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Let (Mf g) be a compact Riemannian manifold. We say that (M, g)
is a Blaschke manifold if, for each point m e M, the tangential cut locus
is a sphere of a constant radius (see Besse [2] for details).

In a previous paper [5], one of the authors has shown that a Blaschke
manifold whose integral cohomology ring is equal to that of the complex
projective space CPn is homeomorphic to CPn for n > 0.

Let HP2 denote the quaternion projective plane, and let N be a
closed simply connected smooth manifold with the same integral cohomology
ring as that of HP2. We say that N is a fake quaternion projective plane
if N is not homeomorphic to HP2. It was proved by Eells-Kuiper [3]
and Tamura [9] that there are infinitely many non-homeomorphic fake
quaternion projective planes.

In this paper, we prove the following theorem.

THEOREM. Let (M, g) be a Blaschke manifold whose integral
cohomology ring is equal to that of HP2. Then M is YL-homeomorphic
to HP2. Consequently, there are no Blaschke structures on fake quaternion
projective planes.

For the proof, we show that the first Pontrjagin class of M is equal
to that of HP2. Then by a result of differential topology (Proposition
17), we know that M is PL-homeomorphic to HP2. For this purpose we
study the homotopy class of a map from the cut locus of a point in M
to a Grassman manifold, which is naturally associated to the sphere
bundle in Proposition 1 (see, §1 below).

After the first draft of this paper was written, the mimeographed
notes of Gluck-Warner-Yang came to the authors' attention. They treat
the same problem by a somewhat different method.

1. Allamigeon's results. In this section, we recall results of
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Allamigeon, and state some other related results which we use in later
sections.

Let S71'1 denote the unit sphere in the Euclidean space Rn. By a
great sphere, we mean the intersection of a vector subspace of Rn with

Let (ikf, g) be a Blaschke manifold of dimension n. For a point me M,
we denote by Cm the cut locus of m. By a fibration, we mean a smooth
fiber bundle. The following results are due to Allamigeon [1]. See also
Besse [2].

PROPOSITION 1. The cut locus Cm has a natural structure of a smooth
manifold, and is diffeomorphic to the base space of a fibration of S71'1

such that each fiber is a great sphere with structure group in the
orthogonal group.

Let p: S71'1 —> B be a fibration by great spheres, with structure group
in the orthogonal group, and let ft — 1 be the dimension of the fiber so
that the dimension of B is equal to n — k. Let V(n, k) and G(nf ft),
respectively, be the Stiefel and the Grassmann manifolds consisting of
ft-frames and ft-planes in Rn, respectively. The natural projection
q: V(n, k)->G(n, k) defines a principal O(ft)-bundle. By taking the ft-plane
determined by the fiber, we obtain a continuous map g: B-> G(n, k). Let
F(n, ft) be the Sfc~1-bundle associated with q. Then F(nf ft) is equal to
the set of points (P, x) in G(n, ft) x S71'1 such that x is contained in the
ft-plane P. Let qx: F(n, ft) -> G(n, ft) and q2: F(n, ft) -> S71'1 be the projec-
tions to the first and the second factor. Then the bundle p: Sn~l —»B is
naturally isomorphic to the induced bundle g*(F(n, ft)). The bundle map
g: S71"1 -» F(n, ft) covering g is given by g(x) = (gp(x), x) for xe Sn~\ We
have the following commutative diagram:

G(n, ft) x S71-1

U

gn-i . JU F(n, ft)

B -£-* G(n, ft)

The following is a direct consequence of the above diagram.

LEMMA 2. The composition q2-g is equal to the identity map.

Since g is a bundle map and is an embedding, the smooth map g is
of maximal rank. Since S71'1 is foliated by great spheres, g is injective.
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Consequently we obtain the following.

PROPOSITION 3. The map g: B->G(n, k) is a smooth embedding
satisfying the following property:

( * ) g{b) D g(V) = {0} f o r a n y b ^ V i n B .

Conversely the following holds.

PROPOSITION 4. Let B be a closed connected smooth manifold of di-
mension n — k, and let g: i? —> G(n9 k) be an embedding satisfying the
condition (*)• Then B is the quotient space of a foliation of S71'1 by
great spheres.

