The Fejér-Riesz inequality for Siegel domains

NOZOMU MOCHIZUKI

(Received October 28, 1983)

Introduction. The classical Fejér-Riesz inequality ([2]) was extended from the unit disc of the complex plane C to balls and polydiscs of C^n ([4], [9], and [10]). For unbounded domains, Hille and Tamarkin derived an analogous inequality. Let $f \in H^p(\mathbb{R}^2_+)$, $1 \leq p < \infty$, where \mathbb{R}^2_+ denotes the upper half-plane $\{z \in C | \text{Im } z > 0\}$. Then the following holds for every $x \in \mathbb{R}$ ([5, Theorem 4.1]):

$$(1) \qquad \qquad \int_{R_+} |f(x+iy)|^p dy \leq 2^{-1} \sup_{y>0} \int_{R} |f(x+iy)|^p dx ,$$

where R_+ denotes the positive numbers. Kawata [6] and Krylov [8] showed that the main results of the Hille-Tamarkin's H^p theory are valid for all p > 0. The inequality (1) is also seen to hold in this case. Our purpose is to deal with this inequality in a setting of higher dimensions and a wider class of functions. We shall obtain an inequality of the same sort for functions u such that $u \ge 0$ and $\log u$ are plurisubharmonic on certain Siegel domains in $C^n \times C^m$. The principal result is Theorem 1 in Section 2. Section 3 is concerned with Hardy space results.

1. Preliminaries. Let u be a real-valued function on \mathbb{R}^2_+ . If $u \ge 0$ and $\log u$ is subharmonic we shall call u a log. subharmonic function. Such functions are called functions of class PL and then basic properties are found in [11]. We shall denote by $LH^p(\mathbb{R}^2_+)$, 0 , the class of log. subharmonic functions <math>u satisfying the condition

(2)
$$M(u, p; \mathbf{R}_{+}^{2}):= \sup_{y>0} \int_{\mathbf{R}} u(x+iy)^{p} dx < \infty$$
.

Let Ω be an open cone in \mathbb{R}^n which is the interior of the convex hull of *n* linearly independent half-lines starting from the origin. We shall call Ω an *n*-polygonal cone. The tube domain with base Ω is defined by $T_{\Omega} = \{X + iY \in \mathbb{C}^n | X \in \mathbb{R}^n, Y \in \Omega\}$. Let *u* be a real-valued function defined on T_{Ω} and $u \ge 0$. If $\log u$ is plurisubharmonic we shall call *u* a log.

Partially supported by the Grand-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan.

plurisubharmonic function. We define the class $LH^p(T_{\mathcal{Q}})$, 0 , as the family of log. plurisubharmonic functions <math>u satisfying the condition

$$M(u, p; T_{\mathcal{Q}}) = \sup_{Y \in \mathcal{Q}} \int_{\mathbb{R}^n} u(X + iY)^p dX < \infty$$
,

where $dX = dx_1 \cdots dx_n$, the volume element in \mathbb{R}^n . The Hardy space $H^p(T_g)$ consists of holomorphic functions f on T_g such that $M(|f|, p; T_g) < \infty$ ([14]). The Siegel domain of type II we shall throughout consider is the domain in $\mathbb{C}^n \times \mathbb{C}^m$ defined by an *n*-polygonal cone $\mathcal{Q} \subset \mathbb{R}^n$ and an \mathcal{Q} hermitian form $\Phi: \mathbb{C}^m \times \mathbb{C}^m \to \mathbb{C}^n$, i.e., $D = D(\mathcal{Q}, \Phi) = \{(Z, W) \in \mathbb{C}^n \times \mathbb{C}^m | \operatorname{Im} Z - \Phi(W, W) \in \mathcal{Q}\}$. If $n = 1, \mathcal{Q} = \mathbb{R}_+$, and $\Phi(W, W) = \sum_{j=1}^m |w_j|^2$ for $W = (w_1, \cdots, w_m)$, the associated domain, D_0 , is biholomorphic with the unit ball of \mathbb{C}^{m+1} . Let u be a log. plurisubharmonic function on D. Then $u(X + i(Y + \Phi(W, W)), W)$ is an upper semi-continuous function of $(X + iY, W) \in T_g \times \mathbb{C}^m$. We define the class $LH^p(D), 0 , as the totality$ of log. plurisubharmonic functions <math>u on D satisfying

