The Fejér-Riesz inequality for Siegel domains

Nozomu Mochizuki

(Received October 28, 1983)

Introduction. The classical Fejér-Riesz inequality ([2]) was extended from the unit dise of the complex plane \boldsymbol{C} to balls and polydiscs of \boldsymbol{C}^{n} ([4], [9], and [10]). For unbounded domains, Hille and Tamarkin derived an analogous inequality. Let $f \in H^{p}\left(\boldsymbol{R}_{+}^{2}\right), 1 \leqq p<\infty$, where \boldsymbol{R}_{+}^{2} denotes the upper half-plane $\{z \in \boldsymbol{C} \mid \operatorname{Im} z>0\}$. Then the following holds for every $x \in \boldsymbol{R}$ ([5, Theorem 4.1]):

$$
\begin{equation*}
\int_{R_{+}}|f(x+i y)|^{p} d y \leqq 2^{-1} \sup _{y>0} \int_{R}|f(x+i y)|^{p} d x \tag{1}
\end{equation*}
$$

where \boldsymbol{R}_{+}denotes the positive numbers. Kawata [6] and Krylov [8] showed that the main results of the Hille-Tamarkin's H^{p} theory are valid for all $p>0$. The inequality (1) is also seen to hold in this case. Our purpose is to deal with this inequality in a setting of higher dimensions and a wider class of functions. We shall obtain an inequality of the same sort for functions u such that $u \geqq 0$ and $\log u$ are plurisubharmonic on certain Siegel domains in $\boldsymbol{C}^{n} \times \boldsymbol{C}^{m}$. The principal result is Theorem 1 in Section 2. Section 3 is concerned with Hardy space results.

1. Preliminaries. Let u be a real-valued function on \boldsymbol{R}_{+}^{2}. If $u \geqq 0$ and $\log u$ is subharmonic we shall call u a log. subharmonic function. Such functions are called functions of class $P L$ and then basic properties are found in [11]. We shall denote by $L H^{p}\left(\boldsymbol{R}_{+}^{2}\right), 0<p<\infty$, the class of log. subharmonic functions u satisfying the condition

$$
\begin{equation*}
M\left(u, p ; \boldsymbol{R}_{+}^{2}\right):=\sup _{y>0} \int_{R} u(x+i y)^{p} d x<\infty \tag{2}
\end{equation*}
$$

Let Ω be an open cone in \boldsymbol{R}^{n} which is the interior of the convex hull of n linearly independent half-lines starting from the origin. We shall call Ω an n-polygonal cone. The tube domain with base Ω is defined by $T_{\Omega}=\left\{X+i Y \in \boldsymbol{C}^{n} \mid X \in \boldsymbol{R}^{n}, Y \in \Omega\right\}$. Let u be a real-valued function defined on T_{Ω} and $u \geqq 0$. If $\log u$ is plurisubharmonic we shall call u a \log.

[^0]plurisubharmonic function. We define the class $L H^{p}\left(T_{\Omega}\right), 0<p<\infty$, as the family of log. plurisubharmonic functions u satisfying the condition
$$
M\left(u, p ; T_{\Omega}\right)=\sup _{Y \in \Omega} \int_{R^{n}} u(X+i Y)^{p} d X<\infty
$$
where $d X=d x_{1} \cdots d x_{n}$, the volume element in \boldsymbol{R}^{n}. The Hardy space $H^{p}\left(T_{\Omega}\right)$ consists of holomorphic functions f on T_{Ω} such that $M\left(|f|, p ; T_{\Omega}\right)<\infty$ ([14]). The Siegel domain of type II we shall throughout consider is the domain in $\boldsymbol{C}^{n} \times \boldsymbol{C}^{m}$ defined by an n-polygonal cone $\Omega \subset \boldsymbol{R}^{n}$ and an Ω hermitian form $\Phi: \boldsymbol{C}^{m} \times \boldsymbol{C}^{\boldsymbol{m}} \rightarrow \boldsymbol{C}^{n}$, i.e., $D=D(\Omega, \Phi)=\left\{(Z, W) \in \boldsymbol{C}^{n} \times\right.$ $\left.\boldsymbol{C}^{m} \mid \operatorname{Im} Z-\Phi(W, W) \in \Omega\right\}$. If $n=1, \Omega=\boldsymbol{R}_{+}$, and $\Phi(W, W)=\sum_{j=1}^{m}\left|w_{j}\right|^{2}$ for $W=\left(w_{1}, \cdots, w_{m}\right)$, the associated domain, D_{0}, is biholomorphic with the unit ball of \boldsymbol{C}^{m+1}. Let u be a log. plurisubharmonic function on D. Then $u(X+i(Y+\Phi(W, W)), W)$ is an upper semi-continuous function of $(X+$ $i Y, W) \in T_{\Omega} \times C^{m}$. We define the class $L H^{p}(D), 0<p<\infty$, as the totality of log. plurisubharmonic functions u on D satisfying
$$
M(u, p ; D)=\sup _{Y \in \Omega} \int_{R^{n} \times \boldsymbol{C}^{m}} u(X+i(Y+\Phi(W, W)), W)^{p} d X d W<\infty
$$
where $d W$ means the volume element in $\boldsymbol{R}^{2 m}=\boldsymbol{C}^{m}$. The Hardy space $H^{p}(D)$ is the class of holomorphic functions f on D such that $M(|f|, p ; D)<$ ∞ ([7]). If $f_{j} \in H^{p}(D), j=1, \cdots, l$, then $\sum_{j=1}^{l}\left|f_{j}\right| \in L H^{p}(D)$. If $u \in L H^{p}(D)$ and v is any plurisubharmonic function bounded above, then $u e^{v} \in L H^{p}(D)$. Thus $L H^{p}(D)$ contains discontinuous functions.

