ON ZETA-FUNCTIONS AND CYCLOTOMIC Z_{p}-EXTENSIONS OF ALGEBRAIC NUMBER FIELDS

Keilichi Komatsu

(Received September 20, 1983)

1. In Tate [5] and Turner [7], the following result is proved:

Theorem. Let k, k^{\prime} be function fields in one variable over a finite constant field \boldsymbol{F} and ζ_{k}, $\zeta_{k^{\prime}}$ Dedekind zeta-functions of k, k^{\prime}. Let C, C^{\prime} be complete non-singular curves defined over \boldsymbol{F} with function fields isomorphic to k, k^{\prime} and $J(C), J\left(C^{\prime}\right)$ the Jacobian varieties of C, C^{\prime}. Then the following are equivalent:
(1) $\zeta_{k}=\zeta_{k^{\prime}}$.
(2) $J(C)$ and $J\left(C^{\prime}\right)$ are \boldsymbol{F}-isogenous.

In the present paper, we shall investigate the situation which arises when we replace the function fields by the algebraic number fields. In [2] and [3], Iwasawa discussed analogues of Jacobian varieties in this situation. We shall see that these analogues play some roles in this question.

Let \boldsymbol{Q} be the rational number field, k, k^{\prime} finite algebraic extensions of \boldsymbol{Q} and ζ_{k}, $\zeta_{k^{\prime}}$ the Dedekind zeta-functions of k and k^{\prime}, respectively. Perlis [4] gave interesting consequences from $\zeta_{k}=\zeta_{k^{\prime}}$. Using his method, we shall obtain the following results:

Let p be a prime number, $k(p)$ the maximal abelian pro- p-extension of k and $G_{k}(p)$ the Galois group of $k(p)$ over k. For these and also for other notations which will be introduced afterwards, we adopt similar notations for k^{\prime}. Let \boldsymbol{Z}_{p} be the p-adic integer ring and k_{∞} the cyclotomic $\boldsymbol{Z}_{p^{\prime}}$-extension of k. We shall prove that $\zeta_{k}=\zeta_{k^{\prime}}$ implies $G_{k}(p) \cong G_{k^{\prime}}(p)$ and $G_{k_{\infty}}(p) \cong G_{k_{\infty}^{\prime}}(p)$ for almost all prime numbers p. Let \widetilde{k}_{∞} the maximal unramified abelian pro-p-extension of k_{∞} and $Y_{k}(p)$ the Galois group of $\widetilde{k}_{\infty} / k_{\infty}$. Let A and A^{\prime} be the p-primary subgroups of ideal class groups of k_{∞} and k_{∞}^{\prime}, respectively. Let $X_{k}(p)$ be the Pontrjagin dual of the discrete group A. Let α_{p} be a primitive p-th root of 1 . We shall prove that $\zeta_{k}=\zeta_{k^{\prime}}$ implies $X_{k\left(\alpha_{p}\right)}(p) \cong X_{k^{\prime}\left(\alpha_{p}\right)}(p)$ and $Y_{k\left(\alpha_{p}\right)}(p) \cong Y_{k^{\prime}\left(\alpha_{p}\right)}(p)$ for almost all prime numbers p. The duals of $X_{k\left(\alpha_{p}\right)}(p)$ and $Y_{k\left(\alpha_{p}\right)}(p)$ are regarded as analogies of the Jacobian variety in our situation (cf. [2], [3]), so that this can be interpreted as an analogue of the fact that (1) implies (2) in the
case of function fields. We are not in a position now to prove an analogue of (2) implies (1) in our case, but it is conjectured that $k \neq \boldsymbol{Q}$ would imply that there exist some primes p such that $Y_{k}(p) \neq 0$. (This can be in fact proved in case k is not totally real, as shown below.) In our last paragraph, we shall give such p 's for some real quadratic fields k.