$$M(u, p; D) = \sup_{Y \in \mathcal{Q}} \int_{\mathbb{R}^{n} \times \mathbb{C}^{m}} u(X + i(Y + \Phi(W, W)), W)^{p} dX dW < \infty$$

where dW means the volume element in $\mathbb{R}^{2m} = \mathbb{C}^m$. The Hardy space $H^p(D)$ is the class of holomorphic functions f on D such that $M(|f|, p; D) < \infty$ ([7]). If $f_j \in H^p(D)$, $j = 1, \dots, l$, then $\sum_{j=1}^{l} |f_j| \in LH^p(D)$. If $u \in LH^p(D)$ and v is any plurisubharmonic function bounded above, then $ue^v \in LH^p(D)$. Thus $LH^p(D)$ contains discontinuous functions.

We shall frequently use the following basic result. This is found in [14, (4.9) in Chapter II] and is valid without the assumption of continuity of u.

LEMMA A. Let u(x + iy) be a subharmonic function on the halfplane \mathbf{R}^2_+ and $u \ge 0$. If u satisfies the condition (2) with $p \ge 1$, then $u(x + iy) \rightarrow 0$ as $x^2 + y^2 \rightarrow \infty$, provided $y \ge \rho$ for a constant $\rho > 0$.

2. The Fejér-Riesz inequality for the domain D. We begin by proving some lemmas. Arguments concerning \mathbf{R}^2_+ were suggested by the methods of [1] and [2]. However, they must be substantially reformulated to work for the unbouded domain.

LEMMA 1. Let f(x + iy) be a holomorphic function on \mathbb{R}^2_+ . Then the following inequality holds for 0 < r < R, 0 < T:

$$egin{aligned} (\,3\,) & 2\!\int_{r}^{R}\!|\,f(iy)|^{2}\!dy &\leq \int_{-T}^{T}\!|\,f(x+ir)|^{2}\!dx + \int_{-T}^{T}\!|\,f(x+iR)|^{2}\!dx \ & + \int_{r}^{R}\!|\,f(-T+iy)|^{2}\!dy + \int_{r}^{R}\!|\,f(T+iy)|^{2}\!dy \end{aligned}$$

582

PROOF. Let E and E' be the rectangles in \mathbb{R}^2_+ with vertices -T + ir, ir, iR, -T + iR, and ir, T + ir, T + iR, iR, respectively. Then the Cauchy integral theorem applied to the holomorphic function $f(z)^2$ with respect to E and E' implies

$$egin{aligned} &i \int_{r}^{R} f(iy)^{2} dy = - \int_{-T}^{0} f(x+ir)^{2} dx + i \int_{r}^{R} f(-T+iy)^{2} dy + \int_{-T}^{0} f(x+iR)^{2} dx \ &= \int_{0}^{T} f(x+ir)^{2} dx + i \int_{r}^{R} f(T+iy)^{2} dy - \int_{0}^{T} f(x+iR)^{2} dx \,. \end{aligned}$$

It follows that

$$2 \left| \int_{r}^{R} f(iy)^{2} dy \right| \leq \int_{-T}^{T} |f(x + ir)|^{2} dx + \int_{-T}^{T} |f(x + iR)|^{2} dx + \int_{r}^{R} |f(-T + iy)|^{2} dy + \int_{r}^{R} |f(T + iy)|^{2} dy \;.$$

If f(z) is real-valued on the imaginary axis in \mathbb{R}^2_+ , this becomes the inequality (3). In the general case, let $g(z) = 2^{-1}(f(z) + \overline{f(-\overline{z})}), h(z) = (2i)^{-1}(f(z) - \overline{f(-\overline{z})}), z \in \mathbb{R}^2_+$. Then g(z) add h(z) are holomorphic on \mathbb{R}^2_+ and real-valued on the imaginary axis, so satisfy the inequality (3). Note that $|f(iy)|^2 = g(iy)^2 + h(iy)^2, y \in \mathbb{R}$, and $|g(z)|^2 + |h(z)|^2 = 2^{-1}(|f(z)|^2 + |f(-\overline{z})|^2), z \in \mathbb{R}^2_+$. It is easily verified that the inequality (3) is valid for f(z). The proof is completed.