We shall frequently use the following basic result. This is found in [14, (4.9) in Chapter $I I$] and is valid without the assumption of continuity of u.

Lemma A. Let $u(x+i y)$ be a subharmonic function on the halfplane \boldsymbol{R}_{+}^{2} and $u \geqq 0$. If u satisfies the condition (2) with $p \geqq 1$, then $u(x+i y) \rightarrow 0$ as $x^{2}+y^{2} \rightarrow \infty$, provided $y \geqq \rho$ for a constant $\rho>0$.
2. The Fejér-Riesz inequality for the domain D. We begin by proving some lemmas. Arguments concerning \boldsymbol{R}_{+}^{2} were suggested by the methods of [1] and [2]. However, they must be substantially reformulated to work for the unbouded domain.

Lemma 1. Let $f(x+i y)$ be a holomorphic function on \boldsymbol{R}_{+}^{2}. Then the following inequality holds for $0<r<R, 0<T$:

$$
\begin{align*}
2 \int_{r}^{R}|f(i y)|^{2} d y \leqq & \int_{-T}^{T}|f(x+i r)|^{2} d x+\int_{-T}^{T}|f(x+i R)|^{2} d x \tag{3}\\
& +\int_{r}^{R}|f(-T+i y)|^{2} d y+\int_{r}^{R}|f(T+i y)|^{2} d y
\end{align*}
$$

Proof. Let E and E^{\prime} be the rectangles in R_{+}^{2} with vertices $-T+$ $i r, i r, i R,-T+i R$, and $i r, T+i r, T+i R, i R$, respectively. Then the Cauchy integral theorem applied to the holomorphic function $f(z)^{2}$ with respect to E and E^{\prime} implies

$$
\begin{aligned}
i \int_{r}^{R} f(i y)^{2} d y & =-\int_{-T}^{0} f(x+i r)^{2} d x+i \int_{r}^{R} f(-T+i y)^{2} d y+\int_{-T}^{0} f(x+i R)^{2} d x \\
& =\int_{0}^{T} f(x+i r)^{2} d x+i \int_{r}^{R} f(T+i y)^{2} d y-\int_{0}^{T} f(x+i R)^{2} d x
\end{aligned}
$$

It follows that

$$
\begin{aligned}
2\left|\int_{r}^{R} f(i y)^{2} d y\right| \leqq & \int_{-T}^{T}|f(x+i r)|^{2} d x+\int_{-T}^{T}|f(x+i R)|^{2} d x \\
& +\int_{r}^{R}|f(-T+i y)|^{2} d y+\int_{r}^{R}|f(T+i y)|^{2} d y
\end{aligned}
$$

If $f(z)$ is real-valued on the imaginary axis in \boldsymbol{R}_{+}^{2}, this becomes the inequality (3). In the general case, let $g(z)=2^{-1}(f(z)+\overline{f(-\bar{z})}), h(z)=$ $(2 i)^{-1}(f(z)-\overline{f(-\bar{z})}), z \in \boldsymbol{R}_{+}^{2}$. Then $g(z)$ add $h(z)$ are holomorphic on \boldsymbol{R}_{+}^{2} and real-valued on the imaginary axis, so satisfy the inequality (3). Note that $|f(i y)|^{2}=g(i y)^{2}+h(i y)^{2}, y \in \boldsymbol{R}$, and $|g(z)|^{2}+|h(z)|^{2}=2^{-1}\left(|f(z)|^{2}+\right.$ $\left.|f(-\bar{z})|^{2}\right), z \in \boldsymbol{R}_{+}^{2}$. It is easily verified that the inequality (3) is valid for $f(z)$. The proof is completed.

We shall write $P(x, y)=\pi^{-1} y\left(x^{2}+y^{2}\right)^{-1}$, the Poisson kernel for \boldsymbol{R}_{+}^{2}, and $u_{\rho}(x+i y)=u(x+i(\rho+y))$ for a constant ρ.

