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TOTALLY GEODESIC FOLIATIONS AND KILLING FIELDS
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1. Introduction. In [3], Johnson and Whitt studied Killing fields on
complete Riemannian manifolds admitting codimension-one totally geodesic
foliations by compact leaves. They observed that any Killing field pre-
serves the foliation. In general, the conclusion does not hold if we remove
the assumption that the foliation consists of compact leaves (see [3, Remark
following Theorem (3.1)]). However, if we assume the compactness of
M, we have the same conclusion. That is, we prove the following.

THEOREM. Let (M, g) be a closed connected Riemannian manifold
and J?" be a codimension-one totally geodesic foliation of (M, g). Then
any Killing field Z on (M, g) preserves ^7 that is, the flow of Z maps
each leaf of ̂  to a leaf of &~.

As a corollary, we have the following (cf. [3, Theorem (3.1)]).

COROLLARY. Let (M, ^7 0) and % be as in Theorem. If ̂  has a
compact leaf L0 and Z is transverse to L0 at some point, then all leaves
of ^?~ are isometric to (L0, g \ L0) and Z is transverse to ^~ everywhere
on M.

The proofs are given in § 3. As applications, in § 4, we study
some properties of codimension-one totally geodesic foliations of closed
Riemannian manifolds admitting Killing fields.

2. Preliminaries. Let (M, g) be a complete connected Riemannian
manifold and ^" be a codimension-one totally geodesic foliation of (Af, g}.
Let M be the universal covering of M and p: M—>M be the covering

projection. We denote by (M, ^7 89 t^e canonical lifting (M, p*^, p*g)
of (Λf, ̂  flO to the universal covering M of M. Then the following
theorem is known.

THEOREM (Kashiwabara [4], Rummler [7]). The foliated Riemannian

manifold (M, J^~, g) is isometric to a trivially foliated Riemannian mani-
fold (L x R1, {L x (ί)}tβΛι, g), where L is a leaf of ̂  and the metric g
is of the form ds2 = ds\ + fzdt2. Here, f is a smooth positive function
on M and ds\ is the metric of L induced by the inclusion L —> M, and
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dt2 is the canonical metric of R1.

Let π:M=LxRl-*L and η:M-*Rl be the natural projections.
We identify a vector field X on L with the one X on M that is tangent
to ̂  and is ττ-related to X. We identify a vector field V on Λ1 with
the one V on M that is orthogonal to ̂  and is ^-related to V. We
also call J? (resp. F) the canonical lifting of X (resp. F). Let N be a
unit vector field on M perpendicular to ^7 We also denote by N the
canonical lifting of N to fit.

LEMMA 1. Set G = grad/. Γfce^ 7NN = -£έ?(G}lf, where £έ?x is the
orthogonal projection of TXM onto Tx^. Equivalently, we have fθ +
df = 0 on Γ^7 where θ is the dual one-form of ΫNN and d is the exterior
differential of M.

PROOF. Let V and W be the canonical liftings of vector fields on
R\ Then we have £ίf(7vW} = -<F, W}£έf(G}lf by the same computa-
tion as in [1, Lemma 7.3], This formula is tensorial and £έf(PNN) — PNN.
Hence we have FNN = -<%*(G)/f.

LEMMA 2. Let E be a unit vector of Tx^ί Then

where 72f is the Hessian of f defined by (P2f)(X, Y) = X(Y(f)} - rzY(f)
and K(E, N) is the sectional curvature of the plane spanned by E and N.

PROOF. Extend E to a section of TJΓ Then, by definition and
Lemma 1, we have

κ(E, N) = <yE?NN, E} -. <yjrxN, E} - <?,E,N,N, sy

- -E(l/f)E(f) - <yE

\ E)/f+

7EE(f)/f= -(P/)(JS7, E)/f.

LEMMA 3. A vector field Z on M is a Killing field if and only if
( 1 ) <%?Z( , t) is a Killing field on L for each teR,
(2) N(Z,N} = Θ(Z),
( 3 ) N(Z, E} = -fE((Z, N}lf) for all vector fields E on L.

