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0. Introduction. In this paper, we state an application of the inter-
change operators introduced in the previous paper [8], We consider the
following problem. We give a point τ in an augmented Schottky space
@*(2Ό) associated with Σo, which represents a compact Riemann surface
S with nodes. Then for any sequence of points {τj in the Schottky space
&g(Σ0) associated with Σo tending to the point τ, does the Riemann sur-
faces S(τn) represented by τn converge to S as marked surfaces as n —> <» ?

The answer to this problem is negative in the general case, namely
in the case where Σo is a basic system of Jordan curves (see § 1.2 for
the definition). However the answer is affirmative in a special case,
namely in the case where Σo is a standard system of Jordan curves (see
§ 1.2 for the definition). Now the following question arises: To what
Riemann surfaces does the sequence of Riemann surfaces {S(τn)} converge
as marked surfaces as n —> oo in the general case? The answer is the
main result (Theorem 2 in § 6) in this paper.

We use the same notation and terminologies as in [8]. In § 1, we
will define convergence of Riemann surfaces, and in § 2, we will show
the following: For any point τ in an augmented Schottky space, there
exists a sequence of points {τn} in the Schottky space tending to τ such
that the sequence of Riemann surfaces {S(τn)} represented by τn con-
verges to the Riemann surface S(τ) represented by τ as marked surfaces
as n —• oo. In § 3, we will construct a new surface from a given surface.
From § 4 through § 6, we will state and prove the main theorem. In § 7,
we will explain the result by an example.

1. Definitions and terminologies

1.1. We use the same notation and terminologies as in the previous
papers [7, 8].
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DEFINITION 1. Let S be a compact Riemann surface of genus g with-
out (resp. with) nodes. We call the set Σ = {alf a2, , ag; Ύ19 72, , Ύ2g_3}
of loops (resp. loops and nodes) on S having the following property a basic
system of loops (resp. a basic system of loops and nodes) on S: Each
component of S — \Jg

ί=ί cct — Ui=l3 Ύd is a planar and triply connected
region of type [3, 0] (resp. [3, 0], [2,1], [1, 2] or [0, 3]), where a surface
of type [m, n] means the sphere with m disks removed and n points
deleted. If, in particular, the number of nondividing loops (resp. the
number of nondividing loops and nondividing nodes) is equal to g, we call
Σ a standard system of loops (resp. a standard system of loops and nodes)
on S.

Let <G0> be a marked Schottky group generated by AOtU A0t2, , AOtS:
— \^o,i> AOt2, , A0>g).

D E F I N I T I O N 2. If mutually disjoint Jordan curves Co>1, C0>2, •• ,CO>217,
Cθ92g+if C0t2g+2, •• ,C 0 j 4 f f_ 3 on C— C[j{oo} have t h e following properties (i)-
(iii), t h e n we call Σo = {COjl, , C0>2g; C0>2g+lf , COM_Z) a basic system of
Jordan curves for <G0>: (i) COfl, C0>g+1; C0,2, C0tδ+2; , COtβf C0>2g are defining
curves of AOfl, A0>2, , AOtg, respectively. Namely they comprize the
boundary of 2g-ply connected region α)0, and A0>i maps COti onto COtg+i and
Aof<(α>o)Πo)0 = 0 for each i = 1, 2, - , g. (ii) COfϊir+i 0' = 1, 2, ••-, 2flr — 3)
lie in co0. (iii) Each component of ω0 — Ui=l3 C0)2g+j is a triply connected
planar region. If, in particular, a basic system of Jordan curves Σo has
the following property (iv), we call ΣQ a standard system of Jordan curves
for (GQ): (iv) For each i = 1, 2, , g and i = 1, 2, , 2# — 3, COf< and
COtg+i lie on the same side of C0)2g+j.

We let C0>ί(1), C/0jί(2), , COjί(ft), G0)ff+i/(1), , G0>flΓ+i/(i) and O0>J (1), O0>J (2), ,
Co,i(m), COtg+jf{1)f •- ,COtg+j>(n) be the defining curves in Σo in the interior
and to the exterior to C0>2g+j, respectively, where i(l) < < i(k) ̂  g,
i'(l) < < ϊ(l) ^ g; j(i) < < j{m) ^ g, j\l) < - < i'(n) ̂  flr.
Then we say that the curve C0t2g+j gives a partition {i(l), , i(fc),
5r + ΐ'(l), ••-,? + i'(0)U{i(l), , /(m), sr + / ( I ) , . . , g + /(^)} of the set
{1,2, -..,2 f f}.

Let S h e a compact Riemann surface of genus g with or without
nodes and let Σ = {a19 , ag; Ύlf , T2σ_3} a basic system of loops and
nodes on S. Cut the surface S along the loops and nodes α< (i = l, 2, , flr).
We denote by αίf< and αό,ff+ί the resulting two topological circles or two
points for each i. We call 2" = {a[9 a2, , α2'ff; 7 l f , 72ff_3} ί/̂ e seί of
Jordan curves and points induced from Σ, or simply the induced set from
Σ. Each 7y devides the set {a[, a2, , α2ff} into two parts {α{(1), , αί(fc),
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α ί + i ' u ϊ , , « ί + i ' ( » } a n d {a'iii)* '"f «}(»)» α ί + i ' α ) f •> αJ+i '<»>h w h e r e i ( l ) < •

< i(fc) ^ or, ΐ '(l) < < i\l) ^ g; i d ) < < j(m) £ g, / ( I ) < • <
j\n) ^ g. Then we say that Ύs gives a partition {i(l), , i(fc), ff+i'(l), ,
ff + *'(*)} U {i(D, , i(m), fir + /(I ) , • -, g + i'(w)} of the set {1, 2, , 2</}.
If each 7y (j = 1, 2, , 2flf — 3) gives the same partition as C0f2g+j, we
say 2" is compatible with 2Ό.

Let Sx and S2 be compact Riemann surfaces of genus g with or without
nodes. Let Σ1 = {a119 a12, , ahg; 7 n, 712, , 71>2ff_3} and Σ2 = {α21, α22, ,
«2,ff; %i, 2̂2, f 2̂,2̂ -3} be basic systems of loops and nodes on Sx and S2,
respectively. Let Σ[ and Σ2 be the induced sets from Σx and Σ2, respec-
tively. If each 7 U (j = 1, 2, , 2flr — 3) gives the same partition as 72 ι i,
we say Σ[ is compatible with J?£.

1.2. Let S be a compact Riemann surface of genus g with or with-
out nodes. We denote by N(S) the set of all nodes on S. From now
on, we assume that g ^ 2 and that each component of S \ N(S) has the
hyperbolic metric, that is, the Poincare metric. The Poincare metric
X(z)\dz\ on S is defined as the Poincare metric on each component of
S\N(S).

DEFINITION 3 (Abikoίf [1, p. 30]). Let S1 and S2 be compact Riemann
surfaces of genus g with or without nodes. If the following (i) and (ii)
are satisfied, we call a continuous surjection / : Sx —> S2 a deformation,
and denote it by (S19 S2, />:

( i ) /-11SJ is a homeomorphism, where S2 = S2\N(S2).
(ii) /"'(node) is a node or a simple loop.

