MAXIMAL IDEALS OF THE CONVOLUTION MEASURE ALGEBRA FOR NONDISCRETE LOCALLY COMPACT ABELIAN GROUPS

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

Enji Sato

(Received December 22, 1982)

Introduction. Let G be a nondiscrete locally compact abelian group with the dual Γ , and let M(G) be the convolution measure algebra of G (cf. [4]). The algebra M(G) is a commutative Banach algebra with the total variation norm $|| \quad ||$, and contains $L^1(G)$ as a closed ideal. As is well-known, the maximal ideal space \varDelta of M(G) contains Γ , and the restriction to Γ of the Gelfand transform $\hat{\mu}$ of $\mu \in M(G)$ is the Fourier-Stieltjes transform of μ ([6]). A closed subalgebra N (resp. closed ideal) of M(G) is called an L-subalgebra (resp. L-ideal) if a measure ν belongs to N whenever ν is absolutely continuous with respect to a measure belonging to N.

Given a σ -compact set E in G, let I(E) be the set of those measure μ in M(G) which satisfy $|\mu|(Gp(E) + x) = 0$ for all $x \in G$, where Gp(E) is the group generated algebraically by E. Let R(E) be the set of those measures in M(G) which are singular with respect to all members of I(E). Thus I(E) and R(E) are an L-ideal and an L-subalgebra of M(G), respectively, and M(G) can be decomposed into the direct sum of I(E) and R(E). Moreover, each measure in R(E) is carried by a countable union of translates of Gp(E). Let P_E denote the natural projection from M(G) onto R(E). Then P_E is multiplicative and the linear functional $\mu \to (P_E \mu)^{-1} = (P_E \mu)(G)$ is a nontrivial complex homomorphism of M(G), which we will denote by $h_E \in \Delta$.

Let G_{τ} be the topological group G with a locally compact group topology τ which is stronger than the original topology of G. Then there exists a σ -compact subset E of G with zero Haar measure such that E is an open subset of G_{τ} . Dunkl and Ramirez [3] proved that h_E is in the closure $\overline{\Gamma}$ of Γ in Δ . Also Méla [5] and Sato [7] proved that $h_E(\neq 1)$ is in $\overline{\Gamma}$ for some perfect independent subset E. But there do not seem to be many sufficient conditions on a Borel subset E for h_E to be in $\overline{\Gamma}$.

In this paper, we shall investigate h_E for some Borel sets E by

developing the ideas in [7]. Then we obtain information on $\Delta \setminus \Gamma$.

The author thanks the referees for kind advice.

1. Preliminaries. For $\mu \in M(G)$, we identify $L^1(\mu)$ with the subspace of absolute continuous measures with respect to μ . An element $\chi = \{\chi_{\mu}: \mu \in N\}$ of the product space

$$\prod_{\mu \in N} L^{\infty}(\mu)$$

is called a generalized character of an L-subalgebra N of M(G) if

- (a) $\chi_{\mu} = \chi_{\nu} \ (\nu \text{ a.e.}) \text{ if } \nu \in L^{1}(\mu),$
- (b) $\chi_{\mu*\nu}(x+y) = \chi_{\mu}(x)\chi_{\nu}(y) \ (\mu \times \nu \text{ a.e. } (x, y)), \text{ and}$

(c) $0 < \sup \{ \| \chi_{\mu} \|_{\infty} : \mu \in N \} \leq 1.$

Every generalized character χ of N gives rise to a complex homomorphism of N by the formula

