STIEFEL-WHITNEY HOMOLOGY CLASSES OF Z_{2}-POINCARÉ-EULER SPACES

Akinori Matsui

(Received December 14, 1981, revised June 14, 1982)

1. Introduction and the statement of results. Let K be a simplicial complex. It is said to be totally n-dimensional if for each $\sigma \in K$ there exists an n-dimensional simplex $\tau \in K$ such that $\sigma \prec \tau$ or $\sigma=\tau$. A polyhedron X is totally n-dimensional if so is a triangulation K of X. (See Akin [1].) A totally n-dimensional locally finite simplicial complex K is an n-dimensional Z_{2}-Euler complex if there exists a totally $(n-1)$ dimensional subcomplex L such that
1) The cardinality of $\{\tau \in L \mid \sigma<\tau\}$ is even for each $\sigma \in L$.
2) The cardinality of $\{\tau \in K \mid \sigma \prec \tau\}$ is odd for each $\sigma \in L$.
3) The cardinality of $\{\tau \in K \mid \sigma \prec \tau\}$ is even for each $\sigma \in K-L$.

We usually denote ∂K instead of L. A polyhedron X is Z_{2}-Euler if so is a triangulation K of X. Let $\partial X=|\partial K|$. A compact n-dimensional Z_{2}-Euler space X is said to be closed if ∂X is empty. Examples of $Z_{2^{-}}$ Euler spaces are PL-manifolds, Z_{2}-homology manifolds, complex analytic spaces and so on. (See Sullivan [16].)

Let K be a triangulation of a Z_{2}-Euler space X. Then the k-th Stiefel-Whitney homology class $s_{k}(X)$ is defined as the k-skelton \bar{K}^{k} of the first barycentric subdivision \bar{K} of K. (See Akin [1], Halperin and Toledo [7], Sullivan [16].) Since a differentiable manifold M has a triangulation, the k-th Stiefel-Whitney homology class $s_{k}(M)$ can be defined as above. Whitney [19] announced that the k-th Stiefel-Whitney homology class $s_{k}(M)$ of an n-dimensional differentiable manifold M is the Poincare dual of the $(n-k)$-th Stiefel-Whitney class $w^{n-k}(M)$. Its proof was outlined by Cheeger [5] and given by Halperin and Toledo [7]. Taylor [18] generalized it to the case of Z_{2}-homology manifolds. This paper will give another proof of this result.

We will study the case of \boldsymbol{Z}_{2}-Poincaré-Euler spaces. An n-dimensional Z_{2}-Euler space X is called an n-dimensional Z_{2}-Poincaré-Euler space if the cap products $[X]_{n}: H^{*}\left(X ; \boldsymbol{Z}_{2}\right) \rightarrow H_{*}^{\text {inf }}\left(X, \partial X ; \boldsymbol{Z}_{2}\right)$ and $[X]_{n}: H^{*}\left(X, \partial X ; \boldsymbol{Z}_{2}\right) \rightarrow$ $H_{*}^{\mathrm{inf}}\left(X ; \boldsymbol{Z}_{2}\right)$ are isomorphisms. Here $H_{*}^{\text {inf }}$ is the homology theory of infinite chains.

Let X be an n-dimensional Z_{2}-Poincaré-Euler space. Define a
cohomology class U_{X} in $H^{*}\left(X \times X, \partial X \times X ; Z_{2}\right)$ as the Poincaré dual of $\Delta_{*}[X]$, where Δ is the diagonal map. Then $[X \times X] \cap U_{X}=\Delta_{*}[X]$. Define the Stiefel-Whitney class $w^{*}(X)$ by $w^{*}(X)=\left(\operatorname{Sq} U_{X}\right) /[X]$. There exists a proper PL-embedding $\varphi:(X, \partial X) \rightarrow\left(\boldsymbol{R}_{+}^{\alpha}, \partial \boldsymbol{R}_{+}^{\alpha}\right)$ for α sufficiently large, where $\boldsymbol{R}_{+}^{\alpha}=\left\{\left(x_{1}, x_{2}, \cdots, x_{\alpha}\right) \mid x_{\alpha} \geqq 0\right\}$. (See Hudson [10].) Suppose that R is a regular neighborhood of X in $\boldsymbol{R}_{+}^{\alpha}$. Put $\widetilde{R}=R \cap \partial \boldsymbol{R}_{+}^{\alpha}$ and $\bar{R}=\operatorname{cl}(\partial R-\widetilde{R}) . \quad$ Regard φ as a proper embedding from $(X, \partial X)$ to (R, \widetilde{R}). We also call ($R ; \widetilde{R}, \bar{R} ; \varphi)$ a regular neighborhood of X in $\boldsymbol{R}_{+}^{\alpha}$. We will define homomorphisms

$$
e_{\varphi}: \mathfrak{N}_{*}(R, \bar{R}) \rightarrow Z_{2} \quad \text { and } \quad \widetilde{e}_{\varphi}: \mathfrak{N}_{*}(R, \bar{R}) \rightarrow Z_{2}, \quad \text { where } \quad \mathfrak{N}_{*}(R, \bar{R})
$$

is the unoriented differentiable bordism group. We need the following:
Transversality Theorem (Buoncristiano, Rourke and Sanderson [2] and Rourke and Sanderson [14]). Let M and N be PL-manifolds. Suppose that $f:(M, \partial M) \rightarrow(N, \partial N)$ is a locally flat proper embedding and that X is a closed subpolyhedron in N. If $f(\partial M) \cap X=\varnothing$ or if ($\partial N, \partial N \cap X$) is collared in (N, X) and $\partial N \cap X$ is block transverse to $f \mid \partial M: \partial M \rightarrow \partial N$, then there exists an embedding $g: M \rightarrow N$ ambient isotopic to f relative to ∂N such that X is block transverse to g.

Let $f:(M, \partial M) \rightarrow(R, \bar{R})$ be in $\mathfrak{N}_{*}(R, \bar{R})$. There exists an embedding $g:(M, \partial M) \rightarrow\left(R \times D^{\beta}, \bar{R} \times D^{\beta}\right)$ for β sufficiently large, such that $g \simeq$ $f \times\{0\}$ and that $(\varphi \times \mathrm{id})\left(X \times D^{\beta}\right)$ is block transverse to g by Transversality Theorem. Let $Y=(\varphi \times \mathrm{id})^{-1} \circ g(M)$. Then Y is a closed $Z_{2^{-}}$ Euler space with a normal block bundle ν in $X \times D^{\beta}$. Define $e_{\varphi}(f, M)$ as the modulo 2 Euler number $e(Y)$ of Y. Let $\psi: Y \rightarrow X \times D^{\beta}$ be the inclusion. Define $\widetilde{e}_{\varphi}(f, M)=\left\langle\psi^{*} w^{*}\left(X \times D^{\beta}\right) \cup \bar{w}(\nu),[Y]\right\rangle$, where $\bar{w}(\nu)$ is the cohomology class determined by $w^{*}(\nu) \cup \bar{w}(\nu)=1$. Now define a homomorphism $o_{\varphi}: \mathfrak{N}_{*}(R, \bar{R}) \rightarrow Z_{2}$ by $o_{\varphi}=\widetilde{e}_{\varphi}-e_{\varphi}$. We can state the main theorem of this paper as follows:

Theorem. Let X be an n-dimensional Z_{2}-Poincaré-Euler space. Take a regular neighborhood ($R ; \widetilde{R}, \bar{R} ; \varphi$) of X in $\boldsymbol{R}_{+}^{\alpha}$. Then $[X] \cap w^{*}(X)=$ $s_{*}(X)$ if and only if $o_{\varphi}=0$.

A totally n-dimentional polyhedron X is an n-dimensional Z_{2}-homology manifold if there exist a locally finite triangulation K of X and a totally ($n-1$)-dimensional subcomplex L such that

1) $H_{*}\left(L k(\sigma ; L) ; Z_{2}\right)=H_{*}\left(S^{n-i-2} ; Z_{2}\right)$ for each i-simplex $\sigma \in L$.
2) $H_{*}\left(L k(\sigma ; K) ; Z_{2}\right)=H_{*}\left(p t ; Z_{2}\right)$ for each i-simplex $\sigma \in L$.
3) $\quad H_{*}\left(L k(\sigma ; K) ; Z_{2}\right)=H_{*}\left(S^{n-i-1} ; Z_{2}\right)$ for each i-simplex $\sigma \in K-L$.

Theorem is applied to prove the following generalization of Whitney-

Cheeger-Halperin and Toledo theorem.
Corollary. Let X be an n-dimensional Z_{2}-homology manifold with or without boundary. Then $[X] \cap w^{*}(X)=s_{*}(X)$.

We remark that Taylor [18] proved the corollary for Z_{2}-homology manifolds without boundaries.

In Section 2, we study Stiefel-Whitney homology classes and the graded bordism theory of compact Z_{2}-Euler spaces. The structure of the graded bordism group of compact Z_{2}-Euler spaces is given in Proposition 2.3. The ungraded bordism theory was studied by Akin [1]. In Section 3, we study the Stiefel-Whitney classes of block bundles via the bordism group of compact Z_{2}-Euler spaces. The result will be used in Section 6. In Section 4, we study regular neighborhoods and the Stiefel-Whitney classes. These are necessary for calculation in Sections 5 and 6. In order to prove the above corollary, we need Propositions 4.6 and 4.7. In Section 5, we give a characterization of Stiefel-Whitney classes via the unoriented differentiable bordism group. In Section 6, we give a characterization of Stiefel-Whitney homology classes via the unoriented differentiable bordism group.

Our Theorem follows from Lemmas 5.1 and 6.1.
For completeness we add an appendix, where we give a detailed proof of Transversality Theorem by following the outline given in Buoncristiano, Rourke and Sanderson [2].
2. Stiefel-Whitney homology classes and bordism groups of Z_{2}-Euler spaces.

Let K be a simplicial complex. The barycentric subdivision \bar{K} of K is defined by

$$
\bar{K}=\left\{\left(\sigma_{0}, \cdots, \sigma_{p}\right) \mid \sigma_{0} \prec \cdots \prec \sigma_{p}, \sigma_{i} \in K\right\} .
$$

We denote the k-skelton of \bar{K} by \bar{K}^{k}. Then we have the following:
Proposition 2.1. Let K be a Z_{2}-Euler complex. Then \bar{K}^{k} is a $Z_{2^{-}}$ Euler complex such that $\partial \bar{K}^{k}=\overline{\partial K^{k-1}}$.

In order to prove Proposition 2.1, we need the following:
Lemma 2.1. Let K be a totally n-dimensional locally finite simplicial complex. If $b \in \bar{K}^{p-1}$, then the cardinality of $\left\{a \in \bar{K}-\bar{K}^{p} \mid a>b\right\}$ is even.