We shall write $P(x, y) = \pi^{-1}y(x^2 + y^2)^{-1}$, the Poisson kernel for \mathbf{R}^2_+ , and $u_{\rho}(x + iy) = u(x + i(\rho + y))$ for a constant ρ .

LEMMA 2. Let $u \in LH^1(\mathbb{R}^2_+)$ and let $u_{\rho,\varepsilon}(x+iy) = (u_{\rho}(x+iy) + \varepsilon)^{1/2}$ for $\rho, \varepsilon > 0$. Let

$$(4) h_{\rho,\epsilon}(x+iy) = \int_{\mathbf{R}} \log u_{\rho,\epsilon}(t) P(x-t, y) dt , \quad x+iy \in \mathbf{R}^2_+ .$$

Then $h_{\rho,\varepsilon}$ is a harmonic majorant of $\log u_{\rho,\varepsilon}$ on \mathbb{R}^2_+ .

PROOF. The sum of two log. subharmonic functions is log. subharmonic, so the function $\log u_{\rho,\epsilon}$ is upper semi-continuous on the closure $\overline{R_+^2}$ of R_+^2 , and subharmonic on R_+^2 . Lemma A implies that $\log u_{\rho,\epsilon}(x+iy) \rightarrow 2^{-1}\log \varepsilon$ as $x^2 + y^2 \rightarrow \infty$, $y \ge 0$. Thus $\log u_{\rho,\epsilon}(t)$ is bounded on R and $h_{\rho,\epsilon}$ is defined and harmonic on the whole of R_+^2 . We can choose a sequence of bounded continuous functions $u_k(t)$ on R such that $u_1(t) \ge u_2(t) \ge \cdots$ and $u_k(t) \rightarrow \log u_{\rho,\epsilon}(t)$ as $k \rightarrow \infty$. Let

$$h_k(x+iy)=\int_{\mathbf{R}}u_k(t)P(x-t, y)dt$$
, $x+iy\in \mathbf{R}_+^2$, $k=1, 2, \cdots$.

Then h_k are continuous on $\overline{R_+^{\epsilon}}$, harmonic and satisfy $2^{-1}\log \epsilon \leq h_k$ on R_+^{ϵ} . Since $\log u_{\rho,\epsilon}(t) \leq u_k(t) = h_k(t)$, $t \in \mathbb{R}$, the maximum principle for subharmonic functions implies that $\log u_{\rho,\epsilon} \leq h_k$ on R_+^{ϵ} . Letting $k \to \infty$ we get the relation $\log u_{\rho,\epsilon} \leq h_{\rho,\epsilon}$. The proof is completed.

LEMMA 3. Let $u \in LH^1(\mathbb{R}^2_+)$ and $\rho > 0$. Then the following inequality holds for every $x \in \mathbb{R}$:

$$\int_{R_+} u_\rho(x+iy) dy \leq 2^{-1} \int_R u_\rho(x) dx \; .$$

PROOF. We may assume that x = 0. Let $\varepsilon > 0$ and define the function $h_{\rho,\varepsilon}$ by (4). Let $F(z) = \exp(h_{\rho,\varepsilon}(z) + ig_{\rho,\varepsilon}(z)), z \in \mathbb{R}^2_+$, where $g_{\rho,\varepsilon}$ is so chosen that $h_{\rho,\varepsilon} + ig_{\rho,\varepsilon}$ is holomorphic. From Lemma 2 we see that $u_{\rho}(z) + \varepsilon \leq \exp(2h_{\rho,\varepsilon}(z)) = |F(z)|^2$. Let 0 < r < R, 0 < T. The inequality (3) applied to F(z) implies that

Using inequalities

$$|F(z)|^2 \leq \left(\int_{\mathbf{R}} u_{
ho,\epsilon}(t)P(x-t, y)dt
ight)^2 \leq \int_{\mathbf{R}} u_{
ho,\epsilon}(t)^2 P(x-t, y)dt$$

we have

$$2I(r, R) < \int_{-T}^{T} dx \int_{R} u_{\rho,\varepsilon}(t)^{2} P(x-t, r) dt + \int_{-T}^{T} \left(\int_{R} u_{\rho,\varepsilon}(t) P(x-t, R) dt \right)^{2} dx + \int_{r}^{R} dy \int_{R} u_{\rho,\varepsilon}(t)^{2} P(-T-t, y) dt + \int_{r}^{R} dy \int_{R} u_{\rho,\varepsilon}(t)^{2} P(T-t, y) dt .$$