Let Σγ = {αu, α12, , α l j ί7; 7 n, 712, , Ύ1>2g_z) and J , = {a219 a22, , α2ί/;
^2i, 2̂2, , ̂ 2,20-3} be basic systems of loops and nodes on Sx and S2,
respectively. We assume that Σx and Σ2 have the induced sets Σ[ and
Σ2, respectively such that Σ[ is compatible with Σ2j and we write Σx ~ Σ.
for the fact. From now on, we consider a deformation (Slf Sif f) satis-
fying the following (i) and (ii): (i) If a2i (resp. 72ί ) is a loop, then f~\a2%)
(resp. /"1(72 i)) is homotopic to aH (resp. 7 i y). (ii) If a2i (resp. 72J ) is a
node, then f~\a2ι) = α H (resp. /~1(72i) — 7iy) in the case where α x ί (resp.
7iy) is a node, and f~\a2τ) (resp. f~\Ύ2j)) is homotopic to α κ (resp. Ύu)
in the case where aH (resp. 7iy) is a loop. Set P(S^ = f~\N(S2)). We
note that P(SJ 3 ΛΓφ).

Let S and Sra (n = 1,2, ) be compact Riemann surfaces of genus
g with or without nodes. Let Σ and Σn be basic systems of loops and
nodes on S and Sn, respectively, with Σn — Σ. Let <Sn, S, /n> be a defor-
mation satisfying the above (i) and (ii).

2
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DEFINITION 4. If the following condition is satisfied, a sequence of
Riemann surfaces {Sn} converges to a surface S as marked surfaces:
There exists a locally quasiconformal mapping φn: S\N(S) —> Sn\P(Sn)
such that

( i ) ^n(Φn(z))\dφn(z)\ uniformly converge to X(z)\dz\ on every compact
subset of S\N(S), where Xn{z)\dz\ and X(z)\dz\ are the Poincare metrics
on Sn and S, respectively,

(ii) φn maps a deleted neighborhood JVία^XfαJ (resp. iV(7y)\{7y}) of
at (resp. Ίό) to a deleted neighborhood N(α<ιn)\{α<tn} (resp. N(ΊJtn)\{Ίά>n})
of α<tn (resp. 7ifΛ) if ateN(S) (resp. 7ieiV(S)), and

(iii) 0n maps a neighborhood JV(α<) (resp. N(7d)) of α* (resp. 7y) to
a neighborhood N(aii7l) (resp. N(Ύίtn)) of α<fΛ (resp. 7 i f J if α* ί ΛΓ(S) (resp.

When S n converges to S as marked surfaces, we wri te (Snf Σn) —> (S, Σ).

1.3. From now on, we fix a marked Schottky group <G0> = <A0|1,

—', A,2ff> and a basic system of Jordan curves Σo = {Co>1, •• ,C 0 j 2 f f ;

, CΌ,4ί/_3} for <G0>. We denote by Ω(G0) t h e region of disconti-

nui ty of (Go). Then So = Ω(G0)/(G0) is a compact Riemann surface of

genus r̂ wi thout nodes. Let Πo: Ω(G0) —> So be t h e natura l projection. Set

aOtί = i70(C0)ί) (ΐ = 1, 2, - , g) and 70 > i - Π0(C0,2g+j) (j = 1, 2, , 2ff - 3).

Then 2Ό = {αOfl, α0 f 2, , α0 ) f f; 7Ofl, 70>2, , Ύ0t2g_3} is a basic system of loops

on So.

We denote by &g(Σ0) and %Ϊ(ΣO) the Schottky space and the augmented
Schottky space associated with Σo, respectively (see [7, p. 28] and [7, p.
32] for the definitions). Let τ e %*(Σ0). Let S(τ) be the compact Riemann
surface with or without nodes represented by τ (see [7, p. 33] for the
definition). Let <Gy(τ)> (j = 0, 1, , 2g - 3) be the j-th marked Schottky
groups associated with τ, which are defined in [6, pp. 73-75], In particular,
if τe@,(J?o), t h e n <Gj(τ)> = T^G^Tr1 for some TdeMob. Let Ω(Gd(τ))
be the region of discontinuity of (GJ(T)). Let Ω'(G5{τ)) be the set ΩiG^τ))
deleted the set of all images of the distinguished points under <Gy(r)>
(see [7, p. 31] for the definition of distinguished points). We denote by
λ(i)(r, z)\dz\ the Poincare metric on Ω\Gs(τ)).

Let I and J be subsets of {1, 2, , g} and {1, 2, , 2g — 3}, respec-
tively. We define the set I(J) as in [7, p. 30]. We assume that /1) I(J)
throughout this paper. We define subsets δT®g(Σ0), δJ'J@ff(J0), of the
augmented Schottky space &g*(Σ0) as in [7].

PROPOSITION 1. (1) Let τ e δz@ff(l0). Suppose that {τn} c ®g(Σ0) is
a sequence of points tending to the point τ. Then Ω(G(τn)) tends to Ω'(G(τ)).
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Furthermore, λ(τn, z) uniformly converges to λ(τ, z) on every compact
subset of Ω\G(τ)).

( 2 ) Let τeδz J&a(Σ0). Suppose that { r j c i 7 ® ^ ) is a sequence of
points tending to τ. Then Ω\Gό(τn)) tends to Ω\Gό(τ)) for each j = 0,1,
2, , 2g — 3. Futhermore, λ ( i )(τn, z) uniformly converges to λ ( i )(r, z) on
every compact subset of Ω\Gά(τ)).

This proposition is shown by similar method as in Bers [3] and Sato
[5]. From Proposition 1, we easily see the following.

PROPOSITION 2. Given τ e δItJ&g(Σ0). Then there exists a sequence
{τn} c &g(Σ0) tending to τ such that for each j = 0,1, , 2g — 3, λ ( i )(τn, z)
uniformly converges to X{j)(τ, z) on every compact subset of Ω\Gά(τ)).

2. Construction of locally quasiconformal mappings. We use the
same notations as in § 1. Here we will construct locally quasiconformal
mappings φn of Ω'{Gό(τ)) into Ω\Gό(τn)) in three cases, Case I in § 2.1,
Cases II and III in § 2.2.

2.1. Case I. Let τ e δJ@,C£0) and let {τn} c ®g(Σ0) be a sequence of
points tending to τ.

Let <G(τn)> - <Λ(τn, z), A2{τny z),..., Ag(τn, z)) and <G(τ)> - <A4(r,
z)\i$I}, where the latter represents a marked Schottky group generated
by At(τ, z) (i ί I) to the number of g — \ I \ and | /1 is the cardinality of
I. Let Ct(τn), Cg+i(τn) (i = 1, 2, - ., g) be defining curves of <G(rn)>. We
denote by ω{G(τn)) the fundamental domain for <G(τJ> bounded by the
2g J o r d a n c u r v e s C , ( r n ) a n d Cg+i(τn) (i = 1, 2, --',g). L e t Ct(τ) Cg+ί(τ)
( i ί / ) be defining curves for <G(τ)>. We denote by ω(G{τ)) the funda-
mental domain for <G(τ)> bounded by the 2g — 2\I\ defining curves. For
simplicity, we write ω for ω{G(τ)). We may assume that Ct(τn) (resp.
Cg+t(τn)) converge to Ct(τ) (resp. Cg+i(τ)) for i$I. Let pi>n and pg+it7l be
the repelling and the attracting fixed points of At(τn, z), respectively.
We write pif pg+i (i e /) for the distinguished points of the first kind
(see [7, p. 31] for the definition). We set ωr = ω — {pif pg+i\ie I}. We
may assume that for i e /, Ct(τn) and Cg+i(τn) converge to pt and pg+i,
respectively, and that ω(G{τn)) converges to ω'.

