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1. Introduction. Let G be a connected reductive algebraic group
over the complex number field C and T be its maximal torus. We denote
the Lie algebras of G and T by g and t, respectively. Let O, be the
G-orbit containing x€g under the adjoint action of G on g. Then the
Weyl group W of (G, T) naturally acts on the coordinate ring C[tN O,]
of the scheme-theoretic intersection of t and the Zariski closure O, of O,.
We consider the following problem due to Kostant, Kraft, DeConcini and
Procesi. (See [1] and [5].)

PROBLEM. Describe C[t N O,] as a W-module for each nilpotent orbit
0, in g.

When z is regular nilpotent, O, is just the variety N consisting of
all the nilpotent elements in g, and C[tN N] is isomorphic to the regular
representation of W (Cf. Kostant [4].).

DeConcini and Procesi [1] have shown that for G = GL(n, C),
C[tn O0,] is isomorphic to the representation induced from the trivial
representation of a certain subgroup of parabolic type. They also natu-
rally identified C[t N O,] with a certain representation of W constructed
by Springer [11], [12] (Cf. §2 and §3 below for precise statements.). In
[1] they conjectured that certain explicitly constructed polynomials form
a generator system of the defining ideal of the variety O, and proved
the above results using these polynomials.

In this note we first give another candidate for a generator system
of the defining ideal of O, and show that the proof of the results in [1]
can be a little simplified by replacing their polynomials by ours (§2, §3).
Though some of the statements and the arguments in §2 and §3 are
similar to those in [1], we include them for convenience of the readers.

For a general reductive group G the structure of C[tN O,] is not
yet clear. We secondly show that for a nilpotent orbit of a certain type
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in g = 3p(2n, C) (the Lie algebra of Sp(2n, C)), C[t N O,] is also isomorphic
to the representation induced from the trivial representation of a subgroup
of parabolic type (§4).

The first version of this paper contained the explicit descriptions of
C[tn 0,] for C,, C, and G, except for one nilpotent orbit in the case of
G,. We omit them because for C, and C, they are already contained in
Kraft [5] and our result is incomlete for G,.

The author expresses his hearty thanks to Professors R. Hotta and
T. Oshima for valuable suggestions. He would also like to thank the
referee for useful suggestions.

2. Structure of C[tNO0,] in the case of GL(n,C). In §2and §3 we
consider the case G = GL(n, C)and g = M(n, C). Then the set of nilpotent
orbits in g is parametrized by the set of partitions of n. For a partition
0=(@0b,=b=b,=---) of n we denote by O, the nilpotent orbit consisting
of the nilpotent matrices so that the sizes of their Jordan blocks are
given by the b’s. We set p,(s) =b,_, + bp_grs + -+ for s =1, ... n.
For e M(n,C) and s =1, ---, n let di(¢t) be the greatest common divisor
of all the s-minors of the matrix (tI — x) € M(n, C[t]).

LEMMA 1. (i) 2€0, if and only if di(t) = t*" fo'r s=1,---,m
(ii) z€O0, if and only if t”° |d:(t) for s =1,

Proor. (i) follows from the theory of elementary divisors. It is
well known that for two partitions 6 =(b,=b, = ---)and = b= b; = ---)
of » we have O,> 0, if and only if b, = b, b, + b, =b; + b}, ---. Thus
(ii) follows from (i). q.e.d.

We define a family of polynomials {g¢} in the variables «,; 1 < 4, j < n)
to be the set of the coefficients of ¢™ in s-minors of (¢I — (x,;)) with
s=1---,m and m < p,(s) — 1.

COROLLARY. 2¢O, if and only if g%x) =0 for all i.

Let T be a maximal torus of G consisting of diagonal matrices
which belong to G. Then its Lie algebra t is given by

&, 0
t = 2,€Ct .
0
T,

We define the dual partition ¢ = (¢, = ¢, = ---)of 6 =B, =b, = --:) by

=£{j|b; =7+ 1}. Let W} be the subgroup of the Weyl group W =
S, defined by W; =S, xS, x---cS,. We prove the following theorem
using {g7}.
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THEOREM 1 (DeConcini-Proceci [1]). C[tN O0,] s isomorphic to
Ind} (15.) as a W-module.