Letting $\varepsilon \to 0$ we see that

Clearly, $I_1(r, T) \leq \int_{\mathbb{R}} u_{\rho}(t) dt$. We treat $I_j, j = 3, 4$. Let $v(\pm T, u) = \int_{\mathbb{R}} u_{\rho}(t) P(\pm T - t, u) dt$

$$v(\mp T, y) = \int_{R} u_{\rho}(t) P(\mp T - t, y) dt$$

 $\mathbf{584}$

Since $u_{\rho}(t) \to 0$ as $|t| \to \infty$ by Lemma A, we can take K > 0 such that $u_{\rho}(t) < R^{-2}$ for |t| > K. Using the inequality $y(a^2 + y^2)^{-1} < a^{-1}$ for a, y > 0 and taking an arbitrary T > K, we can see that

$$v(\mp T, y) < R^{-2} + \int_{|t| \leq K} u_{
ho}(t) P(\mp T - t, y) dt < R^{-2} + (T - K)^{-1} \int_{R} u_{
ho}(t) dt$$
.

It follows that

$$I_j(r, R, T) < R^{-1} + (T-K)^{-1}R \int_R u_
ho(t) dt \ , \quad T > K \ , \quad j = 3, \, 4 \ .$$

To estimate the integral $I_2(R, T)$, let

$$G(x, y) = \int_{R} u_{
ho}(t)^{1/2} P(x - t, y) dt$$
, $x + iy \in \mathbf{R}^{2}_{+}$.

Since $u_{\rho}(t)^{1/2} \in L^2(\mathbf{R})$, we have $G(x, y) \leq Cv(x), y > 0$, where C is a constant and v(x) is the Hardy-Littlewood maximal function of $u_{\rho}(x)^{1/2}$. Note that $v(x) \in L^2(\mathbf{R})$ and $G(x, R)^2 \to 0$ as $R \to \infty$. Now in the inequality

$$\leq \int_{R} u_{
ho}(x) dx + \int_{R} G(x, R)^2 dx + 2R^{-1} + 2(T-K)^{-1} R \int_{R} u_{
ho}(x) dx$$
, $T > K$,

letting first $T \to \infty$ and then $R \to \infty$, $r \to 0$, we have

$$2 \int_{{m R}_+} u_{
ho}(iy) dy \leq \int_{{m R}} u_{
ho}(x) dx$$
 ,

which completes the proof.

LEMMA 4. Let T_{ρ} be a tube with base Ω which is an n-polygonal cone in \mathbb{R}^n . Let $u \in LH^1(T_{\rho})$ and let $u_{\rho}(X + iY) = u(X + i(\rho + Y))$ where $\rho = (\rho_1, \dots, \rho_n) \in \Omega$. Then for any $X \in \mathbb{R}^n$

(5)
$$\int_{\mathcal{Q}} u_{\rho}(X+iY)dY \leq 2^{-n} \int_{\mathbf{R}^n} u_{\rho}(X)dX$$

PROOF. To begin with, we suppose Ω is the first octant in \mathbb{R}^n , i.e., $\Omega = \{Y = (y_1, \dots, y_n) \in \mathbb{R}^n | y_1, \dots, y_n > 0\}$. Clearly we may consider T_{Ω} as $\mathbb{R}^2_+ \times \dots \times \mathbb{R}^2_+$, the Cartesian product of n half-planes. Let $\Omega' = \{Y' = (y_2, \dots, y_n) | y_2, \dots, y_n > 0\}$. Then we can write $T_{\Omega} = \mathbb{R}^2_+ \times T_{\Omega'}$ and $X + iY = (x_1 + iy_1, X' + iY')$ for $X + iY \in T_{\Omega}$. We shall show that if $z_1 \in \mathbb{R}^2_+$ is fixed then $u(z_1, Z')$ belongs to $LH^1(T_{\Omega'})$ as a function of $Z' \in T_{\Omega'}$. It is clear that $u(z_1, Z')$ is log. plurisubharmonic on $T_{\Omega'}$. Take r > 0 such that $\Delta = \{w \in \mathbb{C} | |w - z_1| \leq r\} \subset \mathbb{R}^2_+$ and let $\delta = \operatorname{Im} z_1 - r$. Since u(w, Z') is subharmonic as a function of $w = x_1 + iy_1$ for an arbitrary $Z' = X' + iY' \in T_{\Omega'}$, we have