Proof. If $p=n$, then $\bar{K}-\bar{K}^{p}$ is empty. Thus we may assume that $p<n$. Let $a=\left\langle\sigma_{0}, \cdots, \sigma_{s}\right\rangle \in \bar{K}-\bar{K}^{p}$ and let $b=\left\langle\tau_{0}, \cdots, \tau_{t}\right\rangle \in \bar{K}^{p-1}$. Then $s>t+1$. Since the cardinality of $\left\{\sigma \in K \mid \sigma_{0} \prec \sigma \prec \sigma_{1}\right\}$ is even for
each $\left\langle\sigma_{0}, \sigma_{1}\right\rangle \in \bar{K}$, we have that the cardinality of $\left\{a \in \bar{K}-\bar{K}^{p}|a\rangle b\right\}$ is even for $b \in \bar{K}^{p-1}$.
q.e.d.

Proof of Proposition 2.1. Note that the cardinality of $\{a \in \bar{K} \mid a \succ b\}$ equals the sum of the cardinalities of $\left\{a \in \bar{K}^{p} \mid a \succ b\right\}$ and $\left\{a \in \bar{K}-\bar{K}^{p} \mid a>b\right\}$ for $b \in \bar{K}$. By Lemma 2.1, it follows that the cardinalities $\{a \in \bar{K} \mid a>b\}$ and $\left\{a \in \bar{K}^{p} \mid a \succ b\right\}$ are congruent modulo 2 for $b \in \bar{K}^{p-1}$. Then \bar{K}^{p} is a Z_{2}-Euler complex such that $\partial \bar{K}^{p}=\overline{\partial K^{p-1}}$. q.e.d.

We need the following proposition to prove Corollary 2.2 as well as Lemmas 3.2 and 3.3 and 6.1.

Proposition 2.2. (Halperin and Toledo [8]). Let X and Y be $Z_{2^{-}}$ Euler spaces. Then $s_{k}(X \times Y)=\sum_{p=0}^{k} s_{p}(X) \times s_{k-p}(Y)$.

In [8], \boldsymbol{Z}_{2}-Euler spaces without boundaries are studied but we can prove Proposition 2.2, using the same method as in [8].

Let $\left\{\mathfrak{B}_{n}, \partial\right\}$ be the bordism theory of compact Z_{2}-Euler spaces. Then $\left\{\mathfrak{B}_{n}, \partial\right\}$ is a homology theory. (See Akin [1].) Let (A, B) be a pair of polyhedra. Define a homomorphism $s: \mathfrak{F}_{n}(A, B) \rightarrow H_{0}\left(A, B ; Z_{2}\right)+H_{1}(A, B ;$ $\left.Z_{2}\right)+\cdots+H_{n}\left(A, B ; Z_{2}\right)$ by $s(\varphi, X)=\sum_{i=0}^{n} \varphi_{*} s_{i}(X)$. Then s is well defined by Proposition 2.1. The following holds:

Proposition 2.3. The homomorphism $s: \mathfrak{B}_{n}(A, B) \rightarrow H_{0}\left(A, B ; Z_{2}\right)+$ $H_{1}\left(A, B ; Z_{2}\right)+\cdots+H_{n}\left(A, B ; Z_{2}\right)$ is an isomorphism.

Proof. Put $h_{n}(A, B)=H_{0}\left(A, B ; \boldsymbol{Z}_{2}\right)+H_{1}\left(A, B ; \boldsymbol{Z}_{2}\right)+\cdots+H_{n}\left(A, B ; \boldsymbol{Z}_{2}\right)$. Define the boundary operator $\partial_{h}: h_{n}(A, B) \rightarrow h_{n-1}(B)$ by that of the ordinary homology theory. Note that $\left\{h_{n}, \partial_{h}\right\}$ and $\left\{\mathfrak{B}_{n}, \partial\right\}$ are homology theories with compact supports and that s is a homomorphism from $\mathfrak{B}_{n}(A, B)$ to $h_{n}(A, B)$ such that $\partial_{h} \circ s=s \circ \partial$. Since $h_{n}(p t)=Z_{2}$ and $\mathfrak{B}_{n}(p t)=Z_{2}$, where $p t$ is the space of one point, the homomorphism $s: \mathfrak{B}_{n}(A, B) \rightarrow h_{n}(A, B)$ is an isomorphism. (cf. See Spanier [15].)
q.e.d.

This proposition implies directly the following:
Corollary 2.1. Let $\left(\varphi_{1}, X_{1}\right)$ and (φ_{2}, X_{2}) be in $\mathfrak{B}_{n}(A, B)$. Then $\left(\mathscr{\varphi}_{1}, X_{1}\right)$ is cobordant to $\left(\mathscr{\varphi}_{2}, X_{2}\right)$ in $\mathfrak{B}_{n}(A, B)$ if and only if $\left(\mathscr{\varphi}_{1}\right)_{*} s_{i}\left(X_{1}\right)=$ $\left(\varphi_{2}\right)_{*} s_{i}\left(X_{2}\right)$ in $H_{i}\left(A, B ; Z_{2}\right)$ for all i.

Remark. Akin [1] showed this in the case of ungraded bordism groups.

Let $S^{1} \vee S^{1}$ be the one point union of two circles. Then $S^{1} \vee S^{1}$ is a 1-dimensional Z_{2}-Euler space such that the modulo 2 Euler number $e\left(S^{1} \vee S^{1}\right)=1$. The following holds:

Corollary 2.2. Let (φ, X) be in $\mathfrak{B}_{n}(A, B)$. If $\varphi_{*}[X]=0$ in $H_{n}\left(A, B ; Z_{2}\right)$, then there exists (φ, Y) in $\mathfrak{B}_{n-1}(A, B)$ such that (φ, X) is cobordant to $\left(\psi \circ \pi, Y \times\left(S^{1} \vee S^{1}\right)\right)$, where $\pi: Y \times\left(S^{1} \vee S^{1}\right) \rightarrow Y$ is the projection.

Proof. Let \bar{K}^{n-1} be the ($n-1$)-skelton of the barycentric subdivision \bar{K} of a triangulation K of X. Put $\left|\bar{K}^{n-1}\right|=X^{n-1}$. Then $\varphi_{*} s_{n-1}(X)=$ $\left(\varphi \mid X^{n-1}\right)_{*}\left[X^{n-1}\right]$. Let $p: X^{n-1} \times\left(S^{1} \vee S^{1}\right) \rightarrow X^{n-1}$ be the projection. Then $\varphi_{*} s_{n-1}(X)=\left(\varphi \mid X^{n-1}\right)_{*} \circ p_{*} s_{n-1}\left(X^{n-1} \times\left(S^{1} \vee S^{1}\right)\right)$ by Proposition 2.2. By induction, there exists (ψ, Y) in $\mathfrak{B}_{n-1}(A, B)$ such that $\varphi_{*} s_{i}(X)=\psi_{*}{ }^{\circ}$ $\pi_{*} s_{i}\left(Y \times\left(S^{1} \vee S^{1}\right)\right)$ for $0 \leqq i \leqq n$, where $\pi: Y \times\left(S^{1} \vee S^{1}\right) \rightarrow Y$ is the projection. By Corollary 2.1, we have (φ, X) is cobordant to ($\psi \circ \pi, Y \times$ $\left(S^{1} \vee S^{1}\right)$).
q.e.d.

We need the following to prove Lemma 3.3.
Proposition 2.4. (Blanton and McCrory [4]). The k-th StiefelWhitney homology class $s_{k}\left(\boldsymbol{P}^{n}\right)$ of the n-dimensional real projective space \boldsymbol{P}^{n} is equal to ${ }_{n+1} C_{k+1} j_{*}\left[\boldsymbol{P}^{k}\right]$, where $j: \boldsymbol{P}^{k} \rightarrow \boldsymbol{P}^{n}$ is the canonical inclusion.
3. Characterization of Stiefel-Whitney classes of block bundles via the bordism group of Z_{2}-Euler spaces. Let $\xi=(E(\xi), K, \iota)$ be a k block bundle over a simplicial complex K. Then there exist PL-homeomorphisms $\varphi_{\sigma}: \sigma \times D^{k} \rightarrow E(\sigma)$, called the charts, for all σ in K. (See Rourke and Sanderson [14].) Put $\bar{E}(\xi)=\cup \varphi_{\sigma}\left(\sigma \times \partial D^{k}\right)$. Then $\bar{\xi}=(\bar{E}(\xi), K)$ is called the sphere bundle associated with ξ.

Let $\xi=\left(E(\xi), K, \iota_{K}\right)$ and $\eta=\left(E(\eta), L, \iota_{L}\right)$ be k-block bundles over simplicial complexes K and L. A map $(\bar{h}, h):(E(\xi), K) \rightarrow(E(\eta), L)$ is a bundle map if

1) $h: K \rightarrow L$ is a simplicial map,
2) $\iota_{L} \circ h=\vec{h} \circ \iota_{K}$, and
3) for each σ in K, there exist charts $\varphi_{1}: \sigma \times D^{k} \rightarrow E(\sigma)$ and φ_{2} : $h(\sigma) \times D^{k} \rightarrow E(h(\sigma))$ such that $\bar{h} \circ \varphi_{1}=\varphi_{2} \circ(h \mid \sigma \times \mathrm{id})$, where id is the identity of D^{k}.

Let $\xi=\left(E(\xi), X, \iota_{X}\right)$ and $\eta=\left(E(\eta), Y, \iota_{Y}\right)$ be k-block bundles over polyhedra X and Y. A map $(\bar{h}, h):(E(\xi), X) \rightarrow(E(\eta), Y)$ is a bundle map if there exist simplicial complexes K and L such that $|K|=X,|L|=Y$ and that $(\bar{h}, h):(E(\xi), K) \rightarrow(E(\eta), L)$ is a bundle map.

Remark. If a map $(\bar{h}, h):(E(\xi), X) \rightarrow(E(\eta), Y)$ is a bundle map, then $\xi=h^{*} \eta$. Conversely, if $\xi=h^{*} \eta$, then there exists a bundle map $(\bar{h}, h):(E(\xi), X) \rightarrow(E(\eta), Y)$. (See [14].)

Let $\xi=(E(\xi), A, \iota)$ be an n-block bundle over a locally compact polyhedron A. Define $\bar{E}(\xi)$ to be the total space of the sphere bundle associated with ξ. Then we will define a homomorphism $e_{\xi}: \mathfrak{B}_{*}(E(\xi)$, $\bar{E}(\xi)) \rightarrow \boldsymbol{Z}_{2}$, where $\mathfrak{B}_{*}(E(\xi), \bar{E}(\xi))$ is the bordism group of compact $\boldsymbol{Z}_{2}-$ Euler spaces. Let R be a regular neighborhood of A embedded properly in \boldsymbol{R}^{α} for α sufficiently large. Let $i: A \subset R$ be the inclusion and let $p: R \rightarrow A$ be the retraction. Suppose that $p^{*} \xi=\left(E\left(p^{*} \xi\right), R, \iota_{R}\right)$ is the induced bundle. Then there exist bundle maps $(\bar{i}, i):(E(\xi), A) \rightarrow\left(E\left(p^{*} \xi\right), R\right)$ and $(\bar{p}, p):\left(E\left(p^{*} \xi\right), R\right) \rightarrow(E(\xi), A)$. For each (φ, X) in $\mathfrak{B}_{*}(E(\xi), \bar{E}(\xi))$, there exists an embedding $\tilde{\rho}:(X, \partial X) \rightarrow\left(E\left(p^{*} \xi\right), \bar{E}\left(p^{*} \xi\right)\right)$ such that $\widetilde{\rho} \simeq \bar{i} \circ \rho$. By Transversality Theorem, we may assume that $\tilde{\varphi}(X)$ is block transverse to $c_{R}: R \rightarrow E\left(p^{*} \xi\right)$. Then we define $e_{\xi}(\varphi, X)$ as the modulo 2 Euler number $e\left(\tilde{\mathcal{P}}^{-1}\left(\epsilon_{R}(R)\right)\right.$) of $\tilde{\varphi}^{-1}\left(\iota_{R}(R)\right)$. We need the following to prove Lemma 3.3:

Lemma 3.1. Let $(\bar{h}, h):\left(E\left(\xi_{1}\right), A_{1}\right) \rightarrow\left(E\left(\xi_{2}\right), A_{2}\right)$ be a bundle map. Then $e_{\xi_{1}}(\varphi, X)=e_{\xi_{2}}(\bar{h} \circ \varphi, X)$ for each (φ, X) in $\mathfrak{B}_{*}\left(E\left(\xi_{1}\right), \bar{E}\left(\xi_{1}\right)\right)$.