In this paper, \boldsymbol{Z} and \boldsymbol{R} denote the ring of rational integers and the field of real numbers. As already mentioned, \boldsymbol{Q} denotes the rational number field. For a finite algebraic number field k, we denote by k_{A}^{\times}the idele group of k.
2. Let k and k^{\prime} be finite algebraic number fields such that $\zeta_{k}=\zeta_{k^{\prime}}$. Let L be the Galois closure of k over \boldsymbol{Q}. It is well known that $L \supset k^{\prime}$ and that the degree $(k ; \boldsymbol{Q})$ is equal to $\left(k^{\prime} ; \boldsymbol{Q}\right)$. Let G be the Galois group $G(L / \boldsymbol{Q})$ of L over $\boldsymbol{Q}, H=G(L / k)$ and $H^{\prime}=G\left(L / k^{\prime}\right)$. Let $s=(k ; \boldsymbol{Q})$. Let D and D^{\prime} be the linear representations of G induced by the unit representations of H and H^{\prime}. Let Z be the integer ring and $M_{s}(Z)$ the set of all integral $s \times s$ matrices. We put

$$
\mathfrak{M}_{0}=\left\{M \in M_{s}(\boldsymbol{Z}) \mid \operatorname{det}(M) \neq 0, D(g) M=M D^{\prime}(g) \text { for every } g \in G\right\}
$$

By [4] and [7], we see that \mathfrak{M}_{0} is not empty. The following Lemma is also proved in [4].

Lemma 1 (cf. [4, Theorem 1]). Let $\nu=\operatorname{gcd}\left\{\operatorname{det}(M) \mid M \in \mathfrak{M}_{0}\right\}$. Then every prime number dividing ν divides $(L ; k)$.

Let $\rho_{1}, \cdots, \rho_{s}$ and $\rho_{1}^{\prime}, \cdots, \rho_{s}^{\prime}$ be representatives for left cosets of G by H and H^{\prime}, with $\rho_{1}=\rho_{1}^{\prime}=1$. Let L^{\times}be the multiplicative group of L. For a matrix $A=\left(a_{i j}\right) \in M_{s}(Z)$, we now define an endomorphism μ_{A} of L^{\times}by $\mu_{A}(x)=\prod_{i=1}^{s} \rho_{i}(x)^{a_{i 1}}$ for $x \in L^{\times}$. We also define an endomorphism of L^{\times}by $\mu_{A}^{\prime}(x)=\Pi_{i=1}^{s} \rho_{i}^{\prime}(x)^{a_{i 1}}$. Then we have the following:

Lemma 2 (cf. [4, Lemma 5]). For matrices A and B in \mathfrak{M}_{0} and for $a \in k^{\times}$, we have
(1) $\mu_{A}\left(k^{\times}\right) \subset k^{\prime \times}$.
(2) $\mu_{B^{t}}\left(\mu_{A}(a)\right)=\mu_{A B^{t}}(a)$. Here B^{t} is the transpose of B.

Let $k^{a b}$ be the maximal abelian extension of k. Let M be a matrix in \mathfrak{M}_{0}. We now define a homomorphism of $G\left(k^{a b} / k\right)$ into $G\left(k^{\prime a b} / k^{\prime}\right)$ induced by μ_{μ}.

