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1. Introduction. Let A be a (bounded linear) operator on a Hubert
space H. If A has closed range, then there is a unique operator Af

called the Moore-Penrose inverse or generalized inverse of A, which satis-
fies the following four identities [2, p. 321]:

AAM. = A , AMAf = A" , (A*A)* = AM. and

(AAψ = AA" .

We denote by (CR) the set of all operators on H with closed range (or
equivalently, that of all operators with Moore-Penrose inverses). For two
operators A and B in (CR), one problem is to find the condition under
which the product AB is in (CR), Bouldin [3] [5] gave a geometric charac-
terization of the condition in terms of the angle between two linear
subspaces, and recently Nikaido [16] showed a topological characterization
of it (for Banach space operators). Another problem is to represent the
Moore-Penrose inverse (ABy in a reasonable form, that is, to generalize
the reverse order law (AB)"1 = B~xA~ι for invertible operators. Many
authors [1], [4], [6], [9], [10], [18]-[20], etc. (some of them in the setting
of matrices) studied this problem. Bar wick and Gilbert [1], Bouldin [4]
[6], Galperin and Waksman [9], etc. proved some necessary and sufficient
conditions which guarantee the "generalized" reverse order law (ABy =
BΆ holds.

In this paper we shall treat the product of two operators with closed
range. In Section 2 we shall show some norm inequalities for the product
to have closed range, which enable us to refine the results in [3] and
[16]. In Section 3, using our result in [12], we shall present an exten-
sion of the (generalized) reverse order law, and extend some main results
in [1], [4], [6] and [9].

Throughout this paper all operators are bounded linear. A projec-
tion is a selfadjoint idempotent operator, and it is an orthogonal projection
onto a closed linear subspace of H. For projections P and Q onto the
closed linear subspaces M and N, we write, in lattice theoretic notations,
P 1 , P V Q and P ΛQ the projections onto the orthocomplement M1 of
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M, the norm closure (Λf + N)~ of M + N and the intersection M.Π N,
respectively. For an operator A we shall denote by ker A and ran A
the kernel and the range, respectively. The lower bound 7(A) of A
(A Φ 0) is defined by

= in£{\\Ax\\:xe(keτA)\ \\x\\ = 1} .

It is well-known [2, p. 311] that A e (CR) if and only if γ(A) > 0, and
in this case [2, p. 325]

(1.1) y(A) = \\Aψι.

If Ae(CR), then A*e(CR) and A*(t) - At(*> [2, p. 320] (Aα(^ means (Aα)0
Moreover, A^A ( = A*A*(t)) and AA* (=A*(t)A*) are the projections onto
(ker A)1 ( = ranA*) and ran A (^(kerA*)1), respectively. For further
basic properties of Moore-Penrose inverses we refer to [2], [11] or [15].

We would like to express our thanks to the referee for his kind
advice.

2. The closedness of range of the product operator. An operator
A e (CR) is easily characterized as an operator satisfying AXA = A for
some operator X(cf. A A1 A = A for such an A), i.e., a relatively regular
element of the operator algebra on H. Hence by [17, Result 3.1] (cf.
[14, Theorem 1]) on relative regularity we, at once, have the following
proposition, which shows that the problem on the closedness of ran AB
is reduced to that of ra.nA^ABB\ the range of the product of two
projections.

PROPOSITION 2.1. Let A,Be(CR). Then ABe(CR) if and only if

The following result shows a norm characterization of the closedness
of ran PQ for two projections P and Q.

PROPOSITION 2.2. Let P and Q be projections. If PQ Φ 0, then

(2.1) j(PQ)2 + \\PλQ(P V Q1) ||2 - 1 .

Hence (even if PQ = 0) PQ 6 (CR) if and only if

(2.2) II P^Q(P V Q1) | | < 1 .

PROOF. Since ran QPc. ran Q(Qλ V P) c (ran QP)~ = (ker PQ) 1 , we
have

(2.3) (ker PQ)1 = ran Q(QL V P) .

