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COMPARISON METHOD AND STABILITY PROBLEM
IN FUNCTIONAL DIFFERENTIAL EQUATIONS

WANG ZHICHENG
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Abstract. In this paper, using the comparison method and borrowing
the ideas and terminologies from Kato [1], [2], [3], we discuss the stability
in functional differential equations with infinite delay. We also give some
extensions of the ideas in [5], [6], [7]. As a corollary to our results, the
corresponding stability theorem of Kato [1] is included.

Let X be a linear space of R"-valued functions on (—o, 0] with a
semi-norm ||-||x, and denote by X. the space of functions ¢(s) on (— o, 0]
which are continuous on [—z, 0] and satisfying ¢_.€ X for = = 0, where
and henceforth ¢, denotes the function on (— o, 0] defined by ¢,(s) =
#(t + ).

The space X is said to be admissible, if the following are satisfied:
For any ¢ = 0 and any ¢¢ X,

(a) ¢,€ X for all te[—z, 0], especially, ¢, = ¢ € X;

(b) ¢, is continuous in ¢ e[—7, 0];

© £lsO) ) = lI¢llx = K(t) SUDP_csez0 [ 66) [| + M(T) | 6 |2
where ¢ > 0 is a constant and K(z), M(z) are continuous.

Consider the functional differential equation

(E) & = f(¢, @)
and assume that f(¢, 0) = 0 and that f({, ¢) is completely continuous on
I x X where X is an admissible space and I = [0, ). For the funda-

mental properties of the solutions of (E), we refer to [4].
Let Y be an admissible space satisfying XY and

lelly < Nlisllx (6eX),

where N > 0 is a constant. Let xz(f) be an arbitrary solution of (E).
The definitions of stability in (X, Y) will be given as follows: The

zero solution of (E) is said to be
(i) stable in (X, Y), if for any ¢ >0 and any 7 =0, there is a
0 = 0(t, &) > 0 such that ||z.|; < 0 implies

|z lly <e forall t=7;
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(ii) uniformly stable in (X, Y), if it is stable in (X, Y) and ¢ is
independent of 7;

(iii) uniformly asymptotically stable in (X, Y), if it is uniformly
stable and there is a 6, > 0 and a function 7T(¢) > 0 such that ||z, ||y < d,
implies

|, ]y <& for t =7+ T(e) .

A Liapunov function is a collection {v(¢, ¢; 7): 7 = 0} of real-valued,
continuous functions »(¢, ¢; 7), defined on {(¢, ¢): p € X,_., t = 7} satisfying

a(|glly) = v(t, ¢; 7)
for a continuous nondecreasing positive definite function a(r) and
B) v(t, ¢;7) S b(t, 7, [ 6llx,_.)

for a function b, 7, r), continuous on I°, nondecreasing in » and
b(t, 7, 0) = 0, where [|¢]lx, = SUP_c<ix0 || 6 || x-
Define

Vi (E, ¢; 7) = sup lim sup [v(s, @,; 7) — v(¢, ¢; 7)]/(s — )
8—t+40

for a solution x(s) of (E) satisfying x, = ¢ where the supremum is taken
over all such solutions.

Before we state the following theorems concerning the stability in
(X, Y), some additional notations are required.

(L): There exist continuous functions L(t, s, ») on I®, nondecreasing
in » with L(t,s, 0) = 0, and d,(t, s) on I* with d,(¢, s) > 0 such that any
solution x(t) of (E) satisfies

@l = L, s, 1@ llx) i Jlolle < 0ot 8),  t=s.

Note that, if the zero solution of (E) is unique for the initial value
problem, then the condition (L) holds (see [4]).

(UL): In (L), L(t, s, r) and 6,(¢, s) can be chosen in such a way that
L(,s, r) = Lt — 8,0, ) and 8,(t, s) = d,(t — s, 0).

(P): »(t,r) is continuous on I X (0, «), nondecreasing in 7 and
satisfies

o, r)=t, pl 1) as t—oo.

(UP): In (P) assume that q(») = t — p(t, ) is positive and independent

of t.

It is easy to see that under the condition (P), o(¢, ) = sup {s: p(s, ) < t}
is continuous on I X (0, c©), noninereasing in », o, ) =t and p(t, r) = 7
if t = o(z, r) and » > 0.
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The following theorem generalizes an analogous theorem of Driver
(see [7, Theorem 4}).

THEOREM 1. Assume that

(i) condition (L) holds;

(ii) there is a Liapunov function {v(, ¢; 7): T = 0} which satisfy
(1) Bt 65 ) S W(t, 0, 63 7))
whenever v(t, ¢;7) >0, p(t, v, ;7)) =7 and v(s, ¢,; T) < V(E, ¢;T) Sfor
se[p(, v, ¢; 7)), t] where w(t, r) is monmegative, continuous on I2,
w(t, 0) =0, and p(t, r) is the one in (P);

(iii) the zero solution of
(2) ¥ =w(,Yy)
18 stable.