For i 6 7, we define deleted r(w)-neighborhoods Nn(pt) and Nn(pg+i)
(n = 1,2, -•') of pt and pg+i, respectively, as follows, where r(n) are posi-
tive numbers: If ptΦoo and

Nn{p,) = {z 6 ω'\ \z - pt\ < r(n)}

and

Nn(pg+i) = {zeω'\\z - pg+i\ < r{n)} ,
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if p . = oo or pg+i = oo,

Nn(Vi) = {zeω'\\z\ >

or

Nn(pβ+t) = {zeω'\\z\>

For simplicity, we write C* and Cg+ί for C^τ) and Cg+i(τ), respectively.
Similarly, we define r(w)-neighborhood Nn(Ct) and Nn(Cg+i) of Ct and Cff+ΐ,
respectively:

Nn(Cί) = {zeω'\dE(z,Ci)<r(n)}
and

iVn(Cff+ί) = {z 6 ω'\dE(z, Cg+i) < r(n)} ,

where dE(z, C) denotes the Euclidean distance from the point z to the
curves C.

We denote by dNn(pt), dNn(Ct), the boundaries of Nn(pt),
Nn(Ct), . Set Bn(Pi) = dNn(Pί) n ω\ Bn(pg+i) = dNn(pg+i) n α>', ^.(CO =
SJSΓ^COnω' and 5n(Cff+1) = dNn(Cg+i) Π ω'. We note that iSΓn(p4), iVn(pfl+ί)
( i e / ) , iVra(Cft) and Nn(Cg+k) (hiI) are mutually disjoint if r(w) is suffici-
ently small. We choose a sequence {r(n)} (n = 1, 2, •) as follows:

( i ) r(l) > r(2) > > r(n) > r(n + 1) > and l im n _ r(n) = 0.
(ii) Bn{p%), Bn(pg+i) (iel) and Bn{Ck), Bn(Cg+k) (fcί I) bound a 2^-ply

connected region α>re contained in ω.
(iii) ^ ( p j c ω(τn), Bn{pg+i) c α)(rn) (i e 7), 5n(Cfc) c α>(rn) and Bn(C,+4) c

We denote by D<ιn (resp. Dg+ίtn) the armulus bounded by Bn(Pi) (resp.
Bn(Pg+i)) and C^rJ (resp. Cff+ί(τn)) for i e /. Similarly, we denote by
Dk>n (resp. Dg+kyΊl) the annulus bounded by Bn(Ck) (resp. Bn(Cg+k)) and Cfc(τn)
(resp. Cff+A;(rn)).

We construct a mapping ^n of Ω\G(τ)) into Ω(G(τn)) in Case I as
follows.

First step. ( 1 ) φn = id. in α>n, where id. means the identity mapping.
( 2 ) In Nn(Pi) (resp. N(pg+i)) for i e /, ^n is a locally quasiconformal

mapping of Nn(pt) (resp. Nn(pg+i)) onto A,n (resp. Dg+ί>n) such that <5n = id.
on Bn(pt) (resp. Bn(pg+i)).

( 3 ) In JVn(CA) (resp. Nn(Cg+k)) for fc e /, ^n is a locally quasiconf ormal
mapping of the closure of Nn(Ck) (resp. Nn(Cg+k)) onto the closure of Dki7l

(resp. Dff+fc,n) such that φn = id. on Bn{Ck) (resp. Bn(Cg+k)) and that 0n

satisfies a relation

^ ( Γ , , φn(z)) = Φn(Ak(τ, z)) for zeCk.

Second step. φn is exteded to the domain Ω\G(τ)) as follows. For
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z e Ω'(G(τ)), there exists an element A(τ, z) of G(τ) with A(τ, z) e α>', which
is represented as a word in A1{τ9 z), , A,(r, 2):

( 1 ) A(r, z) = WWfc, z), • , A,(r, 2)) .

Let A(τn, 2) be the word obtained by replacing At(τ, z) in (1) with A<(rw, 2)
for all i = 1,2, - , g. By setting

£n(z) = A " 1 ^ , φn(A(τ, z))) ,

we define a mapping 0n of Ω'(G(τ)) into Ω(G(τn)). We write again ^n for 0n.

2.2. Case II. Let τ e δIfJ&g(Σ0) and let {τn} c δz@g(Σ0) be a sequence
of points tending to r.

We similarly define ωά = ω(Gό{τ)) and ω{Gύ{τn)) as in Case I. Set
α>J = ωJnΩ'(GJ(τ)). We set

•̂i = ί^lPi a r ^ the distinguished points of the first kind in ωό]

and

// = {i\Ci are defining curves for (Gj(τ)) in α>y} .

Set

Jj = {leJ\pf(τ) are the distinguished points of the second kind in ωά]

(see [7, p. 31] for the definition of the distinguished points of the second
kind). See [6, pp. 16-18] for the definitions of /,-, Γά and Jά. We set
| / y | + \ΓS\ = gό. Then gό is the genus of the Riemann surface Sά(τ) =

The sets Nn(p<), Nn(pg+i) (i e/ y), Nn(Ck), Nn(Cg+k) (k e Γ3), Bn(Pi), Bn(pβ+i),
Bn(Ck) and Bn(Cg+k) are similarly defined as in Case I. Let pt(τn) and pg+ί(τn)
(ielj) be the distinguished points of the first kind for τn in ωό. Let
Nn(p%{τn)) (resp. Nn(pg+i{τn)) be the set iV^p,)U{p,}\{Pi(rn)} (resp. Nn(pg+ι)\J

For Z e /,-, we define deleted r(w)-neighborhood Nn(pr) as follows: If

Nn(pf) = {zeω'j\\z-pΐ\ < r(n)}

if p± = 00,

We set Bn{pf) =
Let C2l7+j(τJ (i e Jy) be Jordan curves in ω(Gd(τn)) which give the same

partitions of the set {1,2, •• ,2#} as C0f2g+ι (see [7, p. 33] for partition).
We choose a sequence {r(n)} (n = 1,2, •) as follows:
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( i ) r(l) > r(2) > > r(n) > r(n + 1) > and l i m ^ r(n) = 0,
(ii) BM, Bn(pg+ί) (ielj), Bn(Ck), Bn(Cg+k) (fee/;) and Bn(pf) (leJj)

bound a 2^ + |/., |-ply connected region ωn contained in ω, and
(iii) Bn(p<), Bn(pg+i) (i 6 /,), 5n(C4), Bn(Cg+k) (k e JJ) are contained in

ω(Gό(τn)) and C2g+ι(τn) (leJd) are contained in Nn(pf).
Let D,^, 2?,+*,,, (keif) be the same annuli as in § 2.1. We denote by D[>n

(I e Js) the annuli bounded by C2g+ι(τn) and Bn(pf).
A mapping ^n of Ω'(Gs(τ)) into Ω\Gά(τn)) in Case II is defined as

follows.