Lemma 2. Let $u \in L H^{1}\left(\boldsymbol{R}_{+}^{2}\right)$ and let $u_{\rho, \varepsilon}(x+i y)=\left(u_{\rho}(x+i y)+\varepsilon\right)^{1 / 2}$ for $\rho, \varepsilon>0$. Let

$$
\begin{equation*}
h_{\rho, \varepsilon}(x+i y)=\int_{R} \log u_{\rho, \varepsilon}(t) P(x-t, y) d t, \quad x+i y \in \boldsymbol{R}_{+}^{2} . \tag{4}
\end{equation*}
$$

Then $h_{\rho, \varepsilon}$ is a harmonic majorant of $\log u_{\rho, \varepsilon}$ on \boldsymbol{R}_{+}^{2}.
Proof. The sum of two log. subharmonic functions is log. subharmonic, so the function $\log u_{\rho, \varepsilon}$ is upper semi-continuous on the closure $\overline{\boldsymbol{R}_{+}^{2}}$ of \boldsymbol{R}_{+}^{2}, and subharmonic on \boldsymbol{R}_{+}^{2}. Lemma A implies that $\log u_{\rho, \varepsilon}(x+i y) \rightarrow$ $2^{-1} \log \varepsilon$ as $x^{2}+y^{2} \rightarrow \infty, y \geqq 0$. Thus $\log u_{\rho, \varepsilon}(t)$ is bounded on \boldsymbol{R} and $h_{\rho, \varepsilon}$ is defined and harmonic on the whole of \boldsymbol{R}_{+}^{2}. We can choose a sequence of bounded continuous functions $u_{k}(t)$ on \boldsymbol{R} such that $u_{1}(t) \geqq u_{2}(t) \geqq \cdots$ and $u_{k}(t) \rightarrow \log u_{\rho, s}(t)$ as $k \rightarrow \infty$. Let

$$
h_{k}(x+i y)=\int_{R} u_{k}(t) P(x-t, y) d t, \quad x+i y \in \boldsymbol{R}_{+}^{2}, \quad k=1,2, \cdots
$$

Then h_{k} are continuous on $\overline{\boldsymbol{R}_{+}^{2}}$, harmonic and satisfy $2^{-1} \log \varepsilon \leqq h_{k}$ on \boldsymbol{R}_{+}^{2}. Since $\log u_{\rho, \varepsilon}(t) \leqq u_{k}(t)=h_{k}(t), t \in \boldsymbol{R}$, the maximum principle for subharmonic functions implies that $\log u_{\rho, \varepsilon} \leqq h_{k}$ on \boldsymbol{R}_{+}^{2}. Letting $k \rightarrow \infty$ we get the relation $\log u_{\rho, \varepsilon} \leqq h_{\rho, \varepsilon}$. The proof is completed.

Lemma 3. Let $u \in L H^{1}\left(\boldsymbol{R}_{+}^{2}\right)$ and $\rho>0$. Then the following inequality holds for every $x \in \boldsymbol{R}$:

$$
\int_{R_{+}} u_{\rho}(x+i y) d y \leqq 2^{-1} \int_{R} u_{\rho}(x) d x
$$

Proof. We may assume that $x=0$. Let $\varepsilon>0$ and define the function $h_{\rho, \varepsilon}$ by (4). Let $F(z)=\exp \left(h_{\rho, \varepsilon}(z)+i g_{\rho, \varepsilon}(z)\right), z \in \boldsymbol{R}_{+}^{2}$, where $g_{\rho, \varepsilon}$ is so chosen that $h_{\rho, \varepsilon}+i g_{\rho, \varepsilon}$ is holomorphic. From Lemma 2 we see that $u_{\rho}(z)+\varepsilon \leqq$ $\exp \left(2 h_{\rho, \varepsilon}(z)\right)=|F(z)|^{2}$. Let $0<r<R, 0<T$. The inequality (3) applied to $F(z)$ implies that

$$
\begin{aligned}
2 I(r, R):= & 2 \int_{r}^{R} u_{\rho}(i y) d y<2 \int_{r}^{R}|F(i y)|^{2} d y \\
\leqq & \int_{-T}^{T}|F(x+i r)|^{2} d x+\int_{-T}^{T}|F(x+i R)|^{2} d x \\
& +\int_{r}^{R}|F(-T+i y)|^{2} d y+\int_{r}^{R}|F(T+i y)|^{2} d y
\end{aligned}
$$

Using inequalities

$$
|F(z)|^{2} \leqq\left(\int_{R} u_{\rho, \varepsilon}(t) P(x-t, y) d t\right)^{2} \leqq \int_{R} u_{\rho, \epsilon}(t)^{2} P(x-t, y) d t
$$

we have

$$
\begin{aligned}
2 I(r, R)< & \int_{-T}^{T} d x \int_{R} u_{\rho, \varepsilon}(t)^{2} P(x-t, r) d t+\int_{-T}^{T}\left(\int_{R} u_{\rho, \varepsilon}(t) P(x-t, R) d t\right)^{2} d x \\
& +\int_{r}^{R} d y \int_{R} u_{\rho, \varepsilon}(t)^{2} P(-T-t, y) d t+\int_{r}^{R} d y \int_{R} u_{\rho, \varepsilon}(t)^{2} P(T-t, y) d t
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$ we see that

$$
\begin{aligned}
2 I(r, R) \leqq & \int_{-T}^{T} d x \int_{R} u_{\rho}(t) P(x-t, r) d t+\int_{-T}^{T}\left(\int_{R} u_{\rho}(t)^{1 / 2} P(x-t, R) d t\right)^{2} d x \\
& +\int_{r}^{R} d y \int_{R} u_{\rho}(t) P(-T-t, y) d t+\int_{r}^{R} d y \int_{R} u_{\rho}(t) P(T-t, y) d t \\
= & : I_{1}(r, T)+I_{2}(R, T)+I_{3}(r, R, T)+I_{4}(r, R, T)
\end{aligned}
$$