PROOF. Consider the subset A = qr\g(B)) in F(n, k). Then A is a
compact connected smooth manifold of dimension n — 1. By the condi-
tion (*), q2\A is a homeomorphism into Sn~\ By the invariance theorem
of domains, q2\A is surjective. Thus we obtain a foliation of S71'1 by
great (k — l)-spheres.

Let E be the disc bundle associated with the sphere bundle p: Sn~l —> B
which is obtained from (M, g) by Proposition 1. Then S71"1 is the boundary
of the manifold E. We have the following (cf. [2, Theorem 5.43]).

PROPOSITION 5. A Blaschke manifold M is diffeomorphic to the union
of the unit disc D and the disc bundle E glued by a diffeomorphism
along their boundaries.

2. Fibrations of S7 by great 3-spheres. Let p: S7 -> B be a fibra-
tion of S7 with structure group in 0(4) such that each fiber is a great
3-sphere. Then B is homotopy equivalent to S\ As is stated in §1,
we obtain the map g: B^G(8, 4).

Let BO (4) denote the classifying space of 0(4). Note that, since
BO (4) = lim^oo G(N, 4), we have the natural inclusion of G(8, 4) in BO (4).
To know the isomorphism class of the bundle p: S7 -> B, we study the
homotopy class {g} of g.

Let #0 denote the 4-plane in R8 defined by the natural embedding
of /J4; U4 = U4 x {0} c U4 x JR4 = R\ We can regard x0 as an element
in Gr(8, 4). Define K to be the closed subset in X = G(8, 4) consisting of
4-planes which fail to be transverse to x0. Suppose that there exists a
point 60 in B such that g(bQ) — x0. Since g satisfies the condition (*) of
§1, we have the relation

g(B - bQ) c X - K .

The 16-dimensional manifold X has the canonical cell decomposition
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by the Schubert cells (see e.g., [4]).
By the definition of Schubert cells, we easily obtain the following.

PROPOSITION 6. The subset K is equal to the union of open Schubert
cells of dimension smaller than 16.

PROOF. A 4-plane x in R8 transverse to x0 if and only if
dim (x fl xQ) = 0. Thus the Schubert symbol of an open cell containing x
is equal to (5, 6, 7, 8) and the dimension of the cell is 16. But we have
only one cell of dimension 16 in X.

We have an obvious corollary.

COROLLARY 7. The open manifold X — K is contractible.

Let D4 be a closed 4-disc in B centered at the base point 60.

PROPOSITION 8. Let g0 and gx be two embeddings of B in X which
satisfy the following:

(1) ft(6o) = a?o, # - W c I - Z for i = 0,1.
(2) g01D4 and gL \ D4 are homotopic by a homotopy H = {ht(0 ̂  £ 5g 1)}:

D4 x I—>X with h0 = go\D
i and hx — ft|-D4 such that

H({b0} xl) = xo

H((D* - {60}) x I)aX- K.

Then the homotopy classes {gQ} and {ft} in n^X) = TT4(JSL, X0) are equal.

PROOF. Denote by ~{B - Int D4) the manifold B - Int D' with the
orientation reversed. Let DB denote the union

-CB - Int Z>4) U (3D4) x IU (B - Int D') ,

with boundaries glued by the identity maps. We have the map

h = (go\-(B- Int Z>4) U (H\(3D4) x I) (J (ft I(B - Int D4))

:DB-*X.

Then h{DB)cl-l Note that DB is homotopy equivalent to S4. By
Corollary 7, the map h is homotopic to the constant map. Thus we can
construct a homotopy connecting gQ and gl keeping 60 fixed.

In the following, the condition in Proposition 8 on g0oe and g^e is
simply stated as follows: The embeddings #0oe and gloe are homotopic
in X — K keeping the center fixed.

3. Transition function. Let M(n, k) denote the set of real (n x k)-
matrices. We write simply M{n) for M(nf n). Let GL (n) denote the
group of real non-singular (n x ^-matrices. For k < n, define a sub-
group P(n9 k) of GL (n) by
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P(nf k) = J ^ B\ Ae GL (k), Ce GL (n - k), Be M(k, n - k)\ .

Let Ql(n) be the Lie algebra of GL (n). The Lie algebra p(n, k) of P(n, k)
is given by

p(n, k) = \IA \); AeM(k), Ce M(n - k), Be M(k, n - k) .
( \ 0 CJ )

The quotient space GL (n)/P(n, k) is diffeomorphic to G(n, k).
Define a 16-dimensional vector subspace m of gl(8) by

Then we have the vector space direct sum decomposition

8I(8) - «8, 4) + m .

