
Tόhoku Math. Journ.
34 (1982), 301-309.

ON UNIFORMLY ALMOST PERIODIC SETS OF FUNCTIONS
FOR ALMOST PERIODIC DIFFERENTIAL EQUATIONS

GEORGE SEIFERT*

(Received June 20, 1981)

1. Introduction. Let f(t,x): R x Rn -> Rn be continuous and for
each x e Rn be almost periodic (a.p. for short) in t. For a definition and
a concise discussion of a.p. functions, cf. the book by Besicovitch [1].

The problem of existence of a.p. solutions of the differential equation

(1) %' = /(«, x) (x' = dx/dt)

has been studied extensively. It is known that if x(t) is any a.p. func-
tion such that a/(t) exists and is uniformly continuous on R, then x'(t)
is a.p. It therefore follows that a necessary condition for the existence
of such a.p. solutions of (1) is that f(t, x(t)) must be a.p. However, in
general such composites are not a.p.; cf. the simple example /(£, x) =
sinta, x = sinί, discussed in Fink [2, p. 16]. The question of what addi-
tional conditions are required on / so that any such composite is a.p.
has led to the concept of / a.p. in t uniformly for x in certain subsets
of Rn. More generally, certain concepts of uniformly a.p. (u.a.p. for
short) families or sets of functions have been developed. It is the purpose
of this paper to examine these concepts and some relationships between
them. The author is greatly indebted to his colleague, A.M. Fink, for
many fruitful discussions on these topics.

2. Notation, definitions, theorems. For any x e R*, \ x | will denote
some fixed norm.

DEFINITION 1. If /: R x S-*Rn, S some nonempty set, and ε > 0,
define

T(f, S, ε) = {τeR: \f(t + τ, x) - /(ί, x)\ ^ ε for (t, x) eR x S} .

DEFINITION 2. f:R x S->Rn, where S c l , X a metric space, is
said to be a.p. in t uniformly for xeS if it is continuous and if for
each compact KaS and each ε > 0, there exists an L — L(ε, K) such
that for each aeR,
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T(f,Kf ε) n [α, a + L] Φ 0

here 0 denotes the empty set.

This definition follows Yoshizawa's in [3]. In fact, using the results
and methods in [3, pp. 6-19], it follows that if S (or X) is separable
the following properties hold:

(Po) If / is a.p. in ί uniformly for x e S, then / is uniformly con-
tinuous on R x Kf K any compact subset of S.

(P^ A necessary and sufficient condition that /(ί, x) is a.p. in t
uniformly for xeS is that given any sequence {t'k:k = 1,2, •••}, there
exists a subsequence {tk: k = 1, 2, •} such that f(t + tk, x) converges
uniformly on each set R x K, KaS, K compact. Also the limit g(t, x)
of such a sequence is a.p. in t uniformly for x e S.

(P2) The set of functions a.p. in t uniformly for xeS, S fixed, is
a linear space over the reals.

(P8) If x(t) is a.p., x(t) e K compact for t e R, KaS, and fit, x) is a.p.
in t uniformly for xeS, then f(t,x(t)) is a.p.; here the Bohr definition
of an X-valued a.p. function is used.

(PJ If /(t, x) is a.p. in t uniformly for xeS, the set A = Λ(f)
defined by

Λ= LeR: lim T'1 Γ/(ί, x)e~ίλt Φ 0 for some xeS\
[ r->oo Jo )

is countable. ( 0 is countable by definition).
A simple example discussed in [3, p. 14], shows that if we replace

K by S in Definition 2, and S is not compact, then (P2) does not hold.
We also note that if X = Rn, as is usually assumed in [3], then X

is clearly separable.
The properties (P0)-(P4) are very useful in applying certain well-

known methods for the existence of a.p. solutions for a.p. systems like
(1), where / is a.p. in t uniformly for xeScRn, S open; cf. [2] and [3].

For generalizations of equations like (1) in the direction of including
time delays, it becomes profitable in general to consider / = /(£, φ),
where φ is an element in a certain function space X, the so-called initial
function space, consisting of Rn-valued functions on [ — r, 0] or (—°°,0].
Thus instead of (1) we consider equations like

(2) x\t) = f{t,xt),

where / is as above, and for fixed t eR, xt is the function x(t + s): se
[ — r, 0] or (— oo, 0], such that xteX.

