LIMITS OF SEQUENCES OF RIEMANN SURFACES REPRESENTED BY SCHOTTKY GROUPS

(To Professor Yukio Kusunoki on the occasion of his 60th birthday)

HIROKI SATO

(Received September 5, 1983)

0. Introduction. In this paper, we state an application of the interchange operators introduced in the previous paper [8]. We consider the following problem. We give a point τ in an augmented Schottky space $\hat{\mathfrak{S}}_{g}^{*}(\widetilde{\Sigma}_{0})$ associated with $\widetilde{\Sigma}_{0}$, which represents a compact Riemann surface S with nodes. Then for any sequence of points $\{\tau_{n}\}$ in the Schottky space $\mathfrak{S}_{g}(\widetilde{\Sigma}_{0})$ associated with $\widetilde{\Sigma}_{0}$ tending to the point τ , does the Riemann surfaces $S(\tau_{n})$ represented by τ_{n} converge to S as marked surfaces as $n \to \infty$?

The answer to this problem is negative in the general case, namely in the case where $\tilde{\Sigma}_0$ is a basic system of Jordan curves (see § 1.2 for the definition). However the answer is affirmative in a special case, namely in the case where $\tilde{\Sigma}_0$ is a standard system of Jordan curves (see § 1.2 for the definition). Now the following question arises: To what Riemann surfaces does the sequence of Riemann surfaces $\{S(\tau_n)\}$ converge as marked surfaces as $n \to \infty$ in the general case? The answer is the main result (Theorem 2 in § 6) in this paper.

We use the same notation and terminologies as in [8]. In §1, we will define convergence of Riemann surfaces, and in §2, we will show the following: For any point τ in an augmented Schottky space, there exists a sequence of points $\{\tau_n\}$ in the Schottky space tending to τ such that the sequence of Riemann surfaces $\{S(\tau_n)\}$ represented by τ_n converges to the Riemann surface $S(\tau)$ represented by τ as marked surfaces as $n \to \infty$. In §3, we will construct a new surface from a given surface. From §4 through §6, we will state and prove the main theorem. In §7, we will explain the result by an example.

1. Definitions and terminologies

1.1. We use the same notation and terminologies as in the previous papers [7, 8].

Partly supported by the Grants-in-Aid for Scientific and Co-operative Research, the Ministry of Education, Science and Culture, Japan.

DEFINITION 1. Let S be a compact Riemann surface of genus g without (resp. with) nodes. We call the set $\Sigma = \{\alpha_1, \alpha_2, \dots, \alpha_g; \gamma_1, \gamma_2, \dots, \gamma_{2g-3}\}$ of loops (resp. loops and nodes) on S having the following property a basic system of loops (resp. a basic system of loops and nodes) on S: Each component of $S - \bigcup_{i=1}^{g} \alpha_i - \bigcup_{j=1}^{2g-3} \gamma_j$ is a planar and triply connected region of type [3, 0] (resp. [3, 0], [2, 1], [1, 2] or [0, 3]), where a surface of type [m, n] means the sphere with m disks removed and n points deleted. If, in particular, the number of nondividing loops (resp. the number of nondividing loops and nondividing nodes) is equal to g, we call Σ a standard system of loops (resp. a standard system of loops and nodes) on S.

Let $\langle G_0 \rangle$ be a marked Schottky group generated by $A_{0,1}, A_{0,2}, \dots, A_{0,g}$: $\langle G_0 \rangle = \langle A_{0,1}, A_{0,2}, \dots, A_{0,g} \rangle$.

DEFINITION 2. If mutually disjoint Jordan curves $C_{0,1}, C_{0,2}, \dots, C_{0,2g}$, $C_{0,2g+1}, C_{0,2g+2}, \dots, C_{0,4g-3}$ on $\hat{C} = C \cup \{\infty\}$ have the following properties (i)-(iii), then we call $\tilde{\Sigma}_0 = \{C_{0,1}, \dots, C_{0,2g}; C_{0,2g+1}, \dots, C_{0,4g-3}\}$ a basic system of Jordan curves for $\langle G_0 \rangle$: (i) $C_{0,1}, C_{0,g+1}; C_{0,2}, C_{0,g+2}; \dots, C_{0,g}, C_{0,2g}$ are defining curves of $A_{0,1}, A_{0,2}, \dots, A_{0,g}$, respectively. Namely they comprize the boundary of 2g-ply connected region ω_0 , and $A_{0,i}$ maps $C_{0,i}$ onto $C_{0,g+i}$ and $A_{0,i}(\omega_0) \cap \omega_0 = \emptyset$ for each $i = 1, 2, \dots, g$. (ii) $C_{0,2g+j}$ ($j = 1, 2, \dots, 2g - 3$) lie in ω_0 . (iii) Each component of $\omega_0 - \bigcup_{j=1}^{2g-3} C_{0,2g+j}$ is a triply connected planar region. If, in particular, a basic system of Jordan curves $\tilde{\Sigma}_0$ has the following property (iv), we call $\tilde{\Sigma}_0$ a standard system of Jordan curves for $\langle G_0 \rangle$: (iv) For each $i = 1, 2, \dots, g$ and $j = 1, 2, \dots, 2g - 3$, $C_{0,i}$ and $C_{0,g+i}$ lie on the same side of $C_{0,2g+j}$.

We let $C_{0,i(1)}, C_{0,i(2)}, \dots, C_{0,i(k)}, C_{0,g+i'(1)}, \dots, C_{0,g+i'(l)}$ and $C_{0,j(1)}, C_{0,j(2)}, \dots, C_{0,j(m)}, C_{0,g+j'(1)}, \dots, C_{0,g+j'(n)}$ be the defining curves in $\widetilde{\Sigma}_0$ in the interior and to the exterior to $C_{0,2g+j}$, respectively, where $i(1) < \dots < i(k) \leq g$, $i'(1) < \dots < i'(l) \leq g$; $j(1) < \dots < j(m) \leq g$, $j'(1) < \dots < j'(n) \leq g$. Then we say that the curve $C_{0,2g+j}$ gives a partition $\{i(1), \dots, i(k), g + i'(1), \dots, g + i'(l)\} \cup \{j(1), \dots, j(m), g + j'(1), \dots, g + j'(n)\}$ of the set $\{1, 2, \dots, 2g\}$.