First step. (1) φn = id. in αC
( 2 ) For each i e Ijf φn is a locally quasiconformal mapping of Nn(pt)

(resp. Nn(pg+i)) onto Nn(pt(τn)) (resp. Nn(pg+i(τn)) such that 0n = id. on
Bn(pt) (resp. Bn(pg+%)).

( 3 ) For each fc e Γjy φn is similarly defined as in Case I, (3) in Nn(Ck)
and Nn(Cg+k).

( 4 ) For each I 6 JΓ, , 0ra is a locally quasiconf ormal mapping of Nn(pr)
onto A',n such that φn = id. on Bn(pf).

Second step. 0n is extended to the domain Ω\Gά(τ)) by the same
method as in the second step of Case I.

Case III. Let τ e δIιJ&g(Σ0) and let {τn} c &g(Σ0) be a sequence of
points tending to r.

In this case, a mapping φn of Ω'(Gs(τ)) into Ω(G(τn)) is defined by
combining the methods of Cases I and II.

2.3. Let S be a compact Riemann surface of genus g with or without
nodes. When Σ is a basic system of loops (or loops and nodes) on S such
that 2", one of the set induced from Σ, is compatible with Σo, we write
Σ ~ Σo for the fact.

PROPOSITION3. Given τeδItJ&g(Σ0) c %i(Σ0). Suppose that { τ j c
@>g(Σ0) is a sequence of points tending to the point τ so that ^{j\τn9 z)
uniformly converges to \{j)(τ, z) on every compact subset of Ωf(Gό(τ)) for
each j = 0, 1, 2, , 2g — 3. Let Σn and Σ be a basic system of loops on
S(τn) and a basic system of loops and nodes on S(τ), respectively, with
Σn — Σo — Σ. Then S(τn) converges to S(τ) as marked surfaces, that is,
(S(τn),Σn)^(S(τ),Σ) as n-^oo.

PROOF. Let φn be the quasiconformal mapping of Ω'(Gό(τ)) into
Ω(Gβ(τn)) as defined in §§2.1 and 2.2. We define a function Kli)(τ,z) on
Ω'(Gs(τ)) by setting

r, z) = λ^(rn, φn(z))\dφn(z)/dz\ .
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By the above construction, λj ( i )(τ, z) uniformly converges to Xij)(τ, z) on
every compact subset Kof Ω'(Gs(τ))9 since for sufficiently large n, φn\K =
id. and so λ* ( i )(τ, z) = λ ( i )(τn, z) for zelΓ, and λ ^ f o , z) uniformly con-
verges to Xu\τ, z) on iΓ by the assumption.

Let Πn: Ω{Gό{τn)) -> S(τn) and 77: Λf(Gy(τ)) -• S#r) be the natural projec-
tions, where iS;(r) = S i(r)\(iS i(τ)n JSΓ(S(r))) if we set Sj(τ) = Ω(Gj(τ))/(Gj(τ)).
We define X*ιs)(z)\dz\ and λ(^(2)|d«| on S;(r) by setting

K{j)(z)\dz\ =\*{'\τ,z)\dz\

and

respectively, where z — Π{z). Since X{j)(τ, z)\dz\ and X*{j)(τf z)\dz\ are
invariant under <G/τ)>, λί( i)(^)|d^| and λ ( i )(ί) |dί | are well-defined. Fur-
thermore, we define Xn\z)\dz\ on S(τn) by setting

where z = /Z"n(2). This is also well-defined.
We easily see that

K{j\z)\dz\=xlf\zn)\dzn\f

where z = Π(z) and zn = Πnφn(z) for z e Ω\G3 (τ)). By the above, we easily
see that X${ό\z)\dz\ uniformly converges to Xlj)(z)\dz\ on every compact
subset Kd of Sj(τ) for each j = 0,1, 2, , 2flf — 3. If we denote by 0n

the projection of φn onto SJ (r), we have that

K{j\z)\dz\ == Xl!\φn(z))\dφn(z)\ .

Therefore Xn\φn(z))\dφn(z)\ uniformly converges to X{j)(z)\dz\ on every
compact subset of SJ(τ) for each j = 0,1, 2, , 2flr — 3. Hence (S(τn), I ' J —>
(S(r), J ) . Our proof is now complete.

From Propositions 2 and 3, we have the following.

THEOREM 1. Given a point r6@ff*(lfl), Then there exists a sequence
of points {τn} c &g(ΣQ) tending to τ such that S(τn) converges to S(τ) as
marked surfaces.

3. Constuction of new surfaces.

3.1. Let (Go), Σo, Σo and So be as in § 1. Let / and J be subsets
of {1, 2, , g] and {1, 2, , 2g — 3}, respectively. Assume that I(J) c I.

Given τ eδIiJ&g(ΣQ)f there exists a compact Riemann surface S(τ) of
genus gr with \I\ + | J | nodes represented by τ. We will construct a
new surface from S(r) as follows.
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We denote by J± the subset of J consisting of all j such that Ύθtj

are dividing loops on So. Let J 2 = {j19 j2, , jm} be any subset of J\Jla

Set 7(J2) = {ix, i2, , iTO}. We denote by Σλ and 2Ί the images of Σo and
2Ό, respectively, under the interchange operator Ig(ikω, j H l ) ) where ikω e
I({3nu}) ( s e e t 8 ] f o r t h e interchange operator). We set J21 = / 2\{im )}. We
denote by /i(e/"2i) the set 7(Jr

2JL) defined for cycles in Σx (see [8]). We note
that IM c 7(J2).

Choose j m eJ21 such that 71({iZ(2)})n(7(/2)\{iA;(1)}) Φ S . We apply the
interchange operator 7ff(ifc(2), 3m) to j ^ and 2Ί, where ik{2) e 71({iZ(2)}) and
ik{2) φ ika)m We denote by Σ2 and ̂  the images of Σx and 2Ί, respectively.
We set J2 2 = J21\{jm} = ΛMiίd), iκ2)}. We write 72(J22) for 7(J22) defined
for cycles in Σ2. Then 72(J22) c 71(J21). We choose yZ(3) e J2 2 such that

)}) n (7(«72)\{i*(1), i f c ( 2)})^0. We apply the interchange operator 7α(ifc(8),
^ o Σ2 and ^2, where i*(8Le 72({iϊ(8)}) and ikw Φ ika), ik{2). We denote

by Σz and Σ5 the images of 2̂ 2 and Σ2, respectively.
By the same method as above, we determine the following: j H i ) , ikWf

J24fΣifΣifUJ2i);'-;jι{8)9ik{8)fJ2>8fΣ8fΣ89I8(J2t8). Here s is the integer
satisfying the following (i) and (ii):

(i) i.-i({ii(.)})n(7(J2)\{ifc(1), iki2), , ik{s.1)})Φ0.
(ϋ) I8({j}) S {i*(i), ife(2), , i*(.)} for any jeJ2\{jl{1)9 j m , , j ϊ(β)}.
We set J3 = J\(J1U«/2), /4 = ίizu), iz(2), , Jus)} and J5 = J 2 \ J 4 Set

7: = I\I(J) and 74 = {ifc(1), ifc(2), , ik{8)}. We note that 74c7(J2). Set
73 = 78(J3) and 75 = 7\(7X U 73 U 74). Let 7β be a subset of 75. Set 77 = 75\7β,
/* = J\7 7, and J* = J \ / 4 .