Then the zero solution of (E) s stable in (X, Y).

ProoF. Let x(t) be a solution of (E) starting at ¢t =7 for a 7 = 0,
and let v(t) = v(t, x,; 7). For any % > 0, let ¢ = min (3, a(y)). Since the
zero solution of (2) is stable, there is a d.(z,¢), 0 < d, < e, such that
9, = 0, implies

0=yt t,y)<e forall t=r,
where y(t) = y(t, 7, ¥,) is a maximal solution of (2) starting at ¢ = z with

the initial value y,.
For the above 4, > 0, there is a 6 > 0 such that

sup b(s, 7, L(s,7,0) < 0,0 =< Inf d4s, 7).

T<850(r,d) t<850(7,8;)

Then by (B) and (L), we have ||, |y < 0 implies
v(t) £ b, 7, L@, 7, || ||x) <6, for telr,a(z,d)],
so that
v(it) < y@t) for telr,o(z,d)].

We now show that
(3) vt) S yt) forall t=7.

Suppose to the contrary, that wv(¢) > y(¢) for a ¢, > a(z,0,). Let
¥.(t) be any solution of
(4) g=wty +1/m with yo) =9, m=12---.
It is known that the maximal solution y(t) can be represented as
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y@) = }gg Yn(t) .

Then there is a number m > 0, sufficiently large, such that v(t,) > ¥.(¢.).
Since ¥,(t) is nondecreasing, for the ¢, = inf {t € [z, ¢,]: v(t) > ¥.(t)} We see
that v(t,) = yn.(t), v() = v(@) for all te]r, t,] and

U(t,) Z In(ts) = Wity Yn(ts) + Lm = w(e, v(@,) + 1/m .

On the other hand, since v(¢,) > é,, t, > d(z, 8,), (L, v(t,) = p(t,, 6) = T

and v(t) < v(t,) for te[p(t, v(t,)), t.], we have o(t,) < w(t, v(t,)), a contra-
diction.

Therefore, we see that (3) holds and that
a(lz]ly) S v@) <a(m) forall t=7.
Thus

o, lly <y forall t=r7,
and the proof is complete.

THEOREM 2. In Theorem 1 assume that (L) is replaced by (UL), that
in addition to (UP) v satisfies (UB), i.e., b(t,7z,r) =b(t — 7,0, 7) in (B),
and that the zero solution of (2) is uniformly stable. Then the zero
solution of (E) is uniformly stable in (X, Y).

PROOF. Note that (¢, ) =t + q(») and that 4, and 6 can be chosen
as functions of ¢ alone such that

sup b(§, 0, L(§,0,0)) < 0,0 = inf 49,4 0).

05E<q(89) 0<6<q(5y)

The proof is the same as that of Theorem 1.

THEOREM 3. Assume that

(i) condition (UL) holds;

(ii) there is a Liapunov function {v(t, ¢;7):7 = 0} which satisfies
(UB) and

(5) 1.)(E)(t? ¢; T) = '_w<t; ’U(t, ¢; T))

whenever v(, ¢;7) >0, p(E,v({, 4;7) =7 and v(s, ¢,; 7) = Fu(t, ¢; 7))
for sep(t, v, ¢; 7)), t], where w(t, r) 1s monnegative, continuous on I2,
w(t, 0) = 0; p(¢t, r) satisfies (UP), and F(r) is a continuous, nondecreasing
function satisfying F(r) > r for r > 0.

(iii) the zero solution of

(6) i = —w(t, 2)

is uniformly asymptotically stable.
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Then the zero solution of (E) is uniformly asymptotically stable in
(X, Y).

ProOF. By (iii), there is a d, > 0 and for any 7 > 0, there is a
T\(m) > 0 such that 0 < 2,< d6,, 7 = 0 imply that
&) 0< 2t 7,2)<n for t=7+ Ty .
For the above d, > 0, there is a , > 0 such that
sup b(¢ 0, L( 0,0)) < 0, , 0, < inf 0,¢0).

0=65q(39) 0s6=54(3¢)
Then we see that ||z. ||y < 6, implies
v(t, %, 7) < 0, for telr,t + q(d.)],
and hence,
vt x;7) =<9, forall t=17.

In fact, suppose that »(t,) > 6, for a t, > = + q(6,). Then we can find a
t,e[z + q(d,), t,] so that v(t,) > é, ¥(t,) > 0 and v(t) < v(t,) for all t e[z, t,].
Since p(t,, v(t,) = p(t,, 6,) = 7 and v(t) < v(t,) < F(v(t,) for t € [p(t,, v(t,)), t.],
we have 9(t,) < 0, a contradiction.