Lemma 3. Let v be a place of $\boldsymbol{Q}, \boldsymbol{Q}_{v}$ the completion of \boldsymbol{Q} at v and $k \otimes_{\mathbb{Q}} \boldsymbol{Q}_{v}$ the tensor product of k and \boldsymbol{Q}_{v}. Then there exists a continuous homomorphism $\mu_{\mu, v}$ of $\left(k \otimes_{\mathbb{Q}} \boldsymbol{Q}_{v}\right)^{\times}$into $\left(k^{\prime} \otimes_{\mathbb{Q}} \boldsymbol{Q}_{v}\right)^{\times}$such that $i^{\prime}\left(\mu_{M}(a)\right)=\mu_{\mu, v}(i(a))$ for any element a of k^{\times}. Here i is a natural injec-
tion of k into $k \otimes_{Q} \boldsymbol{Q}_{v}$, while i^{\prime} is a natural injection of k^{\prime} into $k^{\prime} \otimes_{Q} \boldsymbol{Q}_{v}$.
Proof. Let w_{1}, \cdots, w_{m} be the places of L lying above v. Let φ_{j} be a multiplicative valuation belonging to w_{j}. For positive number η, we put $V_{k}(\eta)=\left\{a \in k^{\times} \mid \varphi_{j}(a-1)<\eta j=1, \cdots, m\right\}$. For any positive number ε there exists a positive number δ such that $\mu_{M}\left(V_{k}(\delta)\right) \subset V_{k^{\prime}}(\varepsilon)$. Hence our assertion follows from the fact that k is dense in $k \otimes_{Q} \boldsymbol{Q}_{v}$.

Let $v_{1}, \cdots, v_{r_{1}}$ be the real places of k and $v_{r_{1}+1}, \cdots, v_{r_{1}+r_{2}}$ the imaginary places of $k ; v_{1}^{\prime}, \cdots, v_{r_{1}^{\prime}}^{\prime}$ the real places of k^{\prime} and $v_{r_{1}^{\prime+1}}^{\prime}, \cdots, v_{r_{1}^{\prime}+r_{2}^{\prime}}^{\prime}$ the imaginary places of k^{\prime}. Since we have $\zeta_{k}=\zeta_{k^{\prime}}$, we have $r_{1}=r_{1}^{\prime}$ and $r_{2}=r_{2}^{\prime}$. We put $k_{v_{j},+}^{\times}=\left\{a \in k_{v_{j}} \mid a>0\right\}$ for $j=1, \cdots, r_{1} ; k_{\infty,+}^{\times}=\prod_{j=1}^{r_{1}} k_{v_{j},+}^{\times} \times$ $\prod_{j=r_{1}+1}^{r_{1}+r_{2}} k_{v_{j}}^{\times}$and $k_{\infty,+}^{\prime \times}=\prod_{j=1}^{r_{1}} k_{v_{j}^{\prime},+}^{\prime \times} \times \prod_{j=r_{1}+1}^{r_{1}+r_{2}} k_{v_{j}^{\prime}}^{\times} . \quad$ Let u be the infinite place of \boldsymbol{Q}. Since $\mu_{M, u}$ is continuous, we have $\mu_{M, u}\left(k_{\infty,+}^{\times}\right) \subset k_{\infty,+}^{\prime \times}$. Let $a=\left(a_{v}\right)$ be an element of k_{A}^{\times}such that $a_{v} \in\left(k \otimes_{Q} \boldsymbol{Q}_{v}\right)^{\times}$. We can define a continuous homomorphism $\bar{\mu}_{M}$ of k_{A}^{\times}into $k_{A}^{\prime \times}$ by $\bar{\mu}_{M}(a)=\left(\mu_{M, v}\left(a_{v}\right)\right)$. Let $U_{k}=\overline{k^{\times} k_{\infty,+}^{\times} / k^{\times}}$be the topological closure of $k^{\times} k_{\infty,+}^{\times} / k^{\times}$in the idele class group $C_{k}=k_{A}^{\times} / k^{\times}$. Let \mathfrak{A} and \mathfrak{A}^{\prime} be the Artin mappings of C_{k} / U_{k} onto $G\left(k^{a b} / k\right)$ and of $C_{k^{\prime}} / U_{k^{\prime}}$ onto $G\left(k^{\prime a b} / k^{\prime}\right)$. Since $\bar{\mu}_{M}\left(k^{\times}\right) \subset k^{\prime \times}$ and $\mu_{M, u}\left(k_{\infty,+}^{\times}\right) \subset$ $k_{\infty,+}^{\prime \times}$, we can define a continuous homomorphism $\tilde{\mu}_{M} ; G\left(k^{a b} / k\right) \rightarrow G\left(k^{\prime a b} / k^{\prime}\right)$ making the diagram

commutative. Here f and f^{\prime} are canonical homomorphisms of k_{A}^{\times}into C_{k} / U_{k} and of $k_{A}^{\prime \times}$ into $C_{k^{\prime}} / U_{k^{\prime}}$. For simplicity, μ_{M} will denote $\tilde{\mu}_{M}$ in the following;