Proof. Let $i_{k}: A_{k} \subset R_{k}$ be the inclusions to regular neighborhoods embedded properly in \boldsymbol{R}^{α}, for α sufficiently large, such that there exists an inclusion $h_{R}: R_{1} \subset R_{2}$ with $i_{2} \circ h \simeq h_{R} \circ i_{1}$. Let $p_{k}: R_{k} \rightarrow A_{k}$ be the retractions for $k=1,2$. Suppose that $p_{k}^{*} \xi_{k}=\left(E\left(p_{k}^{*} \xi_{k}\right), R_{k}, \bar{i}_{k}\right)$ are the induced bundles for $k=1,2$. Then there exists the following bundle maps

$$
\begin{aligned}
& \left(\bar{i}_{k}, i_{k}\right):\left(E\left(\bar{\xi}_{k}\right), A_{k}\right) \rightarrow\left(E\left(p_{k}^{*} \xi_{k}\right), R_{k}\right), \\
& \left(\bar{p}_{k}, p_{k}\right):\left(E\left(p_{k}^{*} \xi_{k}\right), R_{k}\right) \rightarrow\left(E\left(\xi_{k}\right), A_{k}\right),
\end{aligned}
$$

for $k=1,2$, and

$$
\left(\bar{h}_{R}, h_{R}\right):\left(E\left(p_{1}^{*} \xi_{1}\right), R_{1}\right) \rightarrow\left(E\left(p_{2}^{*} \xi_{2}\right), R_{2}\right),
$$

such that \bar{h}_{R} is an embedding. For each (φ, X) in $\mathfrak{B}_{*}\left(E\left(\xi_{1}\right), \bar{E}\left(\xi_{1}\right)\right)$, there exists an embedding $\widetilde{\rho}:(X, \partial X) \rightarrow\left(E\left(p_{1}^{*} \xi_{1}\right), \bar{E}\left(p_{1}^{*} \xi_{1}\right)\right)$ such that $\widetilde{\rho} \simeq \bar{i}_{1} \circ \rho$ and that $\widetilde{\varphi}(X)$ is block transverse to $\bar{\iota}_{1}: R_{1} \rightarrow E\left(p_{1}^{*} \xi_{1}\right)$. Then $\bar{h}_{R} \circ \widetilde{\varphi}(X)$ is block transverse to $\bar{c}_{2}: R_{2} \rightarrow E\left(p_{2}^{*} \xi_{2}\right)$. Noting that $\bar{h}_{R} \circ \widetilde{\rho} \simeq i_{2} \circ(\bar{h} \circ \varphi)$, we have $e_{\xi_{2}}(\bar{h} \circ \varphi, X)=e\left(\left(\bar{h}_{R} \circ \tilde{\varphi}\right)^{-1}\left(\bar{c}_{2}\left(R_{2}\right)\right)\right)$. Since $\bar{c}_{1}\left(R_{1}\right)=\bar{h}_{R}^{-1}\left(\bar{c}_{2}\left(R_{2}\right)\right)$ and $e_{\xi_{1}}(\varphi, X)=$ $e\left(\widetilde{\mathscr{P}}^{-1}\left(\bar{द}_{1}\left(R_{1}\right)\right)\right.$, it follows that $e_{\xi_{1}}(\varphi, X)=e_{\xi_{2}}(\bar{h} \circ \varphi, X)$. q.e.d.

Lemma 3.2. Let $\xi=(E, A, \iota)$ be an n-block bundle over a locally compact polyhedron A. Then there exists a unique cohomology class $\Phi(\xi)$ in $H^{*}\left(E, \bar{E} ; Z_{2}\right)$ satisfying $\left\langle\Phi(\xi), \varphi_{*} s_{*}(X)\right\rangle=e_{\xi}(\varphi, X)$ for each (φ, X) in $\mathfrak{B}_{*}(E, \bar{E})$.

Proof. First we will prove the existence of $\Phi(\xi)$. Let $\Phi^{i}(\xi)=0$ in
$H^{i}\left(E, \bar{E} ; Z_{2}\right)$ for $i=0,1, \cdots, n-1$. Define a homomorphism $\widetilde{\Phi}^{n}$: $\mathfrak{B}_{n}(E, \bar{E}) \rightarrow Z_{2}$ by $\widetilde{\Phi}^{n}(\varphi, X)=e_{\xi}(\varphi, X)$. If $\varphi_{*}[X]=0$ in $H_{n}\left(E, \bar{E} ; Z_{2}\right)$, then by Corollary 2.2 there exists (ψ, Y) in $\mathfrak{B}_{n-1}(E, \bar{E})$ such that (φ, X) is cobordant to $\left(\psi \circ \pi, Y \times\left(S^{1} \vee S^{1}\right)\right.$, where $\pi:\left(Y \times\left(S^{1} \vee S^{1}\right)\right) \rightarrow Y$ is the projection. Hence $e_{\xi}(\varphi, X)=e_{\xi}\left(\psi \circ \pi, Y \times\left(S^{1} \vee S^{1}\right)\right)=e_{\xi}(\psi, Y) \cdot e\left(S^{1} \vee S^{1}\right)=0$. Thus we can define $\Phi^{n}(\xi)$ as the cohomology class determined by $\widetilde{\Phi}^{n}$. As an induction hypothesis, we may assume that $\Phi^{n}(\xi), \cdots, \Phi^{n+i}(\xi)$ are determined so that $\left\langle\Phi^{n+p}(\xi), \varphi_{*}[X]\right\rangle=\sum_{j=0}^{p-1}\left\langle\Phi^{n+j}(\xi), \varphi_{*} s_{n+j}(X)\right\rangle+e_{\xi}(\varphi, X)$ for $p \leqq i$. Define a homomorphism $\widetilde{\Phi}^{n+i+1}: \mathfrak{B}_{n+i+1}(E, \bar{E}) \rightarrow Z_{2}$ by $\widetilde{\Phi}^{n+i+1}(\Phi, X)=$ $\sum_{j=0}^{i}\left\langle\Phi^{n+j}(\xi), \varphi_{*} s_{n+j}(X)\right\rangle+e_{\xi}(\varphi, X)$. Suppose that $\varphi_{*}[X]=0$. By Corollary 2.2, there exists (ψ, Y) in $\mathfrak{B}_{n+i}(E, \bar{E})$ such that (φ, X) is cobordant to ($\psi \circ \pi, Y \times\left(S^{1} \vee S^{1}\right)$), where $\pi: Y \times\left(S^{1} \vee S^{1}\right) \rightarrow Y$ is the projection. Note that $\pi_{*}\left(s_{n+j}\left(Y \times\left(S^{1} \vee S^{1}\right)\right)\right)=s_{n+j}(Y)$ for $j=0, \cdots, i$, by Proposition 2.2 and that $e_{\xi}\left(\psi \circ \pi, Y \times\left(S^{1} \vee S^{1}\right)\right)=e_{\xi}(\psi, Y)$. Then $\widetilde{\Phi}^{n+i+1}(\varphi, X)=\sum_{j=0}^{i}\left\langle\Phi^{n+j}(\xi), \psi_{*} s_{n+j}(Y)\right\rangle+e_{\xi}(\psi, Y)$. Since $\left\langle\Phi^{n+i}(\xi), \varphi_{*} s_{n+i}(Y)\right\rangle=$ $\sum_{j=0}^{i-1}\left\langle\Phi^{n+j}(\xi), \psi_{*} s_{n+j}(Y)\right\rangle+e_{\xi}(\psi, Y)$, it follows that $\widetilde{\Phi}^{n+i+1}(\varphi, X)=0$. Hence we can define $\mathscr{\Phi}^{n+i+1}(\xi)$ as the cohomology class determined by $\widetilde{\Phi}^{n+i+1}$. By induction, cohomology classes $\Phi^{k}(\xi)$ can be defined as above for every k, so that the following is satisfied, $\left\langle\Phi^{n+k}(\xi), \varphi_{*}[X]\right\rangle=\sum_{j=0}^{k-1}\left\langle\Phi^{n+j}(\xi)\right.$, $\left.\varphi_{*} s_{n+j}(X)\right\rangle+e_{\xi}(\varphi, X)$ for each (φ, X) in $\mathfrak{B}_{n+k}(E, \bar{E})$. Put $\Phi(\xi)=\sum \Phi^{k}(\xi)$. Then for each (φ, X) in $\mathfrak{B}_{m}(E, \bar{E})$, it follows that

$$
\begin{aligned}
\left\langle\Phi(\xi), \varphi_{*} s_{*}(X)\right\rangle & =\sum_{k=0}^{m}\left\langle\Phi^{k}(\xi), \varphi_{*} s_{k}(X)\right\rangle \\
& =\left\langle\Phi^{m}(\xi), \varphi_{*} s_{m}(X)\right\rangle+\sum_{k=0}^{m-1}\left\langle\Phi^{k}(\xi), \varphi_{*} s_{k}(X)\right\rangle \\
& =e_{\xi}(\varphi, X) .
\end{aligned}
$$

Hence there exists a cohomology class $\Phi(\xi)$ satisfying the assumption.
The uniqueness of $\Phi(\xi)$ can be proved as follows. Setting $\Phi=\Phi^{0}+$ $\Phi^{1}+\cdots+\Phi^{\alpha}$ in $H^{*}\left(E, \bar{E} ; \boldsymbol{Z}_{2}\right)$, suppose that $\left\langle\Phi, \varphi_{*} s_{*}(X)\right\rangle=0$ for each (Φ, X) in $\mathfrak{B}_{*}(E, \bar{E}) . \quad$ Clearly $\Phi^{0}=0$. Suppose that $\Phi^{0}=0, \Phi^{1}=0, \cdots, \Phi^{k}=0$. Since $\left\langle\Phi, \varphi_{*} s_{*}(X)\right\rangle=0$ for (φ, X) in $\mathfrak{B}_{k+1}(E, \bar{E})$, it follows that $\left\langle\Phi^{k+1}, \varphi_{*}[X]\right\rangle=0$ and $\Phi^{k+1}=0$. Hence $\Phi=0$ if $\left\langle\Phi, \varphi_{*} s_{*}(X)\right\rangle=0$ for each (φ, X) in $\mathfrak{B}_{*}(E, \bar{E})$. This means that the cohomology class $\Phi(\xi)$ satisfying the assumption is unique.
q.e.d.

