LIMITS OF SEQUENCES OF RIEMANN SURFACES REPRESENTED BY SCHOTTKY GROUPS

(To Professor Yukio Kusunoki on the occasion of his 60th birthday)

Hiroki Sato

(Received September 5, 1983)
0. Introduction. In this paper, we state an application of the interchange operators introduced in the previous paper [8]. We consider the following problem. We give a point τ in an augmented Schottky space $\hat{\mathfrak{S}}_{g}^{*}\left(\widetilde{\Sigma}_{0}\right)$ associated with $\widetilde{\Sigma}_{0}$, which represents a compact Riemann surface S with nodes. Then for any sequence of points $\left\{\tau_{n}\right\}$ in the Schottky space $\mathfrak{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ associated with $\widetilde{\Sigma}_{0}$ tending to the point τ, does the Riemann surfaces $S\left(\tau_{n}\right)$ represented by τ_{n} converge to S as marked surfaces as $n \rightarrow \infty$?

The answer to this problem is negative in the general case, namely in the case where $\widetilde{\Sigma}_{0}$ is a basic system of Jordan curves (see $\S 1.2$ for the definition). However the answer is affirmative in a special case, namely in the case where $\widetilde{\Sigma}_{0}$ is a standard system of Jordan curves (see $\S 1.2$ for the definition). Now the following question arises: To what Riemann surfaces does the sequence of Riemann surfaces $\left\{S\left(\tau_{n}\right)\right\}$ converge as marked surfaces as $n \rightarrow \infty$ in the general case? The answer is the main result (Theorem 2 in §6) in this paper.

We use the same notation and terminologies as in [8]. In §1, we will define convergence of Riemann surfaces, and in §2, we will show the following: For any point τ in an augmented Schottky space, there exists a sequence of points $\left\{\tau_{n}\right\}$ in the Schottky space tending to τ such that the sequence of Riemann surfaces $\left\{S\left(\tau_{n}\right)\right\}$ represented by τ_{n} converges to the Riemann surface $S(\tau)$ represented by τ as marked surfaces as $n \rightarrow \infty$. In $\S 3$, we will construct a new surface from a given surface. From § 4 through §6, we will state and prove the main theorem. In §7, we will explain the result by an example.

1. Definitions and terminologies

1.1. We use the same notation and terminologies as in the previous papers [7, 8].

[^0]Definition 1. Let S be a compact Riemann surface of genus g without (resp. with) nodes. We call the set $\Sigma=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{g} ; \gamma_{1}, \gamma_{2}, \cdots, \gamma_{2 g-3}\right\}$ of loops (resp. loops and nodes) on S having the following property a basic system of loops (resp. a basic system of loops and nodes) on S: Each component of $S-\bigcup_{i=1}^{g} \alpha_{i}-\bigcup_{j=1}^{2 g-3} \gamma_{j}$ is a planar and triply connected region of type [3, 0] (resp. [3, 0], [2, 1], [1, 2] or [0, 3]), where a surface of type [m, n] means the sphere with m disks removed and n points deleted. If, in particular, the number of nondividing loops (resp. the number of nondividing loops and nondividing nodes) is equal to g, we call Σ a standard system of loops (resp. a standard system of loops and nodes) on S.

Let $\left\langle G_{0}\right\rangle$ be a marked Schottky group generated by $A_{0,1}, A_{0,2}, \cdots, A_{0, g}$: $\left\langle G_{0}\right\rangle=\left\langle A_{0,1}, A_{0,2}, \cdots, A_{0,9}\right\rangle$.

Definition 2. If mutually disjoint Jordan curves $C_{0,1}, C_{0,2}, \cdots, C_{0,2 g}$, $C_{0,2 g+1}, C_{0,2 g+2}, \cdots, C_{0,4 g-3}$ on $\hat{\boldsymbol{C}}=\boldsymbol{C} \cup\{\infty\}$ have the following properties (i)(iii), then we call $\widetilde{\Sigma}_{0}=\left\{C_{0,1}, \cdots, C_{0,2 g} ; C_{0,2 g+1}, \cdots, C_{0,4 g-3}\right\}$ a basic system of Jordan curves for $\left\langle G_{0}\right\rangle$: (i) $C_{0,1}, C_{0, g+1} ; C_{0,2}, C_{0, g+2} ; \cdots, C_{0, g}, C_{0,2 g}$ are defining curves of $A_{0,1}, A_{0,2}, \cdots, A_{0, g}$, respectively. Namely they comprize the boundary of $2 g$-ply connected region ω_{0}, and $A_{0, i}$ maps $C_{0, i}$ onto $C_{0, g+i}$ and $A_{0, i}\left(\omega_{0}\right) \cap \omega_{0}=\varnothing$ for each $i=1,2, \cdots, g$. (ii) $C_{0,2 g+j}(j=1,2, \cdots, 2 g-3)$ lie in ω_{0}. (iii) Each component of $\omega_{0}-\bigcup_{j=1}^{2 g-3} C_{0,2 g+j}$ is a triply connected planar region. If, in particular, a basic system of Jordan curves $\widetilde{\Sigma}_{0}$ has the following property (iv), we call $\widetilde{\Sigma}_{0} a$ standard system of Jordan curves for $\left\langle G_{0}\right\rangle$: (iv) For each $i=1,2, \cdots, g$ and $j=1,2, \cdots, 2 g-3, C_{0, i}$ and $C_{0, g+i}$ lie on the same side of $C_{0,2 g+j}$.

We let $C_{0, i(1)}, C_{0, i(2)}, \cdots, C_{0, i(k)}, C_{0, g+i^{\prime}(1)}, \cdots, C_{0, g+i^{\prime}(l)}$ and $C_{0, j(1)}, C_{0, j(2)}, \cdots$, $C_{0, j(m)}, C_{0, g+j^{\prime}(1)}, \cdots, C_{0, g+j^{\prime}(n)}$ be the defining curves in $\widetilde{\Sigma}_{0}$ in the interior and to the exterior to $C_{0,2 g+j}$, respectively, where $i(1)<\cdots<i(k) \leqq g$, $i^{\prime}(1)<\cdots<i^{\prime}(l) \leqq g ; j(1)<\cdots<j(m) \leqq g, j^{\prime}(1)<\cdots<j^{\prime}(n) \leqq g$. Then we say that the curve $C_{0,2 g+j}$ gives a partition $\{i(1), \cdots, i(k)$, $\left.g+i^{\prime}(1), \cdots, g+i^{\prime}(l)\right\} \cup\left\{j(1), \cdots, j(m), g+j^{\prime}(1), \cdots, g+j^{\prime}(n)\right\}$ of the set $\{1,2, \cdots, 2 g\}$.

Let S be a compact Riemann surface of genus g with or without nodes and let $\Sigma=\left\{\alpha_{1}, \cdots, \alpha_{g} ; \gamma_{1}, \cdots, \gamma_{2 g-3}\right\}$ a basic system of loops and nodes on S. Cut the surface S along the loops and nodes $\alpha_{i}(i=1,2, \cdots, g)$. We denote by $\alpha_{0, i}^{\prime}$ and $\alpha_{0, g+i}^{\prime}$ the resulting two topological circles or two points for each i. We call $\Sigma^{\prime}=\left\{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \cdots, \alpha_{2 g}^{\prime} ; \gamma_{1}, \cdots, \gamma_{2 g-3}\right\}$ the set of Jordan curves and points induced from Σ, or simply the induced set from Σ. Each γ_{j} devides the set $\left\{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \cdots, \alpha_{2 g}^{\prime}\right\}$ into two parts $\left\{\alpha_{i(1)}^{\prime}, \cdots, \alpha_{i(k)}^{\prime}\right.$,
$\left.\alpha_{g+i^{\prime}(1)}^{\prime}, \cdots, \alpha_{g+i^{\prime}(l)}^{\prime}\right\}$ and $\left\{\alpha_{j(1)}^{\prime}, \cdots, \alpha_{j(m)}^{\prime}, \alpha_{g+j^{\prime}(1)}^{\prime}, \cdots, \alpha_{g+j^{\prime}(n)}^{\prime}\right\}$, where $i(1)<\cdots$ $<i(k) \leqq g, \quad i^{\prime}(1)<\cdots<i^{\prime}(l) \leqq g ; \quad j(1)<\cdots<j(m) \leqq g, \quad j^{\prime}(1)<\cdots<$ $j^{\prime}(n) \leqq g$. Then we say that γ_{j} gives a partition $\left\{i(1), \cdots, i(k), g+i^{\prime}(1), \cdots\right.$, $\left.g+i^{\prime}(l)\right\} \cup\left\{j(1), \cdots, j(m), g+j^{\prime}(1), \cdots, g+j^{\prime}(n)\right\}$ of the set $\{1,2, \cdots, 2 g\}$. If each $\gamma_{j}(j=1,2, \cdots, 2 g-3)$ gives the same partition as $C_{0,2 q+j}$, we say Σ^{\prime} is compatible with $\widetilde{\Sigma}_{0}$.

Let S_{1} and S_{2} be compact Riemann surfaces of genus g with or without nodes. Let $\Sigma_{1}=\left\{\alpha_{11}, \alpha_{12}, \cdots, \alpha_{1,9} ; \gamma_{11}, \gamma_{12}, \cdots, \gamma_{1,2 q-3}\right\}$ and $\Sigma_{2}=\left\{\alpha_{21}, \alpha_{22}, \cdots\right.$, $\left.\alpha_{2, g} ; \gamma_{21}, \gamma_{22}, \cdots, \gamma_{2,2 g-3}\right\}$ be basic systems of loops and nodes on S_{1} and S_{2}, respectively. Let Σ_{1}^{\prime} and Σ_{2}^{\prime} be the induced sets from Σ_{1} and Σ_{2}, respectively. If each $\gamma_{1, j}(j=1,2, \cdots, 2 g-3)$ gives the same partition as $\gamma_{2, j}$, we say Σ_{1}^{\prime} is compatible with Σ_{2}^{\prime}.
1.2. Let S be a compact Riemann surface of genus g with or without nodes. We denote by $N(S)$ the set of all nodes on S. From now on, we assume that $g \geqq 2$ and that each component of $S \backslash N(S)$ has the hyperbolic metric, that is, the Poincare metric. The Poincare metric $\lambda(z)|d z|$ on S is defined as the Poincaré metric on each component of $S \backslash N(S)$.

Definition 3 (Abikoff [1, p. 30]). Let S_{1} and S_{2} be compact Riemann surfaces of genus g with or without nodes. If the following (i) and (ii) are satisfied, we call a continuous surjection $f: S_{1} \rightarrow S_{2}$ a deformation, and denote it by $\left\langle S_{1}, S_{2}, f\right\rangle$:
(i) $f^{-1} \mid S_{2}^{\prime}$ is a homeomorphism, where $S_{2}^{\prime}=S_{2} \backslash N\left(S_{2}\right)$.
(ii) f^{-1} (node) is a node or a simple loop.

Let $\Sigma_{1}=\left\{\alpha_{11}, \alpha_{12}, \cdots, \alpha_{1,9} ; \gamma_{11}, \gamma_{12}, \cdots, \gamma_{1,2 q-3}\right\}$ and $\Sigma_{2}=\left\{\alpha_{21}, \alpha_{22}, \cdots, \alpha_{2 g} ;\right.$ $\left.\gamma_{21}, \gamma_{22}, \cdots, \gamma_{2,2 q-3}\right\}$ be basic systems of loops and nodes on S_{1} and S_{2}, respectively. We assume that Σ_{1} and Σ_{2} have the induced sets Σ_{1}^{\prime} and Σ_{2}^{\prime}, respectively such that Σ_{1}^{\prime} is compatible with Σ_{2}^{\prime}, and we write $\Sigma_{1} \sim \Sigma_{2}$ for the fact. From now on, we consider a deformation $\left\langle S_{1}, S_{2}, f\right\rangle$ satisfying the following (i) and (ii): (i) If $\alpha_{2 i}$ (resp. $\gamma_{2 j}$) is a loop, then $f^{-1}\left(\alpha_{2 i}\right)$ (resp. $f^{-1}\left(\gamma_{2 j}\right)$) is homotopic to $\alpha_{1 i}$ (resp. $\gamma_{1 j}$). (ii) If $\alpha_{2 i}$ (resp. $\gamma_{2 j}$) is a node, then $f^{-1}\left(\alpha_{2 i}\right)=\alpha_{1 i}$ (resp. $f^{-1}\left(\gamma_{2 j}\right)=\gamma_{1 j}$) in the case where $\alpha_{1 i}$ (resp. $\gamma_{1 j}$) is a node, and $f^{-1}\left(\alpha_{2 i}\right)$ (resp. $\left.f^{-1}\left(\gamma_{2 j}\right)\right)$ is homotopic to $\alpha_{1 i}$ (resp. $\gamma_{1 j}$) in the case where $\alpha_{1 i}$ (resp. $\gamma_{1 j}$) is a loop. Set $P\left(S_{1}\right)=f^{-1}\left(N\left(S_{2}\right)\right)$. We note that $P\left(\mathrm{~S}_{1}\right) \supset N\left(S_{1}\right)$.

Let S and $S_{n}(n=1,2, \cdots)$ be compact Riemann surfaces of genus g with or without nodes. Let Σ and Σ_{n} be basic systems of loops and nodes on S and S_{n}, respectively, with $\Sigma_{n} \sim \Sigma$. Let $\left\langle S_{n}, S, f_{n}\right\rangle$ be a deformation satisfying the above (i) and (ii).