Let P; be the parabolic subgroup of G given by
4,

: 7
Py = A, A,eGL(c, C)} .
0 . |

The Richardson orbit corresponding to Py is O, and the subgroup of W
corresponding to Py is W3. Since G° is connected for x€ O, and since
O, is normal by Kraft-Procesi [6], C[t N O,] contains Ind} (1,,) by Kraft
[6; Proposition 4]. cr

Set A7 = C[x,]/((g3) + (x:;1% # §)). Then we have only to prove the
following (%).

(%) dim A7 < (;‘):z nlfe! ¢! +e).

We set A" = C[x,, --+, x,] = C[t]. Let §;e A" be the polynomial obtained
by specializing ¢? by z,,— 2, and z,,—0 (r #s). If we put K, = (g7,
then A7 = A"/K, and K, is generated by the coefficients of ¢t™ in (¢t — )
«o- (t — ;) € A"[t] with s, m and 4, ---, %, running through the integers
satisfying 1<s=n,0=<m<p,(8) —1 and 1=, < ---<i,=n In
other words K, is generated by the elementary symmetric functions in
variables #,, -+, , with degree = s + 1 — p,(s), where s and 4, ---, 1,
are the integers satisfying 1<s<nand 14, < --- <1, < n.

We prove (#) by induction on n. As the case n =1 is trivial, we
assume that n = 2 and (¥) holds for » — 1 in the following.

DEFINITION. For a partition ¢ = (b, = b, = ---) of » with b, > 1= 0,
we define a partition o, = (by =b; = ---) of n — 1 as follows. If we set
t, =max{t = 0|b, > 4}, then b, =b, —1 and b; =b,; (j # t,).

Let @: A~ — A" be the algebra homomorphism defined by &(x;) =
x; (5 #n) and O(x,) = 0.

LEMMA 2. O(K,)C K,,.

PrOOF. We first remark that p,(s) is given by

2,(8 +1) if ¢,=m—-1-—3s

D(8+1)—1 if ¢, >n—-1—s.

Set(t —a,) -t —a) =t +a_ "+ - F+aforl=ss < - <3 =m.

D,,(8) = (
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(i) In the case i,<mn we have "+ &(a,_ )t + -+ + @(a,) =
¢ —m) - C—a,) If m=p(s)—1, thenm < p,(s) —1=p,(s —1) —
1<p,8) —1 for ¢,<n—3s, and m=p,s) —1=p,(s—1) =p,s) —
bri s = P,,(8) —t—1Zp,(s) —1 for ¢, >n — s.

(ii) In the case 7, = n we have @(a,) = 0 and ¢* ' + &(a,_)t* 2 +--- +
Oa) =@t —%) - Ct—wx,_) IHm=p,(s)—1,thenm —1=p,(s) —2=
P,(s —1) — 1. g.e.d.

Thus @ induces a surjective homomorphism @;: A7 — A%,
LEMMA 3. (Ker @)-a% C (2i'') in A™.

Proor. It is easy to see that Ker @, is generated by «, and the
coefficients of ¢" in (¢ —x;) .-+ (¢ — x,,) with s, m and 4, -+, 4, running
through the integers satisfying 1<s<#,0<m=<p,(8) —1 and 1=
i1< <t =n—1 Set@t—w) - t—x)=+a,_ "+ - + €
At for 1 <4, < --- <4, <m—1. Then it is sufficient to prove that
a,rh€ (zi) in A7 for m < p,(s) — 1. Since the coefficient of ¢™ in
(t — )+ (t —x,)t— x,) vanishes for m < p,(s + 1) — 1, we see that
—a, =0, ag—a,%, =0, -+, @, (41_2 — Cp,orn-1%, = 0. Thus a,x} = @y 20"
for m < p,(s + 1) —2. We may thus assume that s<n —¢;— 1 and m =
p,(8 +1) —1=p,(s) —1. Since p,(s+1) —p,(s8) =4 and a,,,_, =0 in
Z:: we have Ay, (n+1)—1xﬁz = Qp, (s+1)—2xfz_1 =t = ap,,(a)—lxi_(p"(sﬂ) “¢) =0 and
we are done. q.e.d.

