}$), we have $f(A, 1) = AA^{\dagger}$. Similarly we have $f(B^{*}, Q^{\perp} \lor P) = B^{\dagger}B$. Hence by the second

48

identity of Theorem 3.5 we have the required equation. q.e.d.

The following result was essentially shown in [16, Proposition 1] (for Banach space operators).

COROLLARY 3.8. Let A,
$$B \in (CR)$$
 and let $AB \neq 0$. Then

(3.5)
$$\gamma(AB) \ge \gamma(A)\gamma(B)\gamma(PQ)$$
.

PROOF. If $AB \in (CR)$, then by Theorem 3.5 $||(AB)^{\dagger}|| \leq ||B^{\dagger}|| ||(PQ)^{\dagger}|| ||A^{\dagger}||$. Hence by (1.1) we obtain (3.5). If $AB \notin (CR)$, then $PQ \notin (CR)$. Hence (3.5) is clear. q.e.d.

The next two propositions extend (or refine) Bouldin [4, Theorem 3.1] [6, Theorem 3.3], Barwick and Gilbert [1, Theorems 1 and 2], Shinozaki and Sibuya [18, Propositions 3.2 and 4.3].

First we state a useful lemma for our discussion.

LEMMA 3.9 [8, Theorem 2]. Let T be an idempotent operator with $||T|| \leq 1$. Then T is a projection.

PROPOSITION 3.10. Let A, B, $AB \in (CR)$. Then the following conditions are equivalent.

(1) $A^{\dagger}A$ commutes with BB^* .

 $(2) \quad (AB)^{\dagger}(AB) = B^{\dagger}A^{\dagger}AB.$

(3) $C := 1 - A^{*(\dagger)}BB^{\dagger}A^{*} + ABB^{\dagger}A^{*}$ is invertible, and

$$(AB)^{\dagger}=B^{\dagger}A^{*}C^{-1}$$

PROOF. (1) \Rightarrow (2) Since $A^* = A^{\dagger}AA^*$ (and $B^* = B^{\dagger}BB^*$), we have $(AB)^{\dagger}(AB) = (AB)^*(AB)^{\dagger(*)} = B^*A^*(AB)^{\dagger(*)} = B^{\dagger}BB^* \cdot A^{\dagger}AA^* \cdot (AB)^{\dagger(*)}$ $= B^{\dagger}A^{\dagger}ABB^*A^*(AB)^{\dagger(*)} = B^{\dagger}A^{\dagger}(AB)(AB)^*(AB)^{\dagger(*)}$ $= B^{\dagger}A^{\dagger}(AB)(AB)^{\dagger}(AB) = B^{\dagger}A^{\dagger}AB$.

 $(2) \Rightarrow (3)$ We first show that $P := A^{\dagger}A$ and $Q := BB^{\dagger}$ commute. Since $AB = (AB)(AB)^{\dagger}(AB) = AB \cdot B^{\dagger}A^{\dagger}AB$, we have $PQ = A^{\dagger}ABB = A^{\dagger} \cdot ABB^{\dagger}A^{\dagger}AB \cdot B^{\dagger} = (PQ)^2$. Besides, clearly $||PQ|| \leq 1$. Hence by Lemma 3.9 PQ is a projection, so that P and Q commute. Now by Corollary 3.6 we see $(AB)^{\dagger} = f(B^*, P)B^{\dagger}A^{\dagger}f(A, Q)$. Since $f(B^*, P) = (AB)^{\dagger}(AB) = B^{\dagger}A^{\dagger}AB$, and since $f(A, Q) = f(A, Q)^* = AQA^*C^{-1}$, we have $(AB)^{\dagger} = B^{\dagger}A^{\dagger}ABB^{\dagger}A^{\dagger}AQA^*C^{-1} = B^{\dagger}A^*C^{-1}$.

 $(3) \Rightarrow (1)$ Let $(AB)^{\dagger} = B^{\dagger}A^*C^{-1}$. Then $(AB)^{\dagger}C = B^{\dagger}A^*$ or

$$(3.6) (AB)^{\dagger} - (AB)^{\dagger}A^{\dagger(*)}QA^{*} + (AB)^{\dagger}AQA^{*} = B^{\dagger}A^{*}$$

Since $(AB)(AB)^{\dagger}AQA^* = ABB^{\dagger}A^*$, multiplying (3.6) by AB from the left, we have $(AB)(AB)^{\dagger} - (AB)(AB)^{\dagger}A^{\dagger(*)}QA^* + ABB^{\dagger}A^* = ABB^{\dagger}A^*$. Hence

$$(\textbf{3.7}) \qquad (AB)(AB)^{\dagger} = (AB)(AB)^{\dagger}A^{\dagger(*)}QA^{*}$$

If we multiply (3.7) by $(AB)^{\dagger}$ from the left, then we obtain $(AB)^{\dagger} = (AB)^{\dagger}A^{\dagger(*)}QA^{*}$. Hence by (3.6) we see

$$(\mathbf{3.8}) \qquad (AB)^{\dagger}AQA^* = B^{\dagger}A^* \; .$$

Now, if we assume that P and Q commute, then by (3.8)

$$PBB^* = PQBB^* = QPBB^* = BB^{\dagger}A^{\dagger}ABB^* = BB^{\dagger}A^*A^{\dagger(*)}BB^*$$

 $= B \cdot (AB)^{\dagger}AQA^* \cdot A^{\dagger(*)}BB^* = B(AB)^{\dagger}AQA^{\dagger}ABB^*$
 $= B(AB)^{\dagger}(AB)B^*$.

