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The Fejer-Riesz inequality for Siegel domains
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Introduction. The classical Fejer-Riesz inequality ([2]) was extended
from the unit disc of the complex plane C to balls and polydiscs of Cn

([4], [9], and [10]). For unbounded domains, Hille and Tamarkin derived
an analogous inequality. Let / e HP(R\), 1 ^ p < oo f where R\ denotes
the upper half-plane {zeC\lmz > 0}. Then the following holds for every
xeR ([5, Theorem 4.1]):

I/G» + iy)\pdy ^ 2-χsup ( \f(x + iy)\pdx ,
+ V>0 JR

where R+ denotes the positive numbers. Kawata [6] and Krylov [8]
showed that the main results of the Hille-Tamarkin's Hp theory are
valid for all p > 0. The inequality (1) is also seen to hold in this case.
Our purpose is to deal with this inequality in a setting of higher dimen-
sions and a wider class of functions. We shall obtain an inequality of
the same sort for functions u such that u ^ 0 and log u are plurisubhar-
monic on certain Siegel domains in Cn x Cm. The principal result is
Theorem 1 in Section 2. Section 3 is concerned with Hardy space
results.

1. Preliminaries. Let u be a real-valued function on R\. If u ^ 0
and log n is subharmonic we shall call u a log. subharmonic function. Such
functions are called functions of class PL and then basic properties are
found in [11]. We shall denote by LHP(R\), 0 < p < oo, the class of log.
subharmonic functions u satisfying the condition

(2 ) M(uf p; R2+): = sup I u(x + iy)pdx < oo .
y>o JR

Let Ω be an open cone in Rn which is the interior of the convex hull
of n linearly independent half-lines starting from the origin. We shall
call Ω an w-polygonal cone. The tube domain with base Ω is defined by
TΩ = {X + iYe Cn\Xe Rn, YeΩ}. Let u be a real-valued function defined
on TΩ and u Ξ> 0. If log u is plurisubharmonic we shall call u a log.

Partially supported by the Grand-in-Aid for Scientific Research, the Ministry of Education,
Science and Culture, Japan.



582 N. MOCHIZUKI

plurisubharmonic function. We define the class LHP(TΩ), 0 < p < °o, as
the family of log. plurisubharmonic functions u satisfying the condition

M(u, p; TQ) = sup ( u{X + ίY)pdX
YeΩ JRn

where dX=dxx- -dxn, the volume element in Rn. The Hardy space HP(TΩ)
consists of holomorphic functions / on TΩ such that M(\f\,p; TΩ) < oo
([14]). The Siegel domain of type II we shall throughout consider is the
domain in Cn x Cm defined by an ^-polygonal cone ΩaRn and an Ω-
hermitian form Φ: Cm x Cm -> Cn, i.e., D = D(Ω, Φ) = {(Z, W) e Cn x
Cm\ImZ - Φ(W, W)eΩ). If n = 1, Ω = R+, andΦ(TF, W) = Σ?«iI^ | 2 for
W = (w19 — ,wm), the associated domain, JD0, is biholomorphic with the
unit ball of Cm+1. Let u be a log. plurisubharmonic function on Zλ Then
w(X + i( Y + Φ( T7, W))f W) is an upper semi-continuous function of (X +
iY, W)eTΩ x Cm. We define the class LHP(D), 0 < p < oo, as the totality
of log. plurisubharmonic functions u on D satisfying

M(u, p; D) = sup( u(X + i(Y + Φ(W, W)), W)*dXdW < <*> ,
YeΩ jRnχCm

where dW means the volume element in R2m = Cm. The Hardy space
HP(D) is the class of holomorphic functions f on D such that M(\f\,p;D)<
- ([7]). If /, e fP(JO)f i = 1, f Z, then ΣUIΛI e L^(D). If u e LH'(D)
and v is any plurisubharmonic function bounded above, then uev e LHP{D).
Thus LHP(D) contains discontinuous functions.

We shall frequently use the following basic result. This is found in
[14, (4.9) in Chapter //] and is valid without the assumption of continuity
of u.

LEMMA A. Let u(x + iy) be a subharmonic function on the half-
plane R+ and u ^ 0. If u satisfies the condition (2) with p ^ 1, then
u(x + iy) —> 0 as x2 + y2 -* oo, provided y ^ p for a constant p > 0.