3.2. In § 3.1, we obtained a basic system of Jordan curves Σ8 from
^o by applying interchange operators in succession. We write J?o* for Σ8.
Suppose that S* and I7* = {a*, , α*; 7f, , T2*_3} are a compact Riemann
surface of genus g with nodes and a basic system of loops and nodes on
S* such that one of the sets induced from Σ* is compatible with j?o*, and
that af (i e 7*), 7; (J e /*) are nodes and at (ί $ 7*), 7; (J $ J*) are loops,
where 7* and J* are as defined in § 3.1.

From the construction in § 3.1, we see that the pair (S*, 21*) has
Property (A) (see [8] for the definition). Therefore, by Theorem 2 in
[7], there exists a point τ* e δ/*"7*@ff(fo*) with S(τ*) = S*.

4. Main theorem—The first step. From this section through section
6, we will prove the following: For a given point τ e δIfJ&g(Σ0)f where
I ZD I(J) Φ 0 , there exists a sequence of points {τn} in &g(Σ0) such that
τn-^τ and S(τn) does not converge to S(τ) as marked surfaces as n tends
to 00. We consider it in the case of J = {j} and I(J) Φ 0 in § 4, in the
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case of J = {j(l), j(2)} and I(J) Φ 0 in § 5, and in the general case in
§6.

4.1. The first step: The case of J = {j} and I(J) Φ 0 .
We have the following two cases.
Case I. There are at least three elements k of the set {1, 2, , 2g)

such that C0,fc is behind C0t2g+j, which is denoted by C0t2g+j < C0>k (see [8]
for the definition).

Case II. There are two elements ft of {1, 2, , 2g} with C0>2g+j < COtk.
Fix an element i of I(J). Both Cases I and II are divided into the

following six cases. Here δd means the direction of Ύθtj in the ordered
cycle L0>i (see [8]).

Case 1-1 (Case II-l) . C0>2g+j < C0)i, C0t2g+j < COt,+if δd = - 1 (i Φ 1),

where C0>2g+j < COtg+ί means t h a t COtg+i is not behind C0f2g+j (see [8]).

Case 1-2 (Case Π-2). C0f2g+j < C0)ί, C0t2g+j < C0>g+i, δd = + 1 (i Φ 1).

Case 1-3 (Case Π-3). C0>2g+j < COti, C0,2g+j < C0>g+i, δd = +1 (i Φ 1).

Case 1-4 (Case Π-4). C0,2g+j < COi<f C0,2f f+i < C0,g+i, δ, = - 1 (i Φ 1).

Case 1-5 (Case Π-5). C0i2g+j < C0, f f+ί, Sy = + 1 (ΐ = 1).

Case 1-6 (Case Π-6). C0t2g+j < C0>g+ί, δj = - 1 (i = 1).

R E M A R K . Cases 1-1,1-2, - - ^ I - β are Cases II, I, Γ, II ' , III, I II ' in

[8], respectively.

4.2. We only consider Case 1-1. The other cases a re t rea ted simi-

larly and so omitted. Given τ e δIfJ&g(Σ0). Then we have two marked

Schottky groups <G0(τ)> = <Λ ( 1 )(τ, z), , A0{gQ)(τ, z)) and <Gy(τ)> =

< I i ( 1 ) ( τ , z\ --,Aj{gj)(τ,z)) and defining curves C0(fc)(τ), Cg+0{k)(τ) (k = 1,

2, , ff0) and C i ( I ) (r), Cβ+j{l)(τ) (I = 1, 2, -, ̂  ) as in [6, pp. 73-75]. Fur-

thermore, we have the fixed points po{k)(τ), Vg+^kM of AQ{k)(τ, z) (resp.

Pja)(τ)> Pg+j(i)(T) °f ^i(j)(Γ> )̂)> t h e distinguished points of t h e first kind

Pougo+i)(τ)9 -9 Povao+mO)(τ) (resp. pd{2gi+1)(τ), - -, Pn2gj+ms)(τ)), and the distin-

guished point of the second kind PΪ(τ) (resp. pj(τ)).
Let S(τ) be the Riemann surface with nodes represented by τ. Let

ak(τ) (fcef, i.e., fc = 0(1), , 0(#0), i(l), •• ,i(flfy)) be the projections of
C4(r), and α,(r) (Z e /) (resp. 7y(r)) the projections of the distinguished
points of the first kind pt(τ) (resp. pf(τ)). Let 7z(τ) (1 <; ϊ ^ "̂ — 1, j + 1 ^
Z ^ 2gr — 3) be loops on S(τ) such that ^ = {ax{τ), , αff(τ); 7x(r), ,
72ί7-3(̂ )} is a basic system of loops and nodes on S(τ) with Σ ~ Σo. Let
C2g+ι(τ) for I with 7Z c S0(τ) = β(G0(τ))/<G0(τ)> (resp. C2ff+Z(τ) for I with
7̂  c S/τ) = i2(Gi(τ))/<Gi(τ)» be the liftings of 7,(τ) to ωo(τ) (resp. α)y(r))f

where α)0(r) (resp. ώ/τ)) is the fundamental region bounded by CQ{k)(τ) and
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Colg+k)(τ) (Λ = 1, 2, •••, 9o) for <G0(r)> (resp. C i(m)(τ) and Ci{g+j{m))(r) (m =

1,2, . . . , ^ ) for

4.3. From § 4.3 through § 4.5, we will construct a Riemann surface
S* from S(τ), a basic system of loops and nodes J* = {αf, , ag; 7?, ,
72*_3} from J and a point τ* e %*(Σf) from r, where Ifr is the image of
Σo under the interchange operator Ig(i, j).

(1) We will define points pf{k), p*+0{k) (k = 1, 2, , g0), pf{2ao+l) (I =
1,2, •• ,m0) except pf and p*+ ί and Jordan curves Co**,, C*+0{k) (k = 1,

2, , ffo) b y Po*(fc) = 2>0(fc)(O, 2>?+0<*> = Pff+0(fc)(^); Pmgo+l) = Pθ(2ffo+Z)(^); Qfc) =

Co(fc)(τ), C*+o<*> = C,+ 0 ( f c )(τ). We set pf = pg+i(τ) and p*+i = pj-(r) and set
C2*+ ϊ = C2ff+Z(τ) for i wi th C0)2g+j < C0 ) 2 σ +i, namely for I w i t h 7Z c S0(τ).

( 2 ) We will define points pf{k)9 p^+j{k) (k = 1, 2, - , ̂  p ; ( 2 σ i + Z ) (Z =

1,2, •• , m J ) except pf and p * + i and J o r d a n curves C*ik), C*+ i ( f c ) (fc = 1,

2, , 0 ^ b y p*(*> j = Pi(jb)(r), p* + i ( f c ) = Pΐ+jιk)(τ); V%95+D = Pfi2gj+ιM; Cf{k) =

Cdιk)(τ), C*+ί{k) = C^+ywCr). We set pf = pj(τ) and p*+i = p^τ), and set

Cfg+i = C2ff+i(τ) for Z with C0>2ff+i < C0)2ff+i, namely for I with 7? c S, (τ).

4.4. By using multi-suffices, we write C0(i19 ί2, , iμ), C0(ilf-"9

iμ, - , ip) and C0(j\, j 2 , , j σ ) for C0,2ff+i, COf< and COta+i, respectively.