We often identify m with M(4), and m is naturally identified with the
tangent space THX, X = G(8, 4).

Define the map
Exp: m -> G(8, 4) - GL (8)/P(8, 4)

by Exp (A) = {exp (A)}, the class in GL (8, 4)/P(8, 4) represented by
exp (A), where A em and exp: gl(8) —• GL (8) is the exponential mapping
of the Lie group GL (8). We express a 4-frame in R8 by an (8 x 4)-
matrice. Then Exp (A) is represented by the (8 x 4)-matrix

e:
where /4 is the identity matrix of GL (4).

Let fto1 e G(8,4) denote the 4-plane orthogonal to the base point
x0eG(8, 4). Then the map Exp is a diffeomorphism such that the image
Exp(m) is equal to the set of 4-planes transverse to xt, for xt is
represented by

Let us define a subset K' of m = M(4) by Kf = Exp"1 (K).

LEMMA 9. The space Kr is equal to the set of matrices Ae M(A) such
that det A = 0. Consequently, K' is a linear cone centered at 0.

PROOF. An element Aem belongs to K' if and only if Exp (A) is
not transverse to x0. But the 4-plane Exp (A) is transverse to x0 if and
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only if det A ^ 0.

We have the Stiefel manifold F(8, 4) and the GL (4)-principal bundle
q: F(8, 4) -> G(8, 4) = X. An element in 7(8, 4) is represented by an
(8 x 4)-matrix of rank 4. We give a trivialization h of the bundle q
restricted over Exp (m),

h: Exp (m) x GL (4) -» ^ (Exp (m))

by

h(a, g) = [ , where a = Exp A, Aem .
\AgJ

Similarly we define the map Exp1: nt—>G(8, 4) by

Exp1 (A) = ^ * j exp (A) in GL (8)/P(8, 4) .

Then Exp1 (0) = xt and Exp (A) is represented by

The image Exp1 (m) is nothing but the Schubert top cell of G(8, 4). As
before we have a trivialization h1 of the bundle q over Exp1 (m),

h1: Exp (m) x GL (4) -> ^-^Exp1 (m))

defined by

^^(a (/) = ( ff ] , where a = Exp1 (A), i G t n .

Note that By Lemma 9, the intersection Exp (m) n Exp1 (m) is equal to
the set Exp(GL(4)).

PROPOSITION 10. On Exp (m) n Exp1 (m) = Exp (GL (4)), the transi-
tion function k: Exp (GL (4)) —> GL (4) of two trivializations h and h1 is
given by

&(Exp (A)) = A, for AeGL (4) ,

that is, h(a, g) = hL(a, Ag), for (a, g) e Exp (m) x GL (4).

PROOF. If a = Exp (A) for Ae GL (4), then a = Exp1 (A"1). Solving
the equation
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we obtain that h = A at a.

165

4. Non-singularity of the matrices in g*(TboB). Let B be the base
manifold of the fibration of S7 by great 3-spheres and g: B-+ G(8, 4) be
the smooth embedding of §2. By homogeneity of G(8, 4), we may suppose
that g(b0) = xOf where b0 is a base point of B.

Identify Tom with m itself and identify TXQG(8, 4) with m = M(4) by
(Exp)*, the differential of the map Exp at x0.

PROPOSITION 11. For any non-zero vector X in the tangent space
TboB, g*(X)e M(4) is a non-singular matrix.

Before the proof, we study the tangent spaces at the base points
of the manifolds F(8, 4) and S7 treated in §1. We define a subgroup
P+(n, n - 1) in GL (n) by

P+(n, n- 1)= \r ; 0 < aeR, 6 eAf ( l , n - 1), Ce GL (n - 1)[ ,

and define H in GL (8) by

(A B
H =

o a
; AeP+(4,3), , CeGL(4) .

Then F(S, 4) and S7 are diff eomorphic to homogeneous spaces GL (8)/JBT
and GL (8)/P+(8, 7), respectively.