Definition 4. If the following condition is satisfied, a sequence of Riemann surfaces $\left\{S_{n}\right\}$ converges to a surface S as marked surfaces: There exists a locally quasiconformal mapping $\phi_{n}: S \backslash N(S) \rightarrow S_{n} \backslash P\left(S_{n}\right)$ such that
(i) $\lambda_{n}\left(\phi_{n}(z)\right)\left|d \phi_{n}(z)\right|$ uniformly converge to $\lambda(z)|d z|$ on every compact subset of $S \backslash N(S)$, where $\lambda_{n}(z)|d z|$ and $\lambda(z)|d z|$ are the Poincaré metrics on S_{n} and S, respectively,
(ii) ϕ_{n} maps a deleted neighborhood $N\left(\alpha_{i}\right) \backslash\left\{\alpha_{i}\right\}\left(\right.$ resp. $\left.N\left(\gamma_{j}\right) \backslash\left\{\gamma_{j}\right\}\right)$ of $\alpha_{i}\left(\right.$ resp. $\left.\gamma_{j}\right)$ to a deleted neighborhood $N\left(\alpha_{i, n}\right) \backslash\left\{\alpha_{i, n}\right\}$ (resp. $\left.N\left(\gamma_{j, n}\right) \backslash\left\{\gamma_{j, n}\right\}\right)$ of $\alpha_{i, n}$ (resp. $\gamma_{j, n}$) if $\alpha_{i} \in N(S)$ (resp. $\gamma_{j} \in N(S)$), and
(iii) ϕ_{n} maps a neighborhood $N\left(\alpha_{i}\right)$ (resp. $N\left(\gamma_{j}\right)$) of α_{i} (resp. γ_{j}) to a neighborhood $N\left(\alpha_{i, n}\right)\left(\right.$ resp. $\left.N\left(\gamma_{j, n}\right)\right)$ of $\alpha_{i, n}\left(\operatorname{resp} . \gamma_{j, n}\right)$ if $\alpha_{i} \notin N(S)$ (resp. $\left.\gamma_{j} \notin N(S)\right)$.

When S_{n} converges to S as marked surfaces, we write $\left(S_{n}, \Sigma_{n}\right) \rightarrow(S, \Sigma)$.
1.3. From now on, we fix a marked Schottky group $\left\langle G_{0}\right\rangle=\left\langle A_{0,1}\right.$, $\left.A_{0,2}, \cdots, A_{0,2 g}\right\rangle$ and a basic system of Jordan curves $\widetilde{\Sigma}_{0}=\left\{C_{0,1}, \cdots, C_{0,2 g}\right.$; $\left.C_{0,2 g+1}, \cdots, C_{0,4 g-3}\right\}$ for $\left\langle G_{0}\right\rangle$. We denote by $\Omega\left(G_{0}\right)$ the region of discontinuity of $\left\langle G_{0}\right\rangle$. Then $S_{0}=\Omega\left(G_{0}\right) /\left\langle G_{0}\right\rangle$ is a compact Riemann surface of genus g without nodes. Let $\Pi_{0}: \Omega\left(G_{0}\right) \rightarrow S_{0}$ be the natural projection. Set $\alpha_{0, i}=\Pi_{0}\left(C_{0, i}\right)(i=1,2, \cdots, g)$ and $\gamma_{0, j}=\Pi_{0}\left(C_{0,2 g+j}\right)(j=1,2, \cdots, 2 g-3)$. Then $\Sigma_{0}=\left\{\alpha_{0,1}, \alpha_{0,2}, \cdots, \alpha_{0, g} ; \gamma_{0,1}, \gamma_{0,2}, \cdots, \gamma_{0,2 g-3}\right\}$ is a basic system of loops on S_{0}.

We denote by $\mathscr{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ and $\hat{\mathfrak{S}}_{g}^{*}\left(\widetilde{\Sigma}_{0}\right)$ the Schottky space and the augmented Schottky space associated with $\widetilde{\Sigma}_{0}$, respectively (see [7, p. 28] and [7, p. 32] for the definitions). Let $\tau \in \widehat{S}_{g}^{*}\left(\widetilde{\Sigma}_{0}\right)$. Let $S(\tau)$ be the compact Riemann surface with or without nodes represented by τ (see [7, p. 33] for the definition). Let $\left\langle G_{j}(\tau)\right\rangle(j=0,1, \cdots, 2 g-3)$ be the j-th marked Schottky groups associated with τ, which are defined in [6, pp. 73-75]. In particular, if $\tau \in \mathfrak{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$, then $\left\langle G_{j}(\tau)\right\rangle=T_{j}\langle G(\tau)\rangle T_{j}^{-1}$ for some $T_{j} \in M \ddot{o} b$. Let $\Omega\left(G_{j}(\tau)\right)$ be the region of discontinuity of $\left\langle G_{j}(\tau)\right\rangle$. Let $\Omega^{\prime}\left(G_{j}(\tau)\right)$ be the set $\Omega\left(G_{j}(\tau)\right)$ deleted the set of all images of the distinguished points under $\left\langle G_{j}(\tau)\right\rangle$ (see [7, p. 31] for the definition of distinguished points). We denote by $\lambda^{(j)}(\tau, z)|d z|$ the Poincaré metric on $\Omega^{\prime}\left(G_{j}(\tau)\right)$.

Let I and J be subsets of $\{1,2, \cdots, g\}$ and $\{1,2, \cdots, 2 g-3\}$, respectively. We define the set $I(J)$ as in [7, p. 30]. We assume that $I \supset I(J)$ throughout this paper. We define subsets $\delta^{r} \widetilde{S}_{g}\left(\widetilde{\Sigma}_{0}\right), \delta^{I, J} \widetilde{S}_{g}\left(\widetilde{\Sigma}_{0}\right), \cdots$ of the augmented Schottky space $\hat{\mathfrak{S}}_{g}^{*}\left(\Sigma_{0}\right)$ as in [7].

Proposition 1. (1) Let $\tau \in \delta^{I} \mathfrak{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$. Suppose that $\left\{\tau_{n}\right\} \subset \mathfrak{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ is a sequence of points tending to the point τ. Then $\Omega\left(G\left(\tau_{n}\right)\right)$ tends to $\Omega^{\prime}(G(\tau))$.

Furthermore, $\lambda\left(\tau_{n}, z\right)$ uniformly converges to $\lambda(\tau, z)$ on every compact subset of $\Omega^{\prime}(G(\tau))$.
(2) Let $\tau \in \delta^{I, J} \Im_{g}\left(\widetilde{\Sigma}_{0}\right)$. Suppose that $\left\{\tau_{n}\right\} \subset \delta^{I} \mathbb{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ is a sequence of points tending to τ. Then $\Omega^{\prime}\left(G_{j}\left(\tau_{n}\right)\right)$ tends to $\Omega^{\prime}\left(G_{j}(\tau)\right)$ for each $j=0,1$, $2, \cdots, 2 g-3$. Futhermore, $\lambda^{(j)}\left(\tau_{n}, z\right)$ uniformly converges to $\lambda^{(j)}(\tau, z)$ on every compact subset of $\Omega^{\prime}\left(G_{j}(\tau)\right)$.

This proposition is shown by similar method as in Bers [3] and Sato [5]. From Proposition 1, we easily see the following.

Proposition 2. Given $\tau \in \delta^{I, J} \Im_{g}\left(\widetilde{\Sigma}_{0}\right)$. Then there exists a sequence $\left\{\tau_{n}\right\} \subset \Im_{g}\left(\widetilde{\Sigma}_{0}\right)$ tending to τ such that for each $j=0,1, \cdots, 2 g-3, \lambda^{(j)}\left(\tau_{n}, z\right)$ uniformly converges to $\lambda^{(j)}(\tau, z)$ on every compact subset of $\Omega^{\prime}\left(G_{j}(\tau)\right)$.
2. Construction of locally quasiconformal mappings. We use the same notations as in $\S 1$. Here we will construct locally quasiconformal mappings ϕ_{n} of $\Omega^{\prime}\left(G_{j}(\tau)\right)$ into $\Omega^{\prime}\left(G_{j}\left(\tau_{n}\right)\right)$ in three cases, Case I in $\S 2.1$, Cases II and III in §2.2.
2.1. Case I. Let $\tau \in \delta^{I} \mathscr{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ and let $\left\{\tau_{n}\right\} \subset \mathscr{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ be a sequence of points tending to τ.

Let $\left\langle G\left(\tau_{n}\right)\right\rangle=\left\langle A_{1}\left(\tau_{n}, z\right), A_{2}\left(\tau_{n}, z\right), \cdots, A_{g}\left(\tau_{n}, z\right)\right\rangle$ and $\langle G(\tau)\rangle=\left\langle A_{i}(\tau\right.$, $z)|i \notin I\rangle$, where the latter represents a marked Schottky group generated by $A_{i}(\tau, z)(i \notin I)$ to the number of $g-|I|$ and $|I|$ is the cardinality of I. Let $C_{i}\left(\tau_{n}\right), C_{g+i}\left(\tau_{n}\right)(i=1,2, \cdots, g)$ be defining curves of $\left\langle G\left(\tau_{n}\right)\right\rangle$. We denote by $\omega\left(G\left(\tau_{n}\right)\right)$ the fundamental domain for $\left\langle G\left(\tau_{n}\right)\right\rangle$ bounded by the $2 g$ Jordan curves $C_{i}\left(\tau_{n}\right)$ and $C_{g+i}\left(\tau_{n}\right)(i=1,2, \cdots, g)$. Let $C_{i}(\tau) C_{g+i}(\tau)$ ($i \notin I$) be defining curves for $\langle G(\tau)\rangle$. We denote by $\omega(G(\tau)$) the fundamental domain for $\langle G(\tau)\rangle$ bounded by the $2 g-2|I|$ defining curves. For simplicity, we write ω for $\omega(G(\tau))$. We may assume that $C_{i}\left(\tau_{n}\right)$ (resp. $C_{g+i}\left(\tau_{n}\right)$) converge to $C_{i}(\tau)$ (resp. $C_{g+i}(\tau)$) for $i \notin I$. Let $p_{i, n}$ and $p_{g+i, n}$ be the repelling and the attracting fixed points of $A_{i}\left(\tau_{n}, z\right)$, respectively. We write $p_{i}, p_{g+i}(i \in I)$ for the distinguished points of the first kind (see [7, p. 31] for the definition). We set $\omega^{\prime}=\omega-\left\{p_{i}, p_{g+i} \mid i \in I\right\}$. We may assume that for $i \in I, C_{i}\left(\tau_{n}\right)$ and $C_{g+i}\left(\tau_{n}\right)$ converge to p_{i} and p_{g+i}, respectively, and that $\omega\left(G\left(\tau_{n}\right)\right)$ converges to ω^{\prime}.

For $i \in I$, we define deleted $r(n)$-neighborhoods $N_{n}\left(p_{i}\right)$ and $N_{n}\left(p_{g+i}\right)$ ($n=1,2, \cdots$) of p_{i} and p_{g+i}, respectively, as follows, where $r(n)$ are positive numbers: If $p_{i} \neq \infty$ and $p_{g+i} \neq \infty$,

$$
N_{n}\left(p_{i}\right)=\left\{z \in \omega^{\prime}| | z-p_{i} \mid<r(n)\right\}
$$

and

$$
N_{n}\left(p_{g+i}\right)=\left\{z \in \omega^{\prime} \| z-p_{g+i} \mid<r(n)\right\},
$$

if $p_{i}=\infty$ or $p_{g+i}=\infty$,

$$
N_{n}\left(p_{i}\right)=\left\{z \in \omega^{\prime} \| z \mid>1 / r(n)\right\}
$$

or

$$
N_{n}\left(p_{g+i}\right)=\left\{z \in \omega^{\prime} \| z \mid>1 / r(n)\right\} .
$$

For simplicity, we write C_{i} and C_{g+i} for $C_{i}(\tau)$ and $C_{g+i}(\tau)$, respectively. Similarly, we define $r(n)$-neighborhood $N_{n}\left(C_{i}\right)$ and $N_{n}\left(C_{g+i}\right)$ of C_{i} and C_{g+i}, respectively:

$$
N_{n}\left(C_{i}\right)=\left\{z \in \omega^{\prime} \mid d_{E}\left(z, C_{i}\right)<r(n)\right\}
$$

and

$$
N_{n}\left(C_{g+i}\right)=\left\{z \in \omega^{\prime} \mid d_{E}\left(z, C_{g+i}\right)<r(n)\right\},
$$

where $d_{E}(z, C)$ denotes the Euclidean distance from the point z to the curves C.

We denote by $\partial N_{n}\left(p_{i}\right), \partial N_{n}\left(C_{i}\right), \cdots$ the boundaries of $N_{n}\left(p_{i}\right)$, $N_{n}\left(C_{i}\right), \cdots$. Set $B_{n}\left(p_{i}\right)=\partial N_{n}\left(p_{i}\right) \cap \omega^{\prime} . \quad B_{n}\left(p_{g+i}\right)=\partial N_{n}\left(p_{g+i}\right) \cap \omega^{\prime}, \quad B_{n}\left(C_{i}\right)=$ $\partial N_{n}\left(C_{i}\right) \cap \omega^{\prime}$ and $B_{n}\left(C_{g+1}\right)=\partial N_{n}\left(C_{g+i}\right) \cap \omega^{\prime}$. We note that $N_{n}\left(p_{i}\right), N_{n}\left(p_{g+i}\right)$ ($i \in I), N_{n}\left(C_{k}\right)$ and $N_{n}\left(C_{g+k}\right)(k \notin I)$ are mutually disjoint if $r(n)$ is sufficiently small. We choose a sequence $\{r(n)\}(n=1,2, \cdots)$ as follows:
(i) $r(1)>r(2)>\cdots>r(n)>r(n+1)>\cdots$ and $\lim _{n \rightarrow \infty} r(n)=0$.
(ii) $B_{n}\left(p_{i}\right), B_{n}\left(p_{g+i}\right)(i \in I)$ and $B_{n}\left(C_{k}\right), B_{n}\left(C_{g+k}\right)(k \notin I)$ bound a $2 g$-ply connected region ω_{n} contained in ω.
(iii) $\quad B_{n}\left(p_{i}\right) \subset \omega\left(\tau_{n}\right), B_{n}\left(p_{g+i}\right) \subset \omega\left(\tau_{n}\right)(i \in I), B_{n}\left(C_{k}\right) \subset \omega\left(\tau_{n}\right)$ and $B_{n}\left(C_{g+k}\right) \subset$ $\omega\left(\tau_{n}\right)(k \notin I)$.