Theorem 1. Let k and k^{\prime} be finite algebraic extensions of \boldsymbol{Q} such that $\zeta_{k}=\zeta_{k^{\prime}}$. Let $k^{a b}$ be the maximal abelian extension of k. Let G be the Galois group $G\left(k^{a b} / k\right)$ and G^{\prime} the Galois group $G\left(k^{\prime a b} / k^{\prime}\right)$. For a prime number p, we denote by $G(p)$ the pro-p-sylow subgroup of G. Then there exists a continuous homomorphism μ of G into G^{\prime} such that the restriction of μ to $G(p)$ is an isomorphism of $G(p)$ onto $G^{\prime}(p)$ for almost all p.

Proof. Let M be a matrix in M_{0}. Let B be the matrix $\left(\operatorname{det}(M) M^{-1}\right)^{t}$, which belongs to \mathbb{M}_{0}. We have defined the continuous homomorphism μ_{M} of G into G^{\prime}. In a similar way, we can define a continuous homomor-
phism μ_{B}^{\prime} of G^{\prime} into G. From Lemma 2, we have $\mu_{B}^{\prime} t\left(\mu_{M}(g)\right)=g^{\operatorname{det}(M)}$ for all $g \in G$. In a similar way, we have $\mu_{M}\left(\mu_{B_{t}}^{\prime}\left(g^{\prime}\right)\right)=g^{\prime \operatorname{det}(M)}$ for all $g^{\prime} \in G^{\prime}$. Let p be a prime number such that p does not divide $\operatorname{det}(M)$. Then we have

$$
\mu_{M}(G(p)) \supset \mu_{M}\left(\mu_{B}^{\prime}\left(G^{\prime}(p)\right)\right)=\left\{g^{\prime \operatorname{det}(M)} \mid g^{\prime} \in G^{\prime}(p)\right\}=G^{\prime}(p) .
$$

Suppose that $\mu_{M}(g)=1$ for $g \in G(p)$. We have $g^{\text {det }(M)}=1$. Since p is prime to $\operatorname{det}(M)$, we have $g=1$.
3. Let k and k^{\prime} be finite algebraic number fields such that $\zeta_{k}=\zeta_{k^{\prime}}$. We put $s=(k ; \boldsymbol{Q})$. Let L be as before the Galois closure of k over \boldsymbol{Q} and p a prime number such that p does not divide $(L ; \boldsymbol{Q})$. Let \boldsymbol{Z}_{p} be the p-adic integer ring and $\boldsymbol{Q}^{(\infty, p)}$ the cyclotomic \boldsymbol{Z}_{p}-extension of \boldsymbol{Q}. Then there exists a sequence of fields $\boldsymbol{Q}=\boldsymbol{Q}^{(0, p)} \subset \boldsymbol{Q}^{(1, p)} \subset \cdots \subset \boldsymbol{Q}^{(n, p)} \subset \cdots \subset \boldsymbol{Q}^{(\infty, p)}$ such that $\boldsymbol{Q}^{(n, p)} \boldsymbol{Q}$ is a cyclic extension of degree $p^{n}, n \geqq 0$. We put $\boldsymbol{k}_{n}=k \boldsymbol{Q}^{n, p}, \boldsymbol{k}_{n}^{\prime}=k^{\prime} \boldsymbol{Q}^{(n, p)}, L_{n}=L \boldsymbol{Q}^{(n, p)}$ and $L_{\infty}=L \boldsymbol{Q}^{(\infty, p)}$. We put furthermore $G=G\left(L_{\infty} / \boldsymbol{Q}\right), H_{n}=G\left(L_{n} / k_{n}\right), H_{n}^{\prime}=G\left(L_{\infty} / k_{n}^{\prime}\right), N_{n}=G\left(L_{\infty} / L_{n}\right)$ and $S=$ $G\left(L_{\infty} / Q^{(\infty, p)}\right)$. Then we have $G=S \times N_{0}$. Let γ be a topological generator of N_{0}. We have the following:

Lemma 4 (cf. [8, Lemma 1]). Let k and k^{\prime} be finite algebraic number fields such that $\zeta_{k}=\zeta_{k^{\prime}}$. Let K be a finite Galois extension of \boldsymbol{Q}. Then we have $\zeta_{K k}=\zeta_{K k^{\prime}}$.

We have $\zeta_{k_{n}}=\zeta_{k_{n}^{\prime}}$ from this Lemma 4. Let D_{n} and D_{n}^{\prime} be the linear representations of G induced by the unit representations of H_{n} and H_{n}^{\prime}. We should notice that we can regard D_{0} and D_{0}^{\prime} as representations of S. Let R_{n} be the linear representation of N_{0} induced by the unit representation of N_{n}. Let $D_{0} \otimes R_{n}$ be the tensor product of D_{0} and R_{n}. Then we have $D_{n}=D_{0} \otimes R_{n}$ and $D_{n}^{\prime}=D_{0}^{\prime} \otimes R_{n}$. We put

$$
\mathfrak{M}_{n}=\left\{M \in M_{s p n}(\boldsymbol{Z}) \mid \operatorname{det}(M) \neq 0, D_{n}(g) M=M D_{n}^{\prime}(g) \text { for every } g \in G\right\} .
$$

We can easily show the following:
Lemma 5. Let M be a matrix in \mathfrak{M}_{0} and $I_{p^{n}}$ the unit matrix of degree p^{n}. Let $M \otimes I_{p^{n}}$ be the Kronecker product of M and $I_{p^{n}}$. Then we have $M \otimes I_{p^{n}} \in \mathfrak{M}_{n}$.

We put $M_{n}=M \otimes I_{p^{n}}$. We see easily the following:
Lemma 6. Let M be a matrix in \mathfrak{M}_{0}. Let m and n be non-negative integers such that $m \leqq n$. Let $\mu_{M_{m}}$ and $\mu_{M_{n}}$ be the above endomorphisms of L_{m}^{\times}and L_{n}^{\times}. Let $N_{k_{n} / k_{m}}$ and $N_{k_{n}^{\prime} / k_{m}^{\prime}}$ be the norms of k_{n} / k_{m} and $k_{n}^{\prime} / k_{m}^{\prime}$. Then we have $\mu_{M_{m}}\left(N_{k_{n} / k_{m}}(x)\right)=N_{k_{n}^{\prime} / k_{m}^{\prime}}\left(\mu_{M_{n}}(x)\right)$ for all $x \in k_{n}^{\times}$.

By Lemma 1, there exists a matrix $M \in \mathfrak{M}_{0}$ such that p does not divide $\operatorname{det}(M)$. We have $\operatorname{det}\left(M_{n}\right)= \pm(\operatorname{det}(M))^{p^{n}}$. Hence Theorem 1, Lemma 6 and class field theory yield the following:

Theorem 2. Let k and k^{\prime} be finite algebraic number fields such that $\zeta_{k}=\zeta_{k^{\prime}}$. Let L be the Galois closure of k / \boldsymbol{Q} and p a prime number which does not divide $(L ; \boldsymbol{Q})$. Let k_{∞} and k_{∞}^{\prime} be the cyclotomic \boldsymbol{Z}_{p}-extensions of k and k^{\prime}. Let \hat{k}_{∞} and $\hat{k}_{\infty}^{\prime}$ be the maximal abelian pro-p-extensions of k_{∞} and k_{∞}^{\prime}. Then the Galois group $G\left(\hat{k}_{\infty} / k_{\infty}\right)$ and $G\left(\hat{k}_{\infty}^{\prime} / k_{\infty}^{\prime}\right)$ are isomorphic as topological groups.