Integrating with respect to $dX' = dx_2 \cdots dx_n$ we get

$$\begin{split} \int_{\mathbf{R}^{n-1}} & u(z_1, Z') dX' \leq (\pi r^2)^{-1} \int_{\delta}^{2r+\delta} dy_1 \int_{\mathbf{R}^n} & u(x_1 + iy_1, Z') dX \\ \leq (\pi r^2)^{-1} 2r M(u, 1; T_{\Omega}) \; . \end{split}$$

Similarly, it is seen that if $Z' \in T_{\Omega'}$ is fixed then $u(z_1, Z')$ belongs to $LH^1(\mathbb{R}^2_+)$ as a function of $z_1 \in \mathbb{R}^2_+$ ([14, p. 116]). The inequality (5) is proved in Lemma 3 for n = 1. Now we assume that it is valid for n - 1. Writing $\rho' = (\rho_2, \dots, \rho_n) \in \Omega'$, we obtain

$$\begin{split} \int_{\mathcal{Q}} u_{\rho}(X+iY)dY &= \int_{\mathcal{R}_{+}} dy_{1} \int_{\mathcal{Q}'} u(x_{1}+i(\rho_{1}+y_{1}), X'+i(\rho'+Y'))dY' \\ &\leq 2^{-(n-1)} \int_{\mathcal{R}^{n-1}} dX' \int_{\mathcal{R}_{+}} u(x_{1}+i(\rho_{1}+y_{1}), X'+i\rho')dy_{1} \\ &\leq 2^{-n} \int_{\mathcal{R}^{n}} u_{\rho}(X)dX \,. \end{split}$$

If Ω is an *n*-polygonal cone we can proceed as in [14, p. 118]. Take *n* linearly independent vectors generating Ω and let *A* be the matrix with these vectors as its columns. Then the linear map $\widetilde{X} \to A\widetilde{X}, \widetilde{X} \in \mathbb{R}^n$, transforms the first octant Λ onto Ω and can be extended to \mathbb{C}^n by $A(\widetilde{Z}) = A\widetilde{X} + iA\widetilde{Y}, \widetilde{Z} = \widetilde{X} + i\widetilde{Y} \in \mathbb{C}^n$. The function $u \circ A$ belongs to $LH^1(T_A)$, so we have

$$egin{aligned} &\int_{arrho} u(X+i(
ho+Y))d\,Y = |\det \mathrm{A}| \int_{arrho} (u\circ A)(\widetilde{X}+i(\widetilde{
ho}+\widetilde{Y}))d\,\widetilde{Y} \ &\leq 2^{-n} |\det A| \int_{R^n} (u\circ A)(\widetilde{X}+i\widetilde{
ho})d\widetilde{X} \ &= 2^{-n} \int_{R^n} u(X+i
ho)dX \ , \end{aligned}$$

which completes the proof.

THEOREM 1. Let $D = D(\Omega, \Phi)$ be a Siegel domain in $\mathbb{C}^n \times \mathbb{C}^m$ with an n-polygonal cone Ω . Let $u \in LH^p(D)$, $0 . Then for any <math>X \in \mathbb{R}^n$

$$\int_{\mathcal{Q}\times \mathbf{C}^m} u(X+i(Y+\mathfrak{Q}(W,W)),W)^p dY dW \leq 2^{-n} \mathcal{M}(u,p;D).$$

PROOF. It suffices to prove for p = 1. For $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \in \Omega$ and

586

 $W \in \mathbb{C}^m$ put $v(Z; \varepsilon, W) = u(Z + i(\varepsilon + \Phi(W, W)), W), Z = X + iY \in T_{\rho}$. Then it is seen from the same argument as in [12] that $v(Z; \varepsilon, W)$ belongs to $LH^1(T_{\rho})$ as a function of Z. It follows from (5) that for any $\rho \in \Omega$

$$\begin{split} \int_{\Omega} u(X + i(\rho + \varepsilon + Y + \varPhi(W, W)), W) dY \\ &\leq 2^{-n} \int_{\mathbb{R}^n} u(X + i(\rho + \varepsilon + \varPhi(W, W)), W) dX \,. \end{split}$$

Integration with respect to dW and arbitrariness of $\rho + \varepsilon$ imply the desired inequality. The proof of Theorem 1 is completed.