Let mF and ms be vector subspaces of gl(8) defined by

/0 0
01

0

a 0 "I ; aetf(3, l) , BeM(4,4)
B 0/

/0 0
0

A6 0 0/

Then the exponential mapping exp of GL (8) defines the smooth maps

ExpF: mF -* F(S, 4)

,D,

We denote the base point of F(8, 4) and S7 by the same letter 0. Then

are isomorphisms. We identify TXQG(8, 4), T0^(8, 4) and T0S
7 with m, mF
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and ms by (Exp)*, (Exp^)*, and (Exp5)*, respectively. Note that the
differential (#2)*: T0F(8, 4) -> T0S

7 is equal to the natural projection of mF

onto ms.

PROOF OF PROPOSITION 11. Put V = g*(X)eM(£). There exist P1

and P9 in 0(4) such that P^VPr1 is the diagonal matrix

\

with 0
by

^ \vt \Vz\

vj

\v4\. Let QeGL(8) be the matrix defined

Denote by Qs, Qa and QF the left multiplication of Q on S7, G(8, 4) and
F(S, 4), respectively. Then QG fixes x0 in G(8, 4). The differential
m -^ m is given by (Qa)*(A) = P2AP^\ Consequently, we have

(QGUV) =

M

vj
Let i:tnc^>mF be the natural inclusion. Let y be the point in S7 denned
by y = g-\QF)-\O). Take YeTy(S

7) such that X = p*(Y). Then
(Qp)*^( Y) e T0F(8, 4). Since ?1 „ Q* = Q° <> «„

Consequently, the difference (Q^^g^Y) - •£((#<%(F)) is a vector tangent
to the fiber qr\x0). Since qr\x0) = (̂p-X^o)), there exists ^ e Ty(S

7) with
flr^^^) = V such that (Q')*gf»(Z) = i((Q<%(F)). We can naturally
identify ms with the set of column 7-vectors. We express an element
in ms by the transpose of a row 7-vector. We have

= (Q2)MQaUV)) = '(0, 0, 0, t;x, 0, 0, 0) .

Note that q2°QF = Qs°q2 and q2°g = identity. Thus

'(0, 0, 0, vlt 0, 0, 0) = (Q%(qX9*(Z) = (QS)*(Z) .

Since g* is injective, V ¥= 0 and Z ^ 0. Consequently, it follows that
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v, ^ 0. Then vt ^ 0 for 1 ^ i ^ 4 and det V ^ 0. The proof is complete.

5. Linear map. We have identified ikf(4) with 2^(8 ,4) . By a
linear isomorphism, we also identify R4 with TboB. By Proposition 11,
we have the linear map g*\ iJ4 -> M(4) such that 0*(F) e GL (4) for F =£ 0.
Let S3 be the unit sphere in R\ If #*(S3) is contained in the connected
component of the identity of GL (4), which we denote by GL+ (4), then
we define a to be the homotopy class of 0*|S3: S3—>GL+ (4). For all
base points x of GL+(4), TT3(GL+ (4), x) are canonically isomorphic, and we
simply denote it by TT3(GL+ (4)). Thus a is an element of 7T3(GL+ (4)).

Consider the case where g*(S3) is contained in the different connected
component of GL+ (4). Let R denote the element in GL (8) defined by

fir 0\

where Ik denote the identity matrix of GL(fc). We define an automor-
phism J of the Stiefel manifold F(8, 4) by J(a) = {RA}, where A 6 GL (8)
represents ae F(8, 4). The automorphism J induces an automorphism J'
of G(8, 4). Thus J is a bundle isomorphism and J' fixes the base point
xQ. The differential (J')* is equal to the multiplication of

II,
\0 -

on Jlf(4). In particular J ' maps the subset K onto itself. The composi-
tion (J')*ff* maps S3 into GL+(4). We define a e TT3(GL+ (4)) to be the
homotopy class of (J')*0*l<S3: S3-> GL+ (4).

Remark that the composition

is a linear map of vector spaces. The class a will be shown to coincide
with the homotopy class of the characteristic map of the bundle
p: S7 -> B.

6. Homotopy class of linear map. In this section, we study the
homotopy class of / |S 3 , where / : i£4 —> M(4) is a linear map such that
/(U4-{0})cGL+(4).