This shows that PBB^* is selfadjoint. Hence P and BB^* commute, which is the assertion (1). To see that P and Q commute, take the adjoints in (3.7). Then we have $(AB)(AB)^{\dagger} = AQA^{\dagger}(AB)(AB)^{\dagger}$. Multiplying by ABfrom the right, we have $AB = AQA^{\dagger}AB$. By this identity we easily see $PQ = (PQ)^2$, so that P and Q commute (cf. Proof of $(2) \Rightarrow (3)$). q.e.d.

Similarly to Proposition 3.10 we have:

PROPOSITION 3.10'. Let A, B, $AB \in (CR)$. Then the following conditions are equivalent.

(1) BB^{\dagger} commutes with A^*A .

 $(2) \quad (AB)(AB)^{\dagger} = ABB^{\dagger}A^{\dagger}.$

(3) $D:=1-B^*A^{\dagger}AB^{*(\dagger)}+B^*A^{\dagger}AB$ is invertible, and

$$(AB)^{\dagger} = D^{-1}B^*A^{\dagger}$$

PROOF. Replace, in Proposition 3.10, A and B by B^* and A^* respectively, and take the adjoints. q.e.d.

COROLLARY 3.11 [6, Theorem 3.3]. Let A, B, $AB \in (CR)$. Then the following conditions are equivalent.

(1) $A^{\dagger}A$ commutes with BB^* and BB^{\dagger} commutes with A^*A .

- (2) $(AB)^{\dagger}(AB) = B^{\dagger}A^{\dagger}AB$ and $(AB)(AB)^{\dagger} = ABB^{\dagger}A^{\dagger}$.
- $(3) \quad (AB)^{\dagger} = B^{\dagger}A^{\dagger}.$

PROOF. The equivalence $(1) \Leftrightarrow (2)$ is clear by Propositions 3.10 and 3.10'. If (2) is assumed, then $A^{\dagger}A$ and BB^{\dagger} commute (cf. Proof of Proposition 3.10 $(2) \Rightarrow (3)$). Hence $(AB)^{\dagger} = (AB)^{\dagger}(AB)(AB)^{\dagger} = B^{\dagger}A^{\dagger}AB(AB)^{\dagger} = B^{\dagger}A^{\dagger}ABB^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger}$, which is the assertion (3). The implication $(3) \Rightarrow (2)$ is clear. q.e.d.

The following proposition is a Hilbert space version of a result due to Galperin and Waksman ([9, Theorem 2]).

PROPOSITION 3.12. Let A, B, $AB \in (CR)$. Then the following conditions

are equivalent.

- (1) ran $B^{\dagger}A^{*} = \operatorname{ran} B^{*}A^{*}$ and ran $A^{*}{}^{(\dagger)}B = \operatorname{ran} AB$.
- $(2) \quad (AB)^{\dagger} = B^{\dagger}(A^{\dagger}ABB^{\dagger})^{\dagger}A^{\dagger}.$

PROOF. Note first that B^*A^* , $B^{\dagger}A^*$, $A^{*(\dagger)}B \in (CR)$, say, by Proposition 2.1. Write $P = A^{\dagger}A$ and $Q = BB^{\dagger}$, and let $X = B^{\dagger}(PQ)^{\dagger}A^{\dagger}$. Then clearly XABX = X, so that $X \in (CR)$. Next we want to show

(3.9)
$$\operatorname{ran} X = \operatorname{ran} B^{\dagger} A^{*}$$
 and $\operatorname{ran} X^{*} = \operatorname{ran} A^{*} A^{*} B$.

Since $(PQ)^{\dagger}P = (PQ)^{\dagger}$ by (3.4), and since ran $B^{\dagger}(Q^{\perp} \vee P) = \operatorname{ran} B^{\dagger}P$ (cf. Proof of Lemma 3.2), we have

$$\operatorname{ran} X = \operatorname{ran} B^{\dagger}(PQ)^{\dagger}A^{\dagger} = \operatorname{ran} B^{\dagger}(PQ)^{\dagger}P = \operatorname{ran} B^{\dagger}(PQ)^{\dagger} = \operatorname{ran} B^{\dagger}(PQ)^{\dagger}(PQ)$$
$$= \operatorname{ran} B^{\dagger}(Q^{\perp} \vee P) = \operatorname{ran} B^{\dagger}P = \operatorname{ran} B^{\dagger}A^{*} .$$

Similarly we have the other identity of (3.9). Now, if we assume (1), then by (3.9) we obtain

$$(3.10) \qquad \text{ran } X = \text{ran } B^*A^* \text{ and } \text{ran } X^* = \text{ran } AB,$$

or equivalently

$$(3.11) XX^{\dagger} = (AB)^{\dagger}(AB) \quad \text{and} \quad X^{\dagger}X = (AB)(AB)^{\dagger} \; .$$

Hence $X = XX^{\dagger}XX^{\dagger}X = (AB)^{\dagger}(AB) \cdot X \cdot (AB)(AB)^{\dagger} = (AB)^{\dagger}(AB)(AB)^{\dagger} = (AB)^{\dagger}$, which is the assertion (2). Conversely, if we assume (2), i.e., $X = (AB)^{\dagger}$, then clearly (3.11) and hence (3.10) are valid. Hence by (3.9) we have the assertion (1). q.e.d.

