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COMPARISON METHOD AND STABILITY PROBLEM
IN FUNCTIONAL DIFFERENTIAL EQUATIONS

WANG ZHICHENG
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Abstract. In this paper, using the comparison method and borrowing
the ideas and terminologies from Kato [1], [2], [3], we discuss the stability
in functional differential equations with infinite delay. We also give some
extensions of the ideas in [5], [6], [7]. As a corollary to our results, the
corresponding stability theorem of Kato [1] is included.

Let X be a linear space of ^"-valued functions on ( — °° , 0] with a
semi-norm \\ \\x, and denote by Xτ the space of functions φ(s) on (— °°, 0]
which are continuous on [ — τ, 0] and satisfying φ_τeX for τ ^ 0, where
and henceforth φt denotes the function on (— ̂ ,0] defined by φt(s) =
Φ(t + 8).

The space X is said to be admissible, if the following are satisfied:
For any τ ^ 0 and any φ e Xτ

(a) φteX for all te[—τ, 0], especially, φQ = φ e X;
(b) φt is continuous in te[ — τ, 0];
(c) μ || 0(0) | |^| |0 |L ^ K(τ) sup_r,8,0 1| φ(s) \\ + M(τ) \\ φ_τ \\Z9

where μ > 0 is a constant and K(τ)9 M(τ) are continuous.
Consider the functional differential equation

(E) * = /(ί, xt)

and assume that f(t, 0) = 0 and that f(t, φ) is completely continuous on
I x X where X is an admissible space and /= [0, oo). For the funda-
mental properties of the solutions of (E), we refer to [4],

Let Y be an admissible space satisfying XdY and

where N > 0 is a constant. Let x(t) be an arbitrary solution of (E).
The definitions of stability in (X, Y) will be given as follows: The

zero solution of (E) is said to be
( i ) stable in (X, Y), if for any ε > 0 and any τ ^ 0, there is a

δ = δ(τ, ε) > 0 such that ||a?r||z.< d implies

\\xt\\γ <e for all t ^τ
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( i i) uniformly stable in (X, Γ), if it is stable in (X, Y) and δ is
independent of τ;

(iii) uniformly asymptotically stable in (X, F), if it is uniformly
stable and there is a <?0 > 0 and a function Γ(e) > 0 such that ||ίcr||z < S0

implies

\\xt\\7 < e for t ^ τ + T(s) .

A Liapunov function is a collection {v(t, φ\ τ): τ ^ 0} of real-valued,
continuous functions v(t, φ\ τ), defined on {(£, φ): φeXt_τ, t ^ τ} satisfying

for a continuous nondecreasing positive definite function α(r) and

(B) v(ί, # τ) ̂  δ(ί, r, || #110

for a function 6(ί, τ, r), continuous on /3, nondecreasing in r and
6(ί, r, 0) = 0, where ||0||Zr = sup_rMO l l Λ l U

Define

*<*>(*, & τ) = sup lim sup [φ, α;8; τ) - v(ί, φ\ τ)]/(s - t)
s^ί+O

for a solution aj(s) of (E) satisfying xt = φ where the supremum is taken
over all such solutions.

Before we state the following theorems concerning the stability in
(X, Y), some additional notations are required.

(L): There exist continuous functions L(t, s, r) on I3, nondecreasing
in r with L(t, s, 0) = 0, and δ0(t, s) on I2 with δQ(t, s) > 0 such that any
solution x(ΐ) of (E) satisfies

\\xt\\z ^ L(t, 8, \\xa\\χ) if | |ajJU<« 0(ί,β), t ^ s .

Note that, if the zero solution of (E) is unique for the initial value
problem, then the condition (L) holds (see [4]).

(UL): In (L), L(t, s, r) and <50(ί, s) can be chosen in such a way that
L(t, s, r) = L(t - s, 0, r) and ί0(ί, s) = δ0(t - s, 0).