Let $\xi=(E, X, \iota)$ be a block bundle. Let $\Phi(\xi)$ be the cohomology class defined as above. Define $\widetilde{w}(\xi)$ by $\widetilde{w}(\xi)=\iota^{*}\left(U_{\xi} \cup\right)^{-1} \Phi(\xi)$, where $\iota^{*}\left(U_{\xi} \cup\right)^{-1}: H^{*}\left(E, \bar{E} ; Z_{2}\right) \rightarrow H^{*}\left(X ; Z_{2}\right)$ is the Thom isomorphism of ξ. Then the following holds:

Lemma 3.3. If ξ is the block bundle induced by a vector bundle
over a locally compact polyhedron X, then the cohomology class $\widetilde{w}(\xi)$ coincides with the dual Stiefel-Whitney class $\bar{w}(\xi)$ of $w^{*}(\xi)$.

In order to prove Lemma 3.3, it is sufficient to prove the following (cf. [12]):

1) Given a block bundle $\xi=(E(\xi), A, \iota)$ and a map $h: B \rightarrow A$, where A and B are locally compact polyhedra, we have $\widetilde{w}\left(h^{*} \xi\right)=h^{*} \widetilde{w}(\xi)$.
2) For block bundles ξ_{1} and ξ_{2} over locally compact polyhedra, we have $\widetilde{w}\left(\xi_{1}\right) \times \widetilde{w}\left(\xi_{2}\right)=\widetilde{w}\left(\xi_{1} \times \xi_{2}\right)$.
3) For the canonical 1-disk bundle η^{1} over the projective space \boldsymbol{P}^{n}, we have $\widetilde{w}\left(\eta^{1}\right)=1+\alpha+\cdots+\alpha^{n}$, for the generator α of $H^{1}\left(\boldsymbol{P}^{n} ; \boldsymbol{Z}_{2}\right)$.

Proof. 1) Let $h^{*} \xi=\left(E\left(h^{*} \xi\right), B, \iota_{B}\right)$ be the induced bundle. There exists a bundle map $(\bar{h}, h):\left(E\left(h^{*} \xi\right), B\right) \rightarrow(E(\xi), A)$. Since $(\bar{h} \circ \rho, X)$ is in $\mathfrak{B}_{*}(E(\xi), \bar{E}(\xi))$ for (φ, X) in $\mathfrak{B}_{*}\left(E\left(h^{*} \xi\right), \bar{E}\left(h^{*} \xi\right)\right)$ and $e_{\xi}(\bar{h} \circ \varphi, X)=e_{h^{*} \xi}(\varphi, X)$ by Lemma 3.1, it follows that $\left\langle\Phi(\xi),(\bar{h} \circ \varphi)_{*} s_{*}(X)\right\rangle=e_{h^{*} \xi}(\varphi, X)$. Note that $\Phi\left(h^{*} \xi\right)=\bar{h}^{*} \Phi(\xi)$ by Lemma 3.2. Since $\widetilde{w}\left(h^{*} \xi\right)=\iota_{B}^{*}\left(U_{h^{*} \xi} \cup\right)^{-1} \bar{h}^{*} \Phi(\xi)$ and $\bar{h} \circ \iota_{B} \simeq \iota \circ h$, it follows that $\widetilde{w}\left(h^{*} \xi\right)=h^{*} \circ \iota^{*}\left(U_{\xi} \cup\right)^{-1} \Phi(\xi)$, hence $\widetilde{w}\left(h^{*} \xi\right)=$ $h^{*} \widetilde{w}(\xi)$.
2) Let $\xi_{i}=\left(E_{i}, B_{i}, c_{i}\right)$ be block bundles over locally compact polyhedra B_{i} for $i=1,2$. Let \bar{E}_{i} be the total space of the sphere bundle associated with ξ_{i}. Since $\left(\varphi_{1} \times \varphi_{2}\right)_{*} s_{*}\left(X_{1} \times X_{2}\right)=\left(\varphi_{1}\right)_{*} s_{*}\left(X_{1}\right) \times\left(\varphi_{2}\right)_{*} s_{*}\left(X_{2}\right)$ for $\left(\varphi_{i}, X_{i}\right)$ in $\mathfrak{B}_{*}\left(E_{i}, \bar{E}_{i}\right)$, by Proposition 2.2, it follows that

$$
\begin{aligned}
\left\langle\Phi\left(\xi_{1}\right)\right. & \left.\times \Phi\left(\xi_{2}\right),\left(\varphi_{1} \times \varphi_{2}\right)_{*} s_{*}\left(X_{1} \times X_{2}\right)\right\rangle \\
& =\left\langle\Phi\left(\xi_{1}\right),\left(\varphi_{1}\right)_{*} s_{*}\left(X_{1}\right)\right\rangle\left\langle\Phi\left(\xi_{2}\right),\left(\varphi_{2}\right)_{*} s_{*}\left(X_{2}\right)\right\rangle \\
& =e_{\xi_{1}}\left(\varphi_{1}, X_{1}\right) \cdot e_{\xi_{2}}\left(\varphi_{2}, X_{2}\right) \\
& =e_{\xi_{1} \times \xi_{2}}\left(\varphi_{1} \times \varphi_{2}, X_{1} \times X_{2}\right) .
\end{aligned}
$$

By the uniqueness of $\Phi\left(\xi_{1} \times \xi_{2}\right)$, we have $\Phi\left(\xi_{1}\right) \times \Phi\left(\xi_{2}\right)=\Phi\left(\xi_{1} \times \xi_{2}\right)$, hence $\widetilde{w}\left(\xi_{1}\right) \times \widetilde{w}\left(\xi_{2}\right)=\widetilde{w}\left(\xi_{1} \times \xi_{2}\right)$.
3) Let $\eta^{1}=\left(E^{n+1}, \boldsymbol{P}^{n}, \iota\right)$ be the canonical 1-disk bundle over the real projective space. Define $h:\left(E^{n+1}, \partial E^{n+1}\right) \rightarrow\left(\boldsymbol{P}^{n}, p t\right)$ by the canonical identification $E^{n+1} / \partial E^{n+1}=\boldsymbol{P}^{n}$. Then $h_{*}: H_{*}\left(E^{n+1}, \partial E^{n+1} ; \boldsymbol{Z}_{2}\right) \rightarrow H_{*}\left(\boldsymbol{P}^{n+1}, p t ; \boldsymbol{Z}_{2}\right)$ is an isomorphism and $h \circ \iota=j_{n}$, where $j_{k}: \boldsymbol{P}^{k} \rightarrow \boldsymbol{P}^{n+1}$ are the canonical inclusions. Let $\bar{j}_{k}:\left(E^{k}, \boldsymbol{P}^{k-1}\right) \rightarrow\left(E^{n+1}, \boldsymbol{P}^{n}\right)$ be the canonical inclusions. Then $h_{*}\left(\bar{j}_{k}, E^{k}\right)=\left(j_{k}, \boldsymbol{P}^{k}\right)$. Note that $h_{*}: \mathfrak{B}_{k}\left(E^{n+1}, \partial E^{n+1}\right) \rightarrow \mathfrak{B}_{k}\left(\boldsymbol{P}^{n+1}, p t\right)$ is an isomorphism by Proposition 2.3. Since $\mathfrak{B}_{*}\left(\boldsymbol{P}^{n+1}, p t\right)$ is generated by $\left\{\left(j_{k}, \boldsymbol{P}^{k}\right)\right\}$, we see that $\mathfrak{B}_{*}\left(E^{n+1}, \partial E^{n+1}\right)$ is generated by $\left\{\left(\bar{j}_{k}, E^{k}\right)\right\}$. In order to prove the assertion 3), it is sufficient to prove

$$
\left\langle U_{\eta^{1}} \cup\left(c^{*}\right)^{-1}\left(1+\alpha+\cdots+\alpha^{n}\right),\left(\bar{j}_{k}\right)_{*} s_{*}\left(E^{k}\right)\right\rangle=e_{\eta^{1}}\left(\bar{j}_{k}, E^{k}\right) .
$$

Let β be the generator of $H^{1}\left(\boldsymbol{P}^{n+1} ; Z_{2}\right)$. Then $U_{\eta^{1}}=h^{*} \beta$ and $\left(\iota^{*}\right)^{-1} \alpha^{i}=$ $h^{*} \beta^{i}$. Since $h_{*} \circ\left(\bar{j}_{k}\right)_{*} s_{*}\left(E^{k}\right)=\left(j_{k}\right)_{*} s_{*}\left(\boldsymbol{P}^{k}\right)$, we have

$$
\begin{aligned}
\left\langle U_{\eta^{1}}\right. & \left.\cup\left(e^{*}\right)^{-1}\left(1+\alpha+\cdots+\alpha^{n}\right),\left(\bar{j}_{k}\right)_{*} s_{*}\left(E^{k}\right)\right\rangle \\
& =\left\langle\beta+\beta^{2}+\cdots+\beta^{n+1},\left(j_{k}\right)_{*} s_{*}\left(\boldsymbol{P}^{k}\right)\right\rangle .
\end{aligned}
$$

By Proposition 2.4, it follows that

$$
\left(j_{k}\right)_{*} s_{*}\left(\boldsymbol{P}^{k}\right)=\sum_{p=0}^{k}{ }_{k+1} C_{p+1}\left(j_{p}\right)_{*}\left[\boldsymbol{P}^{p}\right]
$$

Then

$$
\begin{aligned}
& \left\langle U_{\eta^{1}} \cup\left(e^{*}\right)^{-1}\left(1+\alpha+\cdots+\alpha^{n}\right),\left(\bar{j}_{k}\right)_{*} s_{*}\left(E^{k}\right)\right\rangle \\
& \quad=\sum_{p=1}^{k}{ }_{k+1} C_{p+1}=k .
\end{aligned}
$$

Note that $e_{\eta_{1}}\left(\bar{j}_{k}, E^{k}\right)=e\left(\boldsymbol{P}^{k-1}\right)=k$. Hence

$$
\left\langle U_{\eta^{1}} \cup\left(e^{*}\right)^{-1}\left(1+\alpha+\cdots+\alpha^{n}\right),\left(\bar{j}_{k}\right)_{*} s_{*}\left(E^{k}\right)\right\rangle=e_{\eta^{1}}\left(\bar{j}_{k}, E^{k}\right) .
$$

By the above, we have $\widetilde{w}\left(\eta^{1}\right)=1+\alpha+\cdots+\alpha^{n}$. q.e.d.

Corollary 3.1. Let $\nu=(E, M$, e be the normal block bundle of a proper embedding from a compact triangulated differentiable manifold M into $\boldsymbol{R}_{+}^{\alpha}$. Then

$$
\left\langle U_{\nu} \cup\left(e^{*}\right)^{-1} w^{*}(M), \varphi_{*} s_{*}(X)\right\rangle=e_{\nu}(\rho, X) \quad \text { for each } \quad(\varphi, X)
$$

in the bordism group $\mathfrak{B}_{*}(E, \bar{E})$ of compact Z_{2}-Euler spaces, where \bar{E} is the total space of the sphere bundle associated with ν.