We now show that for any n >0 (% < 4,), there is a T() > 0 such
that ||@.[lx < 8, implies that
(8) v, zy7) < for t=7+ T(n) .

Let @ = inf,<,;,[F(s) — s] > 0, and let m be the first positive integer
such that +ma=d,. Letc,=9+na n=0,1,2, ---,m), 0,=0(Ti_;, Cus) =
Tics + @Cns)y To =7, T, = 0, + Ty()) and v(t) = v(¢, 2;; 7).

First we show that

v(t,) < €., for a t efo, o, + Ty)].
Suppose that
(9) v(t) = Cp for all teloy, 0, + T,())].
Then we have

Fo®) = odt) +a = cpy + @ =cp =8 = v(s)
for se[r,t], Since t =0, = 0(t, ¢sy) and p(t, v(t) = p@, Cus) = 7, We
have
Fv@) = v(s) for sel[n, v@)),t].
By (ii), it follows that
() £ —w, v(t) for tela, o, + T(nl,
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and
(@) = 2, 0,,2) for telo, o + T(M],

where 2z, = v(g,, ,;; 7) < §, and 2(t, 0, 2,) is a maximal solution of (6)
starting at ¢ = ¢, with the initial value 2z,. Since 2z, < 8,, we have

0<2(to0,2)<n for t=0 + Ty .
Thus
v(o, + Tu() <7 .
On the other hand, by (9), we have
v(0, + TM) Z Cns > 7,

which is a contradiction.

Next we show that
(10) v(it) < e,, forall t=t¢,.

Suppose it is not the case. Then there is a ¢t* > t,, such that v»(t*) > ¢,_,
and 9(t*) > 0. But, since t* > o(z, €n_y), D(;, v({t*) = PE*, Cu_y) = 7 and
Fv(t*) = v(t*) +a = d, = v(s) for sc|r, t*], we have 9(*) <0, a con-
tradiction.

With the comparison solution z(t, g,, 2,) replaced by z(¢, g;, 2,) and by
the same type of reasoning as above, we can show that

vt) L cpy for t=o, + T(M),

k=2, ..., m, where z, = v(0}, %,,; 7) < 0,
Finally, we have

vit) < for t=7+ T(n,

where 7 + IT(9) = 0, + To(n) and T()) = q(em_r) + -+ + q(c) + mTy (7).
This proves Theorem 3.

REMARK. Driver [7, Theorem 7] and Kato [3, Theorem 4] correspond,
respectively, to the cases where ¢(r) is independent of » and where
w(t, r) is independent of £. Therefore, Theorem 3 can be considered as
an extension of these theorems.

ExAMPLE. Consider the scalar equation
(1) B(t) = —awm(t) + ba(t — ) + S" 9t s, &t + 8))ds

where a, b and h are constants, ¢ >0, |b| <a, h > 0. Assume that
g(t, s, x) is continuous and satisfies
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l9(t, s, 2)| =< m(s)|]|,

where
0 []
12) S m(s)ds < a — b, S m(s)e "ds < oo

for a ¥ > 0. Then the zero solution of (11) is uniformly asymptotically
stable in (CL, R'). Indeed, by (12), we can choose a constant F' > 1 and
a continuous function ¢(r) on (0, ), nondecreasing in » and q(») < —h
for » > 0, such that

(13) a—]b]——F”“*So m(s)ds =5 >0,
and

q(r)
(14) 28 m(s)e ds < or'?.

Let v(t, 9) = ¢(0)’.. Then we have
Bun(t, @) S —2aa(t) + 2|b||2(@)| |2t — h)|
+20a®)||_mie)la(t +)|ds .
Let v(f) = v(t, z,). Then by (13) and (14), we have

q(v(t))
25 m(s)|x(t + s)|ds

—c0

(v(t))
=2l | meerds

<2 Sq(:m m(s)e'ds
< ole@)| for |amllg <1,
while
ZS:W” m(s)|x(t + s)|ds < 2F** S:mm m(s)|x(t)|ds
< 2F"2|5(t) | S_w m(s)ds
whenever v(s) < Fw(t) for se[t + q(v(¢)),t]. Then we see that
D, 9) = —2(a — [0))$(0)° + 9¢(0)*
+ 2P0 | mis)ds
= —04(0) = —ov(t, ¢) ,
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whenever |[¢or <1, t + q(o(¢, ¢)) = ¢ and
'U(S, ¢a—t) é F’U(t, ¢) fO]’.' seE [t "I‘ q(v(t’ ¢)), t] M

Namely, the conditions in Theorem 3 are satisfied. Thus, the zero
solution of (11) is uniformly asymptotically stable in (CZ, R').

The author would like to thank Professor J. Kato for his assistance.
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