Let xe (ker PQ)1 and ||a?|| = l . Then, since x = Q(QL V P)x = Qx, we
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have || PQx ||2 + || P^Q(P V QL) ||2 ^ || PQx ||2 + || P^Qx ||2 = || Qx ||2 = 1. By
definition, the infimum of ||PQα|| is y(PQ). Hence we have 7(PQ)2 +
|| PXQ(P VQ1)!!2 ^ 1. To show the converse inequality, note y(PQ) ^
||PQa?|| (α e (ker PQ)\ | | s | | = 1). Hence τ(PQ)2 + HPH^U2 ^ ||PQα||2 +
\\PλQx\\* = l. Since the supremum of \\PλQx\\ is H P ^ P V Q1)!!, we
obtain y(PQf + || P ^ P V Q1) ||2 ^ 1. Now, the equivalence PQ e (CB) <=>
(2.2) (between PQ e (CB) and (2.2)) is clear if PQ Φ 0. If PQ = 0, then
Q(P V Q1) = 0 (say, by (2.3)), so that (2.2) is clear. q.e.d.

By (1.1) we easily see y(A) = y(A*) for an operator A φ 0, in per-
ticular, liPQ) = 7(QP) (PQ ^ 0). Hence by (2.1) we have (even if PQ = 0)

(2.4) || P"Q{P V Q1) || = || ̂ ^ ( Q V P1) || .

Between two closed linear subspaces M. and N we define the angle
a(M, N) (0 ^ α(M, iV) ^ π/2) as the arccosine of

sup{|(α, y)\: \\x\\ = ||2/|| = 1, a; eΛζ i/6iV} ,

and a(Mf N) = π/2 when either Λί or iV is {0}.
Suppose A, Be (CB), and write P = A*A, Q = BB\ Then PL(P V Q1) =

P 1 Λ (P 1 ΛQ) 1 is the projection onto L := ker A Π (ker A Π ran β) 1 . If
neither L nor ran 1? is {0}, then

|| P'QiPvQ1) || = HQP^PVQ 1)!!

= sup {|(J^(P V Q")x, Qy)\: \\x\\ = ||y|| - 1}

= sup{|(ίc, i/)|: ||α;|| = ||i/|| = 1, xeL, yeτ&nB) .

Hence, by Propositions 2.1 and 2.2 we have the following result due to
Bouldin [3] (cf. [5]).

COROLLARY 2.3 [3, Theorem]. Let A,Be(CB). Then ABe(CR) if
and only if α(ker A Π (ker A Π ran B)L, ran B) > 0.

For another characterization of the closedness of ranPQ, we have

PROPOSITION 2.4. Let P and Q be projections. If PQ Φ 0, then

(2.5) τ(PQ) ^ 7(P1 + Q) ^ (1 - ||PLQ{P VQ1) | | ) 2 .

Hence {even if PQ = 0) PQe (CB) if and only if P 1 + Qe (OR).

PROOF. Note first that (ker QP)1 = ran P(PL V Q), (ker (P 1 + Q))1 =
ran (P 1 V Q), and that both the subspaces are not {0}. Let x e (ker QP)1

and || a? || = 1. Then x = P(PL V Q)a? = Px and

HQPa-ll = II(P^ + Q)Pαj|| = ||(P^ + Q)x\\ ̂  τ(P x + Q) .

The last inequality follows from the fact x = (P 1 V Q)a; 6 (ker (P 1 + Q))1.
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Hence we have γ(QP) ^ Ί(PL + Q). Since y(PQ) = τ(QP), we have the
left hand side inequality of (2.5). Next, note ((P1 + Q)x, x) ^ ((PLQLPL +
Q)s, a?) for any x e H and PLQLP* + Q = 1 - (QXP + PQ1) + PQXP. Hence,
if a? = (P 1 V Q)x and | |α | | = 1 then

|| (P1 + Q)x || ^ ((P1 + Q)a>, a?) ̂  1 - 2 Re (QλPx, x) + (Pζ^Pα;, a?)

^ 1 - 2||Q1P<*|| + ||Q-'-jRa?||2 = (1 - \\QLPx\\f
^ ( 1 - || Q^PίP1 VQ)| |) 2.

Hence τ(P x + Q) ^ (1 - II Q 1 - ^ V P1) ||)2. By (2.4) this implies the right
hand side inequality of (2.5). Now the equivalence PQ e (CR) « P 1 + Q e
(CR) is clear by (2.5) and (2.2) if PQ Φ 0. If PQ = 0, then ran (P 1 + Q) =
ran Pλ(l + Q) = ran P 1 , so that P 1 + Q 6 (OK). q.e.d.

Before an application we remark that A e (CR) if and only if
AA* e(CR). This is seen by the facts ran AA*cran.Ac:(ran AA*)~, and
ran A = τanA (A*A)* = ran AA*Atw c ran AA* c ran A for A e (CR).

The equivalence (1) *=> (3) of the following corollary was shown by
Nikaido [16, Corollary 1].