Let S be a compact Riemann surface of genus g with or without nodes and let $\Sigma = \{\alpha_1, \dots, \alpha_g; \gamma_1, \dots, \gamma_{2g-2}\}$ a basic system of loops and nodes on S. Cut the surface S along the loops and nodes α_i $(i=1, 2, \dots, g)$. We denote by $\alpha'_{0,i}$ and $\alpha'_{0,g+i}$ the resulting two topological circles or two points for each i. We call $\Sigma' = \{\alpha'_1, \alpha'_2, \dots, \alpha'_{2g}; \gamma_1, \dots, \gamma_{2g-3}\}$ the set of Jordan curves and points induced from Σ , or simply the induced set from Σ . Each γ_j devides the set $\{\alpha'_1, \alpha'_2, \dots, \alpha'_{2g}\}$ into two parts $\{\alpha'_{i(1)}, \dots, \alpha'_{i(k)}\}$

SCHOTTKY GROUPS

 $\alpha'_{g+i'(1)}, \dots, \alpha'_{g+i'(l)}$ and $\{\alpha'_{j(1)}, \dots, \alpha'_{j(m)}, \alpha'_{g+j'(1)}, \dots, \alpha'_{g+j'(n)}\}$, where $i(1) < \dots < i(k) \leq g$, $i'(1) < \dots < i'(l) \leq g$; $j(1) < \dots < j(m) \leq g$, $j'(1) < \dots < j'(n) \leq g$. Then we say that γ_j gives a partition $\{i(1), \dots, i(k), g+i'(1), \dots, g+i'(l)\} \cup \{j(1), \dots, j(m), g+j'(1), \dots, g+j'(n)\}$ of the set $\{1, 2, \dots, 2g\}$. If each γ_j $(j = 1, 2, \dots, 2g - 3)$ gives the same partition as $C_{0,2g+j}$, we say Σ' is compatible with $\widetilde{\Sigma}_0$.

Let S_1 and S_2 be compact Riemann surfaces of genus g with or without nodes. Let $\Sigma_1 = \{\alpha_{11}, \alpha_{12}, \dots, \alpha_{1,g}; \gamma_{11}, \gamma_{12}, \dots, \gamma_{1,2g-3}\}$ and $\Sigma_2 = \{\alpha_{21}, \alpha_{22}, \dots, \alpha_{2,g}; \gamma_{21}, \gamma_{22}, \dots, \gamma_{2,2g-3}\}$ be basic systems of loops and nodes on S_1 and S_2 , respectively. Let Σ'_1 and Σ'_2 be the induced sets from Σ_1 and Σ_2 , respectively. If each $\gamma_{1,j}$ $(j = 1, 2, \dots, 2g - 3)$ gives the same partition as $\gamma_{2,j}$, we say Σ'_1 is compatible with Σ'_2 .

1.2. Let S be a compact Riemann surface of genus g with or without nodes. We denote by N(S) the set of all nodes on S. From now on, we assume that $g \ge 2$ and that each component of $S \setminus N(S)$ has the hyperbolic metric, that is, the Poincaré metric. The Poincaré metric $\lambda(z)|dz|$ on S is defined as the Poincaré metric on each component of $S \setminus N(S)$.

DEFINITION 3 (Abikoff [1, p. 30]). Let S_1 and S_2 be compact Riemann surfaces of genus g with or without nodes. If the following (i) and (ii) are satisfied, we call a continuous surjection $f: S_1 \to S_2$ a deformation, and denote it by $\langle S_1, S_2, f \rangle$:

- (i) $f^{-1}|S'_2$ is a homeomorphism, where $S'_2 = S_2 \setminus N(S_2)$.
- (ii) $f^{-1}(\text{node})$ is a node or a simple loop.

Let $\Sigma_1 = \{\alpha_{11}, \alpha_{12}, \dots, \alpha_{1,g}; \gamma_{11}, \gamma_{12}, \dots, \gamma_{1,2g-3}\}$ and $\Sigma_2 = \{\alpha_{21}, \alpha_{22}, \dots, \alpha_{2g}; \gamma_{21}, \gamma_{22}, \gamma_{22}, \dots, \gamma_{2,2g-3}\}$ be basic systems of loops and nodes on S_1 and S_2 , respectively. We assume that Σ_1 and Σ_2 have the induced sets Σ'_1 and Σ'_2 , respectively such that Σ'_1 is compatible with Σ'_2 , and we write $\Sigma_1 \sim \Sigma_2$ for the fact. From now on, we consider a deformation $\langle S_1, S_2, f \rangle$ satisfying the following (i) and (ii): (i) If α_{2i} (resp. γ_{2j}) is a loop, then $f^{-1}(\alpha_{2i})$ (resp. $f^{-1}(\gamma_{2j})$) is homotopic to α_{1i} (resp. γ_{1j}). (ii) If α_{2i} (resp. γ_{2j}) is a node, then $f^{-1}(\alpha_{2i}) = \alpha_{1i}$ (resp. $f^{-1}(\gamma_{2j}) = \gamma_{1j}$) in the case where α_{1i} (resp. γ_{1j}) in the case where α_{1i} (resp. γ_{1j}) is a node, and $f^{-1}(\alpha_{2i})$ (resp. $f^{-1}(\gamma_{2j})$) is a loop. Set $P(S_1) = f^{-1}(N(S_2))$. We note that $P(S_1) \supset N(S_1)$.

Let S and S_n $(n = 1, 2, \dots)$ be compact Riemann surfaces of genus g with or without nodes. Let Σ and Σ_n be basic systems of loops and nodes on S and S_n , respectively, with $\Sigma_n \sim \Sigma$. Let $\langle S_n, S, f_n \rangle$ be a deformation satisfying the above (i) and (ii).

DEFINITION 4. If the following condition is satisfied, a sequence of Riemann surfaces $\{S_n\}$ converges to a surface S as marked surfaces: There exists a locally quasiconformal mapping $\phi_n: S \setminus N(S) \to S_n \setminus P(S_n)$ such that

(i) $\lambda_n(\phi_n(z))|d\phi_n(z)|$ uniformly converge to $\lambda(z)|dz|$ on every compact subset of $S \setminus N(S)$, where $\lambda_n(z)|dz|$ and $\lambda(z)|dz|$ are the Poincaré metrics on S_n and S, respectively,

(ii) ϕ_n maps a deleted neighborhood $N(\alpha_i) \setminus \{\alpha_i\}$ (resp. $N(\gamma_j) \setminus \{\gamma_j\}$) of α_i (resp. γ_j) to a deleted neighborhood $N(\alpha_{i,n}) \setminus \{\alpha_{i,n}\}$ (resp. $N(\gamma_{j,n}) \setminus \{\gamma_{j,n}\}$) of $\alpha_{i,n}$ (resp. $\gamma_{j,n}$) if $\alpha_i \in N(S)$ (resp. $\gamma_j \in N(S)$), and

(iii) ϕ_n maps a neighborhood $N(\alpha_i)$ (resp. $N(\gamma_j)$) of α_i (resp. γ_j) to a neighborhood $N(\alpha_{i,n})$ (resp. $N(\gamma_{j,n})$) of $\alpha_{i,n}$ (resp. $\gamma_{j,n}$) if $\alpha_i \notin N(S)$ (resp. $\gamma_j \notin N(S)$).

When S_n converges to S as marked surfaces, we write $(S_n, \Sigma_n) \rightarrow (S, \Sigma)$.