$$\mu \rightarrow \int \chi_{\mu} d\mu (= \hat{\mu}(\chi))$$

for every $\mu \in N$. In this way the maximal ideal space $\Delta(N)$ of N can be realized as the set of all generalized characters of N with the topology induced from the $\sigma(L^{\infty}(\mu), L^{1}(\mu))$ -topology on each factor in the product space (cf. [4]). For $\chi = \{\chi_{\mu}\}$ and $\xi = \{\xi_{\mu}\}$ in $\Delta(N)$, we define $\chi_{\xi}, \overline{\chi}$ and $|\chi|$ by $(\chi_{\xi})_{\mu} = \chi_{\mu\xi\mu}, (\overline{\chi})_{\mu} = \overline{\chi}_{\mu}$ and $|\chi|_{\mu} = |\chi_{\mu}|$ for all $\mu \in N$, respectively. For $\mu \in M(G)$, we denote $\|\hat{\mu}\|_{\infty} = \sup\{|\hat{\mu}(\gamma)|: \gamma \in \Gamma\}$. Given a subset K of G and an integer n, we define $nK = K + \cdots + K$ (n times) if n > 0, nK = 0 if n = 0, and nK = (-n)(-K) if n < 0, where $-K = \{-x: x \in K\}$. Let K be a subset of G. We say that K is independent (resp. strongly independent) if (a) $0 \notin K$, and if (b) whenever x_1, \dots, x_n are finitely many distinct elements of K, $(p_1, \dots, p_n) \in \mathbb{Z}^n$, and $p_1x_1 + \cdots + p_nx_n = 0$, then $p_jx_j = 0$ (resp. $p_j = 0$) for all $j = 1, \dots, n$.

The following characterization for $\overline{\Gamma}$ is useful in this paper.

PROPOSITION 1 ([3]). Let f be an element in Δ . Then f is contained in $\overline{\Gamma}$ if and only if $|\hat{\mu}(f)| \leq ||\hat{\mu}||_{\infty}$ for all $\mu \in M(G)$.

2. A sufficient condition for h_{κ} to be in $\overline{\Gamma}$. For a compact subset $E \subset G$ and $\mu \in M(\Gamma)$, we define $\|\hat{\mu}\|_{E}$ as the supremum norm of $|\hat{\mu}|$ on E. We can prove the following result by modefying the proof of

Theorem 1 in [7].

THEOREM 1. Let G be a nondiscrete locally compact abelian group, and K a Borel subset such that $K = \bigcup_{n=1}^{\infty} K_n$, where $\{K_n\}_{n=1}^{\infty}$ is an increasing sequence of compact subsets of G. Suppose that for any K_n , $\varepsilon > 0$ and a compact subset E with $E \cap Gp(K) = \emptyset$, there exists a

642

probability measure $\mu \in M(\Gamma)$ such that $\|\hat{\mu} - 1\|_{\kappa_n} < \varepsilon$ and $\|\hat{\mu}\|_{\varepsilon} < \varepsilon$. Then we have $h_{\kappa} \in \overline{\Gamma}$.

3. Helson set and h_{κ} . In this section, we discuss the relation between a Helson set K and the associated functional h_{κ} .

DEFINITION 1. A compact set K is called an H_{α} -set $(0 < \alpha \leq 1)$ if $\alpha = \inf \{ \|\hat{\mu}\|_{\infty} : \|\mu\| = 1, \ \mu \in M(K) \}$. Also we simply call K a Helson set, if K is an H_{α} -set for some α .

THEOREM 2 ([7]). Let G be a nondiscrete locally compact abelian group, and K an H_1 -set. Then we have $h_K \in \overline{\Gamma}$.

DEFINITION 2. For a compact set K, we put $S(K) = \{u \in C(K): |u| = 1 \text{ on } K\}$.

Let K be a strongly independent compact subset of G. For $u \in S(K)$, we define a function F_u on Gp(K) by

$$F_u(x) = \prod_{i=1}^n u(x_i)^{n_i}$$

for $x = \sum_{i=1}^{n} n_i x_i$ $(n_i \in \mathbb{Z}, \text{ all distinct } x_i \in K)$.

LEMMA. Let N be a natural number, and $u \in S(K)$. Then F_u is continuous on $N(K \cup (-K))$.

PROOF. Let $z = \varepsilon_1 z_1 + \cdots + \varepsilon_N z_N$ be in $N(K \cup (-K))$, where $z_i \in K$ and $\varepsilon_i \in \{\pm 1\}$. Also let $\{z_{\alpha}\}$ be a net in $N(K \cup (-K))$ such that $z_{\alpha} = \sum_{i=1}^{N} \varepsilon_{i\alpha} z_{i\alpha} \ (z_{i\alpha} \in K, \ \varepsilon_{i\alpha} \in \{\pm 1\})$ and $z_{\alpha} \to z$ as $\alpha \to \infty$. Since K is a compact set, there exists a subset $\{z_{\alpha(\beta)}\}$ of $\{z_{\alpha}\}$ such that each net $\{z_{i\alpha(\beta)}\}$ coverges to some $y_i \in K$ and each net $\{\varepsilon_{i\alpha(\beta)}\}$ to some $\eta_i \in \{\pm 1\}$. Then we have $z_{\alpha(\beta)} \to \sum_{i=1}^{N} \eta_i y_i \ (\beta \to \infty)$, and $\sum_{i=1}^{N} \eta_i y_i = \sum_{i=1}^{N} \varepsilon_i z_i$. Also $F_u(z_{\alpha(\beta)}) = \prod u(z_{i\alpha(\beta)})^{\varepsilon_i \alpha(\beta)} \to \prod u(y_i)^{\eta_i}$ and K is strongly independent. Hence we see that $\prod u(y_i)^{\eta_i} = \prod u(z_i)^{\varepsilon_i}$ and $F_u(z_{\alpha}) \to F_u(z) (= \prod u(z_i)^{\varepsilon_i}) (\alpha \to \infty)$. q.e.d.