Let p be an odd prime number which does not divide ($L ; \boldsymbol{Q}$). Let A_{n} and A_{n}^{\prime} be the Sylow p-subgroups of the ideal class groups of k_{n} and of k_{n}^{\prime}, respectively. For $0 \leqq m \leqq n$, there exists a natural homomorphism $f_{m, n}: A_{m} \rightarrow A_{n}$ induced by the imbedding of the ideal group of k_{m} in that of k_{n}. Let A and A^{\prime} denote the direct limits of $A_{n}, n \geqq 0$ and of A_{n}^{\prime}, $n \geqq 0$, with respect to the above homomorphisms. Let Λ denote the ring of power series in an indeterminate T with coefficients of $\boldsymbol{Z}_{p}: \Lambda=\boldsymbol{Z}_{p}[[T]]$. Let $X_{k}(p)$ and $X_{k^{\prime}}(p)$ be the duals of the discrete abelian group A and of A^{\prime}. We can consider $X_{k}(p)$ and $X_{k^{\prime}}(p)$ as Λ-modules in the usual manner (cf. [3]). Let M be a matrix in \mathfrak{M}_{0} such that p does not divide $\operatorname{det}(M)$. We put $M_{n}=M \otimes I_{p n}$. For a finite place v of k, we denote by r_{v} the integer ring of $\left(k_{n}\right)_{v}$ and by r_{v}^{\times}the unit group of r_{v}. Since we have

$$
\begin{aligned}
& \bar{\mu}_{M_{n}}\left(k_{n}^{\times}\left(\left(k_{n} \otimes_{\boldsymbol{Q}} \boldsymbol{R}\right)^{\times} \times{ }_{v ; \text { the finite places of } k_{n}} \boldsymbol{r}_{v}^{\times}\right)\right) \\
& \quad \subset k_{n}^{\prime \times}\left(\left(k_{n}^{\prime} \otimes_{\boldsymbol{Q}} \boldsymbol{R}\right)^{\times} \times{ }_{v^{\prime} ; \text { the finite places of } k_{n}^{\prime}} \boldsymbol{r}_{v}^{\prime \times}\right)
\end{aligned}
$$

and since p does not divide $\operatorname{det}\left(M_{n}\right)$, we can induce the isomorphism μ_{n} of A_{n} onto A_{n}^{\prime} by $\bar{\mu}_{M_{n}}$. Then, for $0 \leqq m \leqq n$, we can show that $\mu_{n}\left(f_{m, n}(a)\right)=f_{m, n}^{\prime}\left(\mu_{m}(\alpha)\right)$ for all $a \in A_{m}$. Hence we have the following:

Theorem 3. Let k and k^{\prime} be finite algebraic number fields such that $\zeta_{k}=\zeta_{k^{\prime}}$. Let L be the Galois closure of k / \boldsymbol{Q} and p an odd prime number which does not divide ($L ; \boldsymbol{Q}$). Let $X_{k}(p)$ and $X_{k^{\prime}}(p)$ be as above. Then $X_{k}(p)$ and $X_{k^{\prime}}(p)$ are isomorphic as topological 1-modules.

Lemma 4 and Theorem 3 yield the following:
Corollary. Notations and assumptions being as above, let α_{p} be a primitive p-th root of 1 . Then we have $X_{k\left(\alpha_{p}\right)}(p) \cong X_{k^{\prime}\left(\alpha_{p}\right)}(p)$.