REMARK. It should be noted that the condition we imposed on the cone Ω is not restrictive when n = 1 and 2. Thus all the results hold for general Siegel domains for these cases.

Recall that D_0 is biholomorphic with the unit ball of C^{m+1} . We write $|W|^2 = \sum_{j=1}^{m} |w_j|^2$ for $W \in C^m$.

COROLLARY 1. (i) Let $u \in LH^p(T_{\mathcal{Q}})$. Then for any $X \in \mathbb{R}^n$

$$\int_{\Omega} u(X+iY)^p dY \leq 2^{-n} M(u, p; T_{\mathcal{Q}}).$$

(ii) Let $u \in LH^p(D_0)$. Then for any $x \in \mathbf{R}$

$$\int_{R_+ \times c^m} u(x + i(y + |W|^2), W)^p dy dW \leq 2^{-1} M(u, p; D_0) .$$

REMARK. The Poisson kernel for the unit disc U provides an example that the Fejér-Riesz inequality does not necessarily hold for harmonic functions on U ([2, p. 311]). Similarly, the Poisson kernel P(x, y) shows that (i) is not necessarily valid for harmonic function on \mathbf{R}_{+}^{2} .

The following result is related to [13, Theorem C] and the first half is known for $|f|^p$, $f \in H^p(\mathbb{R}^2_+)$ ([6]). We write $r \leq s$ if and only if $s - r \in \{0\} \cup \Omega$ for $r, s \in \Omega$, and $|Y|^2 = \sum_{j=1}^n y^2$ for $Y \in \mathbb{R}^n$.

THEOREM 2. Let $u \in LH^p(D)$, $0 , where <math>D = D(\Omega, \Phi)$ with an *n*-polygonal cone Ω . Let

$$\psi(Y) = \int_{\mathbb{R}^n \times \mathbb{C}^m} u(X + i(Y + \Phi(W, W)), W)^p dX dW, \quad Y \in \mathcal{Q}.$$

Then $\psi(Y)$ is a decreasing function of Y. If $Y \ge Y_0$ for some $Y_0 \in \Omega$ and $|Y| \to \infty$, then $\psi(Y) \to 0$.

PROOF. It is sufficient to prove for p = 1. First we prove the assertions by induction on *n* assuming that Ω is the first octant in \mathbb{R}^n and $u \in LH^1(T_{\Omega})$. We denote by $\psi^{(n)}(Y)$ the integral of u(X + iY) with

respect to dX over \mathbb{R}^n . Let $u \in LH^1(\mathbb{R}^2_+)$. Suppose u is continuous and let $v = u^{1/2}$. Then v is subharmonic and $M(v, 2; \mathbb{R}^2_+) < \infty$. It is proved implicitly in [13, Theorem C] that in this case $\psi^{(1)}(y)$ is a decreasing function of y > 0. When u is only upper semi-continuons, let $G_{\rho} = \{x + iy \in \}$ $R_{+}^{2}|y > \rho$, $\rho > 0$, and let $u_{r}(x+iy)$ be the function defined to be the mean value of u over the disc of radius $r, r < \rho$, centered at the point x + iy. u_r is a continuous subharmonic function on G_{ρ} and $\{u_r\}$ tends to u decreasingly as $r \to 0$. It is seen from Fubini's theorem that $M(u_r, 1; G_{\rho}) \leq 1$ $M(u, 1; \mathbf{R}^2_+)$, hence $\psi_r^{(i)}(y)$, the integral of $u_r(x+iy)$, is a decreasing function of $y > \rho$. Taking limit as $r \to 0$, we can get the same conclusion for u. Let h(x + iy) be the Poisson integral of $v_p(t)$ with a constant $\rho > 0$. Then from the same reasoning as in Lemma 2 we can see that $v_{e}(x+iy)$ is majorized by h(x+iy) on \mathbf{R}_{+}^{2} . The maximal function of v_{e} belongs to $L^2(\mathbf{R})$, so $\psi^{(1)}(\rho + y)$ tends to 0 as $y \to \infty$. Next supposing $\psi^{n-1}(Y')$ is a decreasing function, we can easily see that $\psi^{(n)}(s) \leq \psi^{(n)}(r)$ $\text{if } r \leq s \ \text{in } \mathcal{Q}. \ \ \text{If } |Y| = |(y_1, \, Y')| \to \infty, \ Y \geq Y_0, \ \text{we may suppose} \ \ y_1 \to \infty \\$ increasingly. Let $t_1 = y_1 - \varepsilon > 0$, $\varepsilon > 0$. From $Y \ge (t_1, Y'_0)$ we have