Clearly, $I_{1}(r, T) \leqq \int_{R} u_{\rho}(t) d t$. We treat $I_{j}, j=3$, 4. Let

$$
v(\mp T, y)=\int_{R} u_{\rho}(t) P(\mp T-t, y) d t
$$

Since $u_{\rho}(t) \rightarrow 0$ as $|t| \rightarrow \infty$ by Lemma A, we can take $K>0$ such that $u_{\rho}(t)<R^{-2}$ for $|t|>K$. Using the inequality $y\left(a^{2}+y^{2}\right)^{-1}<a^{-1}$ for $a, y>$ 0 and taking an arbitrary $T>K$, we can see that

$$
v(\mp T, y)<R^{-2}+\int_{|t| \leqq K} u_{\rho}(t) P(\mp T-t, y) d t<R^{-2}+(T-K)^{-1} \int_{R} u_{\rho}(t) d t
$$

It follows that

$$
I_{j}(r, R, T)<R^{-1}+(T-K)^{-1} R \int_{R} u_{\rho}(t) d t, \quad T>K, \quad j=3,4
$$

To estimate the integral $I_{2}(R, T)$, let

$$
G(x, y)=\int_{R} u_{\rho}(t)^{1 / 2} P(x-t, y) d t, \quad x+i y \in \boldsymbol{R}_{+}^{2}
$$

Since $u_{\rho}(t)^{1 / 2} \in L^{2}(\boldsymbol{R})$, we have $G(x, y) \leqq C v(x), y>0$, where C is a constant and $v(x)$ is the Hardy-Littlewood maximal function of $u_{\rho}(x)^{1 / 2}$. Note that $v(x) \in L^{2}(\boldsymbol{R})$ and $G(x, R)^{2} \rightarrow 0$ as $R \rightarrow \infty$. Now in the inequality $2 I(r, R)$

$$
\leqq \int_{R} u_{\rho}(x) d x+\int_{R} G(x, R)^{2} d x+2 R^{-1}+2(T-K)^{-1} R \int_{R} u_{\rho}(x) d x, \quad T>K
$$

letting first $T \rightarrow \infty$ and then $R \rightarrow \infty, r \rightarrow 0$, we have

$$
2 \int_{R_{+}} u_{\rho}(i y) d y \leqq \int_{R} u_{\rho}(x) d x
$$

which completes the proof.
Lemma 4. Let T_{Ω} be a tube with base Ω which is an n-polygonal cone in \boldsymbol{R}^{n}. Let $u \in L H^{1}\left(T_{\Omega}\right)$ and let $u_{\rho}(X+i Y)=u(X+i(\rho+Y))$ where $\rho=\left(\rho_{1}, \cdots, \rho_{n}\right) \in \Omega$. Then for any $X \in \boldsymbol{R}^{n}$

$$
\begin{equation*}
\int_{\Omega} u_{\rho}(X+i Y) d Y \leqq 2^{-n} \int_{R^{n}} u_{\rho}(X) d X \tag{5}
\end{equation*}
$$

Proof. To begin with, we suppose Ω is the first octant in \boldsymbol{R}^{n}, i.e., $\Omega=\left\{Y=\left(y_{1}, \cdots, y_{n}\right) \in \boldsymbol{R}^{n} \mid y_{1}, \cdots, y_{n}>0\right\}$. Clearly we may consider T_{Ω} as $\boldsymbol{R}_{+}^{2} \times \cdots \times \boldsymbol{R}_{+}^{2}$, the Cartesian product of n half-planes. Let $\Omega^{\prime}=\left\{Y^{\prime}=\right.$ $\left.\left(y_{2}, \cdots, y_{n}\right) \mid y_{2}, \cdots, y_{n}>0\right\}$. Then we can write $T_{\Omega}=\boldsymbol{R}_{+}^{2} \times T_{\Omega^{\prime}}$ and $X+$ $i Y=\left(x_{1}+i y_{1}, X^{\prime}+i Y^{\prime}\right)$ for $X+i Y \in T_{\Omega}$. We shall show that if $z_{1} \in \boldsymbol{R}_{+}^{2}$ is fixed then $u\left(z_{1}, Z^{\prime}\right)$ belongs to $L H^{1}\left(T_{\Omega^{\prime}}\right)$ as a function of $Z^{\prime} \in T_{\Omega^{\prime}}$. It is clear that $u\left(z_{1}, Z^{\prime}\right)$ is log. plurisubharmonic on $T_{\Omega^{\prime}}$. Take $r>0$ such that $\Delta=\left\{w \in \boldsymbol{C}| | w-z_{1} \mid \leqq r\right\} \subset \boldsymbol{R}_{+}^{2}$ and let $\delta=\operatorname{Im} z_{1}-r$. Since $u\left(w, Z^{\prime}\right)$ is subharmonic as a function of $w=x_{1}+i y_{1}$ for an arbitrary $Z^{\prime}=$ $X^{\prime}+i Y^{\prime} \in T_{\Omega^{\prime}}$, we have

