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1. In Tate [5] and Turner [7], the following result is proved:

THEOREM. Let k, k' be function fields in one variable over a finite
constant field F and ζk, ζk, Dedekind zeta-functions of k, k'. Let C, C
be complete non-singular curves defined over F with function fields
isomorphic to k, kr and J(C), J(C) the Jacobian varieties of C, C". Then
the following are equivalent:

( 1 ) ζfc = ζ*'.

(2 ) J(C) and J(C) are F-isogenous.

In the present paper, we shall investigate the situation which arises
when we replace the function fields by the algebraic number fields. In
[2] and [3], Iwasawa discussed analogues of Jacobian varieties in this
situation. We shall see that these analogues play some roles in this
question.

Let Q be the rational number field, fc, k' finite algebraic extensions
of Q and ζk, ζk, the Dedekind zeta-functions of k and fc', respectively.
Perlis [4] gave interesting consequences from ζk = ζk,. Using his method,
we shall obtain the following results:

Let p be a prime number, k(p) the maximal abelian pro-p-extension
of k and Gk(p) the Galois group of k(p) over k. For these and also for
other notations which will be introduced afterwards, we adopt similar
notations for kr. Let Zp be the p-adic integer ring and k<* the cyclotomic
Zp-extension of k. We shall prove that ζk = ζk, implies Gk(p) = Gk,{p)
and Gkoo(p) ~ Gk

rJip) for almost all prime numbers p. Let k«> the maximal
unramified abelian pro-p-extension of &<*, and Yk(p) the Galois group of
Λoo/fcoo. Let A and A! be the p-primary subgroups of ideal class groups
of fcoo and fcL, respectively. Let Xk(p) be the Pontrjagin dual of the
discrete group A. Let ap be a primitive p-th root of 1. We shall prove
t h a t ζk = ζk, implies Xk{ap)(p)[= Xk>iap)(p) and Yk{ap){p) = Yk'{ap)(p) for almost

all prime numbers p. The duals of Xk{βtp)(p) and Yki(Xp)(p) are regarded as
analogies of the Jacobian variety in our situation (cf. [2], [3]), so that this
can be interpreted as an analogue of the fact that (1) implies (2) in the
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case of function fields. We are not in a position now to prove an analogue
of (2) implies (1) in our case, but it is conjectured that k Φ Q would imply
that there exist some primes p such that Yk(p) Φ 0. (This can be in fact
proved in case k is not totally real, as shown below.) In our last
paragraph, we shall give such p's for some real quadratic fields k.

In this paper, Z and R denote the ring of rational integers and the
field of real numbers. As already mentioned, Q denotes the rational
number field. For a finite algebraic number field k, we denote by kx

A the
idele group of k.

2. Let k and k' be finite algebraic number fields such that ζk = ζk>.
Let L be the Galois closure of k over Q. It is well known that LzDk'
and that the degree (k; Q) is equal to (kr; Q). Let G be the Galois group
G(L/Q) of L over Q, H = G(L/k) and H' = G(L/fc') Let s = (fc; Q). Let
D and D' be the linear representations of G induced by the unit represen-
tations of H and H'. Let Z be the integer ring and M8(Z) the set of
all integral s x s matrices. We put

m0 = {M e M8(Z) I det (Λf) Φ 0, D(g)M = MD'{g) for every geG} .

By [4] and [7], we see that SPΪ0 is not empty. The following Lemma
is also proved in [4],

LEMMA 1 (cf. [4, Theorem 1]). Let v = gcd{det (M)\Me^Jl0}. Then
every prime number dividing v divides (L; k).

Let p19 - , p8 and p[, , ρ'8 be representatives for left cosets of G
by H and H\ with ρλ — p[ = 1. Let Lx be the multiplicative group of
L. For a matrix A = (aiS) e MS{Z), we now define an endomorphism μA

of Lx by μΛ(x) = Πί=i Pi{%)Hl for x e Lx. We also define an endomorphism
of Lx by μ'A{x) = Πi=i p'^Y11- Then we have the following:

LEMMA 2 (cf. [4, Lemma 5]). For matrices A and B in 3ft0 and for
aekx, we have

(1) μA(kx)ak'x.
(2) μBt(μA(β)) — μABt(β) Here Bι is the transpose of B.