2. The Fejer-Riesz inequality for the domain D. We begin by
proving some lemmas. Arguments concerning R\ were suggested by the
methods of [1] and [2]. However, they must be substantially reformu-
lated to work for the unbouded domain.

LEMMA 1. Let f(x + iy) be a holomorphic function on R%. Then
the following inequality holds for 0 < r < R, 0 < T:

(3) 2\*\f(iy)\*dy ̂  Γ \f(x + ir)\2dx + Γ \f(x + iR)\2dx

/ ( - r + iy)Vdy + j j/(Γ + iy)\%dy .
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PROOF. Let E and Ef be the rectangles in R\ with vertices — T +
ir, ir, iR, —T + iR, and ir, T + ir, T + iR, iR, respectively. Then the
Cauchy integral theorem applied to the holomorphic function f(z)2 with
respect to E and Ef implies

(-T + iy)2dy

= \Tf(x + irfdx + i\*f(T + iyfdy - Γ/(α + i
Jo Jr Jo

It follows that

2

If /(#) is real-valued on the imaginary axis in R2

+, this becomes the
inequality (3). In the general case, let g(z) = 2~1(/(z) + /( — «)),

{2i)-\f{z) - fϊ-z)),zeR\. Then flr(s) add Λ(«) are holomorphic on JB2

+

and real-valued on the imaginary axis, so satisfy the inequality (3).
Note that I f(iy) |2 - g(ίy)2 + h{iy)\ yeR, and | g{z) |2 + | h(z) |2 = 2"1(| f(z) |2 +
l/( — ̂ )l2)> « eiί+. It is easily verified that the inequality (3) is valid for
f{z). The proof is completed.

We shall write P(x, y) = π~ιy{x2 + y2)~\ the Poisson kernel for R%,
and Up{x + iy) = u(x + i(p + y)) for a constant ô.

LEMMA 2. Le£ ueLH\R%) and let uP,£x + iy) = (uP(x + iy) + e)1

for p, ε > 0. Lei

( 4 ) Λ, ε(x + iy) = I log Up ε(t)P(x — ί, y)dt , x + iye
JR

Then hP)£ is a harmonic majorant of log ^ > ε on R\.

R

PROOF. The sum of two log. subharmonic functions is log. subhar-
monic, so the function log^> β is upper semi-continuous on the closure
R\ of R\, and subharmonic on R%. Lemma A implies that log uP>ε(x + iy) —>
2"1 log ε as x2 + y2 —> °°, y ^ 0. Thus log uPt,(t) is bounded on R and hPt9 is
defined and harmonic on the whole of R\. We can choose a sequence of
bounded continuous functions uk{t) on R such that ux(t) ^ t^(i) ^ and
uk(t) -> log %/,,,(*) as k-^ oo. Let

W# + iy) = \ uk(t)P(x - ί, y)dί , a? + iy e iί2

+ , k = 1, 2, .
JΛ
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Then hk are continuous on R\, harmonic and satisfy 2"1 log ε ^ hk on
R\. Since log uP>ε(t) ^ uk(t) = &*(£)> ί e iJ, the maximum principle for
subharmonic functions implies that loguP>ε ^ hk on J2+. Letting k —> °o
we get the relation log %,f, <̂  &,fβ. The proof is completed.

LEMMA 3. Let u e LH\R\) and p > 0. TΛew ίfce following inequality
holds for every x e R:

\ up(x + i2/)di/ ^ 2"1! uP(x)dx .

PROOF. We may assume that x = 0. Let ε > 0 and define the function
hp>ε by (4). Let JP(Z) = exp(hPti(z) + igP,8(z)), z eiί2

+, where ^ > e is so chosen
that hP>ε + i^, ε is holomorphic. From Lemma 2 we see that uP(z) + ε ^
exp(2ftPf

f,0O) = '\F(z)\\ Let 0 < r < Λ, 0 < Γ. The inequality (3) applied
to i*Xz) implies that