Introducing a topology in X, we may then use Definition 2 to define
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/ a.p. in t uniformly for S c l , and assuming S separable, properties
(P0MP4) will hold.

On the other hand, if S is not separable, a question of interest
arises as to whether additional conditions can be added to Definition 2
such that the desirable properties such as (P0)-(PJ hold. We show that
such additional conditions as given basically by Fink in [2] are adequate
to this purpose. These are contained in the following definition.

DEFINITION 3. Let /: R x S—> Rn where S is some nonempty set.
Suppose

(a) For each ε > 0 there exists an L = L(e, S) > 0 such that for
each aeR, T(f, S, ε) Π [α, a + L] Φ 0 ,

(b) OeR is an interior point of T(f, S, ε), and
(c) there exists an M such that | f(t, x)| <; M for (ί, x)eR x S.

Then {/(£, x):xeS} is called a u.a.p. family; cf. [2, p. 17].

Clearly (b) can also be stated as follows:
(b') / is continuous in t uniformly for (ί, x) eR x S.
We note that a u.a.p. family is in a sense more general than a

function / a.p. in t uniformly for x e S, yet also more restrictive, even
if S = R\

We will show that some of the properties (P0)-(P4) hold for / such
that {/(£, x): xeS} is a u.a.p. family, but the important property (P8)
does not unless an additional continuity condition on / is imposed; in
this case S must be a subset of a topological space which for our pur-
poses will be usually a metric space. However, in what follows, unless
specified otherwise, S will denote an arbitrary nonempty set.

DEFINITION 4. For any f: R x S-+R71, we define H(f) to be the
set of all functions g such that for some sequence {tk:k = 1,2, •••},
f(t + tkf x) -> g(t, x) as k -> oo uniformly on R x S. H(f) is called the
hull of /.

Since we will be using the following theorems which essentially
appear in Fink [2, pp. 22-26], we state these here; the reader may then
also more easily compare these results with ours.

PROPOSITION 1 ([2, Theorem 2.7]). Let {f(f,x):xeS} be a u.a.p.
family. Then given a sequence {t'k: k = 1, 2, •}, there exists a sub-
sequence {tk: k = 1, 2, •} such that lim^oo f(t + tk, x) exists uniformly on
Rx S.

PROPOSITION 2 ([2, Theorem 2.8]). Let there exist M such that
\f(t, x)\t^M for all (tf x) eR x S, and suppose that each sequence {t'k: k =



304 G. SEIFERT

1, 2, •} contains a subsequence {tk: k = l,2, •} such that lim^oo f(t + tk, x)
exists uniformly on R x S. Then {f(t, x): xeS} is a u.a.p family.

PROPOSITION 3 ([2, Theorem 2.10]). Let S be a compact subset of a
metric space X and f(t, x) be continuous on R x S, and a. p. in t for
each xeS. Then {f(t,x):xeS} is a u.a.p. family if and only if f is
continuous in x uniformly for teR.

We point out that Proposition 3 is stated in [2] only for the case
X = Rn, but its proof for a general metric space X follows analogously.

THEOREM 1. Let {f(t, x): xeS} be a u.a.p. family. Then for any
geH(f), {git, x):xeS} is a u.a.p. family and feH(g).

PROOF. We use Propositions 1 and 2. Let {tk: k — 1, 2, •} be such
that f{t+tk, x) -^g(t, x) as &->°o uniformly on RxS. Clearly \g(t, x)\ <:
M for (t,x)eR x S since |/(ί, x)\ ^ M. for (t, x)eR x S. Let {τk: k =
1, 2, •} be given; by Proposition 1, there exists a subsequence {τk: k =
1, 2, •} such that {/(£ + τk, x): k = 1, 2, •} converges uniformly for
(t, x)eR x S. Then

I g(t + τfc, a?) - g(t + τ,, a?) |

^ |flr(ί + τ4f a?) - fit + τfc + ίfc, a?)I + \f(t + τk + tk, x)

- /(« + τ, + ί4f a?)I + |/(ί + τ, + ίfc, a?) - g(t + τl9 x)\ .