Let \tilde{k}_{∞} be the maximal unramified abelian pro-p-extension of k_{∞}. We put $Y_{k}(p)=G\left(\widetilde{k}_{\infty} / k_{\infty}\right)$. We can consider $Y_{k}(p)$ as Λ-module in the usual manner (cf. [3]). Lemma 6 and class field theory yield the following:

Theorem 4. Let k and k^{\prime} be finite algebraic number fields such that $\zeta_{k}=\zeta_{k^{\prime}}$. Let L be the Galois closure of k / \boldsymbol{Q} and p a prime number which does not divide ($L ; \boldsymbol{Q}$). Let k_{∞} and k_{∞}^{\prime} be the cyclotomic \boldsymbol{Z}_{p}-extensions of k and of k^{\prime}, respectively. Let \widetilde{k}_{∞} and $\widetilde{k}_{\infty}^{\prime}$ be the maximal unramified abelian pro-p-extensions of k_{∞} and of k_{∞}^{\prime}, respectively. Then the Galois group $Y_{k}(p)=G\left(\widetilde{k}_{\infty} / k_{\infty}\right)$ and $Y_{k^{\prime}}(p)=G\left(\widetilde{k}_{\infty}^{\prime} / k_{\infty}^{\prime}\right)$ are isomorphic as topological 1-modules.

Corollary. Notations and assumptions being as above, let α_{p} be a primitive p-th root of 1 . Then we have $Y_{k\left(\alpha_{p}\right)}(p) \cong Y_{k^{\prime}\left(\alpha_{p}\right)}(p)$.
4. It would be interesting to examine whether $Y_{k}(p) \cong Y_{k^{\prime}}(p)$ for almost all prime numbers p implies $\zeta_{k}=\zeta_{k^{\prime}}$. We shall examine now whether $Y_{k}(p)=0$ for any prime number p implies $\zeta_{k}=\zeta_{Q}$. We notice that $Y_{Q}(p)=0$ for any prime number p follows from Iwasawa [1] and that $\zeta_{k}=\zeta_{Q}$ implies $k=\boldsymbol{Q}$. For a finite algebraic number field F, we denote by h_{F} the class number of F and by E_{F} the group of units in F. Let K be a cyclic extension of F and a_{K} the number of ambiguous ideal classes with respect to K / F. The following Lemma is well known:

Lemma 7 (cf. [9]). Let K be a cyclic extension of a number field F. Then we have

$$
a_{K}=h_{F} \times \prod_{v} e(v) \times\left((K ; F)\left(E_{F} ; E_{F} \cap N_{K / F}(K)\right)\right)^{-1},
$$

where $\Pi_{v} e(v)$ is the product of the ramification indices of all the finite and infinite places in F with respect to K / F.

Corollary. If $Y_{k}(p)=0$ for all prime numbers p, then k is totally real.

Proof. Let p be a prime number which splits completely in k / \boldsymbol{Q}. We put $k_{n}=k Q^{(n, p)}$. If k is not totally real, it follows from Lemma 7 that p^{n} divides $h_{k_{n}}$. This shows that $Y_{k}(p)$ is not trivial.

In the rest of this section, we shall give examples of real quadratic fields F and prime numbers p such that $Y_{F}(p) \neq 0$. Since the center of p-groups are non-trivial, we have the following:

Lemma 8. Let K be a cyclic p-extension of F. Then the prime number $p \mid h_{K}$ if and only if $p \mid a_{K}$.

Now, we put $1+p^{n} \boldsymbol{Z}_{p}=\left\{x \in \boldsymbol{Z}_{p} \mid x \equiv 1\left(\bmod p^{n}\right)\right\}$. Let α_{p-1} be a primitive $(p-1)$-th root of 1 . Then local class field theory yields the following:

Lemma 9. Let \boldsymbol{Q}_{p} be the p-adic number field and $\boldsymbol{Q}_{p, n}=\boldsymbol{Q}_{p} \boldsymbol{Q}^{(n, p)}$. Then we have $N_{\boldsymbol{Q}_{p, n} / \boldsymbol{Q}_{p}}\left(\boldsymbol{Q}_{p, n}^{\times}\right)=\langle p\rangle \times\left\langle\alpha_{p-1}\right\rangle \times\left(1+p^{n+1} \boldsymbol{Z}_{p}\right)$, where $\langle p\rangle$ and $\left\langle\alpha_{p-1}\right\rangle$ are the subgroups generated by p and by α_{p-1} in $\boldsymbol{Q}_{p}^{\times}$, respectively.