For $u \in S(K)$, we defined a function F_u on Gp(K) by the above rule. By Lemma, F_u is a Borel function on Gp(K), and $|F_u| = 1$ on Gp(K). Then there exists $g \in \Delta$ such that $g_{\mu} = F_u$ a.e. μ for all $\mu \in M(Gp(K))$ (cf. [4]). We define $\Delta(S(K))$ to be the set of all homomorphisms $g \in \Delta$ associated with some $u \in S(K)$ by the above rule.

DEFINITION 3. Let K be a compact subset. K is called a Kronecker set if for $\varepsilon > 0$ and $u \in S(K)$, there exists $\gamma \in \Gamma$ such that $||u - \gamma||_{\kappa} < \varepsilon$.

It is well-known that a Kronecker set in an H_1 -set.

THEOREM 3. Let K be a strongly independent compact subset of a locally compact abelian group G. If

643

E. SATO

$$(*) \qquad \qquad \{g \in \varDelta(S(K)): |g| = h_K\} \subset \overline{\Gamma} ,$$

then K is an H_1 -set. Conversely, if K is a totally disconnected Kronecker set, then (*) holds.

PROOF. The first half is obvious by the definition of an H_1 -set.

To prove the second half, suppose K is a totally disconnected Kronecker set, and let Γ_d denote the character group of G_d with discrete topology in G. Furthermore, assume $\chi \in \Gamma_d$, $\chi = 1$ on K, $\{x_j\}_1^n \subset G$, and $\varepsilon > 0$. Then we claim that there exists $\gamma \in \Gamma$ such that $|\chi - \gamma| < \varepsilon$ on $K \cup \{x_1, \dots, x_n\}$.

Indeed, put $E_{\infty} = \bigcap_{m=1}^{\infty} \overline{E}_m$, where

$$(1) E_m = \{(\gamma(x_1), \cdots, \gamma(x_n)) | \gamma \in \Gamma \text{ and } \|\gamma - 1\|_{\mathbb{K}} < 1/m\}$$

 $(m = 1, 2, \cdots)$. It is easily seen that $E_{m+1} \subset E_m \subset T^n$ for all $m \ge 1$ and E_{∞} forms a compact subgroup of T^n . If $(\chi(x_1), \cdots, \chi(x_n)) \notin E_{\infty}$, it follows that there exists $(p_j) \in \mathbb{Z}^n$ such that

$$(2)$$
 $p(z) = 1$ for all $z \in E_{\infty}$ and $\chi(y) \neq 1$,

where $p(z) = p_1^{p_1} \cdots z_n^{p_n}$ for $z = (z_j) \in T^n$ and $y = \sum_{j=1}^n p_j x_j \in G$. By the definition of E_{∞} and (2), we can find a natural number m such that $|p(z) - 1| < \varepsilon$ for all $z \in E_m$. This together with (2) shows that $\gamma \in \Gamma$ and $||\gamma - 1||_{\kappa} < 1/m$ imply

$$|\gamma(y)-1| = \left|\prod_{j=1}^n \gamma(x_j)^{p_j}-1\right| < \varepsilon$$
.

Since $\varepsilon > 0$ is arbitrary, y defines a continuous character of $\{\gamma_{|K}: \gamma \in \Gamma\} \subset S(K)$. Since K is a totally disconnected Kronecker set, we infer from Varopoulos' theorem [8] that $y \in Gp(K)$. This contradicts the second condition in (2). Thus $(\chi(x_1), \dots, \chi(x_n)) \in E_{\infty}$ and our claim has been confirmed.