Using the definition of {tk: k = 1, 2, •••} and the Cauchy convergence
criterion, we easily see that {g(t + tk, x): k — 1, 2, •} converges uni-
formly on R x S. By Bochner's normality criterion (cf. [1]), g(t, x) is
a.p. in t for each xeS, so by Proposition 2, {#(£, a): #eS} is a u.a.p.
family. The fact that feH(g) follows easily since f(t + tk, x) -+ g(t, x)
as k —> oo uniformly on R x S implies #(£ — ίΛ, a?) —> fit, x) as fc —> oo
uniformly on ί? x S. q.e.d.

The fact that the normality condition in (PJ holds for any / such
that {fit, x): xeS} is a u.a.p. family follows immediately from Proposi-
tion 1. However, with a view toward introducing some continuity
properties into /, we state

THEOREM 2.1. Let S be a subset of a metric space and f:R x S—>
Rn be continuous in x uniformly for (t, x)eR x S. Suppose also that
\f(t, x)\ <; M for (t, x) 6 R x S and that for any sequence {tk: k = 1, 2 •},
there exists a subsequence {tk: k = 1, 2, •} such that {f(t + tk, x): k —
1, 2, •} converges uniformly for (t, x)eR x S. Then if g eH(f),
{g(t,x):xeS} is a u.a.p. family, and g is continuous in x uniformly
for (t, x)eR x S.
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PROOF. Using Proposition 2, we conclude that {/(£, x): xeS} is a
u.a.p. family. Thus from Theorem 1, geH(f) implies {g(t9x):xeS} is
a u.a.p. family. The uniform continuity of g in x follows easily from
the corresponding property of /; we omit the details.

THEOREM 2.2. Let S be a subset of a metric space and {f(t, x): xeS}
a u.a.p. family where f is continuous in x uniformly for (t, x) eR x S.
Then if {t'k: k — 1, 2, •••} is any sequence, there exists a subsequence
{tk; k = 1, 2, •} and age H{f) such that f(t + tk9 x) —» g(t, x) as k —> °°
uniformly on R x S; g is also continuous in x uniformly for (ί, x) e
ίxS.

PROOF. The existence of g e IΓ(/) follows immediately from Pro-
position 1. The continuity of g in sc as asserted is a trivial consequence
of the uniform convergence of {f(t + tk9 x): k = 1, 2, •}. q.e.d.

If we assume S is compact, then we can easily get the conclusions
of Theorems 2.1 and 2.2 if / is only continuous in x uniformly for t eR.
Note that Proposition 3 deals with the case where S is compact. Fink's
definition of / a.p. in t uniformly for xeS is apparently not the same
as our Definition 2, or as Yoshizawa's in [3]. For S compact, the follow-
ing theorem is a trivial consequence of Proposition 3.

THEOREM 3. Let {f(tfx):xeS} be a u.a.p. family, where S is a
subset of a metric space. Let f be continuous on R x S. Then f(t9 x)
is continuous in x uniformly for teR.

PROOF. Assume not; then there exist xeS9 εx > 0, and sequences
{tk: k — 1, 2, •}, {xk: k = 1, 2, •}, xk e S such that xk —> x as k —>oo and

(3) \f(tk9xk)-f(tk9x)\^εl9 fc = l , 2 , . . . .

Using Definition 3, there exists an L1 — L(εu S) > 0 such that

T(f9 S9 6J2.) n [-**, -tk + LA Φ 0 , k = 1, 2, . .

Hence there exist τk e [ — tk9 — tk + LJ such that τkeT(f9 S, εJZ) k =
1, 2, . Since 0 <; tk + τk <̂  Lγ for k = 1, 2, , and / is continuous
on i? x S9 it follows that

\f(tk + τk9xk)-f(tk + τk9x)\->0 a s fc-^oo.

Also then

\f(tk9xk)-f(tk9x)\

^ I/(it, **) - /(«* + r4, <OI + \f(tk + τk9 xk) - f(tk + τk9 x)\

+ \f(tk + τk9x)-f(tk9x)\

^ 2ex/3 + \f(tk + τk9 xk) - f(tk + τk9 x)\ < εx
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for k sufficiently large. This contradicts (3) and proves the theorem.

Note that in Theorems 2.1 and 2.2 the continuity of / in only x
was assumed.

The following is an easy consequence of Theorem 3 and (b') of
Definition 3, but is actually proved in the proof of Proposition 3.

COROLLARY 1. Let f satisfy the hypotheses of Theorem 3 and S be
compact. Then f is uniformly continuous on R x S, and any g e H(f)
is also uniformly continuous on R x S.