We denote by $D_{i, n}$ (resp. $D_{g+i, n}$) the annulus bounded by $B_{n}\left(p_{i}\right)$ (resp. $B_{n}\left(p_{g+i}\right)$) and $C_{i}\left(\tau_{n}\right)$ (resp. $C_{g+i}\left(\tau_{n}\right)$) for $i \in I$. Similarly, we denote by $D_{k, n}\left(\right.$ resp. $\left.D_{g+k, n}\right)$ the annulus bounded by $B_{n}\left(C_{k}\right)$ (resp. $B_{n}\left(C_{g+k}\right)$) and $C_{k}\left(\tau_{n}\right)$ (resp. $C_{g+k}\left(\tau_{n}\right)$).

We construct a mapping ϕ_{n} of $\Omega^{\prime}(G(\tau))$ into $\Omega\left(G\left(\tau_{n}\right)\right)$ in Case I as follows.

First step. (1) $\phi_{n}=\mathrm{id}$ in ω_{n}, where id. means the identity mapping.
(2) In $N_{n}\left(p_{i}\right)$ (resp. $N\left(p_{g+i}\right)$) for $i \in I, \phi_{n}$ is a locally quasiconformal mapping of $N_{n}\left(p_{i}\right)\left(\right.$ resp. $\left.N_{n}\left(p_{g+i}\right)\right)$ onto $D_{i, n}\left(\right.$ resp. $\left.D_{g+i, n}\right)$ such that $\phi_{n}=\mathrm{id}$. on $B_{n}\left(p_{i}\right)\left(r e s p . B_{n}\left(p_{g+i}\right)\right)$.
(3) In $N_{n}\left(C_{k}\right)$ (resp. $\left.N_{n}\left(C_{g+k}\right)\right)$ for $k \in I, \phi_{n}$ is a locally quasiconformal mapping of the closure of $N_{n}\left(C_{k}\right)$ (resp. $N_{n}\left(C_{g+k}\right)$) onto the closure of $D_{k, n}$ (resp. $\left.D_{g+k, n}\right)$ such that $\phi_{n}=\mathrm{id}$. on $B_{n}\left(C_{k}\right)$ (resp. $B_{n}\left(C_{g+k}\right)$) and that ϕ_{n} satisfies a relation

$$
A_{k}\left(\tau_{n}, \phi_{n}(z)\right)=\phi_{n}\left(A_{k}(\tau, z)\right) \quad \text { for } \quad z \in C_{k} .
$$

Second step. ϕ_{n} is exteded to the domain $\Omega^{\prime}(G(\tau))$ as follows. For
$z \in \Omega^{\prime}(G(\tau))$, there exists an element $A(\tau, z)$ of $G(\tau)$ with $A(\tau, z) \in \omega^{\prime}$, which is represented as a word in $A_{1}(\tau, z), \cdots, A_{g}(\tau, z)$:

$$
\begin{equation*}
A(\tau, z)=W\left(A_{1}(\tau, z), \cdots, A_{g}(\tau, z)\right) \tag{1}
\end{equation*}
$$

Let $A\left(\tau_{n}, z\right)$ be the word obtained by replacing $A_{i}(\tau, z)$ in (1) with $A_{i}\left(\tau_{n}, z\right)$ for all $i=1,2, \cdots, g$. By setting

$$
\tilde{\phi}_{n}(z)=A^{-1}\left(\tau_{n}, \phi_{n}(A(\tau, z))\right),
$$

we define a mapping $\tilde{\phi}_{n}$ of $\Omega^{\prime}(G(\tau))$ into $\Omega\left(G\left(\tau_{n}\right)\right)$. We write again ϕ_{n} for $\tilde{\phi}_{n}$.
2.2. Case II. Let $\tau \in \delta^{I, J} \mathscr{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ and let $\left\{\tau_{n}\right\} \subset \delta^{I} \widetilde{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ be a sequence of points tending to τ.

We similarly define $\omega_{j}=\omega\left(G_{j}(\tau)\right)$ and $\omega\left(G_{j}\left(\tau_{n}\right)\right)$ as in Case I. Set $\omega_{j}^{\prime}=\omega_{j} \cap \Omega^{\prime}\left(G_{j}(\tau)\right)$. We set
$I_{j}=\left\{i \mid p_{i}\right.$ are the distinguished points of the first kind in $\left.\omega_{j}\right\}$
and

$$
I_{j}^{\prime}=\left\{i \mid C_{i} \text { are defining curves for }\left\langle G_{j}(\tau)\right\rangle \text { in } \omega_{j}\right\}
$$

Set
$J_{j}=\left\{l \in J \mid p_{l}^{ \pm}(\tau)\right.$ are the distinguished points of the second kind in $\left.\omega_{j}\right\}$ (see [7, p. 31] for the definition of the distinguished points of the second kind). See [6, pp. 16-18] for the definitions of I_{j}, I_{j}^{\prime} and J_{j}. We set $\left|I_{j}\right|+\left|I_{j}^{\prime}\right|=g_{j}$. Then g_{j} is the genus of the Riemann surface $S_{j}(\tau)=$ $\Omega\left(G_{j}(\tau)\right) /\left\langle G_{j}(\tau)\right\rangle$.

The sets $N_{n}\left(p_{i}\right), N_{n}\left(p_{g+i}\right)\left(i \in I_{j}\right), N_{n}\left(C_{k}\right), N_{n}\left(C_{g+k}\right)\left(k \in I_{\jmath}^{\prime}\right), B_{n}\left(p_{i}\right), B_{n}\left(p_{g+i}\right)$, $B_{n}\left(C_{k}\right)$ and $B_{n}\left(C_{g+k}\right)$ are similarly defined as in Case I. Let $p_{i}\left(\tau_{n}\right)$ and $p_{g+i}\left(\tau_{n}\right)$ ($i \in I_{j}$) be the distinguished points of the first kind for τ_{n} in ω_{j}. Let $N_{n}\left(p_{i}\left(\tau_{n}\right)\right)\left(\right.$ resp. $N_{n}\left(p_{g+i}\left(\tau_{n}\right)\right)$ be the set $N_{n}\left(p_{i}\right) \cup\left\{p_{i}\right\} \backslash\left\{p_{i}\left(\tau_{n}\right)\right\}\left(\right.$ resp. $N_{n}\left(p_{g+i}\right) \cup$ $\left.\left\{p_{g+i}\right\} \backslash\left\{p_{g+i}\left(\tau_{n}\right)\right\}\right)$.

For $l \in J_{j}$, we define deleted $r(n)$-neighborhood $N_{n}\left(p_{l}^{ \pm}\right)$as follows: If $p_{l}^{ \pm} \neq \infty$,

$$
N_{n}\left(p_{l}^{ \pm}\right)=\left\{z \in \omega_{j}^{\prime}| | z-p_{l}^{ \pm} \mid<r(n)\right\} ;
$$

if $p_{\imath}^{ \pm}=\infty$,

$$
N_{n}\left(p_{l}^{ \pm}\right)=\left\{z \in \omega_{j}^{\prime}| | z \mid>1 / r(n)\right\} .
$$

We set $B_{n}\left(p_{l}^{ \pm}\right)=\partial N_{n}\left(p_{l}^{ \pm}\right) \cap \omega_{j}^{\prime}$.
Let $C_{2 g+l}\left(\tau_{n}\right)\left(l \in J_{j}\right)$ be Jordan curves in $\omega\left(G_{j}\left(\tau_{n}\right)\right)$ which give the same partitions of the set $\{1,2, \cdots, 2 g\}$ as $C_{0,2 g+l}$ (see [7, p. 33] for partition). We choose a sequence $\{r(n)\}(n=1,2, \cdots)$ as follows:
(i) $r(1)>r(2)>\cdots>r(n)>r(n+1)>\cdots$ and $\lim _{n \rightarrow \infty} r(n)=0$,
(ii) $B_{n}\left(p_{i}\right), B_{n}\left(p_{g+i}\right)\left(i \in I_{j}\right), B_{n}\left(C_{k}\right), B_{n}\left(C_{g+k}\right)\left(k \in I_{j}^{\prime}\right)$ and $B_{n}\left(p_{l}^{ \pm}\right)\left(l \in J_{j}\right)$ bound a $2 g_{j}+\left|J_{j}\right|$-ply connected region ω_{n} contained in ω, and
(iii) $B_{n}\left(p_{i}\right), B_{n}\left(p_{g+i}\right)\left(i \in I_{j}\right), B_{n}\left(C_{k}\right), B_{n}\left(C_{g+k}\right)\left(k \in I_{j}^{\prime}\right)$ are contained in $\omega\left(G_{j}\left(\tau_{n}\right)\right)$ and $C_{2 g+l}\left(\tau_{n}\right)\left(l \in J_{j}\right)$ are contained in $N_{n}\left(p_{l}^{ \pm}\right)$.
Let $D_{k, n}, D_{g+k, n}\left(k \in I_{j}^{\prime}\right)$ be the same annuli as in $\S 2.1$. We denote by $D_{l, n}^{\prime}$ ($l \in J_{j}$) the annuli bounded by $C_{2 g+l}\left(\tau_{n}\right)$ and $B_{n}\left(p_{l}^{ \pm}\right)$.

A mapping ϕ_{n} of $\Omega^{\prime}\left(G_{j}(\tau)\right)$ into $\Omega^{\prime}\left(G_{j}\left(\tau_{n}\right)\right)$ in Case II is defined as follows.

First step. (1) $\phi_{n}=$ id. in ω_{n}^{\prime}.
(2) For each $i \in I_{j}, \phi_{n}$ is a locally quasiconformal mapping of $N_{n}\left(p_{i}\right)$ (resp. $N_{n}\left(p_{g+i}\right)$) onto $N_{n}\left(p_{i}\left(\tau_{n}\right)\right)$ (resp. $N_{n}\left(p_{g+i}\left(\tau_{n}\right)\right)$ such that $\phi_{n}=\mathrm{id}$. on $B_{n}\left(p_{i}\right)\left(\right.$ resp. $\left.B_{n}\left(p_{g+i}\right)\right)$.
(3) For each $k \in I_{j}^{\prime}, \phi_{n}$ is similarly defined as in Case I, (3) in $N_{n}\left(C_{k}\right)$ and $N_{n}\left(C_{g+k}\right)$.
(4) For each $l \in J_{j}, \phi_{n}$ is a locally quasiconformal mapping of $N_{n}\left(p_{l}^{ \pm}\right)$ onto $D_{l, n}^{\prime}$ such that $\phi_{n}=\mathrm{id}$. on $B_{n}\left(p_{l}^{ \pm}\right)$.

Second step. ϕ_{n} is extended to the domain $\Omega^{\prime}\left(G_{j}(\tau)\right)$ by the same method as in the second step of Case I.

Case III. Let $\tau \in \delta^{I, J} \Im_{g}\left(\widetilde{\Sigma}_{0}\right)$ and let $\left\{\tau_{n}\right\} \subset \mathfrak{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ be a sequence of points tending to τ.

In this case, a mapping ϕ_{n} of $\Omega^{\prime}\left(G_{j}(\tau)\right)$ into $\Omega\left(G\left(\tau_{n}\right)\right)$ is defined by combining the methods of Cases I and II.
2.3. Let S be a compact Riemann surface of genus g with or without nodes. When Σ is a basic system of loops (or loops and nodes) on S such that Σ^{\prime}, one of the set induced from Σ, is compatible with $\widetilde{\Sigma}_{0}$, we write $\Sigma \sim \widetilde{\Sigma}_{0}$ for the fact.

Proposition 3. Given $\tau \in \delta^{I, J} \mathscr{S}_{g}\left(\widetilde{\Sigma}_{0}\right) \subset \widehat{\mathscr{S}}_{g}^{*}\left(\widetilde{\Sigma}_{0}\right)$. Suppose that $\left\{\tau_{n}\right\} \subset$ $\mathfrak{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ is a sequence of points tending to the point τ so that $\lambda^{(j)}\left(\tau_{n}, z\right)$ uniformly converges to $\lambda^{(j)}(\tau, z)$ on every compact subset of $\Omega^{\prime}\left(G_{j}(\tau)\right)$ for each $j=0,1,2, \cdots, 2 g-3$. Let Σ_{n} and Σ be a basic system of loops on $S\left(\tau_{n}\right)$ and a basic system of loops and nodes on $S(\tau)$, respectively, with $\Sigma_{n} \sim \widetilde{\Sigma}_{0} \sim \Sigma$. Then $S\left(\tau_{n}\right)$ converges to $S(\tau)$ as marked surfaces, that is, $\left(S\left(\tau_{n}\right), \Sigma_{n}\right) \rightarrow(S(\tau), \Sigma)$ as $n \rightarrow \infty$.

Proof. Let ϕ_{n} be the quasiconformal mapping of $\Omega^{\prime}\left(G_{j}(\tau)\right)$ into $\Omega\left(G_{j}\left(\tau_{n}\right)\right)$ as defined in $\S \S 2.1$ and 2.2. We define a function $\lambda_{n}^{*(j)}(\tau, z)$ on $\Omega^{\prime}\left(G_{j}(\tau)\right)$ by setting

$$
\lambda_{n}^{*(j)}(\tau, z)=\lambda^{(j)}\left(\tau_{n}, \phi_{n}(z)\right)\left|d \phi_{n}(z) / d z\right| .
$$

By the above construction, $\lambda_{n}^{*(j)}(\tau, z)$ uniformly converges to $\lambda^{(j)}(\tau, z)$ on every compact subset K of $\Omega^{\prime}\left(G_{j}(\tau)\right)$, since for sufficiently large $n, \phi_{n} \mid K=$ id. and so $\lambda_{n}^{*(j)}(\tau, z)=\lambda^{(j)}\left(\tau_{n}, z\right)$ for $z \in K$, and $\lambda^{(j)}\left(\tau_{n}, z\right)$ uniformly converges to $\lambda^{(j)}(\tau, z)$ on K by the assumption.