COROLLARY 2.5. Let A, Be (CR). Write P = AfA and Q = BB\
Then the following conditions are equivalent.

(1) ABe(CR).
(2) Pλ + Qe(CR).
( 3) ker A + ran B is closed.

PROOF. (1) <=> ( 2) By Propositions 2.1 and 2.4.
(2)*=>(3) We employ a technique in [7, Theorem 2.2]. Let Γ =

(P1 O)
\0 01 ^ e a ° P e r a * o r matrix on the product Hubert space H@H. Then

ran T = (ran P 1 + ran Q) © {0} and ran ΓT* = ran (P1 + Q) φ {0}. Hence
by the above remark we have the desired equivalence. q.e.d.

COROLLARY 2.6. Let P and Q be projections. Then ran P + ran Q
is closed if and only if \\PQ(Pλ V QL)\\ < 1.

PROOF. By Corollary 2.5 and Proposition 2.4. q.e.d.

For a pair of two closed linear subspaces M and JV, the gap g(M, N)
is defined (cf. [13, p. 219]) by

g(M, N) = inf {d(x, N)jd(x, Mf]N):xe M\N} ,

where d(xf L) is the distance from x to L. We set g(M, N) = 1 when
MaN. Let P and Q be the projections onto M and N, respectively.
Then by a simple calculation we have g(Mf N) = Ύ(QLP) (Mς£N), or by
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(2.1) (even if ACcziSΓ)

g(M, iSΓ) = (1 — \\PQ(P1 V Q^WT2 .

Clearly, Corollary 2.6 says that g(M, N) > 0 if and only if M + N is
closed, which is a well-known result [13, IV, Theorem 4.3] (on a Banach
space).

3. The reverse order law. We state a result which we proved in
[12].

LEMMA 3.1 [12, Lemmas 2.1 and 3.2]. Let A e (CR), and let R be a
projection commuting with A* A. Then AR e (CR), C: = 1 — ARA* + ARA*
is invertible and

(3.1) (AR)(ARY = C-'ARA* .

Using the above lemma we have

LEMMA 3.2. Let A, B, ABe(CR). Write P = A*A and Q = BB\
Then C := 1 - A(PL V Q)A + A(PL V Q)A* is invertible, and

(3.2) (ABXABY = C^AίP1 V

PROOF. Put R=PL\/Q. Since ran AB=ran AQcran ARc(ran AR)~ =
(ran AQ)~ = ran ^Iβ, we have ran AB = ran AR, i.e., (AJB)(AjB)t=(Ai?)(Aie)t.
Since J? commutes with P = Afil, we have, by Lemma 3.1, the required
assertions. q.e.d.

COROLLARY 3.3. Let P and Q be projections. If PQ e (CR), then

(3.3) (PQ)(PQY = P(P" V Q) , (PQY(PQ) = Q(Qλ V P) .

We remark that the second identity of (3.3) can be also obtained
from (2.3).

For the Moore-Penrose inverse of (PQ)1, we have the following result
which is considered as an extention of [10, Theorem 3].

LEMMA 3.4. Let P and Q be projections. If PQe(CR), then R: =

1 - (P V Qλ)Q + PQ is invertible and

(3.4) (PQY = R~ιP(PL V Q) .

PROOF. Since R = 1 - (P V Q1 - P)Q = 1 - (P V Qλ)PLQ and since
|| (P V QX)P1Q\\ < 1 by (2.1), we see that R is invertible. By (3.3) we
see (P V Qλ)Q(PQY = (PQ)\PQ)(PQy = (PQY. Hence we have

R(PQγ = (PQ)t _ ( P V QL)Q(PQy + PQ(PQT = (PQ)(PQϊ = P(PL V Q) .

This implies the desired identity. q.e.d.
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Now we state the main theorem of this section.

THEOREM 3.5. Let A, Be(CR). If ABe (CR), then

(ABy = (AB)XAB) B* (PQy A* (AB)(AB)i

= f{B*, Qλ V P) B< {1 - (P V Qλ)Q + PQ}~1

x (P1 V O A ^ M ^ V Q ) ,

wΛerβ P = AfA, Q = BB" and f(S, Γ) - (1 - STSf + STS*)~1STS*.

PROOF. Note PQe(CR) by Proposition 2.1. The first identity is
obtained from the fact:

(AB)B\PQyA\AB) = A(AABB*)(AABB)\

= AB .

The second identity is shown by (3.2), (3.4) and the identity (AB)\AB) =
(B*A*)(B*A*)\ q.e.d.