Proof. Since ν is induced by a vector bundle, it follows that $\left\langle U_{\nu} \cup\left(e^{*}\right)^{-1} \bar{w}(\nu), \varphi_{*} s_{*}(X)\right\rangle=e_{\nu}(\varphi, X)$ by Lemma 3.3. Since $w^{*}(M)=\bar{w}(\nu)$, we have

$$
\left\langle U_{\nu} \cup\left(\iota^{*}\right)^{-1} w^{*}(M), \varphi_{*} s_{*}(X)\right\rangle=e_{\nu}(\varphi, X) . \quad \text { q.e.d. }
$$

4. Regular neighborhoods and Stiefel-Whitney classes. Let ($R ; \widetilde{R}$, $\bar{R} ; \varphi)$ be a regular neighborhood of an n-dimensional Z_{2}-Poincaré-Euler space X in R_{+}^{α}. Define a cohomology class $U(\mathscr{P})$ in $H^{k}\left(R, \bar{R} ; Z_{2}\right)$ as the Poincaré dual of $\varphi_{*}[X]$ in $H_{n}^{\text {inf }}\left(R, \widetilde{R} ; Z_{2}\right)$. Then $[R] \cap \varphi^{*} U(\varphi)=\varphi_{*}[X]$. The following holds:

Proposition 4.1. Let ($R ; \widetilde{R}, \bar{R} ; \varphi$) be a regular neighborhood of an n-dimensional \boldsymbol{Z}_{2}-Poincaré-Euler space X in \boldsymbol{R}_{+}^{n+k}. Then there exist the following isomorphisms:

1) $t_{1}: H^{i}\left(X ; Z_{2}\right) \rightarrow H^{i+k}\left(R, \bar{R} ; Z_{2}\right)$ defined by $t_{1}(\alpha)=U(\varphi) \cup\left(\varphi^{*}\right)^{-1} \alpha$.
2) $t_{2}: H^{i}\left(X, \partial X ; Z_{2}\right) \rightarrow H^{i+k}\left(R, \partial R ; Z_{2}\right)$ defined by $t_{2}(\alpha)=U(\varphi) \cup\left(\varphi^{*}\right)^{-1} \alpha$.
3) $t_{3}: H_{i+k}^{\inf }\left(R, \bar{R} ; Z_{2}\right) \rightarrow H_{i}^{\inf }\left(X ; Z_{2}\right)$ defined by $t_{3}(a)=\left(\varphi_{*}\right)^{-1}(a \cap U(\varphi))$.
4) $t_{4}: H_{i+k}^{\mathrm{inf}}\left(R, \partial R ; Z_{2}\right) \rightarrow H_{i}^{\text {inf }}\left(X, \partial X ; Z_{2}\right)$ defined by $t_{4}(a)=\left(\varphi_{*}\right)^{-1}(a \cap$ $U(\varphi))$.

Proof. Note that the diagram

is commutative and that homomorphisms $[X]_{n},[R]_{n}$ and φ_{*} are isomorphisms. Thus t_{1} is an isomorphism.

We can prove 2), 3) and 4) similarly.
q.e.d.

Let ($R ; \widetilde{R}, \bar{R} ; \varphi$) be a regular neighborhood of a Z_{2}-Poincaré-Euler space X in $\boldsymbol{R}_{+}^{\alpha}$. The k-th Stiefel-Whitney class $w^{k}(\varphi)$ of φ is defined by $w^{k}(\varphi)=\varphi^{*} \circ(U(\varphi) \cup)^{-1} \mathrm{Sq}^{k} U(\varphi)$. The total Stiefel-Whitney class is $w^{*}(\varphi)=$ $1+w^{1}(\varphi)+\cdots=\varphi^{*} \circ(U(\varphi) \cup)^{-1} \mathrm{Sq} U(\varphi)$. If φ has a normal block bundle ν, then $w^{*}(\varphi)=w^{*}(\nu)$. The following gives an alternative definition for $w^{*}(X)$.

Proposition 4.2. Let ($R ; \widetilde{R}, \bar{R} ; \varphi$) be a regular neighborhood of a Z_{2}-Poincaré-Euler space X in $\boldsymbol{R}_{+}^{\alpha}$. Then $w^{*}(X) \cup w^{*}(\phi)=1$.

Proof. Let $r:(R, \widetilde{R}) \rightarrow(X, \partial X)$ be a deformation retraction. Let $U_{X} \in H^{*}\left(X \times X, \partial X \times X ; Z_{2}\right) \quad$ and $\quad U_{R} \in H^{*}\left(R \times R, \partial R \times R ; Z_{2}\right) \quad$ be the diagonal classes of X and R respectively. Note that the cap product $\cap\left(U(\varphi) \times 1_{R}\right): H_{*}^{\mathrm{inf}}\left(R \times R, \bar{R} \times R \cup R \times \widetilde{R} ; Z_{2}\right) \rightarrow H_{*}^{\mathrm{inf}}\left(R \times R, R \times \widetilde{R} ; Z_{2}\right)$ is an isomorphism. Since $[R \times R] \cap\left((r \times r)^{*} U_{X} \cup(U(\varphi) \times U(\varphi))\right)=\left(\Delta_{R}\right)_{*}$ 。 $\varphi_{*}[X]$ and $\left(\Delta_{R}\right)_{*}[R] \cap\left(U(\varphi) \times 1_{R}\right)=\left(\Lambda_{R}\right)_{*} \circ \varphi_{*}[X]$, we have $U_{R}=$ $(r \times r)^{*} U_{X} \cup\left(1_{R} \times U(\varphi)\right)$. Since $w^{*}(R)=1_{R}$, we have Sq $U_{R}=U_{R}$. Noting Sq $U(\varphi)=r^{*} w^{*}(\varphi) \cup U(\varphi)$, we see that $(r \times r)^{*} \operatorname{Sq} U_{X} \cup\left(1_{R} \times r^{*} w^{*}(\varphi)\right) \cup$ $\left(1_{R} \times U(\varphi)\right)=(r \times r)^{*} U_{X} \cup\left(1_{R} \times U(\varphi)\right)$. Note that the cup product $\left(1_{R} \times U(\varphi)\right) \cup: H^{*}\left(R \times R ; Z_{2}\right) \rightarrow H^{*}\left(R \times R, R \times \bar{R} ; Z_{2}\right)$ and $r^{*}: H^{*}\left(R ; Z_{2}\right) \rightarrow$ $H^{*}\left(X ; Z_{2}\right)$ are isomorphisms. Then $\operatorname{Sq} U_{X} \cup\left(1_{X} \times w^{*}(\varphi)\right)=U_{X}$. Since $\left[\operatorname{Sq} U_{X} \cup\left(1_{X} \times w^{*}(\varphi)\right)\right] /[X]=\operatorname{Sq} U_{X} /[X] \cup w^{*}(\varphi)=w^{*}(X) \cup w^{*}(\varphi)$, we have only to prove $U_{X} /[X]=1_{X}$. Note that $[X] \cap U_{X} /[X]=\left(p_{2}\right)_{*}\left([X \times X] \cap U_{X}\right)$, where p_{2} is the projection of $X \times X$ to the second factor and that $p_{2} \circ \Delta$: $X \rightarrow X$ is the identity. Then we have $[X] \cap U_{X} /[X]=1_{X}$, hence $U_{X} /[X]=1_{X}$. q.e.d.

We need the following for the calculation in Section 5.
Proposition 4.3. Let X and Y be Z_{2}-Poincaré-Euler space. Then
$w^{*}(X \times Y)=w^{*}(X) \times w^{*}(Y)$.
Proof. Let U_{X}, U_{Y} and $U_{X \times Y}$ be the diagonal classes of X, Y and $X \times Y$ respectively. Then $w^{*}(X \times Y)=\left(\operatorname{Sq} U_{X \times Y}\right) /[X \times Y]=\left(\operatorname{Sq} U_{X}\right) /[X] \times$ $\left(\operatorname{Sq} U_{Y}\right) /[Y]=w^{*}(X) \times w^{*}(Y)$.
q.e.d.

In order to apply our main Theorem to Z_{2}-homology manifolds, we need Propositions 4.4 and 4.5.

Proposition 4.4. Given Z_{2}-homology manifolds X and Y, let ψ : $(Y, \partial Y) \rightarrow(X, \partial X)$ be an embedding with a normal block bundle ν. Then $\psi^{*} w^{*}(X)=w^{*}(Y) \cup w^{*}(\nu)$.

Proof. Let E be the total space of a normal block bundle ν of ψ and let \bar{E} be the total space of the sphere bundle induced by ν. First we will prove that $w^{*}(E)=i^{*} w^{*}(X)$, where $i: E \rightarrow X$ is the inclusion. Put $\widetilde{E}=\operatorname{cl}(\partial E-\bar{E})$. Let $P=\left\{\left(x_{1}, \cdots, x_{\alpha}\right) \mid x_{\alpha} \geqq 0, x_{\alpha-1} \leqq 0\right\}$ and $Q=$ $\left\{\left(x_{1}, \cdots, x_{\alpha}\right) \mid x_{\alpha} \geqq 0, x_{\alpha-1} \geqq 0\right\}$. Then $\boldsymbol{R}_{+}^{\alpha}=P \cup Q$. Let $\widetilde{P}=\left\{\left(x_{1}, \cdots, x_{\alpha}\right) \mid x_{\alpha}=0\right.$, $\left.x_{\alpha-1} \leqq 0\right\}, \quad \bar{P}=\bar{Q}=P \cap Q$ and $\widetilde{Q}=\left\{\left(x_{1}, \cdots, x_{\alpha}\right) \mid x_{\alpha}=0, x_{\alpha-1} \geqq 0\right\}$. Note that there exists a proper embedding $\varphi: X \rightarrow \boldsymbol{R}_{+}^{\alpha}$ such that $\varphi \mid E:(E ; \widetilde{E}, \bar{E}) \rightarrow$ $(P ; \widetilde{P}, \bar{P})$ and $\varphi \mid \operatorname{cl}(X-E):(\operatorname{cl}(X-E), \operatorname{cl}(\partial X-\widetilde{E}), \bar{E}) \rightarrow(Q ; \widetilde{Q}, \bar{Q})$ are proper. (See Hudson [10].) Let ($\left.R_{P} ; \widetilde{R}_{P}, \bar{R}_{P} ; \varphi \mid E\right),\left(R_{Q} ; \widetilde{R}_{Q}, \bar{R}_{Q} ; \varphi \mid \operatorname{cl}(X-E)\right)$ and ($R ; \widetilde{R}, \bar{R} ; \varphi$) be regular neighborhoods of E in P, of $\mathrm{cl}(X-E)$ in Q and of X in R_{+}^{α}, respectively, such that $R=R_{P} \cup R_{Q}$ and $\bar{R}=\bar{R}_{P} \cup \bar{R}_{Q}$. Define $U(\mathscr{\rho} \mid E) \in H^{*}\left(R_{P}, \bar{R}_{P} ; Z_{2}\right)$ as the Poincaré dual of $(\mathscr{P} \mid E)_{*}[E]$. Then $U(\varphi \mid E)=j^{*} U(\varphi)$, where $j: P \rightarrow R_{+}^{\alpha}$ is the inclusion, hence $w^{*}(\varphi \mid E)=$ $i^{*} w^{*}(\varphi)$. Thus $w^{*}(E)=i^{*} w^{*}(X)$. Note that $U\left(\psi_{Y}\right)=U(\phi \mid E) \cup\left[(\phi \mid E)^{*}\right]^{-1} U_{\nu}$, where $\left(R_{P} ; \widetilde{R}_{P} \cap \widetilde{P}, \bar{R}_{P} \cup\left(\widetilde{R}_{P} \cap \bar{P}\right) ; \psi_{Y}\right)$ is a regular neighborhood of Y in $\boldsymbol{R}_{+}^{\alpha}$. Let $\psi_{\nu}: Y \rightarrow E$ be the canonical inclusion. Then $w^{*}\left(\psi_{Y}\right)=\psi_{\nu}^{*} w^{*}(\varphi \mid E) \cup w^{*}(\nu)$. By Proposition 4.2, we have $\psi_{\nu}^{*} w^{*}(E)=w^{*}(Y) \cup w^{*}(\nu)$. Since $i \circ \psi_{\nu}=\psi$, we have $\psi^{*} w^{*}(X)=w^{*}(Y) \cup w^{*}(\nu)$.
q.e.d.