1.3. From now on, we fix a marked Schottky group $\langle G_0 \rangle = \langle A_{0,1}, A_{0,2}, \dots, A_{0,2g} \rangle$ and a basic system of Jordan curves $\widetilde{\Sigma}_0 = \{C_{0,1}, \dots, C_{0,2g}; C_{0,2g+1}, \dots, C_{0,4g-3}\}$ for $\langle G_0 \rangle$. We denote by $\mathcal{Q}(G_0)$ the region of discontinuity of $\langle G_0 \rangle$. Then $S_0 = \mathcal{Q}(G_0)/\langle G_0 \rangle$ is a compact Riemann surface of genus g without nodes. Let $\Pi_0: \mathcal{Q}(G_0) \to S_0$ be the natural projection. Set $\alpha_{0,i} = \Pi_0(C_{0,i})$ $(i = 1, 2, \dots, g)$ and $\gamma_{0,j} = \Pi_0(C_{0,2g+j})$ $(j = 1, 2, \dots, 2g - 3)$. Then $\Sigma_0 = \{\alpha_{0,1}, \alpha_{0,2}, \dots, \alpha_{0,g}; \gamma_{0,1}, \gamma_{0,2}, \dots, \gamma_{0,2g-3}\}$ is a basic system of loops on S_0 .

We denote by $\mathfrak{S}_{g}(\widetilde{\Sigma}_{0})$ and $\widehat{\mathfrak{S}}_{g}^{*}(\widetilde{\Sigma}_{0})$ the Schottky space and the augmented Schottky space associated with $\widetilde{\Sigma}_{0}$, respectively (see [7, p. 28] and [7, p. 32] for the definitions). Let $\tau \in \widehat{\mathfrak{S}}_{g}^{*}(\widetilde{\Sigma}_{0})$. Let $S(\tau)$ be the compact Riemann surface with or without nodes represented by τ (see [7, p. 33] for the definition). Let $\langle G_{j}(\tau) \rangle$ $(j = 0, 1, \dots, 2g - 3)$ be the *j*-th marked Schottky groups associated with τ , which are defined in [6, pp. 73-75]. In particular, if $\tau \in \mathfrak{S}_{g}(\widetilde{\Sigma}_{0})$, then $\langle G_{j}(\tau) \rangle = T_{j} \langle G(\tau) \rangle T_{j}^{-1}$ for some $T_{j} \in M \ddot{o} b$. Let $\Omega(G_{j}(\tau))$ be the region of discontinuity of $\langle G_{j}(\tau) \rangle$. Let $\Omega'(G_{j}(\tau))$ be the set $\Omega(G_{j}(\tau))$ deleted the set of all images of the distinguished points under $\langle G_{j}(\tau) \rangle$ (see [7, p. 31] for the definition of distinguished points). We denote by $\lambda^{(j)}(\tau, z) |dz|$ the Poincaré metric on $\Omega'(G_{j}(\tau))$.

Let I and J be subsets of $\{1, 2, \dots, g\}$ and $\{1, 2, \dots, 2g - 3\}$, respectively. We define the set I(J) as in [7, p. 30]. We assume that $I \supset I(J)$ throughout this paper. We define subsets $\delta^I \mathfrak{S}_g(\widetilde{\Sigma}_0), \ \delta^{I,J} \mathfrak{S}_g(\widetilde{\Sigma}_0), \ \cdots$ of the augmented Schottky space $\widehat{\mathfrak{S}}_q^*(\Sigma_0)$ as in [7].

PROPOSITION 1. (1) Let $\tau \in \delta^I \mathfrak{S}_g(\widetilde{\Sigma}_0)$. Suppose that $\{\tau_n\} \subset \mathfrak{S}_g(\widetilde{\Sigma}_0)$ is a sequence of points tending to the point τ . Then $\Omega(G(\tau_n))$ tends to $\Omega'(G(\tau))$. Furthermore, $\lambda(\tau_n, z)$ uniformly converges to $\lambda(\tau, z)$ on every compact subset of $\Omega'(G(\tau))$.

(2) Let $\tau \in \delta^{I,j} \mathfrak{S}_g(\widetilde{\Sigma}_0)$. Suppose that $\{\tau_n\} \subset \delta^I \mathfrak{S}_g(\widetilde{\Sigma}_0)$ is a sequence of points tending to τ . Then $\Omega'(G_j(\tau_n))$ tends to $\Omega'(G_j(\tau))$ for each $j = 0, 1, 2, \dots, 2g - 3$. Futhermore, $\lambda^{(j)}(\tau_n, z)$ uniformly converges to $\lambda^{(j)}(\tau, z)$ on every compact subset of $\Omega'(G_j(\tau))$.

This proposition is shown by similar method as in Bers [3] and Sato [5]. From Proposition 1, we easily see the following.

PROPOSITION 2. Given $\tau \in \delta^{I,J} \mathfrak{S}_g(\widetilde{\Sigma}_0)$. Then there exists a sequence $\{\tau_n\} \subset \mathfrak{S}_g(\widetilde{\Sigma}_0)$ tending to τ such that for each $j = 0, 1, \dots, 2g - 3, \lambda^{(j)}(\tau_n, z)$ uniformly converges to $\lambda^{(j)}(\tau, z)$ on every compact subset of $\Omega'(G_j(\tau))$.

2. Construction of locally quasiconformal mappings. We use the same notations as in §1. Here we will construct locally quasiconformal mappings ϕ_n of $\Omega'(G_j(\tau))$ into $\Omega'(G_j(\tau_n))$ in three cases, Case I in §2.1, Cases II and III in §2.2.

2.1. Case I. Let $\tau \in \delta^I \mathfrak{S}_g(\widetilde{\Sigma}_0)$ and let $\{\tau_n\} \subset \mathfrak{S}_g(\widetilde{\Sigma}_0)$ be a sequence of points tending to τ .

Let $\langle G(\tau_n) \rangle = \langle A_i(\tau_n, z), A_2(\tau_n, z), \cdots, A_g(\tau_n, z) \rangle$ and $\langle G(\tau) \rangle = \langle A_i(\tau, z) | i \notin I \rangle$, where the latter represents a marked Schottky group generated by $A_i(\tau, z)$ $(i \notin I)$ to the number of g - |I| and |I| is the cardinality of I. Let $C_i(\tau_n), C_{g+i}(\tau_n)$ $(i = 1, 2, \cdots, g)$ be defining curves of $\langle G(\tau_n) \rangle$. We denote by $\omega(G(\tau_n))$ the fundamental domain for $\langle G(\tau_n) \rangle$ bounded by the 2g Jordan curves $C_i(\tau_n)$ and $C_{g+i}(\tau_n)$ $(i = 1, 2, \cdots, g)$. Let $C_i(\tau) C_{g+i}(\tau)$ $(i \notin I)$ be defining curves for $\langle G(\tau) \rangle$. We denote by $\omega(G(\tau))$ the fundamental domain for $\langle G(\tau) \rangle$ bounded by the 2g - 2|I| defining curves. For simplicity, we write ω for $\omega(G(\tau))$. We may assume that $C_i(\tau_n)$ (resp. $C_{g+i}(\tau_n)$) converge to $C_i(\tau)$ (resp. $C_{g+i}(\tau)$) for $i \notin I$. Let $p_{i,n}$ and $p_{g+i,n}$ be the repelling and the attracting fixed points of $A_i(\tau_n, z)$, respectively. We write p_i , p_{g+i} $(i \in I)$ for the distinguished points of the first kind (see [7, p. 31] for the definition). We set $\omega' = \omega - \{p_i, p_{g+i} | i \in I\}$. We may assume that for $i \in I$, $C_i(\tau_n)$ and $C_{g+i}(\tau_n)$ converge to p_i and p_{g+i} , respectively, and that $\omega(G(\tau_n))$ converges to ω' .