In each of the following two corollaries, (AB)1 is represented by a
rational function in A, A\ B, B1 and their ad joints under a certain con-
dition which is satisfied for invertible operators. Hence our theorem is,
in a sense, a reasonable extention of the reverse order law.

COROLLARY 3.6. Let A,B,ABe{CR). If P:=A*A and Q:
commute, then

Y = f(B*, P)BΆf{A, Q) (/ is defined in Theorem 3.5) .

PROOF. Since P and Q commute, we see that PQ is a projection.
Hence (PQ)f = PQ (= QP), because R* = R for a projection R. Since
(AB)(ABγ = (AQ)(AQ)\ and since Q commutes with A*A = P, we have,
by @.l),(AB)(ABy = /(A, Q). Similarly we have (AB)f(AB) = f(B*, P).
Hence by the first identity of Theorem 3.5 we have the desired represen-
tation of (ABy. q.e.d.

We remark that the assumption AB e (CR) is not needed in Corollary
3.6. For, if P and Q commute then PQ is a projection and PQ e (CR),
so that ABe(CR) (say, by Proposition 2.1).

COROLLARY 3.7. Let A, B, AB e {CR). If P 1 V Q = P V QL = 1, i.e.,

ker A and ran 1? are complementary, then

(ABy = #(]. - Q + P Q ) - ^ .

PROOF. By assumption f(A, PLvQ) = f(A, 1) = (1 - AA* + AA*)~\AA*.
Since (1 - AAt + AA*)AAf = AA* (cf. A*AAt = A*), we have /(A, 1) =
AA\ Similarly we have f{B*, Q1 V P) = J5fP. Hence by the second
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identity of Theorem 3.5 we have the required equation. q.e.d.

The following result was essentially shown in [16, Proposition 1]
(for Banach space operators).

COROLLARY 3.8. Let A,Be(CR) and let AB φ 0. Then

(3.5) y(AB) ^ y(A)y(B)y(PQ) .

PROOF. If AB e (CR), then by Theorem 3.5 \\(AB)<\\ ^ \\B*\\ \\(PQy\\ \\A%
Hence by (1.1) we obtain (3.5). If ABe(CE), then PQ$(CR). Hence
(3.5) is clear. q.e.d.

The next two propositions extend (or refine) Bouldin [4, Theorem
3.1] [6, Theorem 3.3], Barwick and Gilbert [1, Theorems 1 and 2],
Shinozaki and Sibuya [18, Propositions 3.2 and 4.3].

First we state a useful lemma for our discussion.

LEMMA 3.9 [8, Theorem 2]. Let T be an idempotent operator with
\\T\\ ίS 1. Then T is a projection.

PROPOSITION 3.10. Let A, B, AB e (CR). Then the following condi-
tions are equivalent.

(1) A1 A commutes with BB*.
( 2) (AB)\AB) = B1A*AB.

( 3) C := 1 - A*mBBA* + ABB* A* is invertible, and

(ABy = BΆ*C~ι .

PROOF. (1) ==• (2 ) Since A* = AΆA* (and B* = BΈB*), we have

(ABy(AB) = (Afy^ABy™ = B*A*(AByw = BWB* AtAA*-(AByw

= BtAXAB)(ABy(AB) = BΆAB .

(2) =» ( 3 ) We first show that P: = A1 A and Q : = BB* commute.
Since AB = {AB){AB)\AB) = AB B^AΆB, we have PQ = A* ABB =
A^ABB^AΆBB* = (PQ)*. Besides, clearly | |PQ|| ^ 1. Hence by Lemma
3.9 PQ is a projection, so that P and Q commute. Now by Corollary
3.6 we see (ABy = f{B\ P)BΆf(A, Q). Since f(B*, P) = (AB)\AB) =
&AAB, and since f(A, Q) = f(A, Q)* = AQA*C~\ we have (ABy =

( 3 ) =» (1) Let (ABy = B'A*C~\ Then (AByC = BΆ* or

(3.6) (ABy - (ABγA^QA* + (AByAQA* = B*A* .

Since (AB)(AByAQA* = ABB*A*, multiplying (3.6) by AB from the left,
we have (AB)(ABy - (AB)(AByAn*)QA* + ABB*A* = ABBA*. Hence
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(3.7) (AB)(ABY =

If we multiply (3.7) by (ABy from the left, then we obtain (ABy =
(AByA^QA*. Hence by (3.6) we see

(3.8) (AByAQA* = B*A* .