We omit the proof, because we can prove this lemma by the same
computation as in [1, Lemma 7.11].

3. Proof of Theorem. We may assume that the foliation is trans-
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versely oriented. We use the same notations as in § 2. In the following,
we assume that M is compact. Let Z be a Killing field on (M, g). We
also denote by Z the canonical lifting of Z to St. Let L be a leaf of
^ and 7: R-+L be a geodesic on L with 7(0) = p and |7'| = 1. Then
Z is a Jacobi field along 7. Set φ = (Z, N}. We also denote the restric-
tion of φ (resp. /) to 7 by φ (resp. /). By the Jacobi differential equa-
tion and the fact that &~ is totally geodesic, we have the following
differential equation

φ" + K(T, N)φ = Q ,

where T = 7', the differentiation of 7 with respect to the parameter t.
By Lemma 2, we also have

f" + K(T,N)f=0.

Thus we get f'φ — fφ" = 0. Hence we have the following linear differen-
tial equation

( 1 ) φf = (log f)'φ + C/f for a constant C .

We may assume /(O) = /(7(0)) = f(p) = 1. Then the solution of (1) with
the initial condition 7(0) = A is given by

( 2 ) φ(t) = AM + CM Γ Γ\s}ds .
Jo

LEMMA 4. For ίfee function f, we have

lim sup /(£) I f~\s)ds =
ί-*+oo JO

+

PROOF. By Lemma 1, we have /' = —fθ(T). As M is compact, the
function \θ\ is bounded. Thus we have

( 3 ) I /'I <: I// for a constant L .

Assume that there is a constant α with

( 4 )

By the inequality (3), we have -L//2 ^ /'//3 ̂  I///2- It follows that

-L (' /-2(s)ώs ^ -[l/2/2]o ̂  L Γ /-2(s)ώs .
Jo Jo

By the inequality (4), we have

-2Lα/-1(t) ̂  1 - Γ\t] ^ 2Laf-\t) .

It follows that 0 < α ^ /(ί) ^ & < + °° f or some constants a and δ. Then
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we have

ct ^ M Γ f~Ws ^ αδ-2 (' ds ,
Jo Jo

which is a contradiction.

LEMMA 5. On each Le^7 we have

φ — (Z, Ny = af for a constant a .

PROOF. In the formula (2), if C Φ 0, then φ(t) is not bounded on R
by Lemma 4. In fact, if A C ̂  0, then

limsup^(ί) = ±00 ,
t->+oo

while if A C< 0, then

lim sup φ(t) = ± oo .
ί-> — 00

As M is compact, the function φ is bounded. Thus we have G = 0.
Hence φ(t) = Af(t) on each geodesic 7, and we have φ = af on L for a
constant α.

PROOF OF THEOREM. Set φ = <JV, Z). By Lemma 5, on each L e
we have φ = af for a constant α. Thus, we have

d^ + 00 = 0 on

by Lemma 1. For EeΓ(T^), we have

= 0 .

Hence, we have [Z,E]eΓ(T) for EeΓ(Tβ~).

PROOF OF COROLLARY. Let A be the union of all compact leaves of
Then A is a closed set in M (cf. [6]). By [5, Theorem 3], the

Killing field Z is transverse to &~ everywhere on A. As Z preserves
^7 the set A is also open in M. Hence we have A = M by the con-
nectedness of M. The rest of the statement follows from [3, Theorem
3.1].

4. Applications. First note that the assumption on the compactness
of M cannot be removed. In fact, let (Rn, ̂  gQ) be a totally geodesic
foliation by hyperplanes on the ^-dimensional Euclidean space (Rn, gQ}.
Then a Killing field generating a rotation does not preserve ̂

Let (M, ^7 0) an(i Z be as in Theorem. In this section, we always
assume that &~ is transversely orientable. We also use the same nota-
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tions as in § 2. Thus N is a unit vector field on M perpendicular to

LEMMA 6. The horizontal part ^(Z) of Z on M is the canonical
lifting of a Killing field on L to M.