PROOF OF THEOREM 1. Let J, be the principal ideal of A" generated
by «:. Then since J,/J,,, is a cyclic E:{‘-module by Lemma 3, we have

dim (J,/J,,,) < dim A7 < (na— 1) )
Thus 1
dim 43 = 3 dim (/) S ‘z(,)("; 1) - (:) .
This proves (%) for n, and so the proof of Theorem 1 is complete. a
q.e.d.

3. Relations with Springer’s representation. We first review the
cohomology algebra of the flag variety. Set G = GL(n,C) = GL(V)
(V =C". We denote the projective variety consisting of all the complete
flags of V by &, that is,

g ={0=V,cV,c---CcV,=V)|dimV, =1 for all i}.

Then the cohomology algebra H*( &) = H*(#, C) can be described as
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follows. Let V; be the subbundle of the trivial vector bundle 5= x V
over & whose fiber at (V))e & is just V;. We denote the first Chern
class of the line bundle V,/V,_, by %, e H*(.5).

PRrOPOSITION 1 (cf. Kleiman [3]). (i) H*(&) is generated by T,, ---, T,
as an algebra.

(ii) Define the algebra homomorphism ® from the polynomial ring
Clt] =Clx,, -+, x,] onto H*(&) by n(x,) = T,. Then Kerxw is generated
as an ideal by the elementary symmetric functions fi, « -+, fa-

Thus we obtain an algebra isomorphism
TCtNN]=Clzy -+, 2J/(f, -+, f2) > HY () .

On the other hand the Weyl group W = S, acts on & as follows.
For any (V,)e .#, there exists ge U(n) so that V, = @:., Cgle;), where
{e, +---,e,} is the canonical basis of V = C". Then the action of we
W =S8, on & can be defined by

(V)-w=(V}) with V= ;209(%—1(:')) .

Thus W acts on H*( ). Then the algebra isomorphism 7 is also an
isomorphism as W-modules.

Now for a partition 7 of n we fix an element z,€ 0, and define a
subvariety &, of & by

G ={(Vye s |a(Vy)cV,_, for all 4i}.

Springer [11], [12] defined a W-module structure on the cohomology algebra
H*(s,). Furthermore for 7, =(1=1=---) the W-module structure on
H*(&") = H*(#;) defined by Springer coincides with the ordinary one
described above. (We are considering here the W-module structure
obtained by tensoring the one-dimensional sign representation of W with
the original one defined in [11], [12].) The natural algebra homomorphism
0 H¥( &) — H*(%#,) induced by the inclusion .#,=> & is known to be
a homomorphism as W-modules (Cf. Hotta-Springer [2].).

THEOREM 2. (DeConcini-Procesi [1]). There exists a wunique iso-
morphism j, as algebras and W-modules which makes the following
dragram commutative;

C[tnN]j—»H*(ﬁ')

S

cn OJ]TH*(%) .
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Here py is the natural algebra homomorphism.

From the cellular decomposition of %, given by Spaltenstein [9] (cf.
also Hotta-Springer [2]), we have dim H*(#,) = (:7") Thus dimC[t N
0;] = dim H*(#,) by Theorem 1. Since p; and p, are surjective homo-
morphism, it is sufficient to prove that the images under p,o7T of the
elements in the generator system of Ker p, vanish in H*(&;).