$$
\begin{aligned}
u\left(z_{1}, Z^{\prime}\right) & \leqq\left(\pi r^{2}\right)^{-1} \int_{\Delta} u\left(x_{1}+i y_{1}, Z^{\prime}\right) d x_{1} d y_{1} \\
& \leqq\left(\pi r^{2}\right)^{-1} \int_{\delta}^{2 r+\delta} d y_{1} \int_{R} u\left(x_{1}+i y_{1}, Z^{\prime}\right) d x_{1}
\end{aligned}
$$

Integrating with respect to $d X^{\prime}=d x_{2} \cdots d x_{n}$ we get

$$
\begin{aligned}
\int_{R^{n-1}} u\left(z_{1}, Z^{\prime}\right) d X^{\prime} & \leqq\left(\pi r^{2}\right)^{-1} \int_{\delta}^{2 r+\delta} d y_{1} \int_{R^{n}} u\left(x_{1}+i y_{1}, Z^{\prime}\right) d X \\
& \leqq\left(\pi r^{2}\right)^{-1} 2 r M\left(u, 1 ; T_{\Omega}\right) .
\end{aligned}
$$

Similarly, it is seen that if $Z^{\prime} \in T_{\Omega^{\prime}}$ is fixed then $u\left(z_{1}, Z^{\prime}\right)$ belongs to $L H^{1}\left(\boldsymbol{R}_{+}^{2}\right)$ as a function of $z_{1} \in \boldsymbol{R}_{+}^{2}$ ([14, p. 116]). The inequality (5) is proved in Lemma 3 for $n=1$. Now we assume that it is valid for $n-1$. Writing $\rho^{\prime}=\left(\rho_{2}, \cdots, \rho_{n}\right) \in \Omega^{\prime}$, we obtain

$$
\begin{aligned}
\int_{\Omega} u_{\rho}(X+i Y) d Y & =\int_{R_{+}} d y_{1} \int_{\Omega^{\prime}} u\left(x_{1}+i\left(\rho_{1}+y_{1}\right), X^{\prime}+i\left(\rho^{\prime}+Y^{\prime}\right)\right) d Y^{\prime} \\
& \leqq 2^{-(n-1)} \int_{R^{n-1}} d X^{\prime} \int_{R_{+}} u\left(x_{1}+i\left(\rho_{1}+y_{1}\right), X^{\prime}+i \rho^{\prime}\right) d y_{1} \\
& \leqq 2^{-n} \int_{R^{n}} u_{\rho}(X) d X
\end{aligned}
$$

If Ω is an n-polygonal cone we can proceed as in [14, p. 118]. Take n linearly independent vectors generating Ω and let A be the matrix with these vectors as its columns. Then the linear map $\widetilde{X} \rightarrow A \widetilde{X}, \widetilde{X} \in \boldsymbol{R}^{n}$, transforms the first octant Λ onto Ω and can be extended to C^{n} by $A(\widetilde{Z})=$ $A \widetilde{X}+i A \widetilde{Y}, \widetilde{Z}=\widetilde{X}+i \widetilde{Y} \in C^{n}$. The function $u \circ A$ belongs to $L H^{1}\left(T_{A}\right)$, so we have

$$
\begin{aligned}
\int_{\Omega} u(X+i(\rho+Y)) d Y & =|\operatorname{det} \mathrm{A}| \int_{A}(u \circ A)(\tilde{X}+i(\tilde{\rho}+\tilde{Y})) d \tilde{Y} \\
& \leqq 2^{-n}|\operatorname{det} A| \int_{R^{n}}(u \circ A)(\tilde{X}+i \tilde{\rho}) d \tilde{X} \\
& =2^{-n} \int_{R^{n}} u(X+i \rho) d X
\end{aligned}
$$

which completes the proof.
Theorem 1. Let $D=D(\Omega, \Phi)$ be a Siegel domain in $\boldsymbol{C}^{n} \times \boldsymbol{C}^{m}$ with an n-polygonal cone Ω. Let $u \in L H^{p}(D), 0<p<\infty$. Then for any $X \in$ \boldsymbol{R}^{n}

$$
\int_{\Omega \times c^{m}} u(X+i(Y+\Phi(W, W)), W)^{p} d Y d W \leqq 2^{-n} M(u, p ; D)
$$