( 1 ) We choose Jordan curves Kλ and K2 as follows: Kλ (resp. K2)
forms the boundary curves of a triply connected region σ*(jlf

 β ,iσ-i)
(resp. σ*(ilf --,%_,)) together with C*0\, , jo-i) and C*0\, , j σ _ u

1 — Ja) (resp. C*(ίi, , %^) and C*(ix, , ΐp_1, 1 — iv)), and contains the
point pf (resp. p*H) in the interior.

( 2 ) We determine a Mobius transformation Γ as follows and fix it:

T{pf) = pf, T(p*+i) = p*+i and iί2* = Γ " ^ ^ ) lies in the interior to Kx.

Then we note that the outside K2 is mapped to the inside K* under the

mapping T'1. We write C2g+j for K*.

( 3 ) We set Cflk) = T-\Cf{h))f C*+Jik) = T'\C*+J{k))f pf{k) - Γ- 1 ^*,) and

p + / ( W = T-\p*+J{k)) (k = 1, 2, , ffi), and p; ( 2, i + I ) = Γ - 1 ® ^ , , ) (Z = 1,

2, , my). We set C£+ l = T-\C*g+ι) for i with C0,2ff+i < C0>2ff+z. We note

that all these points and curves are contained in the interior to C2g+j.

4.5. For each k = 0(1), , 0(g0) (resp. I = j(l), , i (^)), we define

a Mobius transformation Ak(τ, z) (resp. Af(τ, 2)) by A*(τ9 z) = A4(r f 2)

(resp. Af(τ, «) = T-^τ, z)T). Let ίfc* (|ίf| < 1) (k = 0(1), , 0(g0),

j(X)9 •••, i(flTy)) be the inverse of multipliers of A?(r, z). We set if = 0

(fc e {1, 2, , flr}M0(l), , 0( Λ ), i d ) , , i(ί/y)}, i.e., fc e I ) .
By the same way as in [7], we determine pf (I = 1, 2, , 2g — 3)
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from p*f , p*g with respect to Σ*. We set

Then τ* e %ϊ(Sf). Let S* = S(τ*) be the Riemann surface with nodes
represented by τ*.

Let at (k = 0(1), , 0(g0), i(l), , j{gs)) (resp. af (I e I)) be the
projections of Q (resp. pf) onto S*. Let 7? (ί = 1, 2, , 2g — 3) be the
projections of C?g+ι onto S*. Now we define a basic system of loops and
nodes Σ* on S* by

We note that Σ* ~ J?o*.

4.6. Here we will construct basic systems of loops Σi with Σi ~ Jo*,
and a sequence of points {τ£} c &g(Σ*) such that r* —> τ* and (S(τ*), I'*) —>
(S(τ*), 2"*) as n tends to oo, where S(τi) are the Riemann surfaces repre-
sented by r*.

For Z = 1, 2, , 2g - 3, we set C?g+ι>n = C&+, (Λ = 1, 2, •)• For k $ /,
we set Ctn = Cf, C*+Jfc,w = C*+fc, pf,, = pf and p*+fc,n = pf+Jb (Λ = 1, 2, .).
We set A£n(z) = Af(T, «). For lei, we choose Cz*n and Cff*+Z>n (n = 1, 2, •)
as follows:

( i ) Each Q n (resp. C*+Z>n) is a circle of the radius r(l, n) (resp.
r(g + I, n)) about pf (resp. p*+z) such that limn_oo r{l, n) = 0 (resp.
lim^oo r(gf + ϊ, n) = 0).

(ii) For each lei, let A*n(z) be a Mobius transformation satisfying
AUPU = PL, Aftn(p*+ι,n) = pt+ι,n and AfJCfJ = Cff*+Z>n. Then <GJf> =
<Aίn(2;), , Af,n(z)> is a Schottky group.

(iii) If we set

then Si is a basic system of Jordan curves for <G*> with Σi ~ J?o*,
where Si ~ l̂ o* means that for each I = 1, 2, , 2ff — 3, C2*+i>n gives the
same partition of {1, 2, , 2g} as C£+ i.

REMARK. We may choose ptn, p*+ktn9 Cf,n, C*+4,n and C2*+Z>n as
follows:

( i ) Ptn -*P** and p*+ 4 ( Λ -> p* + t (k = 1, 2, , βr> as n -> oo,
(ii) For & g /, C*,π —> C* and Cί+A.,n —• C^+fc as τι —> ^ .
(iii) For each fee/, Cftn (resp. C*+ktn) is a Jordan curve with the

diameter r(k, n) (resp. r(g + fc, n)) such that r(fc, n) —> 0 (resp. r(ί)r + A;, t̂ ) —>
0) as n -> oo and pffΛ (resp. p?+fc,n) is contained in the interior to Cf§n

( r e s p . C*+k>n).
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(iv) Let A*tn(z) (k = 1, 2, , g; n — 1, 2, •) be Mobius transforma-
tions satisfying AtSvtJ = .P?,«, Aΐtn(p*+ktn) = PΪ+k>n, A?,n(C£n) = C*+fc,n,
and limn_.ooλ*,n = λ? (resp. oo) for &£/ (resp. feel), where λ*,n and λf
are the multipliers of At,n and At, respectively. Then (G%) = (A?t7l(z), ,
Aϊtn(z)} is a Schottky group.

( v ) If we set

then I** is a basic system of Jordan curves for <G;f> with Si ~ Σ*.

Let τϊe&g(Sf) be the point corresponding to (G%) (cf. Theorem 1
in [7]), that is, <Gn*> = <G(τn*)>. Let Πn: Ω(G(τ*)) -> ΰ(G(r*))/<G(τ*)> -
S(r*) be the natural projection. We set α*,n = ΪIn(Ciιn) (k = 1, 2, , Sf;
n = l ,2 , •••) and 7,% = /7n(Cί*+Ifn) (i = 1, 2, . .- , 2flr - 3; n = 1, 2, •••)•
Then I'ί = {α*n, , α^,n; 7i*n, , 72*_3jn} is a basic system of loops on
•S(τ*). By the same way as in § 2, we see that τ* —> τ* and (S(r*), I'ί) —>
(S(τ*), J*) as ^ - > o o .

4.7. Let ^ ^ { α ^ , , aβtn; ΎUn, , 72,_3,J, r n and <G(rJ> be the
images of 2^, r* and <G(rί> under the interchange operator Ig(i, j),
respectively. Then we see that τn e @>g(S0) and that ^ n is a basic system
of loops on Sn = i3(G(rJ)/<G(rJ> with ^ - J o . Let 1* = {αf, , α*;
7f, •••, 72*_3} be the following basic system of loops and nodes on S* =
S(τ*): at =ai {k^Φ i), άf = Ύf, Ίf = 7f (i ̂  i ) and 7f = at. Then we
note that Σ* ~ Σo. From § 4.6, we have that τn —> r and (S(rn), J?n) —>
(S(τ*), 1*) ( ^ (S(r), J?)) as n -> - .

5. Main theorem—The second step.

5.1. The second step. The case of J = {/(I), /(2)} and I(J) Φ 0 .
Let i(l) 6 7({i(l)}). Let ̂  be the image of So under the interchange

operator Ia(i(ϊ), i( l)). We set Jx = {j(2)}. We consider the case of
/(Ji)Mi(l)} ^ 0 w i t h respect to St. Let i(2) 61(J±). We write f2 for the
image of Sx under the interchange operator Ig(i(2), i(2)).