(P): p(t, r) is continuous on J x (0, «>), nondecreasing in r and
satisfies

p(t9 r) ^ ^ 9 p(t, r) -̂  co as t — > oo .

(UP): In (P) assume that q(r) = ί — p(ί, r) is positive and independent
of t.

It is easy to see that under the condition (P), σ(t,r) = sup {s: p(s, r) ̂  ί}
is continuous on I x (0, oo), nonincr easing in r, <r(i, r) ^ t and p(ί, r) ^ τ
if ί ̂  α (τ, r) and r > 0.
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The following theorem generalizes an analogous theorem of Driver
(see [7, Theorem 4]).

THEOREM 1. Assume that
( i ) condition (L) holds;
(ii) there is a Liapunov function {v(t, φ\ r): τ ^ 0} which satisfy

(1) *(*>(*, Φ\ τ] ^ w(t, v(t, φ\ r))

whenever v(t, φ\ τ) > 0, p(t, v(t, φ\ r)) ̂  τ and v(s, φ8_t; τ) ̂  v(t, 0; τ) for
s 6 [p(ί, v(t, φ\ τ)), ί] where w(t, r) is nonnegative, continuous on Γ,
w(tf 0) = 0, and p(t, r) is the one in (P);

(iii) the zero solution of

(2) ΰ = w(t,y)

is stable.
Then the zero solution of (E) is stable in (X, Y).

PROOF. Let x(t) be a solution of (E) starting at t = τ for a τ *> 0,
and let v(t) = v(t, xt; τ). For any η > 0, let ε = min (??, α(^)). Since the
zero solution of (2) is stable, there is a δλ(τ, ε), 0 < ^ ̂  ε, such that
T/o = δx implies

<5ι ^ l/(ί, τ, i/o) < ε for all t ̂  τ ,

where τ/(ί) = y(t, τ, ι/0) is a maximal solution of (2) starting at t = τ with
the initial value yQ.

For the above ^ > 0, there is a δ > 0 such that

sup b(8,τ9L(8,τ,δ))£δl9δ£ inf δ0(s, τ) .
r^s^σCτ ,^) Γ^δ^σίΓ,^)

Then by (B) and (L), we have \\xr\\z < d implies

v(t) ^ b(t, τ, L(t, τ, || xτ |U)) ̂  d, for ί 6 [τ, σ(τ,

so that

0(ί) ̂  y(t) for ί e [τ, σ(τ,

We now show that

(3) v(t) ^ y(t) for all t ^ τ .

Suppose to the contrary, that v(tj > y(Q for a ^ > σ(τ, δj. Let
τ/m(ί) be any solution of

(4) y = w(£, ») + 1/m with y(τ) = i/0 , m = 1, 2, .

It is known that the maximal solution y(t) can be represented as
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2/(ί) = lim ym(t) .
m-*oo

Then there is a number m > 0, sufficiently large, such that v(Q > ym(t^).
Since ym(t) is nondecreasing, for the ί2 = inf {t e [τ, ίj: v(t) > ym(t)} we see
that v(t2) = ym(tz), v(t2) ^ v(t) for all t e [r, ίj and

1/m - w(t2,

On the other hand, since v(Q > 3lf t2 > σ(τ, δj, p(tz, v(Q) ^ p(tz, 5J ^ r
and ι (ί) ̂  v(ί2) for ί e [p(tZ9 v(tz))9 t z ] , we have v(tz) ^ w(ί2, v(ί2)), a contra-
diction.

Therefore, we see that (3) holds and that

a(\\xt\\γ) ^ v(t) < a(η) for all t ^ τ .

Thus

||a?ι| |r < 7 for all ί ^ τ ,

and the proof is complete.