In order to prove Theorem 2 we need some basic facts about the
Grassmann and Scubert varieties. For 1 < s < n we denote by Gr,(V)
the Grassmann variety consisting of all the s-dimensional subspaces of
V =C". We fix a complete flag (0 =U,cU,c --- cU, =V) obtained by
refining the flag (---ca¥d(V)cay(V)cV) for a fixed x,€0, For a
sequence N = (A, Ny, **+, A,) Of integers with 0\, < - SN, =0 — 8,
let Y; be the subvariety of Gr,(V) given by

Y, ={TeGr,(V)[dm(TNU,;) =27 (E=1,---,8)}.
Then Y, is called the Schubert variety corresponding to A. Let = be
the ordering on {\} given by = ¢ if , =2 ¢, 1 =1, ---, 8).
PROPOSITION 2 (cf. Kleiman [3]). (1) Y,D Y, if and only if M = £
(ii) If we set Y, =Y; — UusaYu then Gr (V) = I11.Y,:, which gives
a cellular decomposition of Gr,(V).

PROPOSITION 3. Let p: & — Gr,(V) be the natural projection given
by p((Vy)) =V,. Then we have p(F#,) CY,, wheren, = 0, ---,0,n — s, -,
n — 8) with 0 repeated p;(s)-times and n — s repeated (8 — p;(s))-times.

ProOF. From the definition of .&#,, we see that V,D«:*(V) for
(V)e#,. On the other hand dimai*(V) = rank «;* = p;(s). Thus
z2~(V)=U,,. Hence dim(V,NU,) =dimU, =1 for i< pys) and
dim(V,Nn U (:_,)H) = 1 for i > py(s), and we are done. q.e.d.

DEFINITION. For a sequence of integers » = (A, -+, \,) With 0 =<
ME s S, We set

[7\:1, cee, 7\,‘] = det(xfﬁj—l)xgt,ié: ’

and S;(x,, -+, %) =[Ny, -+, NJ/O, ---, 0. (Si(xy, +--, x,) is a symmetric
polynomial which is called the Schur function.)

REMARK. Let h,; be the j-th elementary symmetric polynomial in
the variables z,, ---, z,, that is,

t—2) - (t—2a)=t —h, "+ -+ + (=1)h,,.
Then we have h,; = S, ; where ¢, ; = (0, ---,0,1, ---, 1) with 0 repeated
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(s — j)-times and 1 repeated j-times.

ProPOSITION 4 (cf. Kleiman [3]). (i) Let p*: H*(Gr,(V)) —» H*(<)
be the homomorphism induced by p: & — Gr, (V). Then p* is injective
and its image is the set of all the symmetric polynomials in the Chern

classes %, -+, %,. (Thus we identify H*(Gr,(V)) with a subalgebra of
H*(Z) in the following.)

(ii) S;&, ---, %,) 18 not zero if and only if N, < n — s.

(iii) {Sx@, -+, Z,) [N, = n — 8} 15 the dual basis of the basis of the
homology group H,(Gr,(V)) given by the cells Y,, that is, (S(Z,, ---, T,),
YF) = 31#-

PrOOF OF THEOREM 2. By the proof of Theorem 1, it is sufficient
to prove that ok, (&, -+, %,)) =0 for 1 <4, < - <% <mand j=
8 — (py(s) —1). Since p, is a homomorphism of W-modules, we may
assume that ¢, =1, -.--, i, =s. Then by the remark above we have
by i@y -+, &) = Sy, ;& +++, %,). Since p(F;)C Y, by Proposition 3, we
have a commutative diagram;

H*(5) <= H*Gr (V)

o

H*(&)) < H*(Y;,) .
If j = s — (py(s) — 1), then N, £ f, ;. Thus i*(S,, ,&@, ---,%,)) = 0. Hence
0:(Sp, &y <+, &) = k*oi*(S,, ;@, -+, %,)) = 0, and we are done.

4. Structure of C[tN0,] for some O, in the case of Sp(2n,C). In
this section we consider the case

G = Sp@n,C) = {ge GL(@2n, C)|'gJg = J} and
g = 8p2n, C) = {x€ M(2n, C)|'xd + Jx = 0},

where

Then

0 mr

is a maximal torus of G whose Lie algebra is

T = {[h 0 “ h: nonsingular diagonal matrix}
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—-xl

L -, )

and the Weyl group W of (G, T) is isomorphic to the semi-direct product
of S, and (Z/2Z)", as is well known.