Let kab be the maximal abelian extension of k. Let M be a matrix
in SW0. We now define a homomorphism of G(kab/k) into G(k'ab/k') induced
by μM.

LEMMA 3. Let v be a place of Q, Qυ the completion of Q at v
and k (g)ρ Qv the tensor product of k and Qυ. Then there exists a con-
tinuous homomorphism μM>v of (k®QQv)

x into (kr (g)Q Qυ)
x such that

= μM,v(i(<*<)) for any element a of kx. Here i is a natural injec-
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tion ofk into k ®Q Qv, while i' is a natural injection of k' into kf (x)ρ Qυ.

PROOF. Let w19 -'-,wm be the places of L lying above v. Let φό

be a multiplicative valuation belonging to wβ. For positive number Ύ],
we put Vk(ή) = {a e kx\φ5(a — 1) < η j = 1, , m}. For any positive
number ε there exists a positive number d such that μM(Vk(δ)) c Vk>(ε).
Hence our assertion follows from the fact that k is dense in k (x)̂  Qv.

Let v19 --',vri be the real places of k and vri+19 , i\.1+Γ2 the
imaginary places of k; v[, , v'r^ the real places of kf and v'^+u , Vrj+rj
the imaginary places of A:'. Since we have ζk = ζk>9 we have r1 = rj and
r2 = r j . We put fc?if+ - (αe fcv.|α>0} for j = 1, , r2; fc2,+ = Π ? = i ^ ,+ x
ΠJL+r?+i Λί, and fcx,+ - Π J i i ^ + x Π ^ i &;?. Let w be the infinite place
of Q. Since μMιU is continuous, we have μM,u(k*f+) c fc^+. Let α = (av)
be an element of k^ such that αre(fc(g)ρQw)x. We can define a con-
tinuous homomorphism μM of &2 into k'f by ^ ( α ) = (μM,v(av))- Let

JJk = kxkx

t+/kx be the topological closure of kxkx

>+/kx in the idele class
group Ck — kA/kx. Let Sϊ and Sί' be the Artin mappings of CJUk onto
G(kah/k) and of Ck>/Ukr onto G(k'ah/k'). Since μM{kx)ak'x and μM,%(kli+)<^
&L*+, we can define a continuous homomorphism μM; G(kab/k) —> G(k'ab/k')
making the diagram

7. V 'M 7 / V

commutative. Here / and / ' are canonical homomorphisms of kA into
CJUk and of k'A

x into Ck>IUk>. For simplicity, μ^ will denote μM in the
following;

THEOREM 1. Let k and k! be finite algebraic extensions of Q such
that ζk = ζfc/. Let kab be the maximal abelian extension of k. Let G be
the Galois group G(kab/k) and G' the Galois group G(k'*b/kf). For a prime
number p, we denote by G(p) the pro-p-sylow subgroup of G. Then there
exists a continuous homomorphism μ of G into Gf such that the restric-
tion of μ to G(p) is an isomorphism of G{p) onto G\p) for almost all p.

PROOF. Let M be a matrix in Hft0. Let B be the matrix (det (M)M~1)t

f

which belongs to HJt0. We have defined the continuous homomorphism μM

of G into Gr. In a similar way, we can define a continuous homomor-
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phism μ'Bt of G' into G. From Lemma 2, we have μBt(μM(g)) = 9ύet {M)

for all g e G. In a similar way, we have μM(μ'Bt(g')) = g'dβt {M) for all
g'eG'. Let p be a prime number such that p does not divide det (Λf).
Then we have

μM{G{p)) ZD μM{μ'Bt{G\p))) = {flr'dβt (J f ϊ 10' e G\p)} = G\p) .

Suppose that μM(g) = 1 for geG(p). We have gάeUM) = 1. Since p is
prime to det (Λf), we have g = 1.

3. Let k and &' be finite algebraic number fields such that ζk = ζkr.
We put s — (k Q). Let L be as before the Galois closure of k over Q
and p a prime number such that p does not divide (L; Q). Let Z p be
the p-adic integer ring and Q ^ ^ the cyclotomic Z^-extension of Q. Then
there exists a sequence of fields Q = Q ^ c Q ^ c c Q ( n ' p ) c cQ ( o o ' p )

such that Q{n>p)/Q is a cyclic extension of degree pn, n ^ 0. We put
kn = kQn>*, K - k'Q{n>p), Ln = W ' 2 ^ and LM = LQ(oβ^>. We put further-
more G = G(Loo/Q), ffn = G(LB/fcJ, if; = G{Lφ'n), Nn = G(Loo/LJ and S =
G(Ln/Q{0O'p)). Then we have G = SxN0. Let 7 be a topological generator
of JV0. We have the following:

LEMMA 4 (cf. [8, Lemma 1]). Let k and kf be finite algebraic number
fields such that ζk = ζk>. Let K be a finite Galois extension of Q. Then
we have ζκk = ζκk>.