THEOREM 2. /τι Theorem 1 assume that (L) is replaced by (UL), ίfeαί
in addition to (UP) v satisfies (UB), i.e., &(£, τ, r) = &(£ — r, 0, r) in (B),
and ίfeaί ίfee zero solution of (2) is uniformly stable. Then the zero
solution of (E) is uniformly stable in (X, Y).

PROOF. Note that σ(t, r) = t + g(r) and that δx and δ can be chosen
as functions of ε alone such that

sup b(ξ, 0, L(ξ , 0, «))< dl9 δ £ inf 30(f,0).
o^e^ϊίίj) o^f^ffίίi)

The proof is the same as that of Theorem 1.

THEOREM 3. Assume that
( i ) condition (UL) holds',
( i i ) ίfeere is α Lίapunov function {v(t, φ\ r): τ ^ 0} which satisfies

(UB)

( 5 ) «(JΓ)(ί, ̂  τ) - - w(t, v(ίf #; τ))

whenever v(t, φ; τ) > 0, p(ί, v(ί, ^ τ)) ^ τ and v(s, ^8_t; τ) <; ̂ (ί, ̂  τ))
/or s e [p(£, v(ί, ^ τ)), ί], where w(t, r) is nonnegative, continuous on I2,
w(t, 0) = 0; p(ί, r) satisfies (UP), am? F(r) is a continuous, nondecreasing
function satisfying F(r) > r for r > 0.

(iii) the zero solution of

( 6 ) z = -w(t,z)

is uniformly asymptotically stable.
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Then the zero solution of (E) is uniformly asymptotically stable in

PROOF. By (iii), there is a δQ > 0 and for any η > 0, there is a
> 0 such that 0 < ZQ < <50, τ ^ 0 imply that

( 7 ) 0 < z(t, τ, Z,}<Ύ] for t ^ τ + T,(η) .

For the above δ0 > 0, there is a δx > 0 such that

sup δ(f , 0, L(£, 0, SJ) ̂  S0 , d,^ inf δ,(ξ, 0) .
oseSϊUo) o^ί^g(δ0)

Then we see that \\xv\\χ ^ ̂  implies

v(ίf xt, τ) < <50 for 1 6 [τ, τ + g(«0)l ,

and hence,

v(ί, a?β; τ) ̂  δ0 for all t ^ τ .

In fact, suppose that vOW > dQ for a ί, > τ + ?(50). Then we can find a
[τ + β(δ0), *J so that v(ί2) > ί0, v(t2} > 0 and v(ί) ^ v(ί8) for all 1 6 [τ, ίj.

Since p(ί2f v(tj) ^ p(ί,, 80) ̂  τ and v(ί) ̂  v(ί.) ̂  ̂ (ί,)) for ί 6 [p(t2, v(tj\ ίj,
we have ΐ(t2) ̂  0, a contradiction.

We now show that for any η > 0 (77 < <50), there is a Γφ) > 0 such
that | | f lc r | | z < δi implies that

( 8 ) v(t, xt; τ) ̂  77 for t ^ τ + T(η) .

Let α = inf ̂ ^ [jP(s) — s] > 0, and let m be the first positive integer
such that η+ma^δQ. Let cn=η + na (n= 0, 1, 2, , m), σ^ = α Cτ^, cm^} =
Γί-ι + gί̂ .i), τ0 = r, r, = σ< + T,(ή) and v(ί) = v(t, xt\ τ).

First we show that

v(ί,) < c,,.! for a ίx e [̂ , αl

1 + Γ0φ)] .

Suppose that

( 9 ) v(ί) ^ cm_, for all ί e [σl9 σ, + T,(η)] .

Then we have

F(v(t)) ^ v(ί) + α ̂  β,.! + α = cw ̂  δ0 ̂  t;(β)

for s e [τ, ί], Since t^σ, = σ(τ, cm_0 and p(t, v(t)) ^ p(t, cm^ ^ τ, we
have

F(v(t))^v(s) for β 6 [p(ί, v(t)), ί] .