The Lie group S3 = Sp (1) is naturally considered as the subgroup of
GL+ (4). Let GL+ (4)/S3 be the coset space and let /3: GL+ (4) -* GL+ (4)/S3

be the projection. Since GL+ (4)/S3 is diffeomorphic to SO (3) x iJ10, we
have TT3(GL+ (4)/S3) = Z. The homotopy class of the composition fi ° /1S3

defines an element in TT3(GL+ (4)/S3), the isomorphism class of which is
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independent of the choice of the base point. Let X be a generator of
TT3(GL+ (4)/S3).

The aim of this section is to prove the following.

PROPOSITION 12. Let f: i?4 —• ikf(4) be a linear map such that
/CR4-{0})cGL+(4). Write

where me Z. Then we have

\m\

For the proof, we need several lemmas. Firstly, we define a map
r: GL (4) —> GL (3) as follows. Denote by H the field of quaternions and
put H* = H- {0}. We naturally identify H with R\ To each element
x e H, we associate a matrix m(x) e ilf(4) defined by m(x)y = xy for
yeH = R\ where xy denotes the product of x and y in H. Thus
m(x) e GL+ (4) if x^O. Represent an element Xe GL (4) by (Xl9 X2, XZf X4),
where Xt are column vectors and considered as elements in H*. For
any xeH, we denote by Im# the imaginary part of x. We regard
Imcc as a 3-dimensional column vector. Define r(X) by

r{X) = (Im XT'X29 Im Xr

= (Im m(X^)X2, Im

LEMMA 13. For any XeGL(4), the (3 x 2>)-matrix r{X) is non-
singular.

PROOF. We have det (1, X^X2, XT1XZ, X^X,) = det (miX^X). If
XeGL(4), then X^O and detmtX^O. Thus det r{X) = det (ImX^X2,
Im XrxX3, Im XT1X,) = det (m(Xrx)) det X * 0.

GL+ (3).

, Im X^
^ , Im

Note that if I e GL+ (4), then r{X) e GL+ (3).

Secondly, we want to write down the composition r<>f:R4

Define vectors e\ e2, e\ e* in iJ4 — {0} by

0
0

\ol

2
e

1
0 J

\ o /

8e =
0
1

\ o /
, e* =

0
0

\ l

For t = 1, 2, 3, 4, put F* = /(e*)- Then F< 6 GL+ (4). Write

F4 = (a4, 6', c\ d<) ,

where a*, b\ c\ dl e iJ4 — {0} = if* are column vectors. Define a (4 x 4)-
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matrix A by A — (a\ a2, a3, a4). Similarly we define (4 x 4)-matrices B,
C and D. Then for a vector

x =

in R\ we have

= (Ax, Bx, Cx, Dx) .

Since f(x) e GL+ (4) for x ^ 0, A, B, C and
matrices.

are non-singular (4 x 4)-

If A 6 GL+ (4), the homotopy class of /1S3: S3 -> GL+ (4) coincides with
the homotopy class of A~lf\ S3: S3 -> GL+ (4). If A e GL" (4), Image (A~f\ S3)
is contained in GL~ (4). But GL~ (4) is diffeomorphic to GL+ (4) and all
arguments work as in the case where AeGL+(4). Thus in any case,
we assume that A is the identity matrix I4 and f{x) = (x, Bx, Cx, Dx).

Define skew-symmetric (4 x 4)-matrices Plf P2 and P3 by

- i
Pa =

- 1

\ - 1

1\

- 1

LEMMA 14. Assuming that A = It, for xe R* — {0} = H*

fr, *x(PlC)«, *a;(
we have

r°f(x) = *x(PtB)x, *x(P2C)x, fx(P2D)x

\tx(P3B)x, >x{P3C)x, *x(PJ))xl

PROOF. By our definition, r°f(x) = (Im x^Bx, Imx^Cx, Im x~xDx).
Then the proof is a direct calculation using

\-c X2 X\

By this lemma, we know that each entry of the matrix r°
homogeneous polynomial of degree 2 in four variables xlf x2, xz,

is a
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Thirdly, let N be the subgroup of GL+ (3) defined by N = {g =
(gi5) e GL+(3); gi3 = 0(i > j), gu > 0}. Then N is diffeomorphic to RQ and
GL+ (3) is diffeomorphic to SO (3) x N, by the orthonormalization of Gramm-
Schmidt. Let oo: GL+ (3) —> SO (3) denote the canonical projection.

The following is easy to see.