Proof. It suffices to prove for $p=1$. For $\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right) \in \Omega$ and
$W \in \boldsymbol{C}^{m}$ put $v(Z ; \varepsilon, W)=u(Z+i(\varepsilon+\Phi(W, W)), W), Z=X+i Y \in T_{\Omega}$. Then it is seen from the same argument as in [12] that $v(Z ; \varepsilon, W)$ belongs to $L H^{1}\left(T_{\Omega}\right)$ as a function of Z. It follows from (5) that for any $\rho \in \Omega$

$$
\begin{aligned}
& \int_{\Omega} u(X+i(\rho+\varepsilon+Y+\Phi(W, W)), W) d Y \\
& \quad \leqq 2^{-n} \int_{R^{n}} u(X+i(\rho+\varepsilon+\Phi(W, W)), W) d X .
\end{aligned}
$$

Integration with respect to $d W$ and arbitrariness of $\rho+\varepsilon$ imply the desired inequality. The proof of Theorem 1 is completed.

Remark. It should be noted that the condition we imposed on the cone Ω is not restrictive when $n=1$ and 2 . Thus all the results hold for general Siegel domains for these cases.

Recall that D_{0} is biholomorphic with the unit ball of \boldsymbol{C}^{m+1}. We write $|W|^{2}=\sum_{j=1}^{m}\left|w_{j}\right|^{2}$ for $W \in \boldsymbol{C}^{m}$.

Corollary 1. (i) Let $u \in L H^{p}\left(T_{\Omega}\right)$. Then for any $X \in \boldsymbol{R}^{n}$

$$
\int_{\Omega} u(X+i Y)^{p} d Y \leqq 2^{-n} M\left(u, p ; T_{\Omega}\right)
$$

(ii) Let $u \in L H^{p}\left(D_{0}\right)$. Then for any $x \in \boldsymbol{R}$

$$
\int_{R_{+} \times c^{m}} u\left(x+i\left(y+|W|^{2}\right), W\right)^{p} d y d W \leqq 2^{-1} M\left(u, p ; D_{0}\right) .
$$

Remark. The Poisson kernel for the unit disc U provides an example that the Fejér-Riesz inequality does not necessarily hold for harmonic functions on U ([2, p. 311]). Similarly, the Poisson kernel $P(x, y)$ shows that (i) is not necessarily valid for harmonic function on \boldsymbol{R}_{+}^{2}.

The following result is related to [13, Theorem C] and the first half is known for $|f|^{p}, f \in H^{p}\left(\boldsymbol{R}_{+}^{2}\right)$ ([6]). We write $r \leqq s$ if and only if $s-r \in$ $\{0\} \cup \Omega$ for $r, s \in \Omega$, and $|Y|^{2}=\sum_{j=1}^{n} y^{2}$ for $Y \in \boldsymbol{R}^{n}$.

Theorem 2. Let $u \in L H^{p}(D), 0<p<\infty$, where $D=D(\Omega, \Phi)$ with an n-polygonal cone Ω. Let

$$
\psi(Y)=\int_{R^{n} \times c_{m}^{m}} u(X+i(Y+\Phi(W, W)), W)^{p} d X d W, \quad Y \in \Omega
$$

Then $\psi(Y)$ is a decreasing function of Y. If $Y \geqq Y_{0}$ for some $Y_{0} \in \Omega$ and $|Y| \rightarrow \infty$, then $\psi(Y) \rightarrow 0$.

Proof. It is sufficient to prove for $p=1$. First we prove the assertions by induction on n assuming that Ω is the first octant in \boldsymbol{R}^{n} and $u \in L H^{1}\left(T_{\Omega}\right)$. We denote by $\psi^{(n)}(Y)$ the integral of $u(X+i Y)$ with
respect to $d X$ over \boldsymbol{R}^{n}. Let $u \in L H^{1}\left(\boldsymbol{R}_{+}^{2}\right)$. Suppose u is continuous and let $v=u^{1 / 2}$. Then v is subharmonic and $M\left(v, 2 ; \boldsymbol{R}_{+}^{2}\right)<\infty$. It is proved implicitly in [13, Theorem C] that in this case $\psi^{(1)}(y)$ is a decreasing function of $y>0$. When u is only upper semi-continuons, let $G_{\rho}=\{x+i y \in$ $\left.\boldsymbol{R}_{+}^{2} \mid y>\rho\right\}, \rho>0$, and let $u_{r}(x+i y)$ be the function defined to be the mean value of u over the disc of radius $r, r<\rho$, centered at the point $x+i y$. u_{r} is a continuous subharmonic function on G_{ρ} aud $\left\{u_{r}\right\}$ tends to u decreasingly as $r \rightarrow 0$. It is seen from Fubini's theorem that $M\left(u_{r}, 1 ; G_{\rho}\right) \leqq$ $M\left(u, 1 ; \boldsymbol{R}_{+}^{2}\right)$, hence $\psi_{r}^{(1)}(y)$, the integral of $u_{r}(x+i y)$, is a decreasing function of $y>\rho$. Taking limit as $r \rightarrow 0$, we can get the same conclusion for u. Let $h(x+i y)$ be the Poisson integral of $v_{p}(t)$ with a constant $\rho>0$. Then from the same reasoning as in Lemma 2 we can see that $v_{\rho}(x+i y)$ is majorized by $h(x+i y)$ on \boldsymbol{R}_{+}^{2}. The maximal function of v_{ρ} belongs to $L^{2}(\boldsymbol{R})$, so $\psi^{(1)}(\rho+y)$ tends to 0 as $y \rightarrow \infty$. Next supposing $\psi^{n-1}\left(Y^{\prime}\right)$ is a decreasing function, we can easily see that $\psi^{(n)}(s) \leqq \psi^{(n)}(r)$ if $r \leqq s$ in Ω. If $|Y|=\left|\left(y_{1}, Y^{\prime}\right)\right| \rightarrow \infty, Y \geqq Y_{0}$, we may suppose $y_{1} \rightarrow \infty$ increasingly. Let $t_{1}=y_{1}-\varepsilon>0, \varepsilon>0$. From $Y \geqq\left(t_{1}, Y_{0}^{\prime}\right)$ we have