THEOREM 4. Let {f(t,x):xeS} be a u.a.p. family, where S is a
subset of a metric space, and suppose f is uniformly continuous on
R x S. Let x(t) be a.p. and x(t) e S for teR. Then f{t, x{t)) is a.p.

PROOF. Note first that this is not quite Theorem 2.11 in [2] but
can be proved in a similar manner.

We give a proof using Bochner normality. Given {t'k: k = 1, 2, •}
there exists a subsequence {tk: k = 1, 2, •} such that {f(t + tk, x): k =
1, 2 } converges uniformly for (ί, x) e R x S; this follows by Proposition
1. We may assume {tk: k = l,2, •} is such that {x(t + tk): k = 1, 2, •}
is a Cauchy sequence uniformly for teR; this follows as in the proof of
in [1, Theorem 3° p. 11]. But

tk, x{t + tk)) - f(t + tl9 x(t
K x(t + tk)) - f(t + tlf x(t + tk))\ + \fit + tlt χ(t + tk))

and since / is uniformly continuous on R x S, it follows that {f(t + tkf

#(£ + tk)): k = 1, 2, •} is a Cauchy sequence uniformly for teR. This
proves the theorem.

In applications to delay-differential equations with infinite delay,
the range of the solution xt as a function on R to some initial function
space X is usually compact. For example, if X = CB, the space of un-
valued functions continuous and bounded on (—^°,0] with norm given
by | |0| | = sup{|0(8)|: s<£0} for ^eCB, the compactness of {xt:teR} where
x(t) is a.p. and xt(s) = x(t + s), s <̂  0, is an easy consequence of the
normality of x(t).

THEOREM 5. Let S be a compact subset of a metric space. Let f:
R x S —> Rn be uniformly continuous on R x S. Then if f is a.p. in t
uniformly for xeS, the set {f(t9x):xeS} is a u.a.p. family, and con-
versely.
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PROOF. TO show f(t,x):xeS bounded, suppose it is not. Then
there exists {(tk, xk) eR x S: k = 1, 2, •} such that \f(tk, scfc)| ->©o as
k —> oo. We may assume xk—>xeS as k —> °o. Since as a function of
t, f(t, x) is normal we may assume also that f(tkf x) —» g(x) as k-^oo. But

and since / is continuous in x uniformly for t e R by Theorem 3, it
follows that I f(th, xk) | must be bounded by k large, a contradiction.
Thus (c) of Definition 3 holds. Since (b') follows immediately for the
uniform continuity of / on R x S, and since (a) holds by Definition 2
we conclude that {/(t, x):xeS} is a u.a.p. family.

Since S is compact, the converse is a simple consequence of Defini-
tions 2 and 3 and our proof is complete. Thus for such S and functions
/, the concepts of / a.p. uniformly for xeS and {/(£, x): xeS} being a
u.a.p. family are equivalent.

For any a.p. function F(t): R-> Rn, it is well known that the set

ίλ 6 R: lim T'1^F{t)e~mdt ΦΛ(F) = ί

is countable; recall that we define the empty set to be countable. The
elements λ of Λ(F) are called the Fourier exponents of F.

DEFINITION 5. The frequency module mod F(-) of an a.p. function
F is the set {n^ + + ̂ -λ,-: nk integers, XkeΛ(F)}.

THEOREM 6. Let {f(t,x):xeS} be a u.a.p. family, where S is any
nonempty set. Then the set

Λ(f) = {x eR: lim T~1^f(t, x)e~mdt Φ 0 for some xeS}
T-*oo JO

is countable.

PROOF. For xeS, define vx(τ) = sup{|/(* + τ,x) - fit, x)\:teR} and
v(τ) = suip{vx(τ):*x eS}. Clearly v(τ) is well defined and bounded for
τeR. From Theorem 2.2 in [2, p. 18], v(τ) is a.p. and for each xeS,

M , £ ) D Γ K £ ) , where

T(v, ε) = {τeR:\ v(t + τ) - v(t) | ^ ε for t e R] .

Using Theorem 4.5 in [2, p. 61], we conclude that for each xeS:

mod /( , x) c mod v( ) ,

and so \Jxesmoά f(-, x) (zmoάv( ). Since modΐ ( ) is countable, so is
\JX6S

 m°d /(•, %)t a n d since Λ(f) c \Jxes mod/( , x), our proof is complete.
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Thus (P4) holds if f(t,x) is such that {/(£, x): xeS} is a u.a.p.
family and x is in an arbitrary nonempty set.