Let $\Pi_{n}: \Omega\left(G_{j}\left(\tau_{n}\right)\right) \rightarrow S\left(\tau_{n}\right)$ and $\Pi: \Omega^{\prime}\left(G_{j}(\tau)\right) \rightarrow S_{j}^{\prime}(\tau)$ be the natural projections, where $S_{j}^{\prime}(\tau)=S_{j}(\tau) \backslash\left(S_{j}(\tau) \cap N(S(\tau))\right)$ if we set $S_{j}(\tau)=\Omega\left(G_{j}(\tau)\right) /\left\langle G_{j}(\tau)\right\rangle$. We define $\lambda_{n}^{*(j)}(\hat{z})|d \hat{z}|$ and $\lambda^{(j)}(\hat{z})|d \hat{z}|$ on $S_{j}^{\prime}(\tau)$ by setting

$$
\lambda_{n}^{*(j)}(\hat{z})|d \widehat{z}|=\lambda_{n}^{*(j)}(\tau, z)|d z|
$$

and

$$
\lambda^{(j)}(\hat{z})|d \hat{z}|=\lambda^{(j)}(\tau, z)|d z|,
$$

respectively, where $\hat{z}=\Pi(z)$. Since $\lambda^{(j)}(\tau, z)|d z|$ and $\lambda_{n}^{*(j)}(\tau, z)|d z|$ are invariant under $\left\langle G_{j}(\tau)\right\rangle, \lambda_{n}^{*(j)}(\widehat{z})|d \widehat{z}|$ and $\lambda^{(j)}(\widehat{z})|d \widehat{z}|$ are well-defined. Furthermore, we define $\lambda_{n}^{(j)}(\widehat{z})|d \widehat{z}|$ on $S\left(\tau_{n}\right)$ by setting

$$
\lambda_{n}^{(j)}(\widehat{z})|d \widehat{z}|=\lambda^{(j)}\left(\tau_{n}, z\right)|d z|,
$$

where $\hat{z}=\Pi_{n}(z)$. This is also well-defined.
We easily see that

$$
\lambda_{n}^{*(j)}(\widehat{z})|d \hat{z}|=\lambda_{n}^{(j)}\left(\widehat{z}_{n}\right)\left|d \widehat{z}_{n}\right|,
$$

where $\hat{z}=\Pi(z)$ and $\hat{z}_{n}=\Pi_{n} \phi_{n}(z)$ for $z \in \Omega^{\prime}\left(G_{j}(\tau)\right)$. By the above, we easily see that $\lambda_{n}^{*(j)}(\hat{z})|d \hat{z}|$ uniformly converges to $\lambda^{(j)}(\hat{z})|d \hat{z}|$ on every compact subset K_{j} of $S_{j}^{\prime}(\tau)$ for each $j=0,1,2, \cdots, 2 g-3$. If we denote by $\hat{\phi}_{n}$ the projection of ϕ_{n} onto $S_{j}^{\prime}(\tau)$, we have that

$$
\lambda_{n}^{*(j)}(\widehat{z})|d \widehat{z}|=\lambda_{n}^{(j)}\left(\hat{\phi}_{n}(\widehat{z})\right)\left|d \hat{\phi}_{n}(\widehat{z})\right| .
$$

Therefore $\lambda_{n}^{(j)}\left(\hat{\phi}_{n}(\hat{z})\right)\left|d \hat{\phi}_{n}(\widehat{z})\right|$ uniformly converges to $\lambda^{(j)}(\widehat{z})|d \hat{z}|$ on every compact subset of $S_{j}^{\prime}(\tau)$ for each $j=0,1,2, \cdots, 2 g-3$. Hence $\left(S\left(\tau_{n}\right), \Sigma_{n}\right) \rightarrow$ $(S(\tau), \Sigma)$. Our proof is now complete.

From Propositions 2 and 3, we have the following.
Theorem 1. Given a point $\tau \in \hat{\mathscr{G}}_{g}^{*}\left(\widetilde{\Sigma}_{0}\right)$. Then there exists a sequence of points $\left\{\tau_{n}\right\} \subset \mathfrak{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ tending to τ such that $S\left(\tau_{n}\right)$ converges to $S(\tau)$ as marked surfaces.

3. Constuction of new surfaces.

3.1. Let $\left\langle G_{0}\right\rangle, \tilde{\Sigma}_{0}, \Sigma_{0}$ and S_{0} be as in $\S 1$. Let I and J be subsets of $\{1,2, \cdots, g\}$ and $\{1,2, \cdots, 2 g-3\}$, respectively. Assume that $I(J) \subset I$.

Given $\tau \in \delta^{I, J} \mathbb{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$, there exists a compact Riemann surface $S(\tau)$ of genus g with $|I|+|J|$ nodes represented by τ. We will construct a new surface from $S(\tau)$ as follows.

We denote by J_{1} the subset of J consisting of all j such that $\gamma_{0, j}$ are dividing loops on S_{0}. Let $J_{2}=\left\{j_{1}, j_{2}, \cdots, j_{m}\right\}$ be any subset of $J \backslash J_{1}$. Set $I\left(J_{2}\right)=\left\{i_{1}, i_{2}, \cdots, i_{n}\right\}$. We denote by $\widetilde{\Sigma}_{1}$ and Σ_{1} the images of $\widetilde{\Sigma}_{0}$ and Σ_{0}, respectively, under the interchange operator $I_{g}\left(i_{k(1)}, j_{l(1)}\right)$ where $i_{k(1)} \in$ $I\left(\left\{j_{l(1)}\right\}\right)$ (see [8] for the interchange operator). We set $J_{21}=J_{2} \backslash\left\{j_{l(1)}\right\}$. We denote by $I_{1}\left(J_{21}\right)$ the set $I\left(J_{21}\right)$ defined for cycles in Σ_{1} (see [8]). We note that $I_{1}\left(J_{21}\right) \subset I\left(J_{2}\right)$.

Choose $j_{l(2)} \in J_{21}$ such that $I_{1}\left(\left\{j_{l(2)}\right\}\right) \cap\left(I\left(J_{2}\right) \backslash\left\{i_{k(1)}\right\}\right) \neq Q$. We apply the interchange operator $I_{g}\left(i_{k(2)}, j_{l(2)}\right)$ to $\widetilde{\Sigma}_{1}$ and Σ_{1}, where $i_{k(2)} \in I_{1}\left(\left\{j_{l(2)}\right\}\right)$ and $i_{k(2)} \neq i_{k(1)}$. We denote by $\widetilde{\Sigma}_{2}$ and Σ_{2} the images of $\widetilde{\Sigma}_{1}$ and Σ_{1}, respectively. We set $J_{22}=J_{21} \backslash\left\{j_{l(2)}\right\}=J_{2} \backslash\left\{j_{l(1)}, j_{l(2)}\right\}$. We write $I_{2}\left(J_{22}\right)$ for $I\left(J_{22}\right)$ defined for cycles in Σ_{2}. Then $I_{2}\left(J_{22}\right) \subset I_{1}\left(J_{21}\right)$. We choose $j_{l(3)} \in J_{22}$ such that $I_{2}\left(\left\{j_{l(3)}\right\}\right) \cap\left(I\left(J_{2}\right) \backslash\left\{i_{k(1)}, i_{k(2)}\right\}\right) \neq \varnothing$. We apply the interchange operator $I_{g}\left(i_{k(3)}\right.$, $\left.j_{l(3)}\right)$ to $\widetilde{\Sigma}_{2}$ and Σ_{2}, where $i_{k(3)} \in I_{2}\left(\left\{j_{l(3)}\right\}\right)$ and $i_{k(3)} \neq i_{k(1)}, i_{k(2)}$. We denote by $\widetilde{\Sigma}_{3}$ and Σ_{3} the images of $\widetilde{\Sigma}_{2}$ and Σ_{2}, respectively.

By the same method as above, we determine the following: $j_{l(4)}, i_{k(4)}$, $J_{24}, \widetilde{\Sigma}_{4}, \Sigma_{4}, I_{4}\left(J_{24}\right) ; \cdots ; j_{l(s)}, i_{k(8)}, J_{2,8}, \widetilde{\Sigma}_{s}, \Sigma_{s}, I_{8}\left(J_{2,8}\right)$. Here s is the integer satisfying the following (i) and (ii):
(i) $I_{s-1}\left(\left\{j_{l(s)}\right\}\right) \cap\left(I\left(J_{2}\right) \backslash\left\{i_{k(1)}, i_{k(2)}, \cdots, i_{k(s-1)}\right\}\right) \neq \varnothing$.
(ii) $I_{s}(\{j\}) \subseteq\left\{i_{k(1)}, i_{k(2)}, \cdots, i_{k(s)}\right\}$ for any $j \in J_{2} \backslash\left\{j_{l(1)}, j_{l(2)}, \cdots, j_{l(s)}\right\}$.

We set $J_{3}=J \backslash\left(J_{1} \cup J_{2}\right), J_{4}=\left\{j_{l(1)}, j_{l(2)}, \cdots, j_{l(8)}\right\}$ and $J_{5}=J_{2} \backslash J_{4}$. Set $I_{1}=I \backslash I(J)$ and $I_{4}=\left\{i_{k(1)}, i_{k(2)}, \cdots, i_{k(s)}\right\}$. We note that $I_{4} \subset I\left(J_{2}\right)$. Set $I_{3}=I_{8}\left(J_{3}\right)$ and $I_{5}=I \backslash\left(I_{1} \cup I_{3} \cup I_{4}\right)$. Let I_{8} be a subset of I_{5}. Set $I_{7}=I_{5} \backslash I_{6}$, $I^{*}=I \backslash I_{7}$, and $J^{*}=J \backslash J_{4}$.
3.2. In $\S 3.1$, we obtained a basic system of Jordan curves $\widetilde{\Sigma}_{s}$ from $\widetilde{\Sigma}_{0}$ by applying interchange operators in succession. We write $\widetilde{\Sigma}_{0}^{*}$ for $\widetilde{\Sigma}_{s}$. Suppose that S^{*} and $\Sigma^{*}=\left\{\alpha_{1}^{*}, \cdots, \alpha_{g}^{*} ; \gamma_{1}^{*}, \cdots, \gamma_{2 g-3}^{*}\right\}$ are a compact Riemann surface of genus g with nodes and a basic system of loops and nodes on S^{*} such that one of the sets induced from Σ_{0}^{*} is compatible with $\widetilde{\Sigma}_{0}^{*}$, and that $\alpha_{i}^{*}\left(i \in I^{*}\right), \gamma_{j}^{*}\left(j \in J^{*}\right)$ are nodes and $\alpha_{i}^{*}\left(i \notin I^{*}\right), \gamma_{j}^{*}\left(j \notin J^{*}\right)$ are loops, where I^{*} and J^{*} are as defined in §3.1.

From the construction in §3.1, we see that the pair (S^{*}, Σ^{*}) has Property (A) (see [8] for the definition). Therefore, by Theorem 2 in [7], there exists a point $\tau^{*} \in \delta^{I^{*}, J^{*}} \mathscr{ভ}_{g}\left(\widetilde{\Sigma}_{0}^{*}\right)$ with $S\left(\tau^{*}\right)=S^{*}$.
4. Main theorem-The first step. From this section through section 6, we will prove the following: For a given point $\tau \in \delta^{I, J} \mathscr{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$, where $I \supset I(J) \neq \varnothing$, there exists a sequence of points $\left\{\tau_{n}\right\}$ in $\mathscr{S}_{g}\left(\tilde{\Sigma}_{0}\right)$ such that $\tau_{n} \rightarrow \tau$ and $S\left(\tau_{n}\right)$ does not converge to $S(\tau)$ as marked surfaces as n tends to ∞. We consider it in the case of $J=\{j\}$ and $I(J) \neq \varnothing$ in $\S 4$, in the
case of $J=\{j(1), j(2)\}$ and $I(J) \neq \varnothing$ in $\S 5$, and in the general case in § 6.
4.1. The first step: The case of $J=\{j\}$ and $I(J) \neq \varnothing$.

We have the following two cases.
Case I. There are at least three elements k of the set $\{1,2, \cdots, 2 g\}$ such that $C_{0, k}$ is behind $C_{0,2 g+j}$, which is denoted by $C_{0,2 g+j}<C_{0, k}$ (see [8] for the definition).

Case II. There are two elements k of $\{1,2, \cdots, 2 g\}$ with $C_{0,2 g+j}<C_{0, k}$.
Fix an element i of $I(J)$. Both Cases I and II are divided into the following six cases. Here δ_{j} means the direction of $\gamma_{0, j}$ in the ordered cycle $L_{0, i}$ (see [8]).

Case I-1 (Case II-1). $\quad C_{0,2 g+j}<C_{0, i}, \quad C_{0,2 g+j} \nless C_{0, g+i}, \quad \delta_{j}=-1 \quad(i \neq 1)$, where $C_{0,2 g+j} \nless C_{0, g+i}$ means that $C_{0, g+i}$ is not behind $C_{0,2 g+j}$ (see [8]).