Now let $f \in \Delta(S(K))$ be such that $|f| = h_{\kappa}$ and let μ be a positive measure in R(K). To complete the proof, we may assume that μ is concentrated on $n[K \cup (-K)] + \{x_1, \dots, x_n\}$ for some finite subset $\{x_j\}$ of G. Set $f(x) = f(\delta_x)$ for all $x \in G$, where δ_x is the unit point-measure at x. Since K is a Kronecker set and $f \in \Delta(S(K))$, there exists a sequence $\{\gamma_m\}$ in Γ such that $||\gamma_m - f||_{\kappa} \mapsto 0$ as $m \mapsto \infty$. Let $\chi \in \Gamma_d$ be any cluster point of $\{\gamma_m\} \subset \Gamma_d$. Then $\overline{\chi}f$ defines an element of Γ_d and $\overline{\chi}f = 1$ on K. It follows from the above paragraph that there exists $\gamma \in \Gamma$ such that $||\gamma - \overline{\chi}f| < \eta/(n+1)$ on $K \cup \{x_1, \dots, x_n\}$, where $\eta > 0$ is arbitrary. The definition of χ therefore yields an m such that $||\gamma_m \gamma - f| < \eta$ on $n[K \cup (-K)] + \{x_j\}_1^n$. But μ is concentrated on the last set, so

$$\int |\gamma_{\mathbf{m}}\gamma - f| d\mu \leq \eta \|\mu\| \, .$$

Since $|f| = h_{\kappa} \in \overline{\Gamma}$, this completes the proof.

The next result is an improvement of [5; Proposition 12].

PROPOSITION 2. Let K be an independent compact set. Suppose that $h_E \in \overline{\Gamma}$ for any compact subset E of K with nonempty relative interior. Then K is an H_{α} -set for some $\alpha(\alpha \geq 1/8)$.

PROOF. It is sufficient to show that $\|\mu\| \leq 8 \|\hat{\mu}\|_{\infty}$ for all $\mu \in M(K)$. First we prove that for a compact subset $E \subset K$ with nonempty relative interior, we have $\left|\int_{x} d\mu\right| \leq 2 \|\hat{\mu}\|_{\infty}$ for all $\mu \in M(K)$.

Let μ be in $M(\tilde{K})$. Since K is independent, we may put $P_E\mu = \mu_1 + \mu_2$, where $\mu_1 \in M(E)$ and μ_2 is a discrete measure with finite support. For $\varepsilon > 0$, there exists $u \in A(G)(=L^1(\Gamma)^{\uparrow})$ such that u = 1 on $\operatorname{supp} \mu_2$, u = 0 on E and $||u||_A < 1 + \varepsilon$. Then we have $\left|\int \gamma d\mu_2\right| \leq \left|\int \gamma u d(P_E u)\right| + \varepsilon$ for all $\gamma \in \Gamma$, and $\|\hat{\mu}_2\|_{\infty} \leq \|(P_E \mu)^{\uparrow}\|_{\infty}$. By the assumption that $h_E \in \overline{\Gamma}$, we have $\|(P_E \mu)^{\uparrow}\|_{\infty} \leq \|\hat{\mu}\|_{\infty}$, and $\|\hat{\mu}_2\|_{\infty} \leq \|\hat{\mu}\|_{\infty}$.

$$egin{aligned} &\left|\int_{E} \gamma d\mu
ight| &\leq \left|\int \gamma d\mu_{1}
ight| &\leq \left|\int \gamma d\mu
ight| + \left|\int \gamma d\mu_{2}
ight| \ &\leq \|\widehat{\mu}\|_{\infty} + \|\widehat{\mu}\|_{\infty} ext{ , and } \|\widehat{\mu}_{1E}\|_{\infty} \leq 2\|\widehat{\mu}\|_{\infty} \,. \end{aligned}$$

Now for $\mu \in M(K)$, we may assume that $\mu = \sum_{m=1}^{n} \mu_m$, where $\mu_m = \mu_{|I_m|}$ and $\{I_m\}_{m=1}^{n}$ are finitely many disjoint compact subsets of K each with nonempty relative interior. Also there exists a finite set $D \subset \{1, \dots, n\}$ such that

$$\sum_{m=1}^n |\hat{\mu}_m(1)| \leq 4 |\sum_{m \in D} \hat{\mu}_m(1)| .$$

We put $A = \bigcup_{m \in D} I_m$. Since by the first half we have $\left| \int_A du \right| \leq 2 \|\hat{\mu}\|_{\infty}$, we have

$$\sum_{m=1}^n |\hat{\mu}_m(1)| \leq 4 |\sum_{m \in D} \hat{\mu}_m(1)| \leq 4 \left| \int_A d\mu \right| \leq 8 ||\hat{\mu}||_{\infty}.$$

It follows then that $\|\mu\| \leq 8 \|\hat{\mu}\|_{\infty}$.