For $i \in I$, we define deleted r(n)-neighborhoods $N_n(p_i)$ and $N_n(p_{g+i})$ $(n = 1, 2, \dots)$ of p_i and p_{g+i} , respectively, as follows, where r(n) are positive numbers: If $p_i \neq \infty$ and $p_{g+i} \neq \infty$,

$$N_{\scriptscriptstyle n}(p_{\scriptscriptstyle i}) = \{z \in {\pmb \omega}' \, | \, |z - p_{\scriptscriptstyle i}| < r(n)\}$$

and

$$N_n(p_{g+i}) = \{ z \in oldsymbol{\omega}' \, | \, | \, z - p_{g+i} | < r(n) \}$$
 ,

 $\text{if } p_i = \infty \ \text{or } p_{g+i} = \infty, \\$

 $N_n(p_i) = \{z \in m{\omega}' \, | \, |z| > 1/r(n) \}$

or

 $N_n(p_{g+i}) = \{z \in \omega' \, | \, |z| > 1/r(n)\}$.

For simplicity, we write C_i and C_{g+i} for $C_i(\tau)$ and $C_{g+i}(\tau)$, respectively. Similarly, we define r(n)-neighborhood $N_n(C_i)$ and $N_n(C_{g+i})$ of C_i and C_{g+i} , respectively:

$$N_n(C_i) = \{ z \in \omega' \, | \, d_{\scriptscriptstyle E}(z, \, C_i) < r(n) \}$$

$$N_{n}(C_{g+i}) = \{ z \in \pmb{\omega}' \, | \, d_{\scriptscriptstyle E}(z, \, C_{g+i}) < r(n) \}$$
 ,

where $d_E(z, C)$ denotes the Euclidean distance from the point z to the curves C.

We denote by $\partial N_n(p_i)$, $\partial N_n(C_i)$, \cdots the boundaries of $N_n(p_i)$, $N_n(C_i)$, \cdots . Set $B_n(p_i) = \partial N_n(p_i) \cap \omega'$. $B_n(p_{g+i}) = \partial N_n(p_{g+i}) \cap \omega'$, $B_n(C_i) = \partial N_n(C_i) \cap \omega'$ and $B_n(C_{g+1}) = \partial N_n(C_{g+i}) \cap \omega'$. We note that $N_n(p_i)$, $N_n(p_{g+i})$ $(i \in I)$, $N_n(C_k)$ and $N_n(C_{g+k})$ $(k \notin I)$ are mutually disjoint if r(n) is sufficiently small. We choose a sequence $\{r(n)\}$ $(n = 1, 2, \cdots)$ as follows:

(i) $r(1) > r(2) > \cdots > r(n) > r(n+1) > \cdots$ and $\lim_{n\to\infty} r(n) = 0$.

(ii) $B_n(p_i)$, $B_n(p_{g+i})$ $(i \in I)$ and $B_n(C_k)$, $B_n(C_{g+k})$ $(k \notin I)$ bound a 2g-ply connected region ω_n contained in ω .

(iii) $B_n(p_i) \subset \omega(\tau_n), B_n(p_{g+i}) \subset \omega(\tau_n) \ (i \in I), B_n(C_k) \subset \omega(\tau_n) \text{ and } B_n(C_{g+k}) \subset \omega(\tau_n) \ (k \notin I).$

We denote by $D_{i,n}$ (resp. $D_{g+i,n}$) the annulus bounded by $B_n(p_i)$ (resp. $B_n(p_{g+i})$) and $C_i(\tau_n)$ (resp. $C_{g+i}(\tau_n)$) for $i \in I$. Similarly, we denote by $D_{k,n}$ (resp. $D_{g+k,n}$) the annulus bounded by $B_n(C_k)$ (resp. $B_n(C_{g+k})$) and $C_k(\tau_n)$ (resp. $C_{g+k}(\tau_n)$).

We construct a mapping ϕ_n of $\Omega'(G(\tau))$ into $\Omega(G(\tau_n))$ in Case I as follows.

First step. (1) $\phi_n = \text{id. in } \omega_n$, where id. means the identity mapping.

(2) In $N_n(p_i)$ (resp. $N(p_{g+i})$) for $i \in I$, ϕ_n is a locally quasiconformal mapping of $N_n(p_i)$ (resp. $N_n(p_{g+i})$) onto $D_{i,n}$ (resp. $D_{g+i,n}$) such that $\phi_n = \text{id.}$ on $B_n(p_i)$ (resp. $B_n(p_{g+i})$).

(3) In $N_n(C_k)$ (resp. $N_n(C_{g+k})$) for $k \in I$, ϕ_n is a locally quasiconformal mapping of the closure of $N_n(C_k)$ (resp. $N_n(C_{g+k})$) onto the closure of $D_{k,n}$ (resp. $D_{g+k,n}$) such that $\phi_n = \text{id.}$ on $B_n(C_k)$ (resp. $B_n(C_{g+k})$) and that ϕ_n satisfies a relation

$$A_k(au_n, \phi_n(z)) = \phi_n(A_k(au, z)) \quad ext{for} \quad z \in C_k$$
 ,

Second step. ϕ_n is exteded to the domain $\Omega'(G(\tau))$ as follows. For

 $z \in \Omega'(G(\tau))$, there exists an element $A(\tau, z)$ of $G(\tau)$ with $A(\tau, z) \in \omega'$, which is represented as a word in $A_1(\tau, z), \dots, A_g(\tau, z)$:

(1)
$$A(\tau, z) = W(A_1(\tau, z), \cdots, A_g(\tau, z)).$$

Let $A(\tau_n, z)$ be the word obtained by replacing $A_i(\tau, z)$ in (1) with $A_i(\tau_n, z)$ for all $i = 1, 2, \dots, g$. By setting

 $ilde{\phi}_n(z) = A^{-1}(au_n, \phi_n(A(au, z)))$,

we define a mapping $\tilde{\phi}_n$ of $\Omega'(G(\tau))$ into $\Omega(G(\tau_n))$. We write again ϕ_n for $\tilde{\phi}_n$.

2.2. Case II. Let $\tau \in \delta^{I,J} \mathfrak{S}_g(\widetilde{\Sigma}_0)$ and let $\{\tau_n\} \subset \delta^I \mathfrak{S}_g(\widetilde{\Sigma}_0)$ be a sequence of points tending to τ .