Case I-2 (Case II-2). $\quad C_{0,2 g+j} \nless C_{0, i}, C_{0,2 g+j}<C_{0, g+i}, \delta_{j}=+1(i \neq 1)$.
Case I-3 (Case II-3). $C_{0,2 g+j}<C_{0, i}, C_{0,2 g+j} \nless C_{0, g+i}, \delta_{j}=+1(i \neq 1)$.
Case I-4 (Case II-4). $C_{0,2 g+j} \nless C_{0, i}, C_{0,2 g+j}<C_{0, g+i}, \delta_{j}=-1(i \neq 1)$.
Case I-5 (Case II-5). $\quad C_{0,2 g+j}<C_{0, g+i}, \delta_{j}=+1(i=1)$.
Case I-6 (Case II-6). $\quad C_{0,2 g+j}<C_{0, g+i}, \delta_{j}=-1(i=1)$.
Remark. Cases I-1, I-2, …, I-6 are Cases II, I, I', II', III, III' in [8], respectively.
4.2. We only consider Case I-1. The other cases are treated similarly and so omitted. Given $\tau \in \delta^{I, J} \mathfrak{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$. Then we have two marked Schottky groups $\left\langle G_{0}(\tau)\right\rangle=\left\langle A_{0(1)}(\tau, z), \cdots, A_{0\left(g_{0}\right)}(\tau, z)\right\rangle \quad$ and $\quad\left\langle\breve{G}_{j}(\tau)\right\rangle=$ $\left\langle\check{A}_{j(1)}(\tau, z), \cdots, \check{A}_{j\left(g_{j}\right)}(\tau, z)\right\rangle$ and defining curves $C_{0(k)}(\tau), C_{g+0(k)}(\tau) \quad(k=1$, $\left.2, \cdots, g_{0}\right)$ and $\check{C}_{j(l)}(\tau), \check{C}_{g+j(l)}(\tau)\left(l=1,2, \cdots, g_{j}\right)$ as in [6, pp. 73-75]. Furthermore, we have the fixed points $p_{0(k)}(\tau), p_{g+0(k)}(\tau)$ of $A_{0(k)}(\tau, z)$ (resp. $\check{p}_{j(l)}(\tau), \check{p}_{g+j(l)}(\tau)$ of $\left.\check{A}_{j(l)}(\tau, z)\right)$, the distinguished points of the first kind $p_{0\left(2 g_{0}+1\right)}(\tau), \cdots, p_{0\left(2 g_{0}+m_{0}\right)}(\tau)$ (resp. $\left.\check{p}_{j\left(2 g_{j}+1\right)}(\tau), \cdots, \check{p}_{j\left(2 g_{j}+m_{j}\right)}(\tau)\right)$, and the distinguished point of the second kind $p_{j}^{+}(\tau)$ (resp. $\check{p}_{j}^{-}(\tau)$).

Let $S(\tau)$ be the Riemann surface with nodes represented by τ. Let $\alpha_{k}(\tau)\left(k \notin I\right.$, i.e., $\left.k=0(1), \cdots, 0\left(g_{0}\right), j(1), \cdots, j\left(g_{j}\right)\right)$ be the projections of $C_{k}(\tau)$, and $\alpha_{l}(\tau)(l \in I)$ (resp. $\left.\gamma_{j}(\tau)\right)$ the projections of the distinguished points of the first kind $p_{l}(\tau)$ (resp. $p_{j}^{ \pm}(\tau)$). Let $\gamma_{l}(\tau)(1 \leqq l \leqq j-1, j+1 \leqq$ $l \leqq 2 g-3)$ be loops on $S(\tau)$ such that $\Sigma=\left\{\alpha_{1}(\tau), \cdots, \alpha_{g}(\tau) ; \gamma_{1}(\tau), \cdots\right.$, $\gamma_{2 g-3}(\tau)$) is a basic system of loops and nodes on $S(\tau)$ with $\Sigma \sim \widetilde{\Sigma}_{0}$. Let $C_{2 g+l}(\tau)$ for l with $\gamma_{l} \subset S_{0}(\tau)=\Omega\left(G_{0}(\tau)\right) /\left\langle G_{0}(\tau)\right\rangle\left(\right.$ resp. $\check{C}_{2 g+l}(\tau)$ for l with $\left.\gamma_{l} \subset S_{j}(\tau)=\Omega\left(G_{j}(\tau)\right) /\left\langle G_{j}(\tau)\right\rangle\right)$ be the liftings of $\gamma_{l}(\tau)$ to $\omega_{0}(\tau)$ (resp. $\breve{\omega}_{j}(\tau)$), where $\omega_{0}(\tau)$ (resp. $\breve{\omega}_{j}(\tau)$) is the fundamental region bounded by $C_{0(k)}(\tau)$ and
$C_{0(g+k)}(\tau)\left(k=1,2, \cdots, g_{0}\right)$ for $\left\langle G_{0}(\tau)\right\rangle\left(\operatorname{resp} . \check{C}_{j(m)}(\tau)\right.$ and $\check{C}_{j(g+j(m))}(\tau)(m=$ $1,2, \cdots, g_{j}$) for $\left.\left\langle\breve{G}_{j}(\tau)\right\rangle\right)$.
4.3. From $\S 4.3$ through $\S 4.5$, we will construct a Riemann surface S^{*} from $S(\tau)$, a basic system of loops and nodes $\Sigma^{*}=\left\{\alpha_{1}^{*}, \cdots, \alpha_{g}^{*} ; \gamma_{1}^{*}, \cdots\right.$, $\left.\gamma_{2 g-3}^{*}\right\}$ from Σ and a point $\tau^{*} \in \hat{\mathscr{S}}_{g}^{*}\left(\widetilde{\Sigma}_{0}^{*}\right)$ from τ, where $\widetilde{\Sigma}_{0}^{*}$ is the image of $\widetilde{\Sigma}_{0}$ under the interchange operator $I_{g}(i, j)$.
(1) We will define points $p_{0(k)}^{*}, p_{g+0(k)}^{*}\left(k=1,2, \cdots, g_{0}\right), p_{0\left(2 g_{0}+l\right)}^{*}(l=$ $1,2, \cdots, m_{0}$) except p_{i}^{*} and p_{g+i}^{*} and Jordan curves $C_{0(k)}^{*}, C_{g+0(k)}^{*}(k=1$, $\left.2, \cdots, g_{0}\right)$ by $p_{0(k)}^{*}=p_{0(k)}(\tau), p_{g+0(k)}^{*}=p_{g+0(k)}(\tau) ; p_{0\left(2 g_{0}+l\right)}^{*}=p_{0\left(2 g_{0}+l\right)}(\tau) ; C_{0(k)}^{*}=$ $C_{0(k)}(\tau), C_{g+0(k)}^{*}=C_{g+0(k)}(\tau)$. We set $p_{i}^{*}=p_{g+i}(\tau)$ and $p_{g+i}^{*}=p_{j}^{+}(\tau)$ and set $C_{2 g+l}^{*}=C_{2 g+l}(\tau)$ for l with $C_{0,2 g+j} \nless C_{0,2 g+l}$, namely for l with $\gamma_{l} \subset S_{0}(\tau)$.
(2) We will define points $\check{p}_{j(k)}^{*}, \check{p}_{g+j(k)}^{*}\left(k=1,2, \cdots, g_{j}\right), \check{p}_{j\left(2 g_{j}+l\right)}^{*}(l=$ $\left.1,2, \cdots, m_{j}\right)$ except \check{p}_{i}^{*} and \check{p}_{g+i}^{*} and Jordan curves $\check{C}_{j(k)}^{*}, \check{C}_{g+j(k)}^{*}(k=1$, $\left.2, \cdots, g_{j}\right)$ by $\check{p}_{j(k)}^{*}=\check{p}_{j(k)}(\tau), \check{p}_{g+j(k)}^{*}=\check{p}_{g+j(k)}^{*}(\tau) ; \breve{p}_{j\left(2 g_{j}+l\right)}^{*}=\check{p}_{j\left(2 g_{j}+l\right)}^{*}(\tau) ; \check{C}_{j(k)}^{*}=$ $\breve{C}_{j(k)}(\tau), \check{C}_{g+j(k)}^{*}=\check{C}_{g+j(k)}(\tau)$. We set $\check{p}_{i}^{*}=\check{p}_{j}^{-}(\tau)$ and $\check{p}_{g+i}^{*}=\breve{p}_{i}(\tau)$, and set $\breve{C}_{2 g+l}^{*}=\breve{C}_{2 g+l}(\tau)$ for l with $C_{0,2 g+j}<C_{0,2 g+l}$, namely for l with $\gamma_{l} \subset S_{j}(\tau)$.
4.4. By using multi-suffices, we write $C_{0}\left(i_{1}, i_{2}, \cdots, i_{\mu}\right), C_{0}\left(i_{1}, \cdots\right.$, $\left.i_{\mu}, \cdots, i_{\nu}\right)$ and $C_{0}\left(j_{1}, j_{2}, \cdots, j_{\sigma}\right)$ for $C_{0,2 g+j}, C_{0, i}$ and $C_{0, g+i}$, respectively.
(1) We choose Jordan curves K_{1} and \check{K}_{2} as follows: K_{1} (resp. \check{K}_{2}) forms the boundary curves of a triply connected region $\sigma^{*}\left(j_{1}, \cdots, j_{o-1}\right)$ (resp. $\left.\sigma^{*}\left(i_{1}, \cdots, i_{\nu-1}\right)\right)$ together with $C^{*}\left(j_{1}, \cdots, j_{\sigma-1}\right)$ and $C^{*}\left(j_{1}, \cdots, j_{\sigma-1}\right.$, $1-j_{\sigma}$) (resp. $C^{*}\left(i_{1}, \cdots, i_{\nu-1}\right)$ and $C^{*}\left(i_{1}, \cdots, i_{\nu-1}, 1-i_{\nu}\right)$), and contains the point p_{i}^{*} (resp. \check{p}_{g+i}^{*}) in the interior.
(2) We determine a Möbius transformation T as follows and fix it: $T\left(p_{i}^{*}\right)=\check{p}_{i}^{*}, T\left(p_{g+i}^{*}\right)=\check{p}_{g+i}^{*}$ and $K_{2}^{*}=T^{-1}\left(\check{K}_{2}\right)$ lies in the interior to K_{1}. Then we note that the outside \check{K}_{2} is mapped to the inside K_{2}^{*} under the mapping T^{-1}. We write $C_{2 g+j}^{*}$ for K_{2}^{*}.
(3) We set $C_{j(k)}^{*}=T^{-1}\left(\check{C}_{j(k)}^{*}\right), C_{g+j(k)}^{*}=T^{-1}\left(\check{C}_{g+j(k)}^{*}\right), p_{j(k)}^{*}=T^{-1}\left(\breve{p}_{j(k)}^{*}\right)$ and $p_{g+j(k)}^{*}=T^{-1}\left(\check{p}_{g+j(k)}^{*}\right) \quad\left(k=1,2, \cdots, g_{j}\right)$, and $p_{j\left(2 g_{j}+l\right)}^{*}=T^{-1}\left(\check{p}_{j\left(2 g_{j}+l\right)}^{*}\right) \quad(l=1$, $\left.2, \cdots, m_{j}\right)$. We set $C_{2 g+l}^{*}=T^{-1}\left(\check{C}_{2 g+l}^{*}\right)$ for l with $C_{0,2 g+j}<C_{0,2 g+l}$. We note that all these points and curves are contained in the interior to $C_{2 g+j}^{*}$.
4.5. For each $k=0(1), \cdots, 0\left(g_{0}\right)$ (resp. $\left.l=j(1), \cdots, j\left(g_{j}\right)\right)$, we define a Möbius transformation $A_{k}^{*}(\tau, z)$ (resp. $A_{l}^{*}(\tau, z)$) by $A_{k}^{*}(\tau, z)=A_{k}(\tau, z)$ (resp. $\left.A_{l}^{*}(\tau, z)=T^{-1} \check{A}_{l}(\tau, z) T\right)$. Let $t_{k}^{*} \quad\left(\left|t_{k}^{*}\right|<1\right) \quad\left(k=0(1), \cdots, 0\left(g_{0}\right)\right.$, $\left.j(1), \cdots, j\left(g_{j}\right)\right)$ be the inverse of multipliers of $A_{k}^{*}(\tau, z)$. We set $t_{k}^{*}=0$ $\left(k \in\{1,2, \cdots, g\} \backslash\left\{0(1), \cdots, 0\left(g_{0}\right), j(1), \cdots, j\left(g_{j}\right)\right\}\right.$, i.e., $\left.k \in I\right)$.

By the same way as in [7], we determine $\rho_{l}^{*}(l=1,2, \cdots, 2 g-3)$
from $p_{1}^{*}, \cdots, p_{2 g}^{*}$ with respect to $\widetilde{\Sigma}_{0}^{*}$. We set

$$
\tau^{*}=\left(t_{1}^{*}, \cdots, t_{g}^{*}, \rho_{1}^{*}, \cdots, \rho_{2 g-3}^{*}\right)
$$

Then $\tau^{*} \in \hat{\mathbb{S}}_{g}^{*}\left(\widetilde{\Sigma}_{0}^{*}\right)$. Let $S^{*}=S\left(\tau^{*}\right)$ be the Riemann surface with nodes represented by τ^{*}.

Let $\alpha_{k}^{*}\left(k=0(1), \cdots, 0\left(g_{0}\right), j(1), \cdots, j\left(g_{j}\right)\right)$ (resp. $\alpha_{l}^{*}(l \in I)$) be the projections of C_{k}^{*} (resp. p_{l}^{*}) onto S^{*}. Let $\gamma_{l}^{*}(l=1,2, \cdots, 2 g-3)$ be the projections of $C_{2 g+l}^{*}$ onto S^{*}. Now we define a basic system of loops and nodes Σ^{*} on S^{*} by

$$
\Sigma^{*}=\left\{\alpha_{1}^{*}, \cdots, \alpha_{g}^{*} ; \gamma_{1}^{*}, \cdots, \gamma_{2 g-3}^{*}\right\}
$$

We note that $\Sigma^{*} \sim \tilde{\Sigma}_{0}^{*}$.
4.6. Here we will construct basic systems of loops Σ_{n}^{*} with $\Sigma_{n}^{*} \sim \widetilde{\Sigma}_{0}^{*}$, and a sequence of points $\left\{\tau_{n}^{*}\right\} \subset \mathbb{S}_{g}\left(\widetilde{\Sigma}_{0}^{*}\right)$ such that $\tau_{n}^{*} \rightarrow \tau^{*}$ and $\left(S\left(\tau_{n}^{*}\right), \Sigma_{n}^{*}\right) \rightarrow$ $\left(S\left(\tau^{*}\right), \Sigma^{*}\right)$ as n tends to ∞, where $S\left(\tau_{n}^{*}\right)$ are the Riemann surfaces represented by τ_{n}^{*}.