Proposition 4.5. Let X be a closed Z_{2}-Poincaré-Euler space. Then $\left\langle w^{*}(X),[X]\right\rangle=e(X)$, where $e(X)$ is the modulo 2 Euler number of X.

The proof in the case of smooth manifolds given in Milnor [12] can be applied to this proposition without any changes.

We need the following to prove Lemmas 5.2 and 6.2 in subsequent sections.

Lemma 4.1. Let ($R ; \widetilde{R}, \bar{R} ; \varphi$) be a regular neighborhood of an n dimensional Z_{2}-Poincaré-Euler space X in $\boldsymbol{R}_{+}^{\alpha}$. Suppose that a PLembedding $f:(M, \partial M) \rightarrow(R, \bar{R})$ is given with a normal block bundle $\xi=$ $\left(E, M, f_{E}\right)$, such that $\varphi(X)$ is transverse to ξ, where M is a compact PL-
manifold. Let U_{ξ} be the Thom class of ξ. Let $j_{E}: E \rightarrow R$ be the inclusion. Define $Y=\varphi^{-1} \circ f(M)$ and $X_{E}=\varphi^{-1} \circ j_{E}(E)$. Let $\varphi_{E}: X_{E} \rightarrow E$ and ψ_{M} : $Y \rightarrow M$ be embeddings defined by $\varphi_{E}=j_{E}^{-1} \circ \rho$ and $\psi_{M}=f^{-1} \circ(\varphi \mid Y)$. Then the following hold:

1) $\left(f_{E}\right)_{*}\left([M] \cap f^{*} U(\varphi)\right)=\left(\varphi_{E}\right)_{*}\left[X_{E}\right] \cap U_{\xi}$.
2) $[M] \cap f^{*} U(\varphi)=\left(\psi_{M}\right)_{*}[Y]$.

Proof. 1) Note that $j_{E} \circ f_{E}=f$ and $[E] \cap U_{\xi}=\left(f_{E}\right)_{*}[M]$. Hence $\left(f_{E}\right)_{*}\left([M] \cap f^{*} U(\varphi)\right)=\left([E] \cap j_{E}^{*} \underset{\widetilde{R}}{U}(\varphi)\right) \cap U_{\xi}$. Thus it suffices to prove $[E] \cap j_{E}^{*} U(\varphi)=\left(\varphi_{E}\right)_{*}\left[X_{E}\right]$. Let $\widetilde{\widetilde{R}}=\operatorname{cl}\left(R-j_{E}(E)\right)$ and let $j_{R}:(R ; \widetilde{R}, \bar{R}) \rightarrow$ $(R ; \widetilde{R}, \bar{R})$ be defined as the identity. Regard j_{E} as a map $j_{E}:(E ; \widetilde{E}, \bar{E}) \rightarrow$ ($R ; \bar{R}, \widetilde{\widetilde{R}}$), where $\widetilde{E}=\operatorname{cl}(\partial E-\bar{E})$. Note that $\left(j_{E}\right)_{*}[E]=\left(j_{R}\right)_{*}[R]$ and $[R] \cap U(\varphi)=\varphi_{*}[X]$. Hence $\left(j_{E}\right)_{*}\left([E] \cap\left(j_{E}\right)^{*} U(\varphi)\right)=\left(j_{R}\right)_{*} \circ \varphi_{*}[X]=\left(j_{E}\right)_{*} \circ$ $\left(\mathscr{P}_{E}\right)_{*}\left[X_{E}\right]$. Since $\left(j_{E}\right)_{*}: H_{*}^{\inf }\left(E, \bar{E} ; \boldsymbol{Z}_{2}\right) \rightarrow H_{*}^{\inf }\left(R, \widetilde{R} ; Z_{2}\right)$ is an isomorphism, we have $[E] \cap\left(j_{E}\right)^{*} U(\varphi)=\left(\varphi_{E}\right)_{*}\left[X_{E}\right]$.
2) Note that $\left[X_{E}\right] \cap\left(\varphi_{E}\right)_{*} U_{\xi}=\left(\psi_{E}\right)_{*}[Y]$, where $\psi_{E}: Y \rightarrow X_{E}$ is the inclusion. By 1), we have $\left(f_{E}\right)_{*}\left([M] \cap f^{*} U(\mathscr{P})\right)=\left(\varphi_{E}\right)_{*} \circ\left(\psi_{E}\right)_{*}[Y]$. Since $\varphi_{E} \circ \psi_{E}=f_{E} \circ \psi_{M}$ and since $\left(f_{E}\right)_{*}: H_{*}^{\mathrm{inf}}\left(M, \partial M ; Z_{2}\right) \rightarrow H_{*}^{\inf }\left(E, \widetilde{E} ; Z_{2}\right)$ is an isomorphism, we have $[M] \cap f^{*} U(\rho)=\left(\psi_{M}\right)_{*}[Y]$. q.e.d.
5. Characterization of Stiefel-Whitney classes via unoriented differentiable bordism groups. Let ($R ; \widetilde{R}, \bar{R} ; \varphi$) be a regular neighborhood of an n-dimensional Z_{2}-Poincaré-Euler space X in $\boldsymbol{R}_{+}^{\alpha}$. Suppose that \widetilde{e}_{φ} : $\mathfrak{N}_{*}(R, \bar{R}) \rightarrow Z_{2}$ is the homomorphism defined in Section 1. Then the following holds:

Lemma 5.1. For each $(f, M) \in \mathfrak{N}_{*}(R, \bar{R})$, it follows that

$$
\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} w^{*}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\tilde{e}_{\varphi}(f, M)
$$

In order to prove this lemma, we need the following:
Lemma 5.2. Let $f:(M, \partial M) \rightarrow(R, \bar{R})$ be a PL-embedding with the normal block bundle ξ, where M is a compact triangulated differentiable manifold. If $\varphi(X)$ is transverse to ξ, then

$$
\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} w^{*}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\widetilde{e}_{\varphi}(f, M)
$$

Proof. We use the notations in Lemma 4.1. By 2) of Lemma 4.1, we have $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} w^{*}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left\langle f^{*} \circ\left(\varphi^{*}\right)^{-1} w^{*}(X) \cup w^{*}(M)\right.$, $\left.\left(\psi_{M}\right)_{*}[Y]\right\rangle$. Let $\psi_{X}: Y \rightarrow X$ be the inclusion. Note that $f \circ \psi_{M}=\varphi \circ \psi_{X}$. Hence $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} w^{*}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left\langle\psi_{x}^{*} w^{*}(X) \cup \psi_{m}^{*} w^{*}(M)\right.$, $[Y]\rangle=\left\langle\psi_{x}^{*} w^{*}(X) \cup \psi_{n}^{*} \bar{w}(\xi),[Y]\right\rangle=\left\langle\psi_{x}^{*} w^{*}(X) \cup \bar{w}\left(\psi_{k}^{*} \xi\right),[Y]\right\rangle$. Thus $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} w^{*}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\widetilde{e}_{\varphi}(f, M)$ by the definition of \widetilde{e}_{φ}.
q.e.d.

Proof of Lemma 5.1. Let (f, M) be in $\mathfrak{n}_{*}(R, \bar{R})$. Then there exists an embedding $g:(M, \partial M) \rightarrow\left(R \times D^{\beta}, \bar{R} \times D^{\beta}\right)$ such that $g \simeq f \times\{0\}$ and ($\varphi \times \mathrm{id}$) $\left(X \times D^{\beta}\right)$ is block transverse to g by Transversality Theorem. By Lemma 5.2, it follows that $\left\langle(U(\varphi) \times 1) \cup\left[(\rho \times \mathrm{id})^{*}\right]^{-1} w^{*}\left(X \times D^{\beta}\right)\right.$, $\left.g_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\widetilde{e}_{\varphi}(f, M)$. Since $\left\langle\left(U(\varphi) \cup\left(\varphi^{*}\right)^{-1} w^{*}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\right.$ $\left\langle(U(\varphi) \times 1) \cup\left[(\varphi \times \mathrm{id})^{*}\right]^{-1} w^{*}\left(X \times D^{\beta}\right), g_{*}\left([M] \cap w^{*}(M)\right)\right\rangle$ by Proposition 4.3, we have

$$
\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} w^{*}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\tilde{e}_{\varphi}(f, M) . \quad \text { q.e.d. }
$$

The following and Lemma 5.1 give a characterization of StiefelWeitney classes.

Lemma 5.3. Let (A, B) be a pair of polyhedra. Given $\Phi \in$ $H^{*}\left(A, B ; Z_{2}\right)$, if $\left\langle\Phi, f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=0$ for every $(f, M) \in \mathfrak{N}_{*}(A, B)$, then $\Phi=0$.