We have ζkn = ζk>n from this Lemma 4. Let Dn and D'n be the linear
representations of G induced by the unit representations of Hn and H'n.
We should notice that we can regard Do and D'o as representations of S.
Let Rn be the linear representation of No induced by the unit represen-
tation of Nn. Let Do (x) Rn be the tensor product of DQ and Rn. Then
we have Dn = A ® ^n and D'n = DΌ(&Rn. We put

STCn = {Me M8Pn(Z) I det (M) ^ 0, Z?w(flr)Af = MD (flf) for every g e G} .

We can easily show the following:

LEMMA 5. Lei M be a matrix in %Jl0 and Ipn the unit matrix of
degree pn. Let M®Ipn be the Kronecker product of M and Ipn. Then
we have M® Ipn e 3ftn.Ipn

We put Mn — M0Ipn. We see easily the following:

LEMMA 6. Let M be a matrix in 3K0. Let m and n be non-negative
integers such that m ^ n. Let μMm and μMn be the above endomorphisms
of L i and LJ. Let Nk%/km and Nk'n/k>m be the norms of kjkm and K/k'm.
Then we have μMJ,Nkn/kJx)) = Nk>n/k!m(μMn(x)) for all xek%.
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By Lemma 1, there exists a matrix MeSJΪ0 such that p does not
divide det (M). We have det (ΛfJ = ±(det (Λf))p\ Hence Theorem 1,
Lemma 6 and class field theory yield the following:

THEOREM 2. Let k and kf be finite algebraic number fields such that
ζk = ζkr. Let L be the Galois closure ofk/Q and p a prime number which
does not divide (L; Q). Let k^ and ΛC be the cyclotomic Zp-extensions of
k and k'. Let λL and tcΌo be the maximal abelian pro-p-extensίons of
koo and k^. Then the Galois group G(λL/&oo) and G(fcL/fcL) are isomorphic
as topological groups.

Let p be an odd prime number which does not divide (L; Q). Let
An and A'n be the Sylow p-subgroups of the ideal class groups of kn and
of k'n, respectively. For 0 ^ m ^ n, there exists a natural homomorphism
fm,n: Am —> An induced by the imbedding of the ideal group of km in that
of kn. Let A and A' denote the direct limits of An, n ^ 0 and of A'n,
n ^ 0, with respect to the above homomorphisms. Let A denote the ring
of power series in an indeterminate T with coefficients of Zp\ A — ZP[[T]].
Let Xk(p) and Xk>{v) be the duals of the discrete abelian group A and of
A!. We can consider Xk(p) and Xk>{p) as Λ-modules in the usual manner
(cf. [3]). Let M be a matrix in Wl0 such that p does not divide det (M).
We put Mn = M(g)Ipn. For a finite place v of k, we denote by rv the
integer ring of (kn)v and by r? the unit group of rv. Since we have

μMSkn{ikn®QRY x π nx))
v, the finite places of kn

(zK*((K<g)QRy x π ^:x)
v'\ the finite places of k'

and since p does not divide det(MJ, we can induce the isomorphism
μn of An onto A!n by jδ^. Then, for 0 ^ m ^ n, we can show that

H α 6 -̂ m Hence we have the f ollowing:

THEOREM 3. Let k and kf be finite algebraic number fields such that
ζk = ζfc/. Lei L δe ίfee Galois closure of k/Q and p an odd prime number
which does not divide (L; Q). Let Xk{p) and Xk>(p) be as above. Then
Xk{p) and Xk'{p) are isomorphic as topological A-modules.

Lemma 4 and Theorem 3 yield the following:

COROLLARY. Notations and assumptions being as above, let ap be a
primitive p-th root of 1. Then we have Xk{CCp)(p) = Xk>[(Xp)(p).