For $l=1,2, \cdots, 2 g-3$, we set $C_{2 g+l, n}^{*}=C_{2 g+l}^{*}(n=1,2, \cdots)$. For $k \notin I$, we set $C_{k, n}^{*}=C_{k}^{*}, C_{g+k, n}^{*}=C_{g+k}^{*}, p_{k, n}^{*}=p_{k}^{*}$ and $p_{g+k, n}^{*}=p_{g+k}^{*}(n=1,2, \cdots)$. We set $A_{k, n}^{*}(z)=A_{k}^{*}(\tau, z)$. For $l \in I$, we choose $C_{l, n}^{*}$ and $C_{g+l, n}^{*}(n=1,2, \cdots)$ as follows:
(i) Each $C_{l, n}^{*}$ (resp. $C_{g+l, n}^{*}$) is a circle of the radius $r(l, n)$ (resp. $r(g+l, n)$) about p_{l}^{*} (resp. $\left.p_{g+l}^{*}\right)$ such that $\lim _{n \rightarrow \infty} r(l, n)=0$ (resp. $\left.\lim _{n \rightarrow \infty} r(g+l, n)=0\right)$.
(ii) For each $l \in I$, let $A_{l, n}^{*}(z)$ be a Möbius transformation satisfying $A_{l, n}^{*}\left(p_{l, n}^{*}\right)=p_{l, n}^{*}, \quad A_{l, n}^{*}\left(p_{g+l, n}^{*}\right)=p_{g+l, n}^{*}$ and $A_{l, n}^{*}\left(C_{l, n}^{*}\right)=C_{g, l, n}^{*}$. \quad Then $\left\langle G_{n}^{*}\right\rangle=$ $\left\langle A_{1, n}^{*}(z), \cdots, A_{q, n}^{*}(z)\right\rangle$ is a Schottky group.
(iii) If we set

$$
\tilde{\Sigma}_{n}^{*}=\left\{C_{1, n}^{*}, \cdots, C_{2 \vartheta, n}^{*} ; C_{2 \vartheta+1, n}^{*}, \cdots, C_{4 g-8, n}^{*}\right\},
$$

then $\tilde{\Sigma}_{n}^{*}$ is a basic system of Jordan curves for $\left\langle G_{n}^{*}\right\rangle$ with $\widetilde{\Sigma}_{n}^{*} \sim \tilde{\Sigma}_{0}^{*}$, where $\tilde{\Sigma}_{n}^{*} \sim \tilde{\Sigma}_{0}^{*}$ means that for each $l=1,2, \cdots, 2 g-3, C_{2 g+l, n}^{*}$ gives the same partition of $\{1,2, \cdots, 2 g\}$ as $C_{2 g+l}^{*}$.

Remark. We may choose $p_{k, n}^{*}, \quad p_{g+k, n}^{*}, \quad C_{k, n}^{*}, \quad C_{g+k, n}^{*}$ and $C_{2 g+l, n}^{*}$ as follows:
(i) $\quad p_{k, n}^{*} \rightarrow p_{k}^{*}$ and $p_{\theta+k, n}^{*} \rightarrow p_{g+k}^{*}(k=1,2, \cdots, g)$ as $n \rightarrow \infty$.
(ii) For $k \notin I, C_{k, n}^{*} \rightarrow C_{k}^{*}$ and $C_{g+k, n}^{*} \rightarrow C_{g+k}^{*}$ as $n \rightarrow \infty$.
(iii) For each $k \in I, C_{k, n}^{*}$ (resp. $C_{g+k, n}^{*}$) is a Jordan curve with the diameter $r(k, n)$ (resp. $r(\mathrm{~g}+k, n)$) such that $r(k, n) \rightarrow 0$ (resp. $r(g+k, n) \rightarrow$ 0) as $n \rightarrow \infty$ and $p_{k, n}^{*}$ (resp. $p_{g+k, n}^{*}$) is contained in the interior to $C_{k, n}^{*}$ $\left(\operatorname{resp} . C_{g+k, n}^{*}\right)$.
(iv) Let $A_{k, n}^{*}(z)(k=1,2, \cdots, g ; n=1,2, \cdots)$ be Möbius transformations satisfying $A_{k, n}^{*}\left(p_{k, n}^{*}\right)=p_{k, n}^{*}, \quad A_{k, n}^{*}\left(p_{g+k, n}^{*}\right)=p_{g+k, n}^{*}, \quad A_{k, n}^{*}\left(C_{k, n}^{*}\right)=C_{g+k, n}^{*}$, and $\lim _{n \rightarrow \infty} \lambda_{k, n}^{*}=\lambda_{k}^{*}$ (resp. ∞) for $k \notin I$ (resp. $k \in I$), where $\lambda_{k, n}^{*}$ and λ_{k}^{*} are the multipliers of $A_{k, n}^{*}$ and A_{k}^{*}, respectively. Then $\left\langle G_{n}^{*}\right\rangle=\left\langle A_{1, n}^{*}(z), \cdots\right.$, $\left.A_{g, n}^{*}(z)\right\rangle$ is a Schottky group.
(v) If we set

$$
\widetilde{\Sigma}_{n}^{*}=\left\{C_{1, n}^{*}, \cdots, C_{2 g, n}^{*} ; C_{2 g+1}^{*}, \cdots, C_{4 g-3}^{*}\right\},
$$

then $\widetilde{\Sigma}_{n}^{*}$ is a basic system of Jordan curves for $\left\langle G_{n}^{*}\right\rangle$ with $\widetilde{\Sigma}_{n}^{*} \sim \widetilde{\Sigma}_{0}^{*}$.
Let $\tau_{n}^{*} \in \mathbb{S}_{g}\left(\widetilde{\Sigma}_{0}^{*}\right)$ be the point corresponding to $\left\langle G_{n}^{*}\right\rangle$ (cf. Theorem 1 in [7]), that is, $\left\langle G_{n}^{*}\right\rangle=\left\langle G\left(\tau_{n}^{*}\right)\right\rangle$. Let $\Pi_{n}: \Omega\left(G\left(\tau_{n}^{*}\right)\right) \rightarrow \Omega\left(G\left(\tau_{n}^{*}\right)\right) /\left\langle G\left(\tau_{n}^{*}\right)\right\rangle=$ $S\left(\tau_{n}^{*}\right)$ be the natural projection. We set $\alpha_{k, n}^{*}=\Pi_{n}\left(C_{k, n}^{*}\right)(k=1,2, \cdots, g$; $n=1,2, \cdots) \quad$ and $\quad \gamma_{l, n}^{*}=\Pi_{n}\left(C_{2 g+l, n}^{*}\right) \quad(l=1,2, \cdots, 2 g-3 ; n=1,2, \cdots)$. Then $\Sigma_{n}^{*}=\left\{\alpha_{1, n}^{*}, \cdots, \alpha_{g, n}^{*} ; \gamma_{1, n}^{*}, \cdots, \gamma_{2 g-3, n}^{*}\right\}$ is a basic system of loops on $S\left(\tau_{n}^{*}\right)$. By the same way as in $\S 2$, we see that $\tau_{n}^{*} \rightarrow \tau^{*}$ and $\left(S\left(\tau_{n}^{*}\right), \Sigma_{n}^{*}\right) \rightarrow$ $\left(S\left(\tau^{*}\right), \Sigma^{*}\right)$ as $n \rightarrow \infty$.
4.7. Let $\Sigma_{n}=\left\{\alpha_{1, n}, \cdots, \alpha_{g, n} ; \gamma_{1, n}, \cdots, \gamma_{2 g-3, n}\right\}$, τ_{n} and $\left\langle G\left(\tau_{n}\right)\right\rangle$ be the images of $\Sigma_{n}^{*}, \tau_{n}^{*}$ and $\left\langle G\left(\tau_{n}^{*}\right\rangle\right.$ under the interchange operator $I_{g}(i, j)$, respectively. Then we see that $\tau_{n} \in \mathfrak{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ and that Σ_{n} is a basic system of loops on $S_{n}=\Omega\left(G\left(\tau_{n}\right)\right) /\left\langle G\left(\tau_{n}\right)\right\rangle$ with $\Sigma_{n} \sim \widetilde{\Sigma}_{0}$. Let $\hat{\Sigma}^{*}=\left\{\hat{\alpha}_{1}^{*}, \cdots, \hat{\alpha}_{g}^{*}\right.$; $\left.\hat{\gamma}_{1}^{*}, \cdots, \hat{\gamma}_{2 g-3}^{*}\right\}$ be the following basic system of loops and nodes on $S^{*}=$ $S\left(\tau^{*}\right): \widehat{\alpha}_{k}^{*}=\alpha_{k}^{*}(k \neq i), \hat{\alpha}_{i}^{*}=\gamma_{j}^{*}, \hat{\gamma}_{l}^{*}=\gamma_{l}^{*}(l \neq j)$ and $\hat{\gamma}_{j}^{*}=\alpha_{i}^{*}$. Then we note that $\hat{\Sigma}^{*} \sim \widetilde{\Sigma}_{0}$. From $\S 4.6$, we have that $\tau_{n} \rightarrow \tau$ and $\left(S\left(\tau_{n}\right), \Sigma_{n}\right) \rightarrow$ $\left(S\left(\tau^{*}\right), \hat{\Sigma}^{*}\right)(\neq(S(\tau), \Sigma))$ as $n \rightarrow \infty$.

5. Main theorem-The second step.

5.1. The second step. The case of $J=\{\hat{j}(1), \hat{j}(2)\}$ and $I(J) \neq \varnothing$.

Let $i(1) \in I(\{\hat{j}(1)\})$. Let $\widetilde{\Sigma}_{1}$ be the image of $\widetilde{\Sigma}_{0}$ under the interchange operator $I_{g}(i(1), \hat{j}(1))$. We set $J_{1}=\{\hat{j}(2)\}$. We consider the case of $I\left(J_{1}\right) \backslash\{i(1)\} \neq \varnothing$ with respect to $\widetilde{\Sigma}_{1}$. Let $i(2) \in I\left(J_{1}\right)$. We write $\widetilde{\Sigma}_{2}$ for the image of $\widetilde{\Sigma}_{1}$ under the interchange operator $I_{g}(i(2), \hat{j}(2))$.

The second step is divided into the following three cases: Case 1. $C_{2 g+\hat{j}(1)}<C_{2 g+\hat{j}(2)}$; Case 2. $C_{2 g+\hat{j}(2)}<C_{2 g+\hat{j}(1)}$; Case 3. There is no relation between $C_{2 g+\hat{j}(1)}$ and $C_{2 g+\hat{j}(2)}$, that is, $C_{2 g+\hat{j}(1)} \nless C_{2 g+\hat{j}(2)}$ and $C_{2 g+\hat{j}(2)} \nless C_{2 g+\hat{j}(1)}$. For $C_{i(1)}$ and $C_{g+i(1)}\left(\right.$ resp. $C_{i(2)}$ and $\left.C_{g+i(2)}\right)$, we have either $C_{2 g+\hat{j}(1)}<C_{i(1)}$ or $C_{2 g+\hat{j}(1)}<C_{g+i(1)}$ (resp. $C_{2 g+\hat{j}(2))}<C_{i(2)}$ or $\left.C_{2 g+\hat{j}(2)}<C_{g+i(2)}\right)$. We only consider the following case:

$$
C_{2 g+\hat{j}(1)}<C_{i(1)} \quad \text { and } \quad C_{2 g+\hat{j}(2)}<C_{i(2)} .
$$

Other cases are similarly treated.

In the above case, there may be the following twelve cases:
Case 1. $C_{2 g+\hat{j}(1)}<C_{2 g+\hat{j}(2)}$, therefore in this case $C_{2 g+\hat{j}(1)}<C_{i(2)}$ and $C_{2 g+\hat{j}(2)} \nless C_{g+i(1)}$.

Case 1-1. $\quad C_{2 g+\hat{j}(1)}<C_{g+i(2)}, C_{2 g+\hat{j}(2)} \nless C_{i(1)}$.
Case 1-2. $C_{2 g+\hat{j}(1)} \nless C_{g+i(2)}, C_{2 g+\hat{j}(2)} \nless C_{i(1)}$.
Case 1-3. $\quad C_{2 g+\hat{j}(1)}<C_{g+i(2)}, C_{2 g+\hat{j}(2)}<C_{i(1)}$.
Case 1-4. $\quad C_{2 g+\hat{j}(1)} \nless C_{g+i(2)}, C_{2 g+\hat{j}(2)}<C_{i(1)}$.
Case 2. $C_{2 g+\hat{j}(2)}<C_{2 g+\hat{j}(1)}$, therefore in this case $C_{2 g+\hat{j}(2)}<C_{i(1)}$ and $C_{2 g+\hat{j}(1)} \nless C_{g+i(2)}$.