We remark that the condition $P^{\perp} \vee Q = P \vee Q^{\perp} = 1$ $(P = A^{\dagger}A, Q = BB^{\dagger})$ taken in Corollary 3.7 implies the assertion (2) (hence also (1)) of the above proposition.

The following result adds to Corollary 3.11 another condition in order that $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ holds.

COROLLARY 3.13 (cf. [9, Theorem 3]). Let A, B, $AB \in (CR)$. Then $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ if and only if

(3.12) $A^{\dagger}A$ and BB^{\dagger} commute, and (1) (or equivalently (2)) of Proposition 3.12 holds.

PROOF. If $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ then $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB$, so that $A^{\dagger}A$ and BB^{\dagger} commute. Since $(A^{\dagger}ABB^{\dagger})^{\dagger} = A^{\dagger}ABB^{\dagger} = BB^{\dagger}A^{\dagger}A$, we have $B^{\dagger}(A^{\dagger}ABB^{\dagger})^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger} = (AB)^{\dagger}$, the assertion (2) of Proposition 3.12. Conversely, if (3.12) is assumed then $(AB)^{\dagger} = B^{\dagger}(A^{\dagger}ABB^{\dagger})^{\dagger}A^{\dagger} = B^{\dagger}BB^{\dagger}A^{\dagger}AA^{\dagger} = B^{\dagger}A^{\dagger}$, as desired. q.e.d.

S. IZUMINO

References

- D. T. BARWICK AND J. D. GILBERT, On generalizations of reverse order law, SIAM J. Appl. Math. 27 (1974), 326-330.
- [2] A. BEN-ISRAEL AND T. N. E. GREVILLE, Generalized Inverses: Theory and Applications, Wiley, New York, 1974.
- [3] R. BOULDIN, The product of operators with closed range, Tôhoku Math. J. 25 (1973), 359-363.
- [4] R. BOULDIN, The pseudo-inverse of a product, SIAM J. Appl. Math. 24 (1973), 489-495.
- [5] R. BOULDIN, Closed range and relativity for products, J. Math. Anal. Appl. 61 (1977), 397-403.
- [6] R. BOULDIN, Generalized inverses and factorizations, to appear in *Recent Application of Generalized Inverses* edited by M. Z. Nashed.
- [7] P. A. FILLMORE AND J. P. WILLIAMS, On operator ranges, Advances in Math. 7 (1971), 254-281.
- [8] T. FURUTA AND R. NAKAMOTO, Some theorems on certain contraction operators, Proc. Japan Acad. 45 (1969), 565-566.
- [9] A. M. GALPERIN AND Z. WAKSMAN, On pseudoinverses of operator products, Linear Algebra and Appl. 33 (1980), 123-131.
- [10] T. N. E. GREVILLE, Solutions of the matrix equation XAX = X, and relations between oblique and orthogonal projections, SIAM J. Appl. Math. 26 (1974), 828-832.
- [11] C. W. GROETSCH, Generalized Inverses of Linear Operators: Representation and Approximation, Marcel Dekker, New York and Basel, 1977.
- [12] S. IZUMINO, Inequalities on operators with closed range, Math. Japon. 25 (1980), 423-429.
- [13] T. KATO, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg and New York, 1966.
- [14] J. J. KOLIHA, The product of relatively regular operators, Commentationes Math. Univ. Carolinae 16 (1975), 531-539.
- [15] M. Z. NASHED, Generalized Inverses and Applications, Academic Press, New York, San Francisco and London, 1976.
- [16] G. NIKAIDO, Remarks on the lower bound of linear operators, Proc. Japan Acad. 56 (1980), 321-323.
- [17] S. V. PHADKE AND N. T. TAKARE, Generalized inverses and operator equations, Linear Algebra and Appl. 23 (1979), 191-199.
- [18] N. SHINOZAKI AND M. SIBUYA, The reverse order law $(AB)^- = B^-A^-$, Linear Algebra and Appl. 9 (1974), 29-40.
- [19] N. SHINOZAKI AND M. SIBUYA, Further results on the reverse order law, Linear Algebra and Appl. 27 (1979), 9-16.
- [20] E. A. WIBKER, R. B. HOWE AND J. D. GILBERT, Explicit solutions to the reverse order law, $(AB)^+ = B_{mr}^- A_{1r}^-$, Linear Algebra and Appl. 25 (1979), 107-114.

FACULTY OF EDUCATION TOYAMA UNIVERSITY

TOYAMA, 930

Japan