Proof. Let $\Phi=\Phi^{0}+\Phi^{1}+\cdots+\Phi^{n}$ for $\Phi^{i} \in H^{i}\left(A, B ; Z_{2}\right)$. Since $\left\langle\Phi, f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left\langle\Phi^{0}, f_{*}[M]\right\rangle$ for $(f, M) \in \mathfrak{R}_{0}(A, B),\left\langle\Phi, f_{*}([M] \cap\right.$ $\left.\left.w^{*}(M)\right)\right\rangle=0$ for every (f, M) implies that $\Phi^{0}=0$. Suppose that $\Phi^{0}=0$, $\Phi^{1}=0, \cdots, \Phi^{k}=0$. Then $\left\langle\Phi, f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left\langle\Phi^{k+1}, f_{*}[M]\right\rangle$ for $(f, M) \in$ $\mathfrak{N}_{k+1}(A, B)$. Hence, if $\left\langle\Phi, f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=0$ for every (f, M), it follows that $\Phi^{k+1}=0$. By induction on k, we have $\Phi=0$. q.e.d.
6. Characterization of Stiefel-Whitney homology classes via unoriented differentiable bordism groups. Let ($R ; \widetilde{R}, \bar{R} ; \varphi$) be a regular neighborhood of an n-dimensional \boldsymbol{Z}_{2}-Poincaré-Euler space X in $\boldsymbol{R}_{+}^{\alpha}$. Suppose that $e_{\varphi}: \mathfrak{R}_{*}(R, \bar{R}) \rightarrow Z_{2}$ is the homomorphism defined in Section 1. Then the following holds:

Lemma 6.1. For each $(f, M) \in \mathfrak{R}_{*}(R, \bar{R})$, it follows that

$$
\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} \circ([X] \cap)^{-1} s_{*}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=e_{\varphi}(f, M) .
$$

In order to prove this lemma, we need the following:
Lemma 6.2. Let $f:(M, \partial M) \rightarrow(R, \bar{R})$ be a PL-embedding with a normal block bundle ξ, where M is a compact triangulated differentiable manifold. If $\varphi(X)$ is transverse to ξ, then

$$
\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} \circ([X] \cap)^{-1} s_{*}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=e_{\varphi}(f, M) .
$$

Proof. By 1) of Lemma 4.1, we have $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} \circ([X] \cap)^{-1} s_{*}(X)\right.$, $\left.f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left\langle w^{*}(M) \cup f^{*} \circ\left(\varphi^{*}\right)^{-1} \circ([X] \cap)^{-1} s_{*}(X),\left(f_{E}\right)^{-1}\left(\left(\varphi_{E}\right)_{*}\left[X_{E}\right] \cap\right.\right.$ $\left.\left.U_{\xi}\right)\right\rangle$. Note that $j_{E} \circ f_{E}=f$. Then $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} \circ([X] \cap)^{-1} s_{*}(X), f_{*}([M] \cap\right.$ $\left.\left.w^{*}(M)\right)\right\rangle=\left\langle U_{\xi} \cup\left(f_{E}^{*}\right)^{-1} w^{*}(M),\left(\left(\varphi_{E}\right)_{*}\left[X_{E}\right]\right) \cap j_{E}^{*} \circ\left(\varphi^{*}\right)^{-1} \circ([X] \cap)^{-1} s_{*}(X)\right\rangle$. Since there exists the commutative diagram

and since $[X] \cap, \varphi^{*}$ and $\left(j_{E}\right)_{*}$ are isomorphisms, we have

$$
\begin{aligned}
\left(\left(\varphi_{E}\right)_{*}\left[X_{E}\right]\right) \cap j_{E}^{*} \circ\left(\varphi^{*}\right)^{-1} \circ([X] \cap)^{-1} s_{*}(X) & =\left[\left(j_{E}\right)_{*}\right]^{-1} \circ \varphi_{*} s_{*}(X) \\
& =\left(\varphi_{E}\right)_{*} s_{*}\left(X_{E}\right) .
\end{aligned}
$$

Note that $\left\langle U_{\xi} \cup\left(f_{E}^{*}\right)^{-1} w^{*}(M),\left(\varphi_{E}\right)_{*} s_{*}\left(X_{E}\right)\right\rangle=e(Y)$ by Corollary 3.1. Thus $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} \circ([X] \cap)^{-1} s_{*}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=e_{\varphi}(f, M) . \quad$ q.e.d.

Proof of Lemma 6.1. Let (f, M) be in $\mathfrak{R}_{*}(R, \bar{R})$. Then there exists an embedding $g:(M, \partial M) \rightarrow\left(R \times D^{\beta}, \bar{R} \times D^{\beta}\right)$ such that $g \simeq f \times\{0\}$ and that $(\rho \times \mathrm{id})\left(X \times D^{\beta}\right)$ is block transverse to g by Transversality Theorem. By Lemma 6.2, it follows that

$$
\begin{aligned}
& \left\langle(U(\varphi) \times 1) \cup\left[(\varphi \times \mathrm{id})^{*}\right]^{-1} \circ\left(\left[X \times D^{\beta}\right] \cap\right)^{-1} s_{*}\left(X \times D^{\beta}\right), g_{*}\left([M] \cap w^{*}(M)\right)\right\rangle \\
& \quad=e_{\varphi}(f, M) .
\end{aligned}
$$

Since $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} \circ([X] \cap)^{-1} s_{*}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\langle(U(\varphi) \times 1) \cup$ $\left.\left[(\varphi \times \mathrm{id})^{*}\right]^{-1} \circ\left(\left[X \times D^{\beta}\right] \cap\right)^{-1} s_{*}\left(X \times D^{\beta}\right), g_{*}\left([M] \cap w^{*}(M)\right)\right\rangle$ by Proposition 2.2, we have $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} \circ([X] \cap)^{-1} s_{*}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=e_{\varphi}(f, M)$.

Now we are in a position to prove the following theorem announced in Section 1.

Theorem. Let X be an n-dimensional Z_{2}-Poincaré-Euler space. Take a regular neighborhood ($R ; \widetilde{R}, \bar{R} ; 甲)$ of X in $\boldsymbol{R}_{+}^{\alpha}$. Then $[X] \cap w^{*}(X)=$ $s_{*}(X)$ if and only if $o_{\varphi}=0$.

Proof. If $[X] \cap w^{*}(X)=s_{*}(X)$, then $\tilde{e}_{\varphi}(f, M)=e_{\varphi}(f, M)$. This means $o_{\varphi}=0$. Conversely suppose that $o_{\varphi}=0$. By Lemmas 5.1, 5.3 and 6.1, we have $U(\varphi) \cup\left(\varphi^{*}\right)^{-1} w^{*}(X)=U(\varphi) \cup\left(\varphi^{*}\right)^{-1} \circ([X] \cap)^{-1} s_{*}(X)$. Hence $[X] \cap w^{*}(X)=s_{*}(X)$ by Proposition 4.1.
q.e.d.

This Theorem can be applied to Z_{2}-homology manifolds.
Corollary. Let X be an n-dimensional Z_{2}-homology manifold with or without boundary. Then $[X] \cap w^{*}(X)=s_{*}(X)$.

Proof. Let $\psi: Y \rightarrow X \times D^{\beta}$ be the embedding used to define e_{φ} and \tilde{e}_{φ}. Note that ψ has a normal block bundle ν in $X \times D^{\beta}$. Then Y is a Z_{2}-homology manifold. Therefore $\psi^{*} w^{*}\left(X \times D^{\beta}\right)=w^{*}(Y) \cup w^{*}(\nu)$ by Proposition 4.4. In view of the definition of e_{φ} and \tilde{e}_{φ}, we have $o_{\varphi}=0$
by Proposition 4.5. Thus $[X] \cap w^{*}(X)=s_{*}(X)$ by Theorem. q.e.d.
Example 1. We construct a simple example of Z_{2}-Poincaré-Euler space X which is not a Z_{2}-homology manifold. Let $X_{1}=D^{2} /\{a, b, c\}$ where $D^{2}=[-1,1]^{2}$ and a, b, c are distinct points in ∂D^{2}. Then X_{1} is a Z_{2} Euler space. Let $X_{2}=$ cone ∂X_{1}. Then there exists a canonical PLhomeomorphism $: \partial X_{1} \rightarrow \partial X_{2}$. Put $X=X_{1} \bigcup_{\iota} X_{2}$. Then X is homotopy equivalent to S^{2} and is not a Z_{2}-homology manifold.

Example 2. We construct a little more complicated example of Z_{2} -Poincaré-Euler space X which does not satisfy $[X] \cap w^{*}(X)=s_{*}(X)$. In particular, X is not a Z_{2}-homology manifold. Let X_{1} be the quotient space of $[-1,1] \times[0,1]$ by the identification $(-1, t)=(0, t)$ and $(1, t)=$ $(0,1-t)$ for each t in $[0,1]$. Then X_{1} is a Z_{2}-Euler space. Put $Y=$ $\partial X_{1} /([0,1] \times\{0\})$. Let $\varphi: \partial X_{1} \rightarrow Y$ be the quotient map. Let X_{2} be the mapping cylinder of φ. Then X_{2} is a Z_{2}-Euler space such that $\partial X_{2}=$ $\partial X_{1} \cup Y$. Let $X_{3}=\left([0,1]^{2} \cup[-1,0]^{2}\right) /\{(0,0),(1,1)\}$. Then X_{3} is a Z_{2}-Euler space such that ∂X_{3} is PL-homeomorphic to Y. Define $X=X_{1} \cup X_{2} \cup X_{3}$. Then X is a Z_{2}-Euler space and is homotopy equivalent to P^{2}. Hence $w^{1}(X) \neq 0$. Since $s_{1}(X)=0$, it follows that X is a Z_{2}-Poincaré-Euler space which does not satisfy $[X] \cap w^{*}(X)=s_{*}(X)$.

Appendix. Proof of Transversality Theorem.

A.1. Block transversality and mock transversality. Let M and N be PL-manifolds. Suppose that $f: M \rightarrow N$ is a locally flat PL-embedding and that X is a subpolyhedron of N. Then X is block transverse to f in N, if there exists a normal block bundle $\nu=\left(E(\nu), M, f_{E}\right)$ of f such that $X \cap E(\nu)=E(\nu \mid X \cap f(M))$. (See [2] and [14].)

Let $f:(M, \partial M) \rightarrow(N, \partial N)$ be a PL-embedding. The collars $c_{1}: \partial M \times$ $I \rightarrow M$ and $c_{2}: \partial N \times I \rightarrow N$ are said to be compatible with f, if $f \circ c_{1}(x, t)=$ $c_{2}(f(x), t)$ for every (x, t) in $\partial M \times I$. (See [10].)

Let X and Y be polyhedra and let K be a ball complex (cf. [2]) such that $X=|K|$. A proper PL-embedding $f: Y \rightarrow X$ is transverse to K, if $f^{-1}(\sigma)$ is a compact PL-manifold with boundary $f^{-1}(\partial \sigma)$ and if the PL-embedding $f \mid f^{-1}(\sigma): f^{-1}(\sigma) \rightarrow \sigma$ has compatible collars for every σ in K.

In order to prove Transversality Theorem, we need the following. The next section is devoted to its proof.

Proposition A.1. (cf. Buoncristiano, Rourke and Sanderson [2]). Let X and Y be polyhedra. Let K be a ball complex such that $X=|K|$. Suppose that a subdivision K^{\prime} of K does not subdivide a subcomplex
L of K and that a proper PL-embedding $f: Y \rightarrow X$ is transverse to K. Then there exists a proper PL-embedding $g: Y \rightarrow X$ which is transverse to K^{\prime} and ambient isotopic to f relative to $|L|$.

Let M and N be PL-manifolds. Suppose that $f: M \rightarrow N$ is a locally flat proper PL-embedding and that X is a subpolyhedron of N. We say that f is mock transverse to X in N, if there exists a ball complex K which contains a subcomplex L such that $|K|=N$ and $|L|=X$ and if f is transverse to K.

We also need the following to prove Transversality Theorem. We do not repeat the proof here since an adequate proof is given in [2].