Case 2-1. $\quad C_{2 g+\hat{j}(2)}<C_{g+i(1)}, C_{2 g+\hat{j}(1)} \nless C_{i(2)}$.
Case 2-2. $\quad C_{2 g+\hat{j}(2)}<C_{g+i(1)}, C_{2 g+\hat{j}(1)}<C_{i(2)}$.
Case 2-3. $\quad C_{2 g+\hat{j}(2)} \nless C_{g+i(1)}, C_{2 g+\hat{j}(1)} \nless C_{i(2)}$.
Case 2-4. $\quad C_{2 g+\hat{j}(2)} \nless C_{g+i(1)}, C_{2 g+\hat{j}(1)}<C_{i(2)}$.
Case 3. $C_{2 g+\hat{j}(1)} \nless C_{2 g+j(2)}$ and $C_{2 g+\hat{j}(2)} \nless C_{2 g+j(1)}$.
Case 3-1. $\quad C_{2 g+\hat{j}(1)} \nless C_{g+i(2)}, C_{2 g+\hat{j}(2)} \nless C_{g+i(1)}$.
Case 3-2. $C_{2 g+\hat{j}(1)}<C_{g+i(2)}, C_{2 g+\hat{j}(2)} \nless C_{g+i(1)}$.
Case 3-3. $\quad C_{2 g+\hat{j}(1)} \nless C_{g+i(2)}, C_{2 g+\hat{j}(2)}<C_{g+i(1)}$.
Case 3-4. $\quad C_{2 g+\hat{j}(1)}<C_{g+i(2)}, C_{2 g+\hat{j}(2)}<C_{g+i(1)}$.
5.2. Here we only consider Case 1-3. Other cases are similarly treated. We use similar procedures as in §4. First, we use $C_{2 g+\hat{j}(1)}, C_{i(1)}$ and $C_{g+i(1)}$ instead of $C_{2 g+j}, \breve{C}_{i}$ and C_{g+i} in $\S 4$, respectively. In this case, it is slightly different from the way in $\S 4$. Namely, we have three Schottky groups $\left\langle G_{0}(\tau)\right\rangle$, $\left\langle\widetilde{G}_{\hat{j}(1)}(\tau)\right\rangle$ and $\left\langle\breve{G}_{\hat{j}(2)}(\tau)\right\rangle$. We set $p_{g+i(1)}^{*}=p_{j(1)}^{+}$, $p_{\hat{j}(2)}^{*-}=p_{g+i(1)} ; \widetilde{p}_{i(1)}^{*}=\widetilde{p}_{\hat{j}(1)}^{-}, \widetilde{p}_{\dot{j}(2)}^{*+}=\widetilde{p}_{\hat{j}(2)}^{+}, \widetilde{p}_{g+i(2)}^{*}=\widetilde{p}_{g+i(2)} ; \check{p}_{\hat{j}(2)}^{*}=\breve{p}_{\hat{j}(2)}$ and $\check{p}_{g+i(1)}^{*}=$ $\check{p}_{i(1)}$ and then we use the same procedure as in $\S 4$ for $\left\langle G_{0}(\tau)\right\rangle$ and $\left\langle\check{G}_{\hat{j}(2)}(\tau)\right\rangle$. We denote this procedure by $\left[C_{2 g+\hat{j}(1)} ; C_{i(1)}, C_{g+i(1)}\right]$. We denote by $\left(C_{2 g+j}\right.$; C_{i}, C_{g+i}) the procedure in $\S 4$. Second, we use $C_{2 g+\hat{j}(2)}^{*}, \widetilde{C}_{g+i(2)}^{*}$, and $C_{i(2)}^{*}$ instead of $C_{2 g+j}, C_{i}$ and C_{g+i} in $\S 4$, and we use the same procedure as in $\S 4$ for $\left\langle G_{0}^{*}(\tau)\right\rangle$ and $\left\langle\widetilde{G}_{\dot{j}(2)}^{*}(\tau)\right\rangle$. We write $\left[C_{2 g+\hat{j}(1)} ; C_{i(1)}, C_{g+i(1)}\right]-\left(C_{2 g+\hat{j}(2)}^{*}\right.$, $\left.C_{g+i(2)}^{*}, C_{i(2)}\right)$ for the above two procedures.

Given a point $\tau \in \delta^{I, J} \mathscr{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$. We get a point $\tau^{*} \in \widehat{\mathfrak{S}}_{g}^{*}\left(\widetilde{\Sigma}_{1}\right)$ from τ by using the procedure $\left[C_{2 g+\hat{j}(1)} ; C_{i(1)}, C_{g+i(1)}\right]$, and a point $\tau^{* *} \in \hat{\mathscr{S}}_{g}^{*}\left(\widetilde{\Sigma}_{2}\right)$ from τ^{*} by using the procedure $\left(C_{2 g+\hat{j}(2)}^{*} ; C_{g+i(2)}^{*}, C_{i(2)}\right)$. Let $\Sigma^{* *}=\left\{\alpha_{1}^{* *}, \cdots, \alpha_{g}^{* *}\right.$; $\left.\gamma_{1}^{* *}, \cdots, \gamma_{2 g-3}^{* *}\right\}$ be a basic system of loops and nodes of $S\left(\tau^{* *}\right)$ which is obtained by the same method as in $\S 4$. We note that $\Sigma^{* *} \sim \widetilde{\Sigma}_{2}$. Next we construct the following sequence of points $\left\{\tau_{n}^{* *}\right\} \subset \mathfrak{S}_{g}\left(\widetilde{\Sigma}_{2}\right)$ by a similar method as in §4:

$$
\tau_{n}^{* *} \rightarrow \tau^{* *} \quad \text { and } \quad\left(S\left(\tau_{n}^{* *}\right), \Sigma_{n}^{* *}\right) \rightarrow\left(S\left(\tau^{* *}\right), \Sigma^{* *}\right)
$$

as $n \rightarrow \infty$, where $\Sigma_{n}^{* *}$ is a basic system of loops on $S\left(\tau_{n}^{* *}\right)$ with $\Sigma_{n}^{* *} \sim \widetilde{\Sigma}_{2}$ which are obtained by the same method as in $\S 4$. We set $\tau_{n}^{*}=I_{0}^{-1}(i(2)$, $\hat{j}(2))\left(\tau_{n}^{* *}\right)$ and $\tau_{n}=I_{g}^{-1}(i(1), \hat{j}(1))\left(\tau_{n}^{*}\right)$. Then it is easily seen that $\tau_{n} \in \mathbb{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ and $\tau_{n} \rightarrow \tau$ as $n \rightarrow \infty$. Let $\hat{\Sigma}^{* *}=\left\{\hat{\alpha}_{1}^{* *}, \cdots, \widehat{\alpha}_{g}^{* *} ; \hat{\gamma}_{1}^{* *}, \cdots, \hat{\gamma}_{2 g-3}^{* *}\right\}$ be the following basic system of loops and nodes on $S\left(\tau^{* *}\right): \hat{\alpha}_{i(1)}^{* *}=\gamma_{j(1)}^{* *}, \hat{\alpha}_{i(2)}^{* *}=\gamma_{j(2))}^{* *}$, $\widehat{\alpha}_{k}^{* *}=\alpha_{k}^{* *}(k \neq i(1), i(2)), \hat{\gamma}_{j(1)}^{* *}=\alpha_{i(1)}^{* *}, \hat{\gamma}_{j(2)}^{* *}=\alpha_{i(2)}^{* *}$ and $\hat{\gamma}_{l}^{* *}=\gamma_{l}^{* *}(l \neq \hat{j}(1), \hat{j}(2))$, We set $\Sigma_{n}=I_{g}(i(1), \hat{j}(1))^{-1} \cdot I_{g}(i(2), \hat{j}(2))^{-1}\left(\Sigma_{n}^{* *}\right)$. Then we have that

$$
\left(S\left(\tau_{n}\right), \Sigma_{n}\right) \rightarrow\left(S\left(\tau^{* *}\right), \hat{\Sigma}^{* *}\right) \text { as } n \rightarrow \infty
$$

5.3. Other cases can similarly be treated to the above. For each case, we use the following procedures:

Case 1-1. $\left(C_{2 g+\hat{j}(1)} ; C_{i(1)}, C_{g+i(1)}\right)-\left(C_{2 g+\hat{j}(2)}^{*} ; C_{i(2)}^{*}, C_{g+i(2)}^{*}\right)$.
Case 1-2. $\left(C_{2 g+\hat{j}(1)} ; C_{i(1)}, C_{g+i(1)}\right)-\left(C_{2 g+\hat{j}(2)}^{*} ; C_{i(2)}^{*}, C_{g+i(2)}^{*}\right)$.
Case 1-3 was already treated in §5.2. Case 1-4 does not occur.
Case 2-1. ($\left.C_{2 g+\hat{j}(1)} ; C_{i(1)}, C_{g+i(1)}\right)-\left(C_{2 g+\hat{j}(2)}^{*} ; C_{i(2)}^{*}, C_{g+i(2)}^{*}\right)$.
Case 2-2. $\left(C_{2 g+\hat{j}(1)} ; C_{i(1)}, C_{g+i(1)}\right)-\left(C_{2 g+\hat{j}(2)}^{*} ; C_{i(2)}^{*}, C_{g+i(2)}^{*}\right)$.
Case 2-3. $\left[C_{2 g+\hat{j}(1)} ; C_{i(1)}, C_{g+i(1)}\right]-\left(C_{2 g+\hat{j}(2)}^{*} ; C_{i(2)}^{*}, C_{g+i(2)}^{*}\right)$.
Case 2-4 does not occur.
Case 3-1. $\quad\left(C_{2 g+\hat{j}(1)} ; C_{i(1)}, C_{g+i(1)}\right)-\left(C_{2 g+\hat{j}(2)}^{*} ; C_{i(2)}^{*}, C_{g+i(2)}^{*}\right)$.
Case 3-2. $\quad\left(C_{2 g+\hat{j}(1)} ; C_{i(1)}, C_{g+i(1)}\right)-\left(C_{2 g+\hat{j}(2)}^{*} ; C_{i(2)}^{*}, C_{g+i(2)}^{*}\right)$.
Case 3-3. $\left[C_{2 g+\hat{j}(1)} ; C_{i(1)}, C_{g+t(1)}\right]-\left(C_{2 g+\hat{j}(2)}^{*} ; C_{i(2)}^{*}, C_{g+i(2)}^{*}\right)$.
Case 3-4 does not occur.
6. Main theorem-The third step. Last, we will treat the general case. Let $\tau \in \delta^{I, J} \mathbb{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ be as in $\S 3$, where $I \supset I(J) \neq \varnothing$. Let $\widetilde{\Sigma}_{0}^{*}$ be as in $\S 3$, that is,

$$
\tilde{\Sigma}_{0}^{*}=I_{g}\left(i_{k(\mathrm{~s})}, j_{l(\mathrm{~s})}\right) \cdots I_{g}\left(i_{k(1)}, j_{l(1)}\right)\left(\widetilde{\Sigma}_{0}\right) .
$$

We write Φ for $I_{g}\left(i_{k(8)}, j_{l(8)}\right) \cdots I_{g}\left(i_{k(1)}, j_{l(1)}\right)$. Let I^{*} and J^{*} be as in $\S 3$. By the same methods as in $\S \S 4$ and 5 , we determine $\tau_{1} \in \hat{\mathbb{S}}_{g}^{*}\left(\widetilde{\Sigma}_{1}\right)$ from τ, $\tau_{2} \in \hat{\mathfrak{S}}_{g}^{*}\left(\widetilde{\Sigma}_{2}\right)$ from $\tau_{1}, \cdots, \tau_{s} \in \widehat{\mathscr{S}}_{g}^{*}\left(\widetilde{\Sigma}_{0}^{*}\right)$ from τ_{s-1}, where $\widetilde{\Sigma}_{t}=I_{g}\left(i_{k(t)}, j_{l(t)}\right)\left(\widetilde{\Sigma}_{t-1}\right)$ $(t=1,2, \cdots, s)$ and $\tilde{\Sigma}_{0}^{*}=\tilde{\Sigma}_{s}$.

We set $\tau^{*}=\tau_{s}$. Let $\Sigma^{*}=\left\{\alpha_{1}^{*}, \cdots, \alpha_{g}^{*} ; \gamma_{1}^{*}, \cdots, \gamma_{2 \rho-3}^{*}\right\}$ be a basic system of loops and nodes on $S\left(\tau^{*}\right)$ with $\Sigma^{*} \sim \tilde{\Sigma}_{0}^{*}$ which is obtained by the same method as in $\S \S 4$ and 5 . We note that $\alpha_{k}^{*}\left(k \in I^{*}\right)$ and $\gamma_{l}^{*}\left(l \in J^{*}\right)$ are nodes, and $\alpha_{k}^{*}\left(k \notin I^{*}\right)$ and $\gamma_{l}^{*}\left(l \notin J^{*}\right)$ are loops. As in $\S \S 4$ and 5 , we construct the following sequence of points $\left\{\tau_{n}^{*}\right\} \subset \mathfrak{S}_{g}\left(\widetilde{\Sigma}_{0}^{*}\right): \tau_{n}^{*} \rightarrow \tau^{*}$ and $\left(S\left(\tau_{n}^{*}\right), \Sigma_{n}^{*}\right) \rightarrow\left(S\left(\tau^{*}\right), \Sigma^{*}\right)$, where Σ_{n}^{*} are basic systems of loops on $S\left(\tau_{n}^{*}\right)$ with $\Sigma_{n}^{*} \sim \widetilde{\Sigma}_{0}^{*}$ which are obtained as in $\S \S 4$ and 5 . We set $\tau_{n}=\Phi^{-1}\left(\tau_{n}^{*}\right)$. Then the sequence of points $\left\{\tau_{n}\right\} \subset \mathscr{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ satisfies the following:

$$
\tau_{n} \rightarrow \tau \quad \text { and } \quad\left(S\left(\tau_{n}\right), \Sigma_{n}\right) \rightarrow\left(S\left(\tau^{*}\right), \hat{\Sigma}^{*}\right) \quad \text { as } \quad n \rightarrow \infty
$$

where $\Sigma_{n}=\Phi^{-1}\left(\Sigma_{n}^{*}\right)$ and $\hat{\Sigma}^{*}$ is the basic system of loops and nodes on $S\left(\tau^{*}\right)$ with $\widehat{\Sigma}^{*} \sim \widetilde{\Sigma}_{0}$ which is obtained from Σ^{*} as in $\S \S 4$ and 5 . Then we have the following main theorem.

TheOrem 2. Let $\left\langle G_{0}\right\rangle$ and $\widetilde{\Sigma}_{0}$ be a fixed marked Schottky group and a fixed basic system of Jordan curves for $\left\langle G_{0}\right\rangle$, respectively. Given a point $\tau \in \delta^{1, J} \mathscr{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$, where $I \supset I(J) \neq \varnothing$. Let $\widetilde{\Sigma}_{0}^{*}, I^{*}$ and J^{*} be as in § 3 . Let $\tau^{*} \in \delta^{I^{*}, J^{*} \subseteq_{g}\left(\widetilde{\Sigma}_{0}^{*}\right)}$ be the point obtained from τ as in the above. Then there exists the following sequences of points $\left\{\tau_{n}\right\} \subset \mathscr{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$:

$$
\tau_{n} \rightarrow \tau \quad \text { and } \quad\left(S\left(\tau_{n}\right), \Sigma_{n}\right) \rightarrow\left(S\left(\tau^{*}\right), \hat{\Sigma}^{*}\right) \text { as } n \rightarrow \infty,
$$

where Σ_{n} and $\widehat{\Sigma}^{*}$ are a basic system of loops on $S\left(\tau_{n}\right)$ with $\Sigma_{n} \sim \widetilde{\Sigma}_{0}$ and a basic system of loops and nodes on $S\left(\tau^{*}\right)$ with $\hat{\Sigma}^{*} \sim \tilde{\Sigma}_{0}$, respectively, as above.