4. A maximal ideal depending on a Borel set.

DEFINITION 4. Let *E* be a compact set of *G*. *E* is called a Dirichlet set if $\lim_{\tau\to\infty} \inf_{\tau\in F} ||\gamma-1||_E = 0$.

THEOREM 4. Let G be a nondiscrete locally compact abelian group,

q.e.d.

and K_0 a Dirichlet set in G. Then there exists a σ -compact nonopen subgroup K of G such that $K_0 \subset K$ and $h_K \in \overline{\Gamma}$.

PROOF. First we notice that if K is as above, then $h_K \notin \Gamma$ since K has Haar measure zero.

Now we choose and fix a σ -compact open subgroup G_0 of G which contains K_0 . Since K_0 is a Dirichlet set, there exists a sequence $\{\gamma_k\}$ in Γ such that $\gamma_k \to \infty$ as $k \to \infty$ and such that $\|1 - \gamma_k\|_{K_0} < e^{-k}$ for all $k \ge 1$. We define

(1)
$$K_n = \bigcap_{k=n^2}^{\infty} \{x \in G_0: |1 - \gamma_k(x)| \leq 2e^{-k/n}\}$$
 $(n = 1, 2, \cdots).$

Then each K_n is σ -compact and has Haar measure zero (notice $\gamma_k \to 1$ uniformly on K_n). Furthermore, we have $-K_n = K_n \subset K_{n+1}$ and $K_n + K_n \subset K_{2n}$ for all n. It follows that $K = \bigcup_{n=1}^{\infty} K_n$ is a σ -compact nonopen subgroup of G containing K_0 . We shall prove K fulfills the hypotheses of Theorem 1.

Let *E* be a compact subset of *G* which is disjoint from K = Gp(K), and let $n \ge 2$ be given. Since $E \cap G_0 \cap K_{2n} = \emptyset$, we can find a natural number $N > (2n)^2$ such that

$$(2) E \cap G_0 \subset \bigcup_{k=n}^N 2\{x \in G_0: |1 - \gamma_k(x)| > 2e^{-k/(2n)}\}.$$

For each integer $k \ge n^2$, choose an integer m_k so that $n \le m_k e^{-k/n} < n + 1$. We set

(3)
$$\psi_n(x) = \prod_{k=n^2}^N \left| \frac{1 + \gamma_k(x)}{2} \right|^{2m_k} (x \in G).$$

Then we claim that ψ_n satisfies

$$(4)$$
 $0 \leq \psi_n \leq 1$ on G , $\|\psi_n\|_{B(G)} = 1$,

where B(G) is the set of all Fourier-Stieltjes transforms of $M(\Gamma)$,

(5)
$$\psi_n \leq e^{-n}$$
 on $E \cap G_0$, and

(6)
$$\psi_n \ge \exp\left(-6n(n+1)e^{-n}\right)$$
 on K_n .

Part (4) is obvious. To check (5), we pick up any $x \in E \cap G_0$. Then $|1 - \gamma_k(x)| > 2e^{-k/(2\pi)}$ for some $k \in [n^2, N]$ by (2). Hence

$$egin{aligned} \psi_n(x) &\leq \left| rac{1+\gamma_k(x)}{2}
ight|^{2m_k} = \left[1 - \left| rac{1-\gamma_k(x)}{2}
ight|^2
ight]^{m_k} \ &< (1-e^{-k/n})^{m_k} < \exp{(-m_k e^{-k/n})} < e^{-n} \end{aligned}$$

by (3) and our choice of m_k . This establishes (5). If $x \in K_n$, then

$$|1 - \gamma_k(x)| \leq 2e^{-k/n}$$
 for all $k \geq n^2$ by (1); hence
 $\psi_n(x) = \prod_{k=n^2}^N \left[1 - \left| \frac{1 - \gamma_k(x)}{2} \right|^2 \right]^{m_k} \geq \prod_{k=n^2}^N (1 - e^{-2k/n})^{m_k}$
 $\geq \exp\left(-\sum_{k=n^2}^\infty (2m_k e^{-2k/n}) \right) \geq \exp\left(-2\sum_{k=n^2}^\infty (n+1)e^{k/n}e^{-2k/n} \right)$
 $\geq \exp\left(-2(n+1)e^{-n}/(1 - e^{-1/n}) \right)$,

which establishes (6).