2/(r, 12): = 2 j\(iy)dy < 2^\F(iy)\2dy

^(a? + ir)\2dx + Γ l^a? + iR)\2dx
J-Γ

Using inequalities

\F(z)\2 ^ (^RUP>ε(t)P(x - t, y)dtj ^ jΛ^ f,(t)2P(a? - ί,

we have

2J(r, i2) < Γ dx\ uPtΛ(t)2P(x - ί, r)dί + Γ Q uPf£(t)P(x - t, R)dtjdx

uP,ε(tγP(-T - t, y)dt + \Rdy\ uP>ε(t)2P(T - t,
Jr JR

Letting ε —• 0 we see that

2I(r, Λ) ^ Γ da?( uP(t)P(x - t, r)dt + Γ (\ uP{t)1/2P(x - t, R)dt\dx
J—T JR J —T\j R /

+ \*dy\ uP(t)P(-T - ί, y)dί + Γdi/( uP(t)P(T - ί,
Jr JK Jr JR

= : Ur, T) + It{R, T) + I3(r, R, T) + Ur, R, T) .

Clearly, Ur, T) ^ ( uP(t)dt. We treat Ijt j = 3, 4. Let

,y) = \ uP{t)P{TT - t, y)dt .
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Since uP(t) —> 0 as 11 | -> oo by Lemma A, we can take K > 0 such that
uP(t) < R~2 for I ί I > K. Using the inequality y{a2 + y2)-1 < a~ι for a, y >
0 and taking an arbitrary T > K, we can see that

, y) < R-2 + ( ^(ί)P(=FΓ - ί, »)tfί < R~2 + (Γ - #

It follows that

Iά(r, R9 T) < R-1 + (Γ - ΛΓ)-1iet %,(*)<*« , T > K , i = 3, 4 .

To estimate the integral I2(R, T), let

) = S uP(t)1/2P(x - t, y)dt , x + iyeR2

+ .

Since uP(t)1/2 e L2(R), we have G(cc, 2/) <£ Cv(x), 7/ > 0, where C is a constant
and ι (a ) is the Hardy-Littlewood maximal function of up(x)m. Note that
v(x) e L\R) and G(x, R)2-*0 as i2 —> oo. Now in the inequality

2J(r, Λ)

( G(x, Rfdx + 2β-χ + 2(Γ - K)~1R[ uP(x)dx , T> K ,
JR JΛ

letting first Γ—• oo and then i ϋ ^ oo, r -*0 , we have

2\ uP(iy)dy ^ I uP(x)dx ,

which completes the proof.
LEMMA 4. Lei Γ^ 6β a tube with base Ω which is an n-polygonal

cone in Rn. Let u 6 LH\TΩ) and let uP(X + iY) = u(X + i(p + Y)) where
p = (plf ...f pn)eΩ. Then for any XeRn

(5) ( up(X + i Y ) d Y £ 2n[ uP(X)dX .

PROOF. TO begin with, we suppose Ω is the first octant in Rn, i.e.,
Ω = {Y = (ylf - ',yn)£Rn\yi, , Vn > 0}. Clearly we may consider TΩ as
R\ x x /?+, the Cartesian product of n half-planes. Let Ω' — {Yr =
(2/2, '"fVn)\yif '' mt Vn > 0}. Then we can write TΩ = R\ x TΩ, and X +
iY=(xί + iylf X' + iY') for X + iYe TΩ. We shall show that if z1 ei?2

+

is fixed then u(zlf Z') belongs to LH\TΩ,) as a function of ^ ' 6 ΎΩ>. It is
clear that u(z19 Z') is log. plurisubharmonic on TΩ>. Take r > 0 such that
Δ — {w e C\ \w — z±\ ^ r}czR\ and let 3 = lmz1 — r. Since w(w, Z') is
subharmonic as a function of w = x1 + i ^ for an arbitrary Z' =
X' + iY' eTΩ,, we have
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u(zu Z') ^ (πr2)-1) ufa + iyu Z^dx.dVi
id

S (τrr2)-1Γr+''dy\ ufa + iyu Z')dxί .
Jδ JR

Integrating with respect to dXf = dx2 dxn we get

u(z19 Z')dX' ^ (πi*)-tfr+'dy\ u{x, + iyl9 Z')dX
1 J jnJδ

^ (π^-ΈrMiu, 1;TΩ).

Similarly, it is seen that if Z' e TΩ, is fixed then u(z19 Z
f) belongs to

LH\R\) as a function of zιsB?+ ([14, p. 116]). The inequality (5) is
proved in Lemma 3 for n = 1. Now we assume that it is valid for n — 1.
W r i t i n g pf — (p2, -—9pn)e Ω*, w e o b t a i n

uP(X + iY)dY - ( dyλ ufa + ί(ft + yj, X' + i(/of + r ) ) d r

uP(X)dX.