Corollary. Given $\tau \in \delta^{I, J} \mathscr{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$, where $I \supset I(J)$. If $I(J) \neq \varnothing$, then there exists a sequence of points $\left\{\tau_{n}\right\} \subset \mathscr{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ such that (i) $\tau_{n} \rightarrow \tau$ as $n \rightarrow \infty$ and (ii) $S\left(\tau_{n}\right)$ does not converge to $S(\tau)$ as marked surfaces.

Remark. By similar methods as in [5] and in the proof of Theorem 1, we easily show that if $\tilde{\Sigma}_{0}$ is a standard system of Jordan curves, then $S\left(\tau_{n}\right)$ converges to $S(\tau)$ as marked surfaces for any point $\tau \in \hat{\mathbb{S}}_{g}^{*}\left(\widetilde{\Sigma}_{0}\right)$ and for any sequence of points $\left\{\tau_{n}\right\} \subset \mathscr{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ with $\tau_{n} \rightarrow \tau$.
7. An example. Here we will give an example for Theorem 2. We write ($a, b ; c, d$) for a matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

For $n=10,11,12, \cdots$, we set

$$
\begin{aligned}
& A_{1, n}=(n,-1 / n ; n, 0), \\
& A_{2, n}=\left(n^{2}+3,-\left(2 n^{2}+6+\left(1 / n^{2}\right)\right) ; n^{2},-2 n^{2}\right), \\
& C_{1, n}:|z|=2 / 3, \\
& C_{2, n}:|z-2|=1 / n^{2}, \\
& C_{3, n}:|z-1|=3 /\left(2 n^{2}\right), \\
& C_{4, n}:\left|z-\left(1+\left(3 / n^{2}\right)\right)\right|=1 / n^{2}, \\
& C_{8, n}:|z-1|=5 / n^{2} .
\end{aligned}
$$

In particular, we set $A_{i}=A_{i, 10}(i=1,2),\left\langle G_{0}\right\rangle=\left\langle A_{1}, A_{2}\right\rangle, C_{i}=C_{i, 10}$ ($i=1,2,3,4,5$) and $\widetilde{\Sigma}_{0}=\left\{C_{1}, C_{2}, C_{3}, C_{4} ; C_{5}\right\}$. Then $\left\langle G_{0}\right\rangle$ is a marked Schottky group and $\widetilde{\Sigma}_{0}$ is a basic system of Jordan curves for $\left\langle G_{0}\right\rangle$. We
apply the interchange operator $I_{g}(1,1)$ on $\widetilde{\Sigma}_{0}$ and $\left\langle G_{0}\right\rangle$. If we set $\widetilde{\Sigma}_{0}^{*}=$ $I_{g}(1,1)\left(\widetilde{\Sigma}_{0}\right)=\left\{C_{1}^{*}, C_{2}^{*}, C_{3}^{*}, C_{4}^{*}, C_{5}^{*}\right\}$, then we have $C_{1}^{*}=A_{1}^{-1}\left(C_{5}\right), C_{2}^{*}=C_{2}, C_{3}^{*}=$ $C_{5}, C_{4}^{*}=A_{1}^{-1}\left(C_{4}\right)$ and $C_{5}^{*}=C_{1}$. If we set $\left\langle G_{0}^{*}\right\rangle=I_{g}(1,1)\left(\left\langle G_{0}\right\rangle\right)=\left\langle A_{1}^{*}, A_{2}^{*}\right\rangle$, then we have $A_{1}^{*}=A_{1}$ and $A_{2}^{*}=A_{1}^{-1} A_{2}$.

We set $\left\langle G_{n}\right\rangle=\left\langle A_{1, n}, A_{2, n}\right\rangle \quad(n=10,11,12, \cdots)$ where $\left\langle G_{10}\right\rangle=\left\langle G_{0}\right\rangle$. We easily see that $\left\langle G_{n}\right\rangle$ are marked Schottky groups ($n=10,11, \cdots$). Let $\tau_{n}=\left(t_{1, n}, t_{2, n}, \rho_{1, n}\right)$ be the points in $\mathscr{S}_{g}\left(\widetilde{\Sigma}_{0}\right)$ corresponding to $\left\langle G_{n}\right\rangle(n=$ $10,11, \cdots)$. If we set $\left\langle G_{n}^{*}\right\rangle=I_{g}(1,1)\left(\left\langle G_{n}\right\rangle\right)=\left\langle A_{1, n}^{*}, A_{2, n}^{*}\right\rangle$, then we have $A_{1, n}^{*}=A_{1, n}$ and $A_{2, n}^{*}=A_{1, n}^{-1} A_{2, n}=(n,-2 n ;-3 n, 6 n+(1 / n))$. Let $\tau_{n}^{*}=\left(t_{1, n}^{*}\right.$, $\left.t_{2, n}^{*}, \rho_{1, n}^{*}\right)$ be the points in $\mathfrak{S}_{g}\left(\widetilde{\Sigma}_{0}^{*}\right)$ corresponding to $\left\langle G_{n}^{*}\right\rangle$. Set $S_{n}^{*}=$ $\Omega\left(G_{n}^{*}\right) /\left\langle G_{n}^{*}\right\rangle$ and $S_{n}=\Omega\left(G_{n}\right) /\left\langle G_{n}\right\rangle$. Let Π_{n} (resp. $\left.\Pi_{n}^{*}\right)$ be the natural projections of $\Omega\left(G_{n}\right)$ (resp. $\Omega\left(G_{n}^{*}\right)$) onto S_{n} (resp. S_{n}^{*}). We set $\alpha_{i, n}=\Pi_{n}\left(C_{i, n}\right)$ ($i=1,2), \quad \gamma_{1, n}=\Pi_{n}\left(C_{5, n}\right), \quad \alpha_{i, n}^{*}=\Pi_{n}^{*}\left(C_{i, n}^{*}\right) \quad(i=1,2) \quad$ and $\gamma_{1, n}^{*}=\Pi_{n}^{*}\left(C_{5, n}^{*}\right)$. Then $\Sigma_{n}=\left\{\alpha_{1, n}, \alpha_{2, n} ; \gamma_{1, n}\right\}$ and $\Sigma_{n}^{*}=\left\{\alpha_{1, n}^{*}, \alpha_{2, n}^{*} ; \gamma_{1, n}^{*}\right\}$ are basic systems of loops on S_{n} and S_{n}^{*}, respectively, and $\Sigma_{n}^{*}=I_{g}(1,1)\left(\Sigma_{n}\right)$.

Let $\lambda_{i, n}, p_{i, n}$ and $p_{2+i, n}$ (resp. $\lambda_{i, n}^{*}, p_{i, n}^{*}$ and $p_{2+i, n}^{*}$) be the multipliers, the attracting and the repelling fixed points of $A_{i, n}$ (resp. $A_{i, n}^{*}$), respectively, for $n=10,11,12, \cdots$, where $\left|\lambda_{i, n}\right|>1$ (resp. $\left|\lambda_{i, n}^{*}\right|>1$). Then we have

$$
\begin{aligned}
p_{1, n}= & \left(n-\sqrt{n^{2}-4}\right) / 2 n, \quad p_{3, n}=\left(n+\sqrt{n^{2}-4}\right) / 2 n, \\
p_{2, n}= & \left(3\left(n^{2}+1\right)+\sqrt{n^{4}-6 n^{2}+5}\right) / 2 n^{2}, \\
p_{4, n}= & \left(3\left(n^{2}+1\right)-\sqrt{n^{4}-6 n^{2}+5}\right) / 2 n^{2}, \\
\lambda_{1, n}= & \left(n^{2}-2+n \sqrt{n^{2}-4}\right) / 2, \\
\lambda_{2, n}= & \left(n^{4}-6 n^{2}+7+\sqrt{n^{8}-12 n^{6}+50 n^{4}-84 n^{2}+45}\right) / 2, \\
p_{1, n}^{*}= & p_{1, n}, \quad p_{3, n}^{*}=p_{3, n}, \\
p_{2, n}^{*}= & \left(5 n+(1 / n)+\sqrt{\left.49 n^{2}+10+\left(1 / n^{2}\right)\right)} / 6 n,\right. \\
p_{4, n}^{*}= & \left(5 n+(1 / n)-\sqrt{49 n^{2}+10+\left(1 / n^{2}\right)}\right) / 6 n, \\
\lambda_{1, n}^{*}= & \lambda_{1, n}, \quad \text { and } \\
\lambda_{2, n}^{*}= & \left(49 n^{2}+12+\left(1 / n^{2}\right)\right. \\
& \left.+\sqrt{2401 n^{4}+1176 n^{2}+238+\left(24 / n^{2}\right)+\left(1 / n^{4}\right)}\right) / 2 .
\end{aligned}
$$

Let T_{n} be the Möbius transformations determined by

$$
T_{n}\left(p_{1, n}\right)=0, \quad T_{n}\left(p_{3, n}\right)=1 \quad \text { and } \quad T_{n}\left(p_{2, n}\right)=\infty
$$

for $n=10,11,12, \cdots$. Then $\rho_{1, n}=T_{n}\left(p_{4, n}\right)$. By simple calculation, we have

$$
\rho_{1, n}=\frac{\left(2 n^{2}+3\right)^{2}-\left(\sqrt{n^{4}-6 n^{2}+5}-n \sqrt{n^{2}-4}\right)^{2}}{4 n \sqrt{n^{2}-4} \sqrt{n^{4}-6 n^{2}+5}} .
$$

Hence $\rho_{1, n} \rightarrow 1$ as $n \rightarrow \infty$.

On the other hand, let T_{n}^{*} be the Möbius transformation determined by

$$
T_{n}^{*}\left(p_{1, n}^{*}\right)=0, \quad T_{n}^{*}\left(p_{3, n}^{*}\right)=1 \quad \text { and } \quad T_{n}^{*}\left(p_{4, n}^{*}\right)=\infty
$$

for $n=10,11,12, \cdots$. Then we have

$$
1-\left(1 / \rho_{1, n}^{*}\right)=\frac{32 n^{4}+96 n^{2}+64+\left(4 / n^{2}\right)}{\left(9 n^{2}-5+\sqrt{n^{2}-4} \sqrt{49 n^{2}+10+\left(1 / n^{2}\right)}\right)^{2}} .
$$

Hence $\rho_{1, n}^{*} \rightarrow 8 / 7$ as $n \rightarrow \infty$.
Since $t_{i, n}=1 / \lambda_{i, n}$ and $t_{i, n}^{*}=1 / \lambda_{i, n}^{*} \quad(i=1,2), \quad \tau_{n} \rightarrow \tau=(0,0,1)$ and $\tau_{n}^{*} \rightarrow \tau^{*}=(0,0,8 / 7)$ as $n \rightarrow \infty$. τ (resp. τ^{*}) is a point in the augmented Schottky space $\hat{\mathfrak{S}}_{g}^{*}\left(\widetilde{\Sigma}_{0}\right)$ (resp. $\left.\hat{\mathfrak{S}}_{g}^{*}\left(\widetilde{\Sigma}_{0}^{*}\right)\right)$. Let S and S^{*} be the Riemann surfaces represented by τ and τ^{*}, respectively. Let $\Sigma^{*}=\left\{\alpha_{1}^{*}, \alpha_{2}^{*} ; \gamma_{1}^{*}\right\}$ be a basic system of loops and nodes on S^{*} with $\Sigma^{*} \sim \widetilde{\Sigma}_{0}^{*}$ such that α_{i}^{*} ($i=1,2$) are nodes and γ_{1}^{*} is a loop. Let $\hat{\Sigma}^{*}=\left\{\hat{\alpha}_{1}^{*}, \hat{\alpha}_{2}^{*} ; \hat{\gamma}_{1}^{*}\right\}$ be a basic system of loops and nodes on S^{*} such that $\widehat{\alpha}_{1}^{*}=\gamma_{1}^{*}, \widehat{\alpha}_{2}^{*}=\alpha_{2}^{*}$ and $\hat{\gamma}_{1}^{*}=$ α_{1}^{*}. We note that $\widehat{\Sigma}^{*} \sim \widetilde{\Sigma}_{0}$. Then by using the method of the proof of Theorem 1, we have that

$$
\left(S_{n}^{*}, \Sigma_{n}^{*}\right) \rightarrow\left(S^{*}, \Sigma^{*}\right) \quad \text { as } \quad n \rightarrow \infty
$$

Since $S_{n}=S_{n}^{*}$ except markings and $S \neq S^{*}$, we have that

$$
\left(S_{n}, \Sigma_{n}\right) \rightarrow\left(S^{*}, \hat{\Sigma}^{*}\right)(\neq(S, \Sigma)) \quad \text { as } \quad n \rightarrow \infty .
$$

References

[1] W. Abikoff, Degenerating families of Riemann surfaces, Ann. of Math. 105 (1977), 2944.
[2] L. Bers, Spaces of degenerating Riemann surfaces, Ann. of Math. Studies 79 (1974), 43-55.
[3] L. Bers, Automorphic forms for Schottky groups, Advances in Math. 16 (1975), 332-361.
[4] J. S. Birman, The algebraic structure of surface mapping class groups, in Discrete groups and automorphic functions, 1977, (W. J. Harvey, ed.), Academic Press, LondonNew York-San Francisco, 163-198.
[5] H. Sato, On augmented Schottky spaces and automorphic forms, I, Nagoya Math. J. 75 (1979), 151-175.
[6] H. Sato, A property of new coordinates defining augmented Schottky spaces, Nagoya Math. J. 88 (1982), 73-78.
[7] H. Sato, Intoroduction of new coordinates to the Schottky space-The general case-, J, Math. Soc. of Japan 35 (1983), 23-35.
[8] H. Sato, Augmented Schottky spaces and a uniformization of Riemann surfaces, Tôhoku Math. J. 35 (1983), 557-572.

Department of Mathematics
Faculty of Science
Shizuoka University
836 Ohya, Shizuoka 422
Japan

[^0]: Partly supported by the Grants-in-Aid for Scientific and Co-operative Research, the Ministry of Education, Science and Culture, Japan.