Proposition. Let F be a real quadratic field and ε a fundamental unit of F. We assume that an odd prime number p splits completely in F and that p does not divide h_{F}. We put $F_{n}=F \boldsymbol{Q}^{(n, p)}$. Then the following conditions are equivalent:
(1) The prime number p divides $h_{F_{1}}$.
(2) $\varepsilon^{p-1} \equiv 1\left(\bmod p^{2} \boldsymbol{Z}_{p}\right)$.
(3) $\varepsilon^{p^{n}-p^{n-1}} \equiv 1\left(\bmod p^{n+1} \boldsymbol{Z}_{p}\right)$ for all positive integers n.
(4) The prime number p divides $h_{F_{n}}$ for all positive integers n.

Proof. Since p is an odd prime, it is clear that (2) and (3) are equivalent. Let us show the equivalence of (1) and (2). Assume that $\varepsilon^{p-1} \equiv 1\left(\bmod p^{2} \boldsymbol{Z}_{p}\right)$. Then from Lemma 9 and Hasse's norm theorem follows that there exists an element η of F_{1} such that $N_{F_{1} / F}(\eta)=\varepsilon$. Hence it follows from Lemma 7 that p divides $h_{F_{1}}$. Now, assume $p \mid h_{F_{1}}$. It follows from Lemma 8 that $p \mid a_{F_{1}}$. Since $p \nmid h_{F}$, Lemma 7 yields that $E_{F} \subset N_{F_{1} / F}\left(F_{1}\right)$. Hence, from Lemma 9 follows that $\varepsilon \equiv 1\left(\bmod p^{2} \boldsymbol{Z}_{p}\right)$. We can simillary prove that (3) and (4) are equivalent.

According to this Proposition, we have only to examine whether (2) holds for F and p to know whether $Y_{F}(p) \neq 0$ holds. We have examined this for $F=\boldsymbol{Q}(\sqrt{ } \bar{d})$ and found the following pairs (d, p) for which we have $Y_{Q(\sqrt{d})}(p) \neq 0$:

d	2	6	19	23	31	33	37	41	43	57	62
p	31	523	79	7	157	29	7	7221	3	59	263

The author would like to thank Mr. T. Fukuda at the Tokyo Institute of Technology who helped him in making this table using a computer of the institute and Prof. H. Wada at Sophia University who kindly made a program for this calculation. He is also thankful to Profs. S. Iyanaga and T. Kanno for their encouragement and advises.

References

[1] K. Imasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Humburg, 20 (1956), 257-258.
[2] K. Iwasawa, On p-adic L-functions, Ann. of Math., 89 (1969), 198-205.
[3] K. Iwasawa, On \boldsymbol{Z}_{l}-extensions of algebraic number fields, Ann. of Math., 98 (1973), 246-326.
[4] R. Perlis, On the class number of arithmetically equivalent fields, J. Number Theory, 10 (1978), 489-509.
[5] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math., 2 (1966), 134-144.
[6] W. Trinks, Arithmetisch ähnliche Zahlkorper, Diplomarbeit, Karlsruhe, (1969).
[7] S. Turner, Adele rings of global field of positive characteristic, Bol. Soc. Brasil. Math., 9 (1978), 89-95.
[8] K. Uchida, Isomorphisms of Galois groups of solvably closed Galois extensions, Tohoku Math. J., 31 (1979), 359-362.
[9] H. Yokoi, On the class number of a relatively cyclic number field, Nagoya Math. J., 29 (1967), 31-44.

Department of Mathematics
Tokyo University
Agriculture and Technology
Fuchu, Tokyo 183
Japan