PROOF. Let E be a vector field on L. Then, by Lemma 3, (3), we
have N(Z, E} = -fE((Z, #>//). By Lemma 5, the function <Z, N)/f is
constant on each leaf of β^. Thus we have E((Z, AΓ>//) = 0. This shows
that £lf(Z) is the canonical lifting of a Killing field on L by Lemma
3, (1).

The following proposition imposes a strong restriction on the hori-
zontal part Sίf(Z) of a Killing field Z.

PROPOSITION 1. If there is a point p with <^P(Z) = Q, then
or JZ~ is without holonomy.

PROOF. We denote the flow of Z (resp. JV) on M by zt (resp. n,).
Note that [N, Z] = 0. Thus we have n8(zt(p)} = zt(n8(p)}. Suppose Zp = 0.
Then, for all s and ί 6 R, we have n,(p) = zt(n8(p)). This implies that
Zng(p} = 0. As the set {n8(p)\seR} intersects all leaves of &~ (see [3,
Lemma 1.9]), the Killing field Z has zeros on each leaf of ^7 By
Theorem, the Killing field Z preserves &*. Thus Z must be tangent to
J?~ everywhere on M. Now suppose Z9Φ§. Then Z is perpendicular
to ^~ at p. By Lemma 6, the vector field £lf(Z} is zero on the set
{n8(p) \s 6 R}. If Z = 0 at n.(p) for some s, then, by the above argument,
the Killing field Z is tangent to &~ everywhere on M. This contradicts
the fact that Z is perpendicular to ^~ at p. Thus Z ̂  0 on {n,(p)\se R}.
Hence Z is perpendicular to &~ on (wβ(p) | s 6 JR} by Lemma 6. As {^8(p) | s e
#} f) j, φ 0 f or all L 6 ̂ 7 we have zt(L) Φ L for some t e Jϊ. This shows
that ̂  is without holonomy.

Now we consider the relation between _^~ and the identity compo-
nent I(M9 g\ of the isometry group of the closed Riemannian manifold
(M, g). The following is a direct consequence of Corollary (cf. [5, Pro-
position]).

PROPOSITION 2. Let (M, ̂  g] and LQ be as in Corollary. If
dim /(M, 0)0 = dim I(Z/o, 9\L0\ + 1, then all leaves of &~ are isometric to
(Z/o, g\L0)9 hence, in particular, all leaves of &~ are compact.

In fact, if we choose a Killing field Z on M corresponding to the
term " + 1", then Z satisfies the assumptions of Corollary.

Finally we prove the following (cf. [3, Proposition 3.2]).
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PROPOSITION 3. Let (M, ̂ 7 0> N) be a codimensίon-one totally geodesic
foliation of a closed manifold. Suppose that there is a Killing field Z
with (N, Z} > 0 on M. Then, for any Killing field Y on M, there is a
constant C with <ΛΓ, Γ> = C(N, Z}.

PROOF. By Theorem and the assumption on Z, the foliation _^~ is
defined by a non-vanishing smooth closed one-form. Thus, by [2], the
following two cases occur:

(i) All leaves of &~ are compact.
(ii) All leaves of ^~ are dense in M.
Case (i). Proposition 3 follows from [3, Proposition 3.2].
Case (ii). Fix a point p of M. Then there is a constant c with

<AΓ, Yyp = c<ΛΓ, Zyp. Denote by Lp the leaf of j^ through p. Then
Y — cZ is tangent to &~ on Lp, because Y — cZ preserves ̂  by Theo-
rem. Thus <Γ — cZ, N} = 0 on Lp. As Lp is dense in M, the smooth
function <Γ - cZ, ΛΓ> = 0 on M.

REMARK. The foliations appearing in Proposition 3 are Riemannian
foliations (cf. Kamber and Tondeur [8]).
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