By (ii), it follows that

ϋ(t) ^ - w(ί, v(ί)) for ί 6 to, σx
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and

v(ί) ̂  «(ί, tfi, sj for ί e K (7, + Γ0(37)] ,

where ^ = vfo, α?σι; τ) < £0 and z(t, σl9 zj is a maximal solution of (6)
starting at t = 0\ with the initial value z^ Since ^ < S0> we have

0 < z(t, σl9 zύ < 5? for ί ^ a, + TQ(η) .

Thus

On the other hand, by (9), we have

which is a contradiction.

Next we show that

(10) v(ί) ̂  cw_1 for all t^t,.

Suppose it is not the case. Then there is a ί* > t19 such that v(t*) > cw_i
and v(t*) > 0. But, since ί* > σ(τ9 cw-1), p(tl9 v(t*)) ̂  p(t*, cw-1) ̂  τ and
F(v(t*)) ^ v(t*) + α ̂  S0 ̂  ι;(β) for s e [τ, ί*], we have «(ί*) ̂  0, a con-
tradiction.

With the comparison solution z(t, σlf zj replaced by z(t, σk, zk) and by
the same type of reasoning as above, we can show that

v(t) ^ cm_k for t ^ σk

k = 2, , m, where zk — v(σkf xβk; τ) < δ0

Finally, we have

^η for t ^ τ + T(η) ,

where τ + Γty) = σm + T«(η} and T(η) = ̂ ,.0 + + g(c0) + wT00?).
This proves Theorem 3.

REMARK. Driver [7, Theorem 7] and Kato [3, Theorem 4] correspond,
respectively, to the cases where q(r) is independent of r and where
w(t, r) is independent of t. Therefore, Theorem 3 can be considered as
an extension of these theorems.

EXAMPLE. Consider the scalar equation

(11) *(t) = -ax(t) + bx(t - h) + \° g(t, s, x(t + β))ώ
J-oo

where α, b and h are constants, a > 0, | & | < α , h > 0. Assume that
g(t, s, x) is continuous and satisfies
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\ g ( t , 8 , x ) \ ^ m(s)\x\ ,

where

(12) Γ m(s)ds < α - |δ| , Γ m(s}e-γ'ds < oo
J-oo J_oo

for a 7 > 0. Then the zero solution of (11) is uniformly asymptotically
stable in (CL, J?1). Indeed, by (12), we can choose a constant F > 1 and
a continuous function q(τ) on (0, oo), nondecreasing in r and q(r) ^ — h
for r > 0, such that

(13) α - |δ| - F1/2[ m(s)ds = δ > 0 ,
J-oo

and

(14) 2\q(T) m(s)e~rads ^ <Sr1/2.
J —00

Let v(t, φ) = ^(O)2. Then we have

*(i8)(*ι ^t) ^ — 2α#2(£) + 2 |δ | |α j( ί ) | | f l5( ί — K)\

S o
m(«) I α(t + s)\ds .

—oo

Let v(ί) = v(t, xt). Then by (13) and (14), we have

2\9(V( m(s)\x(t + s)\ds
J —00

f «(«(*))
^211^11^ J^ m(β)e rsds

~~ J-oo

<Zδ\x(t)\ for HajJI^ ^ 1 ,

while

(° m(s) I x(t + s) I ds ^ 2F1/2 J° m(s) | α?(ί) | ds

whenever v(s) ^ ̂ (ί) for s e [ί + g( »(ί)), ί] Then we see that

*(U)(ί, 5*) ̂  -2(α -
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whenever H^H^ ̂  1, t + q(v(t, φ)) ^ r and

v(s, φ._t) ^ Fv(t, φ} for s e [t + g(v(tf 0)), ί] .

Namely, the conditions in Theorem 3 are satisfied. Thus, the zero
solution of (11) is uniformly asymptotically stable in (Cl, R1).

The author would like to thank Professor J. Kato for his assistance.
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