We similarly define $\omega_j = \omega(G_j(\tau))$ and $\omega(G_j(\tau_n))$ as in Case I. Set $\omega'_j = \omega_j \cap \Omega'(G_j(\tau))$. We set

 $I_j = \{i \, | \, p_i ext{ are the distinguished points of the first kind in } \omega_j \}$ and

 $I'_j = \{i | C_i \text{ are defining curves for } \langle G_j(\tau) \rangle \text{ in } \omega_j \}.$

Set

 $J_j = \{l \in J \mid p_l^{\pm}(\tau) \text{ are the distinguished points of the second kind in } \omega_j\}$ (see [7, p. 31] for the definition of the distinguished points of the second kind). See [6, pp. 16-18] for the definitions of I_j , I'_j and J_j . We set $|I_j| + |I'_j| = g_j$. Then g_j is the genus of the Riemann surface $S_j(\tau) = \Omega(G_j(\tau))/\langle G_j(\tau) \rangle$.

The sets $N_n(p_i)$, $N_n(p_{g+i})$ $(i \in I_j)$, $N_n(C_k)$, $N_n(C_{g+k})$ $(k \in I'_j)$, $B_n(p_i)$, $B_n(p_{g+i})$, $B_n(C_k)$ and $B_n(C_{g+k})$ are similarly defined as in Case I. Let $p_i(\tau_n)$ and $p_{g+i}(\tau_n)$ $(i \in I_j)$ be the distinguished points of the first kind for τ_n in ω_j . Let $N_n(p_i(\tau_n))$ (resp. $N_n(p_{g+i}(\tau_n))$ be the set $N_n(p_i) \cup \{p_i\} \setminus \{p_i(\tau_n)\}$ (resp. $N_n(p_{g+i}) \cup \{p_{g+i}\} \setminus \{p_{g+i}(\tau_n)\}$).

For $l \in J_j$, we define deleted r(n)-neighborhood $N_n(p_l^{\pm})$ as follows: If $p_l^{\pm} \neq \infty$,

$$N_n(p_l^{\pm}) = \{ z \in oldsymbol{\omega}_j' | \, | \, z \, - \, p_l^{\pm} \, | \, < r(n) \}$$
 ;

if $p_l^{\pm} = \infty$,

 $N_n(p_l^{\pm}) = \{z \in \omega_j' | \, | \, z \, | > 1/r(n) \}$.

We set $B_n(p_l^{\pm}) = \partial N_n(p_l^{\pm}) \cap \omega'_j$.

Let $C_{2g+l}(\tau_n)$ $(l \in J_j)$ be Jordan curves in $\omega(G_j(\tau_n))$ which give the same partitions of the set $\{1, 2, \dots, 2g\}$ as $C_{0,2g+l}$ (see [7, p. 33] for partition). We choose a sequence $\{r(n)\}$ $(n = 1, 2, \dots)$ as follows:

(i) $r(1) > r(2) > \cdots > r(n) > r(n+1) > \cdots$ and $\lim_{n\to\infty} r(n) = 0$,

(ii) $B_n(p_i)$, $B_n(p_{g+i})$ $(i \in I_j)$, $B_n(C_k)$, $B_n(C_{g+k})$ $(k \in I'_j)$ and $B_n(p_l^{\pm})$ $(l \in J_j)$ bound a $2g_j + |J_j|$ -ply connected region ω_n contained in ω , and

(iii) $B_n(p_i)$, $B_n(p_{g+i})$ $(i \in I_j)$, $B_n(C_k)$, $B_n(C_{g+k})$ $(k \in I'_j)$ are contained in $\omega(G_j(\tau_n))$ and $C_{2g+l}(\tau_n)$ $(l \in J_j)$ are contained in $N_n(p_i^{\pm})$.

Let $D_{k,n}$, $D_{g+k,n}$ $(k \in I'_j)$ be the same annuli as in § 2.1. We denote by $D'_{l,n}$ $(l \in J_j)$ the annuli bounded by $C_{2g+l}(\tau_n)$ and $B_n(p_l^{\pm})$.

A mapping ϕ_n of $\mathcal{Q}'(G_j(\tau))$ into $\mathcal{Q}'(G_j(\tau_n))$ in Case II is defined as follows.

First step. (1) $\phi_n = \text{id. in } \omega'_n$.

(2) For each $i \in I_j$, ϕ_n is a locally quasiconformal mapping of $N_n(p_i)$ (resp. $N_n(p_{g+i})$) onto $N_n(p_i(\tau_n))$ (resp. $N_n(p_{g+i}(\tau_n))$ such that $\phi_n = \text{id. on } B_n(p_i)$ (resp. $B_n(p_{g+i})$).

(3) For each $k \in I'_j$, ϕ_n is similarly defined as in Case I, (3) in $N_n(C_k)$ and $N_n(C_{g+k})$.

(4) For each $l \in J_j$, ϕ_n is a locally quasiconformal mapping of $N_n(p_l^{\pm})$ onto $D'_{l,n}$ such that $\phi_n = \text{id. on } B_n(p_l^{\pm})$.

Second step. ϕ_n is extended to the domain $\Omega'(G_j(\tau))$ by the same method as in the second step of Case I.

Case III. Let $\tau \in \delta^{I,J} \mathfrak{S}_{g}(\widetilde{\Sigma}_{o})$ and let $\{\tau_{n}\} \subset \mathfrak{S}_{g}(\widetilde{\Sigma}_{o})$ be a sequence of points tending to τ .

In this case, a mapping ϕ_n of $\Omega'(G_j(\tau))$ into $\Omega(G(\tau_n))$ is defined by combining the methods of Cases I and II.

2.3. Let S be a compact Riemann surface of genus g with or without nodes. When Σ is a basic system of loops (or loops and nodes) on S such that Σ' , one of the set induced from Σ , is compatible with $\tilde{\Sigma}_0$, we write $\Sigma \sim \tilde{\Sigma}_0$ for the fact.

PROPOSITION 3. Given $\tau \in \delta^{I,J} \mathfrak{S}_g(\widetilde{\Sigma}_0) \subset \mathfrak{S}_g^*(\widetilde{\Sigma}_0)$. Suppose that $\{\tau_n\} \subset \mathfrak{S}_g(\widetilde{\Sigma}_0)$ is a sequence of points tending to the point τ so that $\lambda^{(j)}(\tau_n, z)$ uniformly converges to $\lambda^{(j)}(\tau, z)$ on every compact subset of $\Omega'(G_j(\tau))$ for each $j = 0, 1, 2, \dots, 2g - 3$. Let Σ_n and Σ be a basic system of loops on $S(\tau_n)$ and a basic system of loops and nodes on $S(\tau)$, respectively, with $\Sigma_n \sim \widetilde{\Sigma}_0 \sim \Sigma$. Then $S(\tau_n)$ converges to $S(\tau)$ as marked surfaces, that is, $(S(\tau_n), \Sigma_n) \to (S(\tau), \Sigma)$ as $n \to \infty$.