$$\psi^{(n)}(Y) \leq \int_{\mathbf{R}^n} u(x_1 + it_1, X' + iY'_0) dX = \int_{\mathbf{R}^{n-1}} dX' \int_{\mathbf{R}} u(x_1 + it_1, X' + iY'_0) dx_1.$$

Here, the inner integral tends to 0 decreasingly as $t_1 \to \infty$ for every $X' \in \mathbf{R}^{n-1}$, so $\psi^{(n)}(Y) \to 0$ as $y_1 \to \infty$. Let Ω be an *n*-polygonal cone and A be the matrix employed in the proof of Lemma 4. Then we can write

$$\psi^{(n)}(\,Y) = |\det A\,| \! \int_{{oldsymbol R}^n} \!\! (u \, \circ A) (\widetilde{X} + \, i \, \widetilde{Y}) d\widetilde{X}$$
 ,

where $Y = A \tilde{Y}$, $\tilde{Y} \in \Lambda$. Since $r \leq s$ in Ω if and only if $\tilde{r} \leq \tilde{s}$ in Λ , $\psi^{(n)}(Y)$ is seen to be a decreasing function. The second assertion follows from the fact that $|Y| \to \infty$ if and only if $|\tilde{Y}| \to \infty$. Now let $u \in LH^1(D)$ and $r \leq s, r, s \in \Omega$. Take $\varepsilon \in \Omega$ so that $r = \varepsilon + \rho, s = \varepsilon + \sigma$ for some $\rho, \sigma \in \Omega$. Then $v(Z; \varepsilon, W) \in LH^1(T_{\Omega})$ for any $W \in C^m$, so we have

(6)
$$\int_{\mathbb{R}^n} u(X + i(\varepsilon + \sigma + \Phi(W, W)), W) dX$$
$$\leq \int_{\mathbb{R}^n} u(X + i(\varepsilon + \rho + \Phi(W, W)), W) dX.$$

It follows that $\psi(s) \leq \psi(r)$. Finally take $\varepsilon \in \Omega$ such that $Y_0 = \varepsilon + Y_0^*$ for some $Y_0^* \in \Omega$. Then $Y = \varepsilon + Y^*$, $Y^* \geq Y_0^*$, and $|Y^*| \to \infty$. Therefore

$$\begin{split} \int_{\mathbb{R}^n} & u(X+i(\varepsilon+Y^*+\varPhi(W,W)),W)dX\\ & \leq \int_{\mathbb{R}^n} & u(X+i(Y_0+\varPhi(W,W)),W)dX \end{split}$$

the left-hand side tending to 0 as $|Y| \to \infty$. The dominated convergence theorem shows that $\psi(Y) \to 0$ as $|Y| \to \infty$. The proof is completed.

COROLLARY 2. Let $u \in LH^{p}(D)$. Then $u(Z + i\Phi(W, W), W)$ belongs to $LH^{p}(T_{\mathcal{Q}})$ as a function of $Z \in T_{\mathcal{Q}}$ for almost every $W \in C^{m}$.

PROOF. Let p = 1. We can take a sequence $\{\varepsilon^{(j)}\} \subset \Omega$ such that $\varepsilon^{(1)} \ge \varepsilon^{(2)} \ge \cdots, \varepsilon^{(j)} \to 0$ and $\psi(\varepsilon^{(j)}) \to M(u, 1; D)$ as $j \to \infty$. For $W \in C^m$ let

$$g_{j}(W) = \int_{\mathbb{R}^{n}} u(X + i(\varepsilon^{(j)} + \Phi(W, W)), W) dX, \quad j = 1, 2, \cdots,$$
$$g(W) = \sup_{Y \in \mathcal{Q}} \int_{\mathbb{R}^{n}} u(X + i(Y + \Phi(W, W)), W) dX.$$

