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1. Introduction. We shall be in the C°°-category. The manifolds
under consideration are connected and orientable. In this note we prove
the following theorem:

THEOREM. Let M be a complete foliated Rίemannian manifold with
a foliation J^~, and the Riemannian metric be a bundle-like metric with
respect to ^\ If all leaves of &~ are minimal and the Rίcci operator
i°v of J^~ is non-positive everywhere and negative for at least one point
of M, then every transverse Killing field of ^~ with finite global norm
is trivial.

Examples of foliated Riemannian manifolds with bundle-like metrics
and minimal leaves are shown in [2] and [6], We remark that the as-
sumption on the Ricci operator of &~ can also be interpreted as the
quasi-negativity of the Ricci operator of &~ in the sense of Wu [10], [11].

The above theorem seems to be the ultimate generalization of the
vanishing theorem of Killing vector fields started by Bochner. So far,
we have already obtained the following results:

( i ) If M in the above theorem is compact, then every transverse
Killing field of &~ has finite global norm. The theorem in this case was
obtained by Kamber and Tondeur [3].

(ii) If the foliation ^~ on a complete Riemannian manifold M is
the point foliation, then the Ricci operator pv of a?" is the usual Ricci
curvature operator and a transverse Killing field of ^ is a usual Killing
vector field on M. The theorem in this case was obtained by Yorozu
[8], [9].

(iii) The case of the point foliation ^~ on a compact Riemannian
manifold is the well-known theorem of Bochner [1].

Our discussions are essentially based on [3],
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2. Preliminaries. This section is devoted to the review of [3]. Let
M be an -^-dimensional complete foliated Riemmanian manifold with a
foliation &\ a Riemannian metric gM and the Levi-Civita connection V^
with respect to gM. We assume that the foliation ^ is of codimension
q (0 5j q ̂  n) and the metric gM is a bundle-like metric with respect to
&~ in the sense of Reinhart [5]. The foliation ^ is given by an inte-
grable subbundle E of the tangent bundle TM over M. Let Q denote
the normal bundle TM/E. The metric gM defines a splitting σ of the
exact sequence

with σ(Q) = EL (the orthogonal complement bundle of E). Thus gM

induces a metric gQ on Q: gQ(v, μ) = gM(σ(v), σ{μ)) for all v,μeΓ(Q),
where Γ( ) denotes the space of all sections of a bundle. For any
connection D in Q, the torsion TD of D is given by

TD(X9 Y) = Dxπ{Y) - Dγπ{X) - π([X, Y])

for all X, Ye Γ(TM) and the curvature RD of D is given by

i^(X, Y)v = ΏxΌγv - DγDxv - DUtY}v

for all X, YeΓ(TM) and all veΓ(Q) (cf. [2], [3]). Now we define a
connection V in Q by

Vxv = π([X, ΓJ)

for all XeΓ(E) and all veΓ(Q) with Fv = σ(v)

for all XeΓ(σ(Q)) and all ^eΓ(Q) with Yv =

PROPOSITION 1 (cf. [2]). 2%β connection V in Q is torsion-free and
metrical with respect to gQ, that is,

Tv = 0 and VxgQ = 0

for all XeΓ(TM).

We remark that VxgQ is defined by

(Vzgρ)(y, μ) = X(srQ(v, μ)) - gQ(Vxv, μ) - gQ{v, V*zμ)

for all XeΓ(TM) and v,μeΓ(Q). We have that ΐ(X)i2v = 0 for all
Xe Γ(E), where i denotes the interior product (cf. [2]). We also have
the following:

PROPOSITION 2 (cf. [2], [3]). For all v, μeΓ(Q), the operator Rη{v, μ):
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Γ(Q) —> Γ(Q) is a well-defined endomorphism.

We introduce at a point xe Man orthonormal basis ep+l9 , ep+q = en

of Qx with p = n — q. Then the Ricci operator ρv: Γ(Q) -> Γ(Q) of ^ r
is defined by

n

for all veΓ(Q).

DEFINITION. The Ricci operator |θv of j^~ is non-positive (resp. nega-
tive) at a point x e M if

gQ(PvV, v)x <; 0 (resp. < 0)

for all v e Γ(Q) satisfying v(x) Φ 0.

Let V(^~) denote the space of all vector fields Y on M satisfying
[Y,Z]eΓ(E) for all ZeΓ(E), where [ ] denotes the bracket operator.
We define Θ(Y): Γ(Q) -> Γ(Q) for Ye V(jr) by

θ(Y)v = π([Y, ΓJ)

for all veΓ(Q) and Fv6Γ(Γilί) with ^(FJ = v. The right hand side of
the above equality is independent of the choice of the representative
Yv of v. For Ye V{J?~), θ(Y)gQ is defined by

(θ(Y)gQ)(v, μ) = Y(gQ(v, μ)) - gQ(θ(Y)v, μ) - gQ(v9 θ(Y)μ)

for all v,μeΓ(Q).

DEFINITION (cf. [3]). If Γ G V{^~) satisfies θ(Y)gQ = 0, then π(Y)
is called a transverse Killing field of ^ 7

Let Ωr(M, Q) be the space of all Q-valued r-forms on M. We define
the exterior differential dv: Ωr(M, Q) -+ Ωr+\M, Q) (r ^ 0) by

r + 1 i

ί=i ί

and define d*: Ωr{M, Q) -> Ωr~\M, Q) by

where * denotes the Hodge star operator. The Laplacian Δ is defined
by A = dvc£* + d*dv. Let Ωr

0(M, Q) be the subspace of all Q-valued r-
forms on M with compact support. For all 37, ̂  e i2r(M, Q) with η oτ η
in β CM, Q), we define
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iV, V)) = \

and

For example, gQ{η/\*η) = gQ(v, 2)£Λ*| if one of ^ = f(g)v, ^ = f(x)£e
^(ΛΓ, Q) has compact support. If ηeΩr

0(M, Q) or 7)eΩr

0

+1(M, Q), we have

The space Γ(Q) is viewed as the space Ω%M, Q). Let LJ(Jlf, Q) be the
completion of Ω°0(M, Q) with respect to the inner product ((,)).