The second step is divided into the following three cases: Case 1.
Qg+m < C2g+}(2)', Case 2. C2g+*{2) < C2g+*ω; Case 3. There is no relation
between Cig+$ω and C2g+fa)9 that is, C2g+*ω < C2ί7+/(2) and C2ff+;(2) < C2ff+;(1).
For C<(1) and Cg+iω (resp. Cί(2) and Cg+m), we have either C2ff+^(1) < Ciω or
C2ί/+i(i) < Cg+ia) (resp. C2ί/+;{2)) < Cΐ{2) or C2g+*{2) < Cg+m). We only consider
the following case:

2̂flr+j(D < C i ( 1 ) a n d C2g+j{2) < C ί ( 2 ) .

Other cases are similarly treated.
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In the above case, there may be t h e following twelve cases:

Case 1. C2g+*{1) < C2g+*{2), therefore in this case C2ί7+/(1) < Ci{2) and

Case 1-1.
Case 1-2.
Case 1-3.
Case 1-4.

Case 2. C2g+*{2) < C2ff+*(1), therefore in this case C2g+>{2) < Cia) and

Case 2-1. G2ff+/(2) <
Case 2-2. C2ff+/(2) <C
Case 2-3. C2ff+/(2) %
Case 2-4. C2g+*{2) < G σ + ί ( 1 ) , C2g+*{1) < Ci{2)

C a s e 3. C 2 f f + ; ( 1 ) < C 2 f f + i ( 2 ) a n d C2g+*{2) <
C a s e 3-1. C2ff+/(D >! C f f + ί ( 2 ), C2 f i r +/ ( 2 ) ^ C
C a s e 3-2. C2g+j{1) < Cg+i{2), C2g+j{2) <fi Cg+i{1).
Case 3-3. L>2g+j{1) <fi Cg+i{2)f C2g+^2) <C Cg+ia).

Case 3-4. C2fir+/(1) <C Cy+ί(2)>

5.2. Here we only consider Case 1-3. Other cases are similarly

treated. We use similar procedures as in §4. First, we use Cig+}{1)9 Cia)

and Cg+ia) instead of C2g+j, Ct and Cg+ί in § 4, respectively. In this case,

it is slightly different from the way in § 4. Namely, we have three

Schottky groups <G0(^)>, <G/(1)(τ)> and <G;(2)(r)>. We set p*+i{ί) = pt( l)>

Pj(2) — Pg+W)f Pitt) — PΰU)f P£{2) — Pj(2)9 Pg+i{2) — Pg+i{2)> P?(2) — Pj(2) anCl Pg+i{1) —

pi{1) and then we use the same procedure as in § 4 for <G0(τ)> and <G;(2)(τ)>.
We denote this procedure by [C2g+}{1); Ctω, Cg+iω]. We denote by (C2g+j;
Ci9Cg+i) the procedure in §4. Second, we use C2*+;{2), C*+i(2), and Cf{2)

instead of C2g+j, Ct and Cg+i in § 4, and we use the same procedure as in
§4 for <Go*(τ)> and <G|(2)(τ)>. We write [C2,+/(lϊ; Ct{ι)f Cg+ia)] - (C2*+/(2)>

Cg+i{2)9 Ci{2)) for the above two procedures.

Given a point τ 6 δ7'J@?(l0). ^ e get a point r*e@*(2 ί

1) from τ by
using the procedure [C2g+*ω; Cί(1), Cy+<(1)], and a point τ** e&*(Σ2) from τ*
by using the procedure (C2*+/(2); C*+ί(2), C ί(2)). Let 21** = {α?*, , α**;
Ύ**t ##/^2*-3} be a basic system of loops and nodes of S(τ**) which is
obtained by the same method as in § 4. We note that J * * ~ Σ2. Next
we construct the following sequence of points {r**}c@β(-Γ2) by a similar
method as in § 4:

r** -> τ** and (S(τΓ), ^ Γ ) -> (S(τ**), Σ**)
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as n -> oo, where Σ** is a basic system of loops on S(τ**) with ΣS* ~ Σ2

which are obtained by the same method as in § 4. We set τ* = I~\i(2),
/(2))(τ •) and τn = I?(i(X), /(l))(τ ). Then it is easily seen that τn e ®,(20)
and r n - > r as w-+oo. Let J** = {αf , , α**; 7?*, •• , f2*A} be the
following basic system of loops and nodes on S(r**): α*(JS = 7*(J, α*(*> = Ύ*$),
$** = αΐ* (k Φ i(l), i(2)), τ;(ί = αfαi, τ;(21 =* α*{21 and 7? * = 7f* (I * / ( I ) , /(2)),
We set Σn = Iβ(i(l), fo))-1 I,(i(2), j(2))-\Σ**). Then we have that

(S(rJ, Σn) -, (S(r ), ̂ **) as n - ~ ,
5.3. Other cases can similarly be treated to the above. For each

case, we use the following procedures:
C a s e 1-1. (C2g+jα)'t Ci(1), Cύ+i{1)) — (C 2*+/( 2); C*(2), C* + ί ( 2 ) ) .

L»ase 1-2. (C2ff+/(i)j ^f(D> C^+fd)) (C 2 f f + /( 2 ); C ί ( 2), O f l + i < 2 ) ) .

Case 1-3 was already treated in § 5.2. Case 1-4 does not occur.
Case 2-1. (C2ίr+/(i)» «̂υ>
Case
Case
Case
Case
Case
Case
Case

2-2.
2-3.
2-4
3-1.
3-2.
3-3.
3-4

[C2g+*ω;
does n o t

(C 2 ί 7 + ; ( 1 ) ;

(C2g+3>(1);

L^2fiΓ+/(l) I

does not

^i(l)f ^g+i{l))

occur.
^i(l)> ^g+id))

/Πf /HI "1

occur .

— (C 2 * + / ( 2 ) ;
" " \p2g+3{2)\

W'2g+j(2)>

\°2£r+i(2)>

(C2£r+/(2)>

^ϊ(2)>

n*
^U2)t

n*
^ϊ(2)>
/^*
^ί(2)>

^i(2)>

^g+i(2))

C * + ί ( 2 ) ) .

{^g+i(2)J'

^<7+i( 2);

6. Main theorem—The third step. Last, we will treat the general
case. LetτeδItJ&g(Σ0) be as in §3, where /=) I(J) Φ 0 . Let Σf be as
in § 3, that is,

We write Φ for I,(tt(t), i,(f)) Ig(ikα)f j m ) . Let I* and J * be as in § 3.
By the same methods as in §§4 and 5, we determine T1e%^(S1) from r,
r2e@ (^2) from τlf , τ.e%*(S}) from r.β l, where J t = /^(ί,, jιw)(2t-i)
(ί = 1,2, . . . , s) and f0* =-?..