THEOREM 7. Let f and g be uniformly continuous on R x S to Rn,
where S is a subset of metric space. Let {f(t, x):xeS} and {g(t, x):xe
S} be u.a.p. families. Then for any real constants clf c2,

{cj(t,x) + c2g(t,x):xeS}

is a u.a.p. family, and each member is uniformly continuous on RxS.

This theorem is an easy consequence of Propositions 1 and 2 and
some obvious continuity arguments; we omit the proof.

We note that by Corollary 1 it is no gain in generality to suppose
/ only continuous on R x S, if S is compact. We note also that no
separability conditions are needed on S in Theorem 7. These results
establish, in a sense, the property (P2) for u.a.p. families.

3. Concluding remarks. From the results in the preceding section
it follows that all the properties (P0)-(P4) hold for and / on R x S, S a
subset of a metric space and / uniformly continuous on RxS, where
the condition "/ is a.p. in t uniformly for xeS" is replaced by "{/(£, x):
xeS} is a u.a.p. family". No separability condition on S is required.
Furthermore, some of these properties, in particular, (PJ and (P4) hold
for / not necessarily continuous on R x S. Theorems 2.1 and 2.2 clearly
relate to (Px), and as has already been observed, (P4) holds for quite
arbitrary u.a.p. families.

In much of the recent work on the existence of a.p. solutions of
delay-differential equations with infinite delays and a.p. ^-dependence
functions on fairly general topological initial function spaces are con-
sidered; cf. [3], [4], [5]. In some of this work, these spaces can be
assumed metrizable, and the functions are assumed to be a.p. in t
uniformly for φ in this space. However, in the proofs for the existence
of a.p. solutions in, for example [3], [4], and [5], this functions are only
considered on R x S, S a compact subset of this function space. Since
it is also assumed that / is continuous on R x S, it follows from Corol-
lary 1 that / is in fact uniformly continuous on R x S. So by Theorem
5> {f(t,Φ)m-φ£S} is a u.a.p. family and all the properties (P0)-(P4) hold.
So it seems that these existence results do not require the hypothesis
that the initial function space is separable.

Also in the theory of a.p. systems of ordinary and especially func-
tional differential equations of retarded type, the concept of asymptotic
almost periodicity is important; cf., for example, [3, pp. 21-29]. To
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discuss the existence of asymptotic a.p. solutions, it is profitable to
define H+(f) for the /(ί, x) in the equation to be the subset of H(f)
consisting of functions g(t, x) such that f(t + tk,x)—>g(t,x) as k —><χ>
for some sequence ^->oo as i -^oo, In fact, it is important to know if
feH+(f). But this follows easily for either / a.p. in t uniformly for
xeS, or {/(£, x): xeS} a u.a.p. family. In the latter case, for example,
we use (a) of Definition 3 to get the existence of tk e T(f, S, 1/fc) ΓΊ
[fc, k + Lk], k = 1, 2, , where Lk = L in (a) of Definition 3 for ε = l/fc.
For such tk, clearly \f(t + tk9x) — f(t, x)\->0 as fc->oo, uniformly on
R x S.

REFERENCES

[1] A. S. BESICOVITCH, Almost Periodic Functions, Dover, Inc., New York, 1954.
[2] A. M. FINK, Almost Periodic Differential Equations, Lecture Notes in Math. 377,

Springer-Verlag, Berlin-Heidelberg-New York, 1974.
[3] T. YOSHIZAWA, Stability Theory and the Existence of Periodic Solutions and Almost

Periodic Solutions, Appl. Math. Sciences, 14, Springer-Verlag, Berlin-Heidelberg-New
York, 1975.

[4] Y. HINO, Almost periodic solutions of functional differential equations with infinite
retardations, Funk. Ekv. 21 (1978), 139-150.

[5] Y. HINO, Stability and existence of almost periodic solutions of some functional differ-
ential equations, Tόhoku Math. J. 28 (1976), 389-409.

[6] K. SAWANO, Exponential asymptotic stability for functional differential equations with
infinite retardations, Tδhoku Math. J. 31 (1979), 363-382.

DEPARTMENT OF MATHEMATICS

IOWA STATE UNIVERSITY

AMES, IOWA 50010

U.S.A.