The nilpotent orbits in g are parametrized as follows. For a par-
tition 0 = (b, = b, = ---) of 2n with the following condition (V) let O,
be the set of matrices in 8p(2n, C) with the Jordan type o.

(V) £{i1|b, =2r — 1} = 0(mod 2) for each reN.
Then the following is well known.

LEMMA 4. If o satisfies (V), then O, = @. Any nilpotent orbit in
g coincides with some O, for a o satisfying (V).

We determine the W-module structure of C[tN O,] for a special o
satisfying the following condition (VV).

(VV) #{i|b;=2r —1} =0 for each reN.

THEOREM 3. Let 0 = (b, =b,= --+) be a partition of 2n which
satisfies (VV). We denote the dual partition of (¢/2) = ((b,/2) = (b,/2) = -+ -)
byr=(d,=d, = ---). Then C[tN O,] is isomorphic to Indy (1y:) as a
W-module, where W, =8;, x S;; x ---cS,cW.

We prove this theorem in exactly the same manner as Theorem 1.
Let P, be the parabolic subgroup given by

P—J” Ylea :
f—i[o ‘x“‘:}e

Then the Richardson orbit corresponding to P, is O, and the subgroup of
W corresponding to P, is W,.. Since-O, is normal by Kraft-Procesi [6]
and G* = P* for xe O, by Springer-Steinberg [10; III, 4.16], C[tN O,]
contains Indy (1) by Kraft [5; Proposition 4].

Let hieC[g] be the restriction of g;e C[M(2n, C)] (cf. §3) to g =
8p(2n, C). Then the following is obvious.

LEMMA 5. z€O0, if and only if hix) =0 for all i.

X
e=| A4 |, AeGLd,C)
0o .
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Set B™ = C[t] = C[x,, ---, x,]. _We denote the restriction of A7 to t
by h3eC[z, ---,%,). For L,= (k3 and B = B"/L, we have only to
prove the following (##).

&#) dim Br < 2"< ’:) .

We note that L, is generated by the coefficients of ¢™ in
H?’:l (tz'—'m%p) H;=1 (t - quiq) with kr r, m, &, il; ) 'I:ks jl; B jr running
through the integers satisfying 0 <k =7,0=r=<%,0=m = »,(2k+7r) —
1,6q= i1,1§’01< <7/k§n:1—§.71< <]r§n,1p¢.7q(1§p§k:
l=sqg=n1).

We prove (##) by induction on %. The case n = 1 being trivial, we
assume that n = 2 and (##) holds for n — 1.

DEFINITION. For a partition ¢ = (b, = b, = --:) of 2n with (VV)
and an integer ¢ with b, > ¢ = 0, we define a partitiono, = by = b; = ---)

of 2(n — 1) which also satisfies (V<) as follows. b =b, — 2 for ¢, =
max{t|b, > i}, and b; = b; for j + t,.

Let ¥: B — B™* be the algebra homomorphism given by Z(x,) = z;
(7 #mn) and ¥(x,) =0. We fix a partition ¢ = (b, =b, = ---) of 2n
satisfying (VV). Let ¢ = (¢, = ¢, = ---) be the dual partition of ¢ and
let z=(d,=d,=---) be the partition of n as in the statements of
Theorem 3. We can prove the following just in the same way as in
the proof of Lemma 2. So we omit the proof.

LemMA 6. ¥(L,)C L

4O
Thus ¥ induces a surjective homomorphism ¥;: E:—»E;‘(‘i;.
LEMMA 7. (Ker &)z c («5*) in Br.