Now let ξ denote the characteristic function of G_0 . Since G_0 is an open subgroup of G, we have $\xi \in B(G)$ and $\|\xi\|_{B(G)} = 1$. We define $\phi_n = \psi_n \xi \in B(G)$; then $0 \leq \phi_n \leq 1$ on G, $\|\phi_n\|_{B(G)} = 1$ by (4); $\phi_n \leq e^{-n}$ on E by (5); and $\phi_n = \psi_n \geq \exp(-6n(n+1)e^{-n})$ on K_n by (6). Since $n \in N$ is arbitrary and $K_n \subset K_{n+1}$ for all n, we conclude that K satisfies the hypotheses of Theorem 1, as desired.

REMARK. Let K be a non H_1 -set and perfect strongly independent set. Then there exists $f \in \Delta$ such that $|f| = h_{\kappa}$, $f \notin \overline{\Gamma}$ and $\hat{\mu}^*(f) = \overline{\hat{\mu}(f)}$ for all $\mu \in M(G)$, where $\mu^*(E) = \overline{\mu(-E)}$.

Indeed, since K is a non H_1 -set, there exists $\mu \in M(K)$ such that $\|\mu\| > \|\hat{\mu}\|_{\infty}$. Then there exists $u \in S(K)$ such that $\left|\int u d\mu\right| > \|\hat{\mu}\|_{\infty}$. By Lemma, there exists $f \in \Delta(S(K))(|f| = h_K)$ such that $f_{\mu}(x) = u(x)$ a.e. μ for all $\mu \in M(K)$. So we have $|\hat{\mu}(f)| > \|\hat{\mu}\|_{\infty}$.

Therefore by Proposition 1, we obtain $f \notin \overline{F}$. Also f satisfies $\hat{\mu}^*(f) = \overline{\hat{\mu}(f)}$ for all $\mu \in M(G)$. In fact, for $\mu \in R(K)$ we may assume $\mu = \sum_i \mu_{1i} * \mu_{2i}$, where $\{\mu_{1i}\}$ are continuous measures on Gp(K) and $\{\mu_{2i}\}$ are discrete measures on G. Then by the construction of f we have

$$egin{aligned} &\int fd\mu^* = \sum\limits_i \int fd(\mu_{1i}*\mu_{2i})^* \ &= \sum\limits_i \int fd\mu_{1i}^* \int fd\mu_{2i}^* \ &= \sum\limits_i \left(\int fd\mu_{1i}
ight)^- igl(\int fd\mu_{2i}) \ &= \left(\int fd\mu
ight)^-$$
 ,

where -denotes the complex conjugation.

q.e.d.

References

 G. BROWN AND W. MORAN, On the Shilov boundary of a measure algebra, Bull. London Math. Soc. 3 (1971), 197-203.

- [2] G. BROWN AND W. MORAN, Maximal elements in maximal ideal space of a measure algebra, Math. Ann. 246 (1980), 131-140.
- [3] C. F. DUNKL AND D. E. RAMIREZ, Bounded projections on Fourier-Stieltjes transform, Proc. Amer. Math. Soc. 31 (1972), 122-126.
- [4] C. C. GRAHAM AND O. C. MCGEHEE, Essays in commutative harmonic analysis, Springer-Velag, Berlin-Heidelberg-New York, 1979.
- [5] J. F. MÉLA, Topologies sur G et sous-algebres de Bochner de M(G), to appear in Astérisque.
- [6] W. RUDIN, Fourier analysis on groups, 2nd. ed., Interscience Publishers, New York, 1967.
- [7] E. SATO, On maximal ideals depending on some thin sets in M(G), Proc. Amer. Math. Soc. 87 (1983), 131-136.
- [8] N. TH. VAROPOULOS, Sur les ensembles de Kronecker, C. R. Acad. Sci. Paris, 268 (1969), 954-957.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE YAMAGATA UNIVERSITY YAMAGATA, 990 JAPAN