LEMMA 15. The homotopy class {/3°/|S3} is equal to the homotopy
class {ft)oro/|S3}e7T3(GL+(4)/S3), where we identify TT3(SO (3)) with
7T3(GL+ (4)/S3) by the inclusion.

Fourthly, in order to know the homotopy class of the composition

oo o r o / | S3: S3 -> GL+ (4) -> GL+ (3) -» SO (3) ,

we count the degree. For xe S3, represent the (3 x 3)-matrix (r °/|S8)(a0
by (hi5(x)). By Lemma 14, /^(sc) is a homogeneous polynomial of
degree 2. By the definition of co, it follows that the inverse image
(cyoro/lS3)-^/), I being the identity of SO (3), is contained in the set
of points x in S3 such that hi2(x) = h23(x) = h13(x) = 0. We consider the
solutions of real homogeneous polynomial equations of degree 2 in CP3.

LEMMA 16. We can choose a map H': S3 -> GL+ (3) with H\x) = (h'i5(x))
which satisfies the following conditions:

( i ) Hr is homotopic to r<>f\S?.
(ii) h'ij(x) is a real homogeneous polynomial of degree 2 for 1 ^ i9

i^3.
(iii) The number of points y in CP3 such that h[2(y) = h'23(y) =

Ka(y) = 0 is finite.

PROOF. A complex homogeneous polynomial of degree 2 in C4 is
written as S i s w ^ a ^ ^ - with aiS e C. Thus it corresponds to the point
(atj) in C10. We put h[j{x) — hi5(x) for i ^ j and choose hf

i5{x) sufficiently
near to htj(x) for i < j , so that det (hti(x) + t(h'tj(x) — htj(x))) ^ 0 for
0 ^ ^ ^ 1 and for any x e Ss as follows. In the product space CP3 x (C10)3,
we have the algebraic manifold V = {(x; h\ h\ h3); hj(x) = 0 for j = 1, 2, 3,
h5 are complex homogeneous polynomials of degree 2}. The codimension
of F i n CP3 x (C10)3 is equal to 3. Let p: F -> (C10)3 denote the projection
to the second factor. The set W = {ve V; dim p~\p(v)) ^ 1} is a Zariski
closed set. The closure p(W) of p(W) in the usual topology of (C10)3 is
Zariski closed algebraic set. The codimension of p(W) in (C10)3 is greater
than 0. Let U be an open set in (/J10)3. Then the Zariski closure Uc is
equal to (C10)3. Consequently, the intersection p{W) D (iJ10)3 does not
contain any open set in (R10)3. Thus, for any point k e (R10)3, we can
choose kr in (J?10)3 near to k', such that kf is not contained in P(W). The
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point k' defines real homogeneous polynomials ti12, h'n, h[z of degree 2 with
the desired properties.

Now we are in a position to prove Proposition 12.

PROOF OF PROPOSITION 12. Let P3 denote the real projectives 3-
space and let %: S3-> P* be the covering map. Since H\x) = H\—x)
for xeS\ there exists a map / ' : P3 -> GL+ (3) such that H' = fo%:

S3->GL+(3). For yeP\ write f\y) = (j&(y))- Define a subset Z in P3

by Z = {y e P3, /i(y) = &(v) = Mv) = 0} and Zc in CP3 by Zc = {ye CP\
My) = fM) =fn(v) = 0}. Then ZaZc and Z*7 is a finite set by our
definition of if. By Bezout's theorem in CP3 (see e.g., [6, Chapter IV]),
the set Zc consists of 23 = 8 points and Z consists of at most 8 points.
Denote by D the dihedral group of order 4 in SO (3). The group D is
isomorphic to Z2 + Z2 and generated by

- 1 I and ( - 1

Then the inverse image (o)of')-\D) is contained in Z. If a>o/':P3—>
SO (3) is not surjective, then a)°f is homotopic to the trivial map. So
assume that (O°f is surjective. Then there exists a point v in D such
that (a)°f')~\v) consists of at most two points. Since the homotopy
class in Z = TT3(GL+ (4)/S3) is equal to the degree of the map / ' : P3 -+ SO (3),
the proof is completed.

7. Proof of Theorem. The following is known (see [3], [7], [9]).

PROPOSITION 17. Let Nt and N2 be two closed simply connected
smooth manifolds with the same integral cohomology ring as that of HP2.
Denote by Pi(-Ni) and Pi(N2) their first Pontrjagin classes. Then N± and
N2 are YL-homeomorphic if and only if

Px(JVi) = ±p1(N2) .