Now, if we assume that P and Q commute, then by (3.8)

PBB* = PQBB* = QPBB* = BB^AABB* = BB*A*An*)BB*

= B-(AB)*AQA*-A"*)BB* = B(AByAQAABB*

= B(AB)\AB)B* .

This shows that PBB* is selfadjoint. Hence P and BB* commute, which
is the assertion (1). To see that P and Q commute, take the ad joints
in (3.7). Then we have (AB)(ABy = AQA\AB)(AB)\ Multiplying by AB
from the right, we have AB = AQA^AB. By this identity we easily see
PQ = (PQ)\ so that P and Q commute (cf. Proof of (2) => (3)). q.e.d.

Similarly to Proposition 3.10 we have:

PROPOSITION 3.10'. Let A, B, ABe(CR). Then the following condi-
tions are equivalent.

(1) BΈP commutes with A*A.
(2) (AB)(ABy = ABΈPA\
( 3 ) D := 1 - B*AfAB*(t) + B*A*AB is invertible, and

(ABy = D-1JB*At .

PROOF. Replace, in Proposition 3.10, A and J5 by JB* and A* respec-
tively, and take the adjoints. q.e.d.

COROLLARY 3.11 [6, Theorem 3.3]. Let A,B,ABe(CR). Then the
following conditions are equivalent.

(1) A*A commutes with BB* and BB^ commutes with A*A.
(2) (AB)XAB) = BΆAB and (AB)(ABy = ABWA\
(3) (AB)* = B*A\

PROOF. The equivalence (1)»(2) is clear by Propositions 3.10 and
3.10'. If (2) is assumed, then AfA and BB1 commute (cf. Proof of Prop-
osition 3.10 (2) =- (3)). Hence (ABy = (AB)\AB){ABy = BΆAB(ABy =
JB^ABB+A 1" = B*A\ which is the assertion (3). The implication (3) => (2)
is clear. q.e.d.

The following proposition is a Hubert space version of a result due
to Galperin and Waksman ([9, Theorem 2]).

PROPOSITION 3.12. Let A, JS, AB e (CR). Then the following conditions
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are equivalent.
(1) ran B^A* = ran £*A* and ran A*(t)£ = ran AB.
( 2) (ABy = JS

PROOF. Note first that J3*A*, £^1*, A* ( t )£e(C#), say, by Proposi-
tion 2.1. Write P = A*A and Q = SB*, and let X = B^PQ)^1". Then
clearly XABX = X, so that Xe(CR). Next we want to show

(3.9) ran X = ran £fA* and ran X* = ran A*(t)B .

Since (PQYP = (PQ)f by (3.4), and since ran B\QL V P) = ran £ f P (cf.
Proof of Lemma 3.2), we have

ran X = ran B\PQyA = ran B\PQ)Ψ = ran βt(PQ)t - ran B\PQY(PQ)

= ran B^Q1 V P) = ran B fP = ran J5fA* .

Similarly we have the other identity of (3.9). Now, if we assume (1),
then by (3.9) we obtain

(3.10) ran X = ran J5*A* and ran X* = ran AB ,

or equivalently

(3.11) XX* = (AB)\AB) and X'X = (AB)(ABγ .

Hence X= XX"XX'X= (AB)XAB) X (AB)(ABy =
which is the assertion (2). Conversely, if we assume (2), i.e., X = (AB)\
then clearly (3.11) and hence (3.10) are valid. Hence by (3.9) we have
the assertion (1). q.e.d.

We remark that the condition P 1 v Q = P V Q 1 - l ( P = A+A, Q =
BBf) taken in Corollary 3.7 implies the assertion (2) (hence also (1)) of
the above proposition.

The following result adds to Corollary 3.11 another condition in order
that (ABY = B^A* holds.

COROLLARY 3.13 (cf. [9, Theorem 3]). Let A,B,ABe(CR). Then
(ABY = B*A* if and only if

(3.12) A*A and BB* commute, and (1) (or equivalently (2))

of Proposition 3.12 holds.

PROOF. If (ABγ=B*A* then (AByAB=B*A*AB, so that A*A and BB^
commute. Since (AABBy = A^ABB* = BB^A^A, we have B*(A*ABByA*=
B*A* = (AB)\ the assertion (2) of Proposition 3.12. Conversely, if (3.12)
is assumed then (ABy = B\A^ABBJA^ = B*BB*A*AA* = B*A\ as desired.

q.e.d.
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