DEFINITION. If veΓ(Q) belongs to L°2(M, Q)nΩ°(M, Q), then v is
called a field of J?~ with finite golbal norm.

Now, we define AV(Y): Γ(Q) -* Γ(Q) for Ye V{^) by

Av(Γ)v = θ{Y)v - VFv

for all veΓ(Q) (cf. [3]). By the torsion-freeness of V, we have

Av(Y)ι> = -Vγπ(Y)

where YueΓ(TM) with π(Yu) = v. Thus we may define

for all veΓ(Q) by Av(v) = AV(Γ) with ττ(Γ) = v and Av(v)f = 0 for any
function / on Λf.

PROPOSITION 3. Under the assumption that all leaves of ^~ are
minimal, a transverse Killing field v 6 Γ(Q) of ^ satisfies Δv = pvv.

P R O O F . Let Xlf -—,Xp+q be an orthonormal local frame of TM on
a neighborhood of xeM such t h a t Xl9 , Xpe Γ(E), Xp+1, - ,Xp+qe
Γ(σ(Q))> and let {Xx)x = et and {Xa)x = ea (ί = 1, • •, p; a = p + 1, , p + q).
For a transverse Killing field v of ^ 7 w e have VXiv = 0, and VFv = 0
with Y = ΣίU (Vf ^ J , since the minimality of leaves of ^~ implies that
Yσ{Q) = 0 where ( ) σ l Q ) denotes the σ(Q)-component of ( ). Thus we have

{Δv)x = (d*dv»),

w i t h Γ, = VftX, and ?7α = VfαXα, and
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(VXaAv(v))(π(Xβ)) = VΣa(Av(v)π(Xβ)) - Av(v)(V

= -V,βVX/lv + VWa{Q)v

with W = VχaXβ. Hence, in a neighborhood of x, we have

α
α=P+l

On the other hand, we have
(VXaAv(v))(π(Xβ)) = Rv(v, π(Xa))π(Xβ)

(cf. [3, Proposition 3.17]). In the case of the point foliation, the above
equality is well-known (cf. [4, Proposition 2.2]). Therefore we have
Δv — pvv.

3. Proof of Theorem. Let us pick and fix a point o of M. For
r > 0, we set

B(r) = {xeM\p(x)<r),

where p(x) denotes the geodesic distance from o to x. There exists a
family of Lipschitz continuous functions {wr; r > 0} on M satisfying the
following properties:

0 ^ wr(x) ̂  1 for all x e M

supp wr c 2?(2r)

wr(x) = 1 for all x e B(r)

lim wr = 1
r-+oo

1 ώtί;r I ̂  C/r almost everywhere on M ,

where C is a positive constant independent of r (cf. [7], [8], [9]). Then
we have the following:

LEMMA 1. For all veΓ(Q), there exists a positive constant A inde-
pendent of r such that

\\dwr(g)v\\2

B{2r) ̂

where \\v\\B(2r) = ξp, v))B{2r) = I gQ(v, v ) * l .
Jΰ(2r)

We define dv(w2

rv) by dv(w^) = 2wrdwr ® v + wϊdvy almost everywhere
on M. By the Schwarz inequality and Lemma 1, we have

ζΔv, w2

rv))B{2r) = ((dvv, 2 ^ r d ^ r ® v + Wrdvy))i?(2r)

r) - 2\\wrdvv\\B{2r)\\dwr 0 v\\B{2r)
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^ \\wrd,v\\B(2r) - ((1/2)|| wrdvv\\%M + 2\\dwr (x) v\\B{2r))

^ (1/2)|| w rd vv| |i ( 2 r ) - (2A/r2)|M|| ( 2 r ) .

Thus, by Proposition 3, we have:

LEMMA 2. Suppose that all leaves of ^ are minimal. For a trans-
verse Killing field v of J?~, the following holds:

iρ,v, w\v))B{2r) ^ (l/2)||w rdvv||i ( 2 r ) - (2A/r2)|M|^(2r) .

Since the Ricci operator ρv of ^ is non-positive everywhere, we
have that, for a transverse Killing field v of ^~ with finite global norm,

0 ^ lim sup ((ρvv, w\v))B{2r)
r—*oo

l iminf || wrdvv\\2

B{2r) ^ 0
r->oo

lim(2A/r2)| |v| | | ( 2 r ) = 0 .

r—>oo

From these, we have

0 ^ lim inf «,ovy, wlv}mr) ^ lim inf (1/2)|| wrd,v ||^(2r) ^ 0 ,
r—»oo r-+oo

0 ^ lim sup «,ovy, w^» B ( 2 r ) ^ lim sup (1/2)]| w r d v y | | | ( 2 r ) ^ 0 .

Thus d^v = 0, i.e., VFy = 0 for all Ye Γ(TM)y and ζpvvf w2

rv))B{2r) = 0 for
all r > 0. Since the Ricci operator ρv of ^ is negative for at least
one point of M, say x0, we have v(^0) = 0. Since Vγv = 0, we see that
v vanishes identically. Therefore our theorem is proved.
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