PrOOF. It is easily seen that Ker ¥, is generated as an ideal by =z,
and the coefficients of ¢™ in IIf-, (& — af,) ITi= (¢ — e, )t + x,) with
k,r,m, €, 1, by iy -+, J» running through the integers which satisfy
0<k=n—-1,0=sr=n-1,0=m=p, k+7r),e=xL,1=54<---<
w=n—1,1<j<:--<j,=n—1and 1, # j, for any p and q. Set

k r

2k+r —
I — at) TT ¢ — e,)t +0) = 3 ateBilt].

p=1

Then the coefficient of t™ in (i a,t°)(t — x,) vanishes for m < p,2k +
7 + 2) — 1. Thus arguments similar to those in the proof of Lemma 6
show that a,a? is contained in the ideal (zi") of By for m < p,,,(2k +7),
and we are done. q.e.d.
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PROOF OF THEOREM 3. Let J, be the principal ideal of B? generated
by «i. Then since J,/J,,, is a cyeclic B7 *-module, we have dim(J,/J,,,) <

9(i)

dim Bé'm =2~ (nz_&)l), where 7(¢) is the dual partition of (¢)/2. Thus

dim By = 3, dim (J/J,,,) < 2" S, ("T;,)l) = 2(’2) :

which proves (#%) for » and the proof of Theorem 3 is complete. q.e.d.

REMARK. C[tN O,] is the direct sum of the subspaces C[tn 0,], of
degree ¢ which are W-invariant. For a partition ¢ = (b, = b, = ---) of
2n satisfying (VV) we set d(g) = (8,/2)* + (b,/2)* + ---. Then it follows
from the proof of Theorem 3 and Kraft [5; Proposition 2] that C[t N O,]; =
(0) for ¢ > d(o¢) and C[tN O,ls,,, is the irreducible representation corre-
sponding to ((0), ) where ¢ is a partition of n as in the statement of
Theorem 3. (An irreducible representation of the Weyl group of 8p(2n, C)
is characterized by an ordered pair of two partitions (n, ¢#) with |A| +
[¢#] =n. Cf. Mayer [8].)

REFERENCES

[1] C. DEConciNI AND C. PRroCESI, Symmetric functions, conjugacy classes and the flag
variety, Invent. Math. 64 (1981), 203-219.

[2] R. Horta AND T. A. SPRINGER, A specialization theorem for certain Weyl group repre-
sentations and an application to the Green polynomials of unitary groups, Invent.
Math. 41 (1977), 113-127.

[3] S. L. KLEMAN, Rigorous foundations of Schubert’s enummerative calculus, Proc. of
Symp. in Pure Math. Vol. XXVIII (1976), 445-482.

[4] B. KosTANT, Lie group, representations on polynomial rings, Amer. J. Math. 85 (1963),
327-404.

[5] H. KrAFT, Conjugacy classes and Weyl group representations, Tableaux de Young et
foncteurs de Schur en algébre et géométrie (Conférence internationale, Torun Polgne,
1980) Astérisque 87-88 (1981), 195-205.

[6] H. Krart AND C. Procesi, Closures of conjugacy classes of matrices are normal, Invent.
Math. 53 (1979), 227-247.

[7] H. KrArr AND C. Procesi, On the geometry of conjugacy classes in classical groups,
preprint Bonn/Rom (1980).

[8]1 S. J. MAYER, On the characters of the Weyl group of type C, J. Algebra 33 (1975),
59-67.

[9] N. SPALTENSTEIN, The fixed point set of a unipotent transformation on the flag manifold,
Nederl. Akad. Wetensch. Proc. Ser. A 79 (1976), 452-456.

[10] T. A. SPRINGER AND R. STEINBERG, Conjugacy classes, Seminar on algebraic groups and
related finite groups (The Institute for Advanced Study, Princeton, N. J., 1968/69),
Lecture Notes in Mathematics, Vol. 131. Springer-Verlag, Berlin (1970), 167-266.

[11] T. A. SPRINGER, Trigonometric sums, Green functions of finite groups and representations
of Weyl groups, Invent. Math. 36 (1976), 173-207.



CLOSURES OF CONJUGACY CLASSES 585

[12] T. A. SPRINGER, A construction of representations of Weyl groups, Invent. Math. 44
(1978), 279-293.

MATHEMATICAL INSTITUTE
TO0BORKU UNIVERSITY
SENDAI, 980

JAPAN