Proposition A.2. (Buoncristiano, Rourke and Sanderson [2, II, Theorem 4.4]). Let M and N be PL-manifolds. Suppose that $f: M \rightarrow N$ is a locally flat proper PL-embedding and X is a closed subpolyhedron of N. The PL-embedding f is mock transverse to X in N if and only if X is block transverse to f in N.

Proof of Transversality Theorem. Noting the assumption of Transversality Theorem, there exists a normal block bundle $\nu=\left(E(\nu), M, f_{E}\right)$ of f to which a regular neighborhood R of $\partial N \cap X$ in X is transverse in N. Let K be a ball complex such that blocks $E(\sigma)$ of ν are balls of K, that $|K|=N$ and that $K \mid R$ is contained in K as a subcomplex. Then f is transverse to K. Choose a subdivision K^{\prime} of K which does not subdivide $K \mid \partial N$ and which contains a subcomplex K_{X} of K^{\prime} where $\left|K_{X}\right|=X$. Put $L=K \mid \partial N$. Then by Proposition A.1, there exists an PL-embedding $g: M \rightarrow N$ which is transverse to K^{\prime} and ambient isotopic to f relative to $|L|=\partial N$. Thus g is mock transverse to X, and X is block transverse to g by Proposition A. 2.
q.e.d.
A.2. Proof of Proposition A.1. In order to prove Proposition A.1, it suffices to prove the following:

Lemma A.1. Let X and Y be polyhedra. Let K be a ball complex such that $|K|=X$. Suppose that a subdivision K^{\prime} of K does not subdivide a subcomplex L of K and that a proper PL-embedding $f: Y \rightarrow X$ is transverse to K. Then there exists a proper PL-embedding $g: Y \rightarrow X$ transverte to K^{\prime} and an ambient isotopy $F: X \times I \rightarrow X \times I$ relative to $|L|$ between f and g such that $F(\sigma \times I)=\sigma \times I$ for each σ in K.

We will prove this lemma by induction on the dimension of X. For the induction step, we need the following:

Lemma A.2. Let M be a compact PL-manifold. Let K be a ball
complex such that $|K|=D^{n}$. Let $f: M \rightarrow D^{n}$ be a proper PL-embedding such that $f \mid \partial M: \partial M \rightarrow \partial D^{n}$ is transverse to $K \mid \partial D^{n}$. Then there exists an PL-embedding $g: M \rightarrow D^{n}$ transverse to K and ambient isotopic to f relative to ∂D^{n}.

We need the following to prove Lemma A.2:
Uniqueness Theorem of Collars. (Hudson and Zeeman [9]). If c_{0} and c_{1} are two collars of M, then there exists an ambient isotopy F of M fixed on ∂M such that $c_{1}=F_{1} \circ c_{0}$ and F_{0} is the identity, where $F(x, t)=$ ($\left.F_{t}(x), t\right)$.

Lemma A.3. Let Δ be a ball complex which contains only one n-ball such that $|\Delta|=D^{n}$. Let Λ be the subcomplex of Δ containing all balls except the n-ball and one $(n-1)-b a l l$. If X is a compact PL-manifold and if a PL-embedding $f: X \rightarrow|\Lambda|$ is transverse to Λ, then there exists a PL-embedding $F: X \times I \rightarrow D^{n}$ transverse to Δ such that $F(x, 0)=f(x)$ for every x in X.

Proof. Since there exists a PL-homeomorphism $h:|\Lambda| \times I \rightarrow|\Delta|$ such that $h(y, 0)=y$ for every y in $|\Lambda|$, an PL-embedding $F: X \times I \rightarrow|\Delta|$ can be defined by $F(x, t)=h(f(x), t)$. Clearly F is transverse to Δ and $F(x, 0)=f(x)$.
q.e.d.

Proof of Lemma A.2. Clearly there exists a subdivision K^{\prime} of K which does not subdivide $K \mid \partial D^{n}$ such that $\partial D^{n} \times I=\left|K^{\prime}-\sigma\right|$ for some n-ball σ in K^{\prime}. Note that the ball complex $K^{\prime}-\sigma$ collapses to $K \mid \partial D^{n}$. By if $\operatorname{dim} M=n$, there is nothing to prove. Otherwise by using Lemma A.3, we can construct a subpolyhedron X of $\left|K^{\prime}-\sigma\right|$ such that X collapses to $f(\partial M)$ and that the inclusion $i: X \subset\left|K^{\prime}-\sigma\right|$ is transverse to $K^{\prime}-\sigma$. Since the inclusion i has a normal block bundle (see [2]), X is a PL-manifold. Therefore there exists a PL-homeomorphism $h: \partial M \times$ $I \rightarrow X$. Define $\tilde{f}: \partial M \times I \rightarrow\left|K^{\prime}-\sigma\right|$ by $\tilde{f}=i \circ h$. Then \tilde{f} is transverse to $K^{\prime}-\sigma$. By the uniqueness theorem of regular neighborhoods (see [10]), there exists a collar $c_{1}: \partial D^{n} \times I \rightarrow D^{n}$ such that $c_{1}\left(\partial D^{n} \times I\right)=$ $\left|K^{\prime}-\sigma\right|$ and $c_{1}(f(x), t)=j \circ \widetilde{f}(x, t)$ for (x, t) in $\partial M \times I$, where $j:\left|K^{\prime}-\sigma\right| \rightarrow$ D^{n} is the inclusion. Let $c: \partial M \times I \rightarrow M$ and $c_{0}: \partial D^{n} \times I \rightarrow D^{n}$ be compatible collars with f. By the uniqueness theorem of collars, there exists an ambient isotopy $F: D^{n} \times I \rightarrow D^{n} \times I$ relative to $\partial D^{n} \times I$ such that F_{0} is the identity and $c_{1}=F_{1} \circ c_{0}$, where $F(x, t)=\left(F_{t}(x), t\right)$ for every (x, t) in $D^{n} \times I$. Define $g: M \rightarrow D^{n}$ by $g=F_{1} \circ f$. Note that \tilde{f} is transverse to $K^{\prime}-\sigma$. Thus g is transverse to K^{\prime}, and hence g is transverse to K. q.e.d.

Proof of Lemma A.1. We prove Lemma A. 1 by induction on the
dimension of X. The case $\operatorname{dim} X=0$ is trivial. Suppose that Lemma A. 1 holds whenever the dimension of X is smaller than $n+1$ and assume that $\operatorname{dim} X=n+1$. Suppose that a PL-embedding $f: Y \rightarrow X$ is transverse to a ball complex structure K of X. Then $f \mid f^{-1}\left(\left|K^{n}\right|\right)$: $f^{-1}\left(\left|K^{n}\right|\right) \rightarrow\left|K^{n}\right|$ is transverse to K^{n}, where K^{n} is the n-skelton of K. Put $\left(K^{n}\right)^{\prime}=\left\{\sigma \in K^{\prime}|\sigma \subset| K^{n} \mid\right\}$. By induction assumption, there exist a PLembedding $g: f^{-1}\left(\left|K^{n}\right|\right) \rightarrow\left|K^{n}\right|$ transverse to $\left(K^{n}\right)^{\prime}$ and an ambient isotopy $\widetilde{G}: K^{n} \times I \rightarrow K^{n} \times I$ between $f \mid f^{-1}\left(\left|K^{n}\right|\right)$ and g relative to $\left|K^{n}\right| \cap|L|$ such that $\widetilde{G}(\sigma \times I)=\sigma \times I$ for each σ in K^{n}. Clearly there exists an isotopy $G: X \times I \rightarrow X \times I$ relative to $|L|$ such that $G\left|K^{n}\right| \times I=\widetilde{G}$ and $G(\sigma \times I)=$ $\sigma \times I$ for every σ in K. Thus we may assume that f is transverse to \bar{K}^{n}, where $\bar{K}^{n}=\left(K^{n}\right)^{\prime} \cup\left(K-K^{n}\right)$. Applying Lemma A. 2 to PL-embeddings $f \mid f^{-1}(\sigma): f^{-1}(\sigma) \rightarrow \sigma$ for all σ in $K-K^{n}$, there exists a PL-embedding $g: Y \rightarrow X$ transverse to K^{\prime} an ambient isotopy $F: X \times I \rightarrow X \times I$ between f and g relative to $\left|K^{n}\right| \cup|L|$ such that $F(\sigma \times I)=\sigma \times I$ for every σ in K.
q.e.d.

References

[1] E. Akin, Stiefel-Whitney homology classes and cobordism, Trans. Amer. Math. Soc. 205 (1975), 341-359.
[2] S. Buoncristiano, C. R. Rourke and B. J. Sanderson, A geometric approach to homology theory, London Math. Soc. Lecture Notes 18, 1976.
[3] J. D. Blanton and P. A. Schweitzer, Axiom for characteristic classes of manifolds, Proc. Symp. in Pure Math. 27 (1975), Amer. Math. Soc. 349-356.
[4] J. D. Blanton and C. McCrory, An axiomatic proof of Stiefel conjecture, Proc. Amer. Math. Soc. 77 (1979), 409-414.
[5] G. Cheeger, A combinatorial formula for Stiefel-Whitney classes, in Topology of Manifolds, (Cantrel and Edward, eds.), Markham Publ., 1970, 470-471.
[6] P. Conner and E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete 33, Springer-Verlag, Berlin, Heidelberg, New York, 1964.
[7] S. Halperin and D. Toledo, Stiefel-Whitney homology classes, Ann. of Math. 96 (1972), 511-525.
[8] S. Halperin and D. Toledo, The product formula for Stiefel-Whitney homology classes, Proc. of Amer. Math. Soc. 48 (1975), 239-244.
[9] J. F. P. Hudson and E. C. Zeeman, On combinatrial isotopy, Publ. Math. Inst. Hautes Et. Sci. 19 (1964), 69-94.
[10] J. F. P. Hudson, Piecewise Linear Topology, Benjamin, New York, 1969.
[11] C. McCrory, Cone complexes and PL transversality, Trans. Amer. Math. Soc. 207 (1975), 269-291.
[12] J. Milnor and J. Stasheff, Characteristic classes, Ann. of Math. Studies 76, Princeton Univ. Press. 1974.
[13] C. P. Rourke, Block structures in geometric and algebraic topology, Actes Congres intern. Math. Nice, 1970, 127-132.
[14] C. P. Rourke and B. J. Sanderson, Block bundles, I and II, Ann. of Math. 87 (1968), 1-28 and 255-277.
[15] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[16] D. Sullivan, Combinatorial invariant of analytic spaces, Proc. Liverpool Singularities I, Lecture Notes in Math. 192, Springer-Verlag, Berlin, Heidelberg, New York, 1971, 165-168.
[17] D. Sullivan, Singularities in spaces, Proc. Liverpool Singularities II, Lecture Notes in Math. 209, Springer-Verlag, Berlin, Heidelberg, New York, 1971, 196-206.
[18] L. Taylor, Stiefel-Whitney homology classes, Quart. J. Oxford 28 (1977), 381-387.
[19] H. Whitney, On the theory of sphere bundles, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 148-153.

Ichinoseki Technical College
IChinoseki, 021
Japan