Then from the inequality (6) and the choice of $\{\varepsilon^{(j)}\}\$ it follows that $g_j(W) \to g(W)$ increasingly as $j \to \infty$ for every $W \in \mathbb{C}^m$. We can see that $g(W) < \infty$ for a.e. W from

$$\int_{c^m} g(W) dW = \lim_{j o \infty} \psi(arepsilon^{(j)}) = M(u,\,1;\,D) < \infty \; .$$

3. The case of holomorphic functions. If $f \in H^p(\mathbb{R}^2_+)$, $0 , the boundary value <math>f^*(x)$ exists for a.e. $x \in \mathbb{R}$. Here $f^* \in L^p(\mathbb{R})$ and $f(x + iy) \to f^*(x)$ as $y \to 0$ in the sense of L^p -convergence. As a consequence of Corollary 1 and Theorem 2 we have the inequality (1).

PROPOSITION 1. Let $f \in H^p(\mathbb{R}^2_+)$, $0 . Then for any <math>x \in \mathbb{R}$ $\int_{\mathbb{R}_+} |f(x + iy)|^p dy \leq 2^{-1} \int_{\mathbb{R}} |f^*(x)|^p dx$.

Let D be a Siegel domain in $\mathbb{C}^n \times \mathbb{C}^m$ and $f \in H^p(D)$, 0 . Then $the boundary value <math>f^*$ exists almost everywhere, i.e., $f^*(X + i\Phi(W, W))$, $W) = \lim_{Y \to 0} f(X + i(Y + \Phi(W, W)))$, W) for a.e. $(X, W) \in \mathbb{R}^n \times \mathbb{C}^m$, and $f^* \in L^p(\mathbb{R}^n \times \mathbb{C}^m)$ ([12]).

PROPOSITION 2. Let $D = D(\Omega, \Phi)$, where Ω is an n-polygonal cone in \mathbb{R}^n . Let $f \in H^p(D)$, $0 . Then for any <math>X \in \mathbb{R}^n$

$$\begin{split} \int_{\mathcal{Q}\times C^m} |f(X+i(Y+\varPhi(W,W)),W)|^p dY dW \\ & \leq 2^{-n} \int_{\mathbb{R}^n \times C^m} |f^*(X+i\varPhi(W,W),W)|^p dX dW \end{split}$$

References

 E. F. BECKENBACH, On a theorem of Fejér and Riesz, J. London Math. Soc. 13 (1938), 82-86.

- [2] L. FEJÉR UND F. RIESZ, Über einige funktionentheoretische Ungleichungen, Math. Z. 11 (1921), 305-314.
- [3] R. M. GABRIEL, An inequality concerning the integrals of positive subharmonic functions along certain circles, J. London Math. Soc. 5 (1930), 129-131.
- [4] M. HASUMI AND N. MOCHIZUKI, Fejér-Riesz inequality for holomorphic functions of several complex variables, Tôhoku Math. J. 33 (1981), 493-501.
- [5] E. HILLE AND J. D. TAMARKIN, On the absolute integrability of Fourier transforms, Fund. Math. 25 (1935), 329-352.
- [6] T. KAWATA, On analytic functions regular in the half-plane (I), Japan. J. Math. 13 (1936), 421-430.
- [7] A. KORÁNYI, The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. 82 (1965), 332-350.
- [8] V. I. KRYLOV, On functions regular in a half-plane, Mat. Sb. 6 (48) (1939), 95-138.
 English transl: Amer. Math. Soc. Transl. (2) 32 (1963), 37-81.
- [9] N. MOCHIZUKI, Inequalities of Fejér-Riesz type for holomorphic functions on certain product domains, Tôhoku Math. J. 34 (1982), 367-372.
- [10] N. MOCHIZUKI, A class of subharmonic functions and integral inequalities, ibid. 35 (1983), 475-482.
- T. RADÓ, Subharmonic functions, Ergebnisse der Mathematik und ihrer Grenzgebiete 5, Springer-Verlag, 1937.
- [12] E. M. STEIN, Note on the boundary values of holomorphic functions, Ann. of Math. 82 (1965), 351-353.
- [13] E. M. STEIN AND G. WEISS, On the theory of harmonic functions of several variables, I. The theory of H^p spaces, Acta Math. 103 (1960), 25-62.
- [14] E. M. STEIN AND G. WEISS, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, NJ, 1975.

DEPARTMENT OF MATHEMATICS College of General Education Tôhoku University Kawauchi, Sendai 980 Japan