Let &oo be the maximal unramified abelian pro-p-extension of k™. We
put Yk{p) — G(koo/koo). We can consider Yk(p) as /ί-module in the usual
manner (cf. [3]). Lemma 6 and class field theory yield the following:
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THEOREM 4. Let k and kf be finite algebraic number fields such that
ζk = ζk>. Let L be the Galois closure of k/Q and p a prime number
which does not divide (L; Q). Let k™ and kl be the cyclotomic Zp-extensions
of k and of k', respectively. Let fcoo and ίci be the maximal unramified
abelian pro-p-extensions of koo and of ki, respectively. Then the Galois
group Yk(p) = G(koo/koo) and Yk>(p) = G(kL/kL) are isomorphic as topologi-
cal Λ-modules.

COROLLARY. Notations and assumptions being as above, let ap be a
primitive p-th root of 1. Then we have Yk{(Xp)(p) = Yk>{ap){p).

4. It would be interesting to examine whether Yk{p) = Yk>{p) for
almost all prime numbers p implies ζk = ζ/c>. We shall examine now
whether Yk{p) = 0 for any prime number p implies ζk = ζQ. We notice
that YQ(p) = 0 for any prime number p follows from Iwasawa [1] and
that ζk = ζQ implies k = Q. For a finite algebraic number field F, we
denote by hF the class number of F and by EF the group of units in F.
Let K be a cyclic extension of F and aκ the number of ambiguous ideal
classes with respect to K/F. The following Lemma is well known:

LEMMA 7 (cf. [9]). Let K be a cyclic extension of a number field F.
Then we have

aκ = hFxΐl e(v) x ((if; F)(EF; EF n Nκ/F{K)))~ι ,
V

where IL β(v) is the product of the ramification indices of all the finite
and infinite places in F with respect to K/F.

COROLLARY. If Yk(p) — 0 for all prime numbers p, then k is totally
real.

PROOF. Let p be a prime number which splits completely in k/Q.
We put kn = kQ{n'p). If k is not totally real, it follows from Lemma 7
that pn divides hkn. This shows that Yk(p) is not trivial.

In the rest of this section, we shall give examples of real quadratic
fields F and prime numbers p such that YF{p) Φ 0. Since the center of
^-groups are non-trivial, we have the following:

LEMMA 8. Let K be a cyclic p-extension of F. Then the prime
number p\hκ if and only if p\aκ.

Now, we put 1 + pnZp = {xeZp\x = 1 (modp71)}. Let ap_x be a
primitive (p — l)-th root of 1. Then local class field theory yields the
following:
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LEMMA 9. Let Qp be the p-adic number field and QPtU = QpQ
{n'p).

Then we have NQpfn/Qp(Qp,n) = <p> x <«,_!> x (1 + Pn+1Zp), where (p) and
(aP-i} are the subgroups generated by p and by ap_x in QPJ respectively.

PROPOSITION. Let F be a real quadratic field and ε a fundamental
unit of F. We assume that an odd prime number p splits completely
in F and that p does not divide hF. We put Fn = FQin'p\ Then the
following conditions are equivalent:

( 1 ) The prime number p divides hFl.
(2 ) εp~ι = 1 (mod p2Zp).
( 3 ) g**-*"""1 = 1 (mod pn+1Zp) for all positive integers n.
( 4 ) The prime number p divides hFn for all positive integers n.

PROOF. Since p is an odd prime, it is clear that (2) and (3) are
equivalent. Let us show the equivalence of (1) and (2). Assume that

ep-i == i (mod p2Zp). Then from Lemma 9 and Hasse's norm theorem
follows that there exists an element ΎJ of Fx such that NFl/F{rj) = ε. Hence
it follows from Lemma 7 that p divides hFl. Now, assume p\hFι. It
follows from Lemma 8 that p\aFι. Since p\hF, Lemma 7 yields that
EF c NFl,F(F^). Hence, from Lemma 9 follows that ε = 1 (mod p2Zp). We
can simillary prove that (3) and (4) are equivalent.

According to this Proposition, we have only to examine whether (2)
holds for F and p to know whether YF(p) Φ 0 holds. We have examined
this for F = Q(l/ d) and found the following pairs (d, p) for which we
have YQiVd)(p) Φ 0:

d

V

2

31

6

523

19

79

23

7

31

157

33

29

37

7

41

7221

43

3

57

59

62

263
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