If i2 is an ^-polygonal cone we can proceed as in [14, p. 118]. Take n
linearly independent vectors generating Ω and let A be the matrix with
these vectors as its columns. Then the linear map X-+ AX, XeRn, trans-
forms the first octant A onto Ω and can be extended to Cn by A{Z) —
AX + ίAΫ,Z= X + iΫeC71. The function no A belongs to LH\TA), so
we have

S u(X + i(ρ + Y))d Y = I det A | ( (uoA)(X + i(p + Ϋ))d Ϋ
JΩ JΛ

^ 2-n I det AI ( (wo A)(J? + i ^ d X

= 2~n [ u(X + iρ)dX ,

which completes the proof.

THEOREM 1. Let D = D(42, Φ) 6e a Siegel domain in Cn x Cm with
an n-polygonal cone Ω. Let ue LHP(D), 0 < p < oo. Then for any Xe
Rn

\ u(X+i(Y+ Φ(W, W)\ W)*dYdW£ 2~nM(u, p; D) .
JΩxC™

PROOF. It suffices to prove for p = 1. For ε = (elf , εn) e Ω and



FEJέR-RIESZ INEQUALITY 587

WeCm put v(Z; ε, W) = u(Z+i(ε + Φ(W,W)), W), Z= X+ίYeTΩ.
Then it is seen from the same argument as in [12] t h a t v(Z; ε, W) belongs

to LH\TΩ) as a function of Z. I t follows from (5) t h a t for any peΩ

u(X +i(p + e+Y+Φ(W, W))f W)dY

rg 2-Λ u(X + ί(p + ε + Φ(W, W)\ W)dX .

Integration with respect to dW and arbitrariness of p + ε imply the
desired inequality. The proof of Theorem 1 is completed.

REMARK. It should be noted that the condition we imposed on the
cone Ω is not restrictive when n — 1 and 2. Thus all the results hold
for general Siegel domains for these cases.

Recall that Do is biholomorphic with the unit ball of Cm+1. We write
\W\2 = Σ f = i K l2 for WeCm.

COROLLARY 1. (i) Let ueLHp(TΩ). Then for any XeRn

u(X + iY)*dY^ 2-nM(u, p; TΩ) .

(ii) Let ueLHp(D0). Then for any xeR

\ u(x + i(y + \ W\2), WYdydW^ 2~1M(u, p; Do) .
JR+xCn

REMARK. The Poisson kernel for the unit disc U provides an example
that the Fejer-Riesz inequality does not necessarily hold for harmonic
functions on U ([2, p. 311]). Similarly, the Poisson kernel P(x, y) shows
that (i) is not necessarily valid for harmonic function on R\.

The following result is related to [13, Theorem C] and the first half
is known for \f\p, feHP{R\) ([6]). We write r ^ s if and only if s - re
{0} [JΩ for r,se Ω, and | Y\2 = Σ?=i t for Ye R\

THEOREM 2. Let u e LHP(D), 0 < p < oo 9 where D = D(Ω, Φ) with an
n-polygonal cone Ω. Let

^mu(X + i(Y + Φ(W, W)\ WydXdW, YeΩ .

Then τ/r( Y) is a decreasing function of Y. If Y^> Yo for some YoeΩ
and \Y\-+oo, then f (Γ)-+0.

PROOF. It is sufficient to prove for p = 1. First we prove the
assertions by induction on n assuming that Ω is the first octant in Rn

and ueLH\TΩ). We denote by ψ{n\Y) the integral of u(X + iY) with
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respect to dX over Rn. Let u e LH\R\). Suppose u is continuous and
let v = u1/2. Then v is subharmonic and M(v, 2; R\) < oo, It is proved
implicitly in [13, Theorem C] that in this case ψω(y) is a decreasing
function of y>0. When u is only upper semi-continuons, let Gp = {x + iy e
-β+l2/>/0}, |O>0, and let ur(ίc + i?/) be the function defined to be the mean
value of u over the disc of radius r, r < p, centered at the point x + iy.
ur is a continuous subharmonic function on Gp aud {wr} tends to u de-
creasingly as r—>0. It is seen from Fubini's theorem that M(ur, 1;GP)^
M(u,l;R%), hence ψ{r\y), the integral of ur(x + iy), is a decreasing
function of y > p. Taking limit as r —> 0, we can get the same conclusion
for u. Let h(x + iy) be the Poisson integral of vp(t) with a constant
p > 0. Then from the same reasoning as in Lemma 2 we can see that
vP(x + iy) is majorized by h(x + i#) on jβ+. The maximal function of vp