The proof is given as follows. Embed S4 smoothly in Nt (i = 1, 2),
so that S4 is a generator of H^Ns, Z). Let Tt be a tubular neighbor-
hood of S\ Then Nt is PL-homeomorphic to the union T* U D\ If
Pi(Ni) = ±Pi(N2)f then Tx and T2 are diffeomorphic and Nx and N2 are
PL-homeomorphic. Conversely, if #i and N2 are PL-homeomorphic, then
T1 and T2 are bundle isomorphic and p^NJ = ±p1(N2).

Suppose that N is a Blaschke manifold with the same cohomology
ring as that of HP2. A Blaschke manifold is known to be simply
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connected unless the cohomology ring is equal to that of a real protective
space ([2, 7.23]).

By Proposition 5, N is diffeomorphic to the union E U D\ where E
is the 4-disc bundle over B associated with the sphere bundle p: S7 -> B.
To know the isomorphism class of the bundle E, it is sufficient to know
the homotopy class of g: B -> X = G(8, 4) with g(bQ) = x0. The differential
g* is the map from R* = ThB to TXQX = m.

Let D\r) be a closed 4-disc of radius r > 0 in ThB and e: TbQB -> B
be the exponential map for some Riemannian metric of B. Since K' =
Exp"1 (K) is a linear cone in m = T^X by Lemma 9, for small r > 0,
we can choose a map g': B-+ X such that

( i ) £'oe = Exp°£* on Z)4(̂ /2) ,
(ii) gf — g outside e(D\r)) ,
(iii) g'°e\D\r) and goe\D\r) are homotopic in X — K keeping the

center fixed (see the remark after Proposition 8). By Proposition 8, the
homotopy classes of g and g' are equal in TT4(X). Note that g* satisfies
the following relations:

LEMMA 18. The homotopy class of the characteristic map of the
bundle E is equal to a e TT3(GL+ (4)) defined in §5.

PROOF. Since g has the above property, p-tyD'ir)) and p~\B—e(D\r)))
have trivializations induced from those of (jr^ExpCm)) and g-^Exp1 (m)).
Write S3 for dD\r/2). Then by the definition of g' and Proposition 10,
we have

Thus the characteristic map of E is given by the map

If the image of g*\Ss is not contained in GL+(4), changing the triviali-
zation of q-\Exp(m)) by J (see §5), we can assume that g*(S*) is in
GL+ (4). The proof is completed.

Let / and g be maps from S3 to SO (4) defined by f(x)y = xyx~\
g(x)y = xy where x and y are quaternions with norm 1. Denote their
homotopy classes by X and ft. Then X and fi generate TT3(SO (4)) ^
7T3(GL+(4)) ~ Z + Z. Thus we can write a = mX + nft, where m,neZ.

Let a be a generator of H\B; Z) and let px(E) denote the first
Pontrjagin class of the bundle E. Then the following holds.
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LEMMA 19. If a = mX + nfi, then

= ±2(2m + ri)a .

PROOF. In the case where B is diffeomorphic to S\ this lemma is
proved, e.g., in Tamura [8]. Since the proof uses only the obstruction
theory, this holds for any closed base manifold B homotopy equivalent
to S\

By Proposition 12, we have \m\ ^ 2. Since the boundary E is
homeomorphic to S7, we have n = ±1 . Choosing an orientation of E,
we may assume that n = 1.

The following holds.

LEMMA 20. Suppose that a = mX + ft. Then E is diffeomorphic to
S7 if and only if m(m + 1) = 0 mod 56.

PROOF. This is proved in [9], [10] when B is diffeomorphic to S4.
Since the proof uses only the Pontrjagin classes, the result is true for
any closed smooth base manifold homotopy equivalent to S\

PROOF OF THEOREM. The first Pontrjagin class p^N) of the manifold
N is equal to p^E). The integer m with \m\ ^ 2 which satisfies the
relation m(m + 1) = 0 mod 56 is equal to either 0 or —1. In these cases,
p^N) = ±2a by Lemma 19. Since px{HP2) = ±2, it follows from
Proposition 17 that N is PL-homeomorphic to HP2. The proof of
Theorem is completed.
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