PROOF. Let ϕ_n be the quasiconformal mapping of $\Omega'(G_j(\tau))$ into $\Omega(G_j(\tau_n))$ as defined in §§ 2.1 and 2.2. We define a function $\lambda_n^{*(j)}(\tau, z)$ on $\Omega'(G_j(\tau))$ by setting

$$\lambda_n^{*\,(j)}(\tau, z) = \lambda^{(j)}(\tau_n, \phi_n(z)) |d\phi_n(z)/dz|$$
.

By the above construction, $\lambda_n^{*(j)}(\tau, z)$ uniformly converges to $\lambda^{(j)}(\tau, z)$ on every compact subset K of $\Omega'(G_j(\tau))$, since for sufficiently large n, $\phi_n | K =$ id. and so $\lambda_n^{*(j)}(\tau, z) = \lambda^{(j)}(\tau_n, z)$ for $z \in K$, and $\lambda^{(j)}(\tau_n, z)$ uniformly converges to $\lambda^{(j)}(\tau, z)$ on K by the assumption.

Let $\Pi_n: \Omega(G_j(\tau_n)) \to S(\tau_n)$ and $\Pi: \Omega'(G_j(\tau)) \to S'_j(\tau)$ be the natural projections, where $S'_j(\tau) = S_j(\tau) \setminus (S_j(\tau) \cap N(S(\tau)))$ if we set $S_j(\tau) = \Omega(G_j(\tau))/\langle G_j(\tau) \rangle$. We define $\lambda_n^{*(j)}(\hat{z}) |d\hat{z}|$ and $\lambda^{(j)}(\hat{z}) |d\hat{z}|$ on $S'_j(\tau)$ by setting

$$\lambda_n^{*(j)}(\hat{z})|d\hat{z}| = \lambda_n^{*(j)}(\tau, z)|dz|$$

and

$$\lambda^{(j)}(\hat{z})|d\hat{z}| = \lambda^{(j)}(\tau, z)|dz|$$
,

respectively, where $\hat{z} = \Pi(z)$. Since $\lambda^{(j)}(\tau, z)|dz|$ and $\lambda^{*(j)}_n(\tau, z)|dz|$ are invariant under $\langle G_j(\tau) \rangle$, $\lambda^{*(j)}_n(\hat{z})|d\hat{z}|$ and $\lambda^{(j)}(\hat{z})|d\hat{z}|$ are well-defined. Furthermore, we define $\lambda^{(j)}_n(\hat{z})|d\hat{z}|$ on $S(\tau_n)$ by setting

$$\lambda_n^{(j)}(\hat{z})|d\hat{z}| = \lambda^{(j)}(\tau_n, z)|dz|$$

where $\hat{z} = \Pi_n(z)$. This is also well-defined.

We easily see that

$$\lambda_n^{st(j)}(\widehat{z})|d\widehat{z}| = \lambda_n^{(j)}(\widehat{z}_n)|d\widehat{z}_n|$$
 ,

where $\hat{z} = \Pi(z)$ and $\hat{z}_n = \Pi_n \phi_n(z)$ for $z \in \Omega'(G_j(\tau))$. By the above, we easily see that $\lambda_n^{*(j)}(\hat{z}) |d\hat{z}|$ uniformly converges to $\lambda^{(j)}(\hat{z}) |d\hat{z}|$ on every compact subset K_j of $S'_j(\tau)$ for each $j = 0, 1, 2, \dots, 2g - 3$. If we denote by $\hat{\phi}_n$ the projection of ϕ_n onto $S'_j(\tau)$, we have that

$$\lambda_n^{st(j)}(\widehat{z}) |d\widehat{z}| = \lambda_n^{(j)}(\widehat{\phi}_n(\widehat{z})) |d\widehat{\phi}_n(\widehat{z})| \; .$$

Therefore $\lambda_n^{(j)}(\hat{\phi}_n(\hat{z}))|d\hat{\phi}_n(\hat{z})|$ uniformly converges to $\lambda^{(j)}(\hat{z})|d\hat{z}|$ on every compact subset of $S'_j(\tau)$ for each $j = 0, 1, 2, \dots, 2g - 3$. Hence $(S(\tau_n), \Sigma_n) \to (S(\tau), \Sigma)$. Our proof is now complete.

From Propositions 2 and 3, we have the following.

THEOREM 1. Given a point $\tau \in \widehat{\mathfrak{S}}_{g}^{*}(\widetilde{\Sigma}_{0})$. Then there exists a sequence of points $\{\tau_{n}\} \subset \mathfrak{S}_{g}(\widetilde{\Sigma}_{0})$ tending to τ such that $S(\tau_{n})$ converges to $S(\tau)$ as marked surfaces.

3. Constuction of new surfaces.

3.1. Let $\langle G_0 \rangle$, $\tilde{\Sigma}_0$, Σ_0 and S_0 be as in §1. Let I and J be subsets of $\{1, 2, \dots, g\}$ and $\{1, 2, \dots, 2g - 3\}$, respectively. Assume that $I(J) \subset I$.

Given $\tau \in \delta^{I,J} \mathfrak{S}_g(\widetilde{\Sigma}_0)$, there exists a compact Riemann surface $S(\tau)$ of genus g with |I| + |J| nodes represented by τ . We will construct a new surface from $S(\tau)$ as follows.

We denote by J_1 the subset of J consisting of all j such that $\gamma_{0,j}$ are dividing loops on S_0 . Let $J_2 = \{j_1, j_2, \dots, j_m\}$ be any subset of $J \setminus J_1$. Set $I(J_2) = \{i_1, i_2, \dots, i_n\}$. We denote by $\widetilde{\Sigma}_1$ and Σ_1 the images of $\widetilde{\Sigma}_0$ and Σ_0 , respectively, under the interchange operator $I_g(i_{k(1)}, j_{l(1)})$ where $i_{k(1)} \in I(\{j_{l(1)}\})$ (see [8] for the interchange operator). We set $J_{21} = J_2 \setminus \{j_{l(1)}\}$. We denote by $I_1(J_{21})$ the set $I(J_{21})$ defined for cycles in Σ_1 (see [8]). We note that $I_1(J_{21}) \subset I(J_2)$.