$$
\psi^{(n)}(Y) \leqq \int_{R^{n}} u\left(x_{1}+i t_{1}, X^{\prime}+i Y_{0}^{\prime}\right) d X=\int_{R^{n-1}} d X^{\prime} \int_{R} u\left(x_{1}+i t_{1}, X^{\prime}+i Y_{0}^{\prime}\right) d x_{1}
$$

Here, the inner integral tends to 0 decreasingly as $t_{1} \rightarrow \infty$ for every $X^{\prime} \in \boldsymbol{R}^{n-1}$, so $\psi^{(n)}(Y) \rightarrow 0$ as $y_{1} \rightarrow \infty$. Let Ω be an n-polygonal cone and A be the matrix employed in the proof of Lemma 4. Then we can write

$$
\psi^{(n)}(Y)=|\operatorname{det} A| \int_{R^{n}}(u \circ A)(\tilde{X}+i \tilde{Y}) d \tilde{X},
$$

where $Y=A \widetilde{Y}, \widetilde{Y} \in \Lambda$. Since $r \leqq s$ in Ω if and only if $\widetilde{r} \leqq \widetilde{s}$ in Λ, $\psi^{(n)}(Y)$ is seen to be a decreasing function. The second assertion follows from the fact that $|Y| \rightarrow \infty$ if and only if $|\tilde{Y}| \rightarrow \infty$. Now let $u \in L H^{1}(D)$ and $r \leqq s, r, s \in \Omega$. Take $\varepsilon \in \Omega$ so that $r=\varepsilon+\rho, s=\varepsilon+\sigma$ for some $\rho, \sigma \in \Omega$. Then $v(Z ; \varepsilon, W) \in L H^{1}\left(T_{\Omega}\right)$ for any $W \in C^{m}$, so we have

$$
\begin{align*}
& \int_{R^{n}} u(X+i(\varepsilon+\sigma+\Phi(W, W)), W) d X \tag{6}\\
& \quad \leqq \int_{R^{n}} u(X+i(\varepsilon+\rho+\Phi(W, W)), W) d X .
\end{align*}
$$

It follows that $\psi(s) \leqq \psi(r)$. Finally take $\varepsilon \in \Omega$ such that $Y_{0}=\varepsilon+Y_{0}^{*}$ for some $Y_{0}^{*} \in \Omega$. Then $Y=\varepsilon+Y^{*}, Y^{*} \geqq Y_{0}^{*}$, and $\left|Y^{*}\right| \rightarrow \infty$. Therefore

$$
\begin{aligned}
& \int_{R^{n}} u\left(X+i\left(\varepsilon+Y^{*}+\Phi(W, W)\right), W\right) d X \\
& \quad \leqq \int_{R^{n}} u\left(X+i\left(Y_{0}+\Phi(W, W)\right), W\right) d X,
\end{aligned}
$$

the left-hand side tending to 0 as $|Y| \rightarrow \infty$. The dominated convergence theorem shows that $\psi(Y) \rightarrow 0$ as $|Y| \rightarrow \infty$. The proof is completed.

Corollary 2. Let $u \in L H^{p}(D)$. Then $u(Z+i \Phi(W, W), W)$ belongs to $L H^{p}\left(T_{\Omega}\right)$ as a function of $Z \in T_{\Omega}$ for almost every $W \in \boldsymbol{C}^{m}$.