We set τ* = τ8. Let J * = {α*f , α*; 7f, , %*ff_3} be a basic sys-
tem of loops and nodes on S(τ*) with J * — Jo* which is obtained by the
same method as in §§4 and 5. We note that α? (fee/*) and 7? (leJ*)
are nodes, and at (fcί/*) and 7? (1&J*) are loops. As in §§4 and 5,
we construct the following sequence of points {r*} c ®g(Σ*): τ£ —> τ* and
(S(r*), J*) -> (S(r*), 21*), where 2** are basic systems of loops on S(t*)
with J * ̂  Jo* which are obtained as in §§4 and 5. We set τn = Φ'XτJ).
Then the sequence of points {τn} a &g(Σ0) satisfies the following:

τn - r and (S(τn), J J -> (S(r*), !•) as n -> 00 ,
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where Σn = Φ~\Σl) and Σ* is the basic system of loops and nodes on
S(τ*) with Σ* ~ Σo which is obtained from Σ* as in §§ 4 and 5. Then we
have the following main theorem.

THEOREM 2. Let (Go) and Σo be a fixed marked Schottky group and
a fixed basic system of Jordan curves for <G0>, respectively. Given a
point τ e δZtJ®g(S0), where IZ) I(J) Φ 0 . Let ϊf, J* and J* be as in § 3.
Let τ* e δz'tJ*®g(Sf) be the point obtained from τ as in the above. Then
there exists the following sequences of points {τn} c &g(Σ0):

τn->τ and {S{τu),Σu)-*(S(τ*),ϊ*) as n-*™,

where Σn and Σ* are a basic system of loops on S(τn) with Σn ~ Σo and
a basic system of loops and nodes on S(τ*) with Σ* ~ ΣOf respectively,
as above.

COROLLARY. Given r e i y β f ( I 0 ) , where Iz> I(J). If I(J) Φ 0, then
there exists a sequence of points {τn} c &g(ΣQ) such that (i) τn -> τ as
n —> oo and (ii) S(τn) does not converge to S(τ) as marked surfaces.

REMARK. By similar methods as in [5] and in the proof of Theorem
1, we easily show that if j ^ , is a standard system of Jordan curves, then
S(τn) converges to S(τ) as marked surfaces for any point τe%*(Σ0) and
for any sequence of points {τn} c ®g(ΣQ) with τn —> τ.

7. An example. Here we will give an example for Theorem 2. We
write (α, b; c, d) for a matrix

la b\

\c d) '

For n = 10,11,12, , we set

Altn = (n, -1/n; n, 0) ,

A2,n = (n2 + 3, - (2n 2 + 6 + (1/n2)); n\ -2n2) ,

CUn: \z\ = 2/3 ,

C i f . : | s - l | = 3/(2n f) f

In particular, we set At = Aitl0 (i = 1, 2), <G0> = (A19 A2}, Ct = Ci>10

(i = 1, 2, 3, 4, 5) and ^Σo = {Clf C2fCZfC,; C5}. Then <G0> is a marked
Schottky group and Σo is a basic system of Jordan curves for <G0>. We
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apply the interchange operator 7,(1, 1) on Σo and <G0>. If we set Σf =
/.(I, 1)(SO) = {Ct, Cϊ, Ct, Cf, Cϊ), then we have C* = Aτ\Ct), Q = Ct, Q =
Ct, Cf = Aτ\Cύ and Q = C,. If we set <(?„*> = 1,(1, 1)«G,» = (A*, A?},
then we have A* = Aλ and A% = AfM.2.

We set (Gn) = (Aun, A2J (n = 10, 11, 12, •) where <G10> = <G0>.
We easily see that (Gn) are marked Schottky groups (TO = 10, 11, •)•
Let τn = (ί1>n, ί2>n, (01>B) be the points in &g(Σ0) corresponding to (Gn) (n =
10,11, •)• If we set <Gn*> = 1,(1, l ) « G n » = (A!,n, Af,Λ}, then we have
A*n = Aun and A},n = Aτ,ι

nA2}n = (w, -2%; - 3 n , 6w + (1/n)). Let τ = (ίί;n,
tin, Ptn) be the points in ©„(£„*) corresponding to <G*>. Set S* =
Ω(Gϊ)/(Gϊ) and Sre = U(Gm)/<GB>. Let #„ (resp. 77*) be the natural pro-
jections of Ω(Gn) (resp. β(G*)) onto Sπ (resp. S*). We set ai>n = Πn(Ct „)
« = 1,2), 71>π = 77n(C,,.), a*n = ΠZ(CU (i = 1, 2) and 7X% = 77;(C,%).
Then 2"B = {α1>n, α2>ί!; 71>B} and J ί = {<x,*n, α2*n; 7 ί J are basic systems of
loops on Sn and S*, respectively, and Σ* = 7,(1, l)(2"n).

Let λ4>π, 2>1>B and p 2 + i,π (resp. λί*n, 3>ίπ and j)2*+<iB) be the multipliers,
the attracting and the repelling fixed points of Ai>n (resp. A*n), respec-
tively, for n = 10, 11, 12, •••, where |λ j ( B | .> 1 (resp. |λ,*J > 1). Then
we have

Pun = (w- - V V - 4)/2» , p3,n = (n + Vn* - 4)/2n ,

4 i . = (3(%2 + 1) - v V - 6w2 + 5)/2%2 ,

1>n = (w2 - 2 + w i / i ? ^ !
4 - 84n2 + 45)/2 ,

Pl,π = = Pi,7i > P3,ra — P3,n >

p*n = (Jάn + (1/n) + l/49%2 + 10 + (l/n2))fin ,

P*% = (Jάn + (1/w) - l/49%2 + 10 + (l/nz))fin ,

K,n - \,n , and
12 + (1/w2)

+ l/2401%4 + 1176%2 + 238 + (24/w2) + (l/

Let Tn be the Mobius transformations determined by

Tn(p1>n) = 0 , Tn(p3J = 1 and ΓB(p,,n) = -

for «. = 10, 11, 12, . Then pUn = Tn(pitn). By simple calculation, we
have

3) 2 - ( ]/TO 4 - 6TO2 + 5 - TOΪ/TO2 - 4)

Hence pUn —> 1 as »
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On the other hand, let T* be the Mδbius transformation determined by

T*(pfιn) = 0 , Γ*(p8*n) = 1 and Tn*(p*J = -

for n = 10, 11, 12, . Then we have

1 _ (i/p* ) = S2n* + 96n2 + 64 + (A/n2)
IHlιn) (9n2 - 5 + Vn2 - AV A9n2 + 10 + (1/n2))2 *

Hence p*n-+8/7 as n—> «>.
Since ί<ιn = l/λ<tn and «,% - l/λ*n (i = 1, 2), τn -> τ = (0, 0, 1) and

τ? —> r* = (0, 0, 8/7) as n —> °°. τ (resp. τ*) is a point in the augmented
Schottky space %*(Σ0) (resp. %*(Σ?)). Let S and S* be the Riemann
surfaces represented by τ and τ*, respectively. Let 21* = {αf, α2*; 7f} be
a basic system of loops and nodes on S* with Σ* ~ 27 such that af
(i = 1, 2) are nodes and 7? is a loop. Let 2* = {ά*f α2*; 7f} be a basic
system of loops and nodes on S* such that a* = 7f, α2* = α2* and 7X* =
αf. We note that J* ^ Σo. Then by using the method of the proof of
Theorem 1, we have that

(Sί, ΣS) -> (S*, J*) as n -> oo .

Since Sn = S* except markings and S Φ S*, we have that

(S n ,^ w )->(S*, i*)(^(S,^)) as n->oo.
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