Choose $j_{l(2)} \in J_{21}$ such that $I_1(\{j_{l(2)}\}) \cap (I(J_2) \setminus \{i_{k(1)}\}) \neq \emptyset$. We apply the interchange operator $I_g(i_{k(2)}, j_{l(2)})$ to $\tilde{\Sigma}_1$ and Σ_1 , where $i_{k(2)} \in I_1(\{j_{l(2)}\})$ and $i_{k(2)} \neq i_{k(1)}$. We denote by $\tilde{\Sigma}_2$ and Σ_2 the images of $\tilde{\Sigma}_1$ and Σ_1 , respectively. We set $J_{22} = J_{21} \setminus \{j_{l(2)}\} = J_2 \setminus \{j_{l(1)}, j_{l(2)}\}$. We write $I_2(J_{22})$ for $I(J_{22})$ defined for cycles in Σ_2 . Then $I_2(J_{22}) \subset I_1(J_{21})$. We choose $j_{l(3)} \in J_{22}$ such that $I_2(\{j_{l(3)}\}) \cap (I(J_2) \setminus \{i_{k(1)}, i_{k(2)}\}) \neq \emptyset$. We apply the interchange operator $I_g(i_{k(3)}, j_{l(3)})$ to $\tilde{\Sigma}_2$ and Σ_2 , where $i_{k(3)} \in I_2(\{j_{l(3)}\})$ and $i_{k(3)} \neq i_{k(1)}, i_{k(2)}$. We denote by $\tilde{\Sigma}_3$ and Σ_3 the images of $\tilde{\Sigma}_2$ and Σ_2 , respectively.

By the same method as above, we determine the following: $j_{l(4)}$, $i_{k(4)}$, J_{24} , $\tilde{\Sigma}_4$, Σ_4 , $I_4(J_{24})$; \cdots ; $j_{l(s)}$, $i_{k(s)}$, $J_{2,s}$, $\tilde{\Sigma}_s$, Σ_s , $I_s(J_{2,s})$. Here s is the integer satisfying the following (i) and (ii):

(i) $I_{s-1}(\{j_{l(s)}\}) \cap (I(J_2) \setminus \{i_{k(1)}, i_{k(2)}, \dots, i_{k(s-1)}\}) \neq \emptyset$.

(ii) $I_{\mathfrak{s}}(\{j\}) \subseteq \{i_{k(1)}, i_{k(2)}, \dots, i_{k(\mathfrak{s})}\}$ for any $j \in J_2 \setminus \{j_{l(1)}, j_{l(2)}, \dots, j_{l(\mathfrak{s})}\}.$

We set $J_3 = J \setminus (J_1 \cup J_2)$, $J_4 = \{j_{l(1)}, j_{l(2)}, \dots, j_{l(s)}\}$ and $J_5 = J_2 \setminus J_4$. Set $I_1 = I \setminus I(J)$ and $I_4 = \{i_{k(1)}, i_{k(2)}, \dots, i_{k(s)}\}$. We note that $I_4 \subset I(J_2)$. Set $I_3 = I_s(J_3)$ and $I_5 = I \setminus (I_1 \cup I_3 \cup I_4)$. Let I_6 be a subset of I_5 . Set $I_7 = I_5 \setminus I_6$, $I^* = I \setminus I_7$, and $J^* = J \setminus J_4$.

3.2. In § 3.1, we obtained a basic system of Jordan curves $\widetilde{\Sigma}_s$ from $\widetilde{\Sigma}_0$ by applying interchange operators in succession. We write $\widetilde{\Sigma}_0^*$ for $\widetilde{\Sigma}_s$. Suppose that S^* and $\Sigma^* = \{\alpha_1^*, \dots, \alpha_g^*; \gamma_1^*, \dots, \gamma_{2g-3}^*\}$ are a compact Riemann surface of genus g with nodes and a basic system of loops and nodes on S^* such that one of the sets induced from Σ_0^* is compatible with $\widetilde{\Sigma}_0^*$, and that α_i^* $(i \in I^*)$, γ_j^* $(j \in J^*)$ are nodes and α_i^* $(i \notin I^*)$, γ_j^* $(j \notin J^*)$ are loops, where I^* and J^* are as defined in § 3.1.

From the construction in § 3.1, we see that the pair (S^*, Σ^*) has Property (A) (see [8] for the definition). Therefore, by Theorem 2 in [7], there exists a point $\tau^* \in \delta^{I^*,J^*} \mathfrak{S}_q(\widetilde{\Sigma}_{\mathfrak{o}}^*)$ with $S(\tau^*) = S^*$.

4. Main theorem—The first step. From this section through section 6, we will prove the following: For a given point $\tau \in \delta^{I,J} \mathfrak{S}_g(\widetilde{\Sigma}_0)$, where $I \supset I(J) \neq \emptyset$, there exists a sequence of points $\{\tau_n\}$ in $\mathfrak{S}_g(\widetilde{\Sigma}_0)$ such that $\tau_n \to \tau$ and $S(\tau_n)$ does not converge to $S(\tau)$ as marked surfaces as n tends to ∞ . We consider it in the case of $J = \{j\}$ and $I(J) \neq \emptyset$ in § 4, in the

case of $J = \{j(1), j(2)\}$ and $I(J) \neq \emptyset$ in §5, and in the general case in §6.

4.1. The first step: The case of $J = \{j\}$ and $I(J) \neq \emptyset$.

We have the following two cases.

Case I. There are at least three elements k of the set $\{1, 2, \dots, 2g\}$ such that $C_{0,k}$ is behind $C_{0,2g+j}$, which is denoted by $C_{0,2g+j} < C_{0,k}$ (see [8] for the definition).

Case II. There are two elements k of $\{1, 2, \dots, 2g\}$ with $C_{0,2g+j} < C_{0,k}$. Fix an element i of I(J). Both Cases I and II are divided into the following six cases. Here δ_j means the direction of $\gamma_{0,j}$ in the ordered cycle $L_{0,i}$ (see [8]).

REMARK. Cases I-1, I-2, \cdots , I-6 are Cases II, I, I', II', III, III' in [8], respectively.

4.2. We only consider Case I-1. The other cases are treated similarly and so omitted. Given $\tau \in \delta^{I,J} \mathfrak{S}_g(\widetilde{\Sigma}_0)$. Then we have two marked Schottky groups $\langle G_0(\tau) \rangle = \langle A_{0(1)}(\tau, z), \cdots, A_{0(g_0)}(\tau, z) \rangle$ and $\langle \check{G}_j(\tau) \rangle = \langle \check{A}_{j(1)}(\tau, z), \cdots, \check{A}_{j(g_j)}(\tau, z) \rangle$ and defining curves $C_{0(k)}(\tau)$, $C_{g+0(k)}(\tau)$ $(k = 1, 2, \cdots, g_0)$ and $\check{C}_{j(l)}(\tau)$, $\check{C}_{g+j(l)}(\tau)$ $(l = 1, 2, \cdots, g_j)$ as in [6, pp. 73-75]. Furthermore, we have the fixed points $p_{0(k)}(\tau)$, $p_{g+0(k)}(\tau)$ of $A_{0(k)}(\tau, z)$ (resp. $\check{p}_{j(l)}(\tau)$, $\check{p}_{g+j(l)}(\tau)$ of $\check{A}_{j(l)}(\tau, z)$), the distinguished points of the first kind $p_{0(2g_0+1)}(\tau), \cdots, p_{0(2g_0+m_0)}(\tau)$ (resp. $\check{p}_{j(2g_j+1)}(\tau), \cdots, \check{p}_{j(2g_j+m_j)}(\tau)$), and the distinguished point of the second kind $p_j^+(\tau)$ (resp. $\check{p}_j^-(\tau)$).