Proof. Let $p=1$. We can take a sequence $\left\{\varepsilon^{(j)}\right\} \subset \Omega$ such that $\varepsilon^{(1)} \geqq$ $\varepsilon^{(2)} \geqq \cdots, \varepsilon^{(j)} \rightarrow 0$ and $\psi\left(\varepsilon^{(j)}\right) \rightarrow M(u, 1 ; D)$ as $j \rightarrow \infty$. For $W \in C^{m}$ let

$$
\begin{aligned}
g_{j}(W)= & \int_{R^{n}} u\left(X+i\left(\varepsilon^{(j)}+\Phi(W, W)\right), W\right) d X, \quad j=1,2, \cdots, \\
& g(W)=\sup _{Y \in \Omega} \int_{R^{n}} u(X+i(Y+\Phi(W, W)), W) d X
\end{aligned}
$$

Then from the inequality (6) and the choice of $\left\{\varepsilon^{(j)}\right\}$ it follows that $g_{j}(W) \rightarrow g(W)$ increasingly as $j \rightarrow \infty$ for every $W \in \boldsymbol{C}^{m}$. We can see that $g(W)<\infty$ for a.e. W from

$$
\int_{C^{m}} g(W) d W=\lim _{j \rightarrow \infty} \psi\left(\varepsilon^{(j)}\right)=M(u, 1 ; D)<\infty
$$

3. The case of holomorphic functions. If $f \in H^{p}\left(\boldsymbol{R}_{+}^{2}\right), 0<p<\infty$, the boundary value $f^{*}(x)$ exists for a.e. $x \in \boldsymbol{R}$. Here $f^{*} \in L^{p}(\boldsymbol{R})$ and $f(x+i y) \rightarrow f^{*}(x)$ as $y \rightarrow 0$ in the sense of L^{p}-convergence. As a consequence of Corollary 1 and Theorem 2 we have the inequality (1).

Proposition 1. Let $f \in H^{p}\left(\boldsymbol{R}_{+}^{2}\right), 0<p<\infty$. Then for any $x \in \boldsymbol{R}$

$$
\int_{R_{+}}|f(x+i y)|^{p} d y \leqq 2^{-1} \int_{R}\left|f^{*}(x)\right|^{p} d x
$$

Let D be a Siegel domain in $\boldsymbol{C}^{n} \times \boldsymbol{C}^{m}$ and $f \in H^{p}(D), 0<p<\infty$. Then the boundary value f^{*} exists almost everywhere, i.e., $f^{*}(X+i \Phi(W, W)$, $W)=\lim _{Y \rightarrow 0} f(X+i(Y+\Phi(W, W)), W)$ for a.e. $(X, W) \in \boldsymbol{R}^{n} \times \boldsymbol{C}^{m}$, and $f^{*} \in$ $L^{p}\left(\boldsymbol{R}^{n} \times \boldsymbol{C}^{m}\right)([12])$.

Proposition 2. Let $D=D(\Omega, \Phi)$, where Ω is an n-polygonal cone in \boldsymbol{R}^{n}. Let $f \in H^{p}(D), 0<p<\infty$. Then for any $X \in \boldsymbol{R}^{n}$

$$
\begin{aligned}
& \int_{\Omega \times c^{m}}|f(X+i(Y+\Phi(W, W)), W)|^{p} d Y d W \\
& \quad \leqq 2^{-n} \int_{R^{n} \times c^{m}}\left|f^{*}(X+i \Phi(W, W), W)\right|^{p} d X d W
\end{aligned}
$$

References

[1] E. F. Beckenbach, On a theorem of Fejér and Riesz, J. London Math. Soc. 13 (1938), 82-86.
[2] L. Fejér und F. Riesz, Uber einige funktionentheoretische Ungleichungen, Math. Z. 11 (1921), 305-314.
[3] R. M. Gabriel, An inequality concerning the integrals of positive subharmonic functions along certain circles, J. London Math. Soc. 5 (1930), 129-131.
[4] M. Hasumi and N. Mochizuki, Fejér-Riesz inequality for holomorphic functions of several complex variables, Tôhoku Math. J. 33 (1981), 493-501.
[5] E. Hille and J. D. Tamarkin, On the absolute integrability of Fourier transforms, Fund. Math. 25 (1935), 329-352.
[6] T. Kawata, On analytic functions regular in the half-plane (I), Japan. J. Math. 13 (1936), 421-430.
[7] A. Korányi, The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. 82 (1965), 332-350.
[8] V. I. Krylov, On functions regular in a half-plane, Mat. Sb. 6 (48) (1939), 95-138. English transl: Amer. Math. Soc. Transl. (2) 32 (1963), 37-81.
[9] N. Mochizuki, Inequalities of Fejér-Riesz type for holomorphic functions on certain product domains, Tôhoku Math. J. 34 (1982), 367-372.
[10] N. Mochizuki, A class of subharmonic functions and integral inequalities, ibid. 35 (1983), 475-482.
[11] T. Rad6, Subharmonic functions, Ergebnisse der Mathematik und ihrer Grenzgebiete 5, Springer-Verlag, 1937.
[12] E. M. Stein, Note on the boundary values of holomorphic functions, Ann. of Math. 82 (1965), 351-353.
[13] E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables, I. The theory of H^{p} spaces, Acta Math. 103 (1960), 25-62.
[14] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, NJ, 1975.

Department of Mathematics
College of General Education
Tôhoku University
Kawauchi, Sendai 980
Japan

[^0]: Partially supported by the Grand-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan.