belongs to L2(R), so ψω(ρ + y) tends to 0 as y-* oo. Next supposing
ψn-χY') is a decreasing function, we can easily see that ψ{n\s) ^ ψ{n)(r)
if r ^ s in Ω. If | Γ | = \(y19 Y')\ -> oo, F ^ Fo, we may suppose y1-> oo
increasingly. Let ίx = ^ - ε > 0, ε > 0. From Γ ^ (ίlf Γo) we have

f{n\ Y) ^ ( u(x, + iί l f X' + i Yό)dX =\ dX'\ u(x, + itlf X' + i Yό)dx, .

Here, the inner integral tends to 0 decreasingly as tx —> oo for every
X'eiί71"1, so ψ(n\Y)—>0 as ^—^ oo. Let i2 be an ^-polygonal cone and
A be the matrix employed in the proof of Lemma 4. Then we can write

det AI ί (yoA)(X + i Ϋ)dX ,

where Y = AY, ΫeΛ. Since r ^ s in i2 if and only if r <: s in yί, α̂
is seen to be a decreasing function. The second assertion follows from
the fact that | F | -» <*> if and only if | Γ | -*<*>. Now let ueLH\D) and
T ^ s, r, s G Ω. Take ε 6 Ω so that r = ε + |0, s = ε + α" for some p, σ e Ω.
Then v(Z; ε, TFJeLίPtTa) for any WeCm, so we have

\ u(X+i(e + σ + Φ(W, W)), W)dX
JRn

^ ( u(X + i(ε + p + Φ(W, W)), W)dX .

I t follows t h a t <f(s) ^ -ψ (r). Finally t a k e εeΩ such t h a t Γ o = ε + Γo* for

some r0* € β . Then Y = ε + Y*, Y* ^ Fo*, and | Γ * | -»• oo. Therefore

Φ(W, W)), W)dX ,
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the left-hand side tending to 0 as | F | —> oo. The dominated convergence
theorem shows that ψ(Y) —>0 as |Y| —> oo. The proof is completed.

COROLLARY 2. Let ueLHp(D). Then u{Z + iΦ(W, W), W) belongs
to LHP(TΩ) as a function of ZeTΩ for almost every WeCm.

PROOF. Let p = 1. We can take a sequence {ε{j)}czΩ such that εω ^

ε(2) ^ . . . , e(i) _> o and ψ(ε{j)) -> Λf(w, 1; D) as i -> «. For TFe C™ let

i = 1, 2 , • • ,

= sup S wear + i( Y + Φ( W, W)), W)dX .

Then from the inequality (6) and the choice of {ε{j)} it follows that
gj(W)-+g(W) increasingly as j->°° for every WeCm. We can see that
g(W) < °° for a.e. W from

( g{W)dW = lim ψ(ε{j)) = M(u, 1; D)< oo .

3. The case of holomorphic functions. If feHp(R\), 0 < p < oo,
the boundary value f*(x) exists for a.e. xeR. Here f*eLp(R) and
/(# + î /) —> /*(ίc) as 2/ —> 0 in the sense of Lp-convergence. As a conse-
quence of Corollary 1 and Theorem 2 we have the inequality (1).

P R O P O S I T I O N 1. Let feHp(R\), 0 < p < oo. Then for any xeR

\f(x + iy) \pdy ^ 2

Let D be a Siegel domain in Cn x Cm and / e HP(D), 0 < p < oo. Then
the boundary value /* exists almost everywhere, i.e., f*(X + %Φ{W, W),
W) = limF_0 f(X + i(Y + Φ(W, W)), W) for a.e. (X, W) e Rn x Cm, and /* e
L»(Λn x Cm) ([12]).

PROPOSITION 2. Lβί Z) = D(Ω, Φ), where Ω is an n-polygonal cone in
Rn. Let f eHP(D), 0 < p < oo. Then for any XeRn

[ _Jf(X+i(Y+Φ(W, W)), W)\pdYdW

^Jf*(X+iΦ(W, W), W)\pdXdW.
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