Let $S(\tau)$ be the Riemann surface with nodes represented by τ . Let $\alpha_k(\tau)$ $(k \notin I, \text{ i.e., } k = 0(1), \cdots, 0(g_0), j(1), \cdots, j(g_j))$ be the projections of $C_k(\tau)$, and $\alpha_l(\tau)$ $(l \in I)$ (resp. $\gamma_j(\tau)$) the projections of the distinguished points of the first kind $p_l(\tau)$ (resp. $p_j^{\pm}(\tau)$). Let $\gamma_l(\tau)$ $(1 \leq l \leq j - 1, j + 1 \leq l \leq 2g - 3)$ be loops on $S(\tau)$ such that $\Sigma = \{\alpha_1(\tau), \cdots, \alpha_g(\tau); \gamma_1(\tau), \cdots, \gamma_{2g-3}(\tau)\}$ is a basic system of loops and nodes on $S(\tau)$ with $\Sigma \sim \tilde{\Sigma}_0$. Let $C_{2g+l}(\tau)$ for l with $\gamma_l \subset S_0(\tau) = \Omega(G_0(\tau))/\langle G_0(\tau) \rangle$ (resp. $\check{C}_{2g+l}(\tau)$ for l with $\gamma_l \subset S_j(\tau) = \Omega(G_j(\tau))/\langle G_j(\tau) \rangle$) be the liftings of $\gamma_l(\tau)$ to $\omega_0(\tau)$ (resp. $\check{\omega}_j(\tau)$), where $\omega_0(\tau)$ (resp. $\check{\omega}_j(\tau)$) is the fundamental region bounded by $C_{0(k)}(\tau)$ and

 $C_{0(g+k)}(\tau) \ (k = 1, 2, \cdots, g_0) \ \text{for} \ \langle G_0(\tau) \rangle \ (\text{resp. } \check{C}_{j(m)}(\tau) \ \text{and} \ \check{C}_{j(g+j(m))}(\tau) \ (m = 1, 2, \cdots, g_j) \ \text{for} \ \langle \check{G}_j(\tau) \rangle).$

4.3. From § 4.3 through § 4.5, we will construct a Riemann surface S^* from $S(\tau)$, a basic system of loops and nodes $\Sigma^* = \{\alpha_1^*, \dots, \alpha_g^*; \gamma_1^*, \dots, \gamma_{2g-3}^*\}$ from Σ and a point $\tau^* \in \widehat{\mathfrak{S}}_g^*(\widetilde{\Sigma}_0^*)$ from τ , where $\widetilde{\Sigma}_0^*$ is the image of $\widetilde{\Sigma}_0$ under the interchange operator $I_g(i, j)$.

(1) We will define points $p_{0(k)}^*$, $p_{g+0(k)}^*$ $(k = 1, 2, \dots, g_0)$, $p_{0(2g_0+l)}^*$ $(l = 1, 2, \dots, m_0)$ except p_i^* and p_{g+i}^* and Jordan curves $C_{0(k)}^*$, $C_{g+0(k)}^*$ $(k = 1, 2, \dots, g_0)$ by $p_{0(k)}^* = p_{0(k)}(\tau)$, $p_{g+0(k)}^* = p_{g+0(k)}(\tau)$; $p_{0(2g_0+l)}^* = p_{0(2g_0+l)}(\tau)$; $C_{0(k)}^* = C_{0(k)}(\tau)$, $C_{g+0(k)}^* = C_{g+0(k)}(\tau)$. We set $p_i^* = p_{g+i}(\tau)$ and $p_{g+i}^* = p_j^+(\tau)$ and set $C_{2g+l}^* = C_{2g+l}(\tau)$ for l with $C_{0,2g+j} \not< C_{0,2g+l}$, namely for l with $\gamma_l \subset S_0(\tau)$.

(2) We will define points $\check{p}_{j(k)}^{*}$, $\check{p}_{g+j(k)}^{*}$ $(k = 1, 2, \dots, g_j)$, $\check{p}_{j(2g_j+l)}^{*}$ $(l = 1, 2, \dots, m_j)$ except \check{p}_i^{*} and \check{p}_{g+i}^{*} and Jordan curves $\check{C}_{j(k)}^{*}$, $\check{C}_{g+j(k)}^{*}$ $(k = 1, 2, \dots, g_j)$ by $\check{p}_{j(k)}^{*} = \check{p}_{j(k)}(\tau)$, $\check{p}_{g+j(k)}^{*} = \check{p}_{g+j(k)}(\tau)$; $\check{p}_{j(2g_j+l)}^{*} = \check{p}_{j(2g_j+l)}^{*}(\tau)$; $\check{C}_{j(k)}^{*} = \check{C}_{j(k)}(\tau)$, $\check{C}_{g+j(k)}^{*} = \check{C}_{g+j(k)}(\tau)$. We set $\check{p}_i^{*} = \check{p}_j^{-}(\tau)$ and $\check{p}_{g+i}^{*} = \check{p}_i(\tau)$, and set $\check{C}_{2g+l}^{*} = \check{C}_{2g+l}(\tau)$ for l with $C_{0,2g+j} < C_{0,2g+l}$, namely for l with $\gamma_l \subset S_j(\tau)$.

4.4. By using multi-suffices, we write $C_0(i_1, i_2, \dots, i_{\mu})$, $C_0(i_1, \dots, i_{\mu}, \dots, i_{\nu})$ and $C_0(j_1, j_2, \dots, j_{\sigma})$ for $C_{0,2g+j}$, $C_{0,i}$ and $C_{0,g+i}$, respectively.

(1) We choose Jordan curves K_1 and \check{K}_2 as follows: K_1 (resp. \check{K}_2) forms the boundary curves of a triply connected region $\sigma^*(j_1, \dots, j_{\sigma-1})$ (resp. $\sigma^*(i_1, \dots, i_{\nu-1})$) together with $C^*(j_1, \dots, j_{\sigma-1})$ and $C^*(j_1, \dots, j_{\sigma-1}, 1-j_{\sigma})$ (resp. $C^*(i_1, \dots, i_{\nu-1})$ and $C^*(i_1, \dots, i_{\nu-1}, 1-i_{\nu})$), and contains the point p_i^* (resp. \check{p}_{g+i}^*) in the interior.

(2) We determine a Möbius transformation T as follows and fix it: $T(p_i^*) = \check{p}_i^*$, $T(p_{g+i}^*) = \check{p}_{g+i}^*$ and $K_2^* = T^{-1}(\check{K_2})$ lies in the interior to K_1 . Then we note that the outside $\check{K_2}$ is mapped to the inside K_2^* under the mapping T^{-1} . We write C_{2g+j}^* for K_2^* .

(3) We set $C_{j(k)}^* = T^{-1}(\check{C}_{j(k)}^*)$, $C_{g+j(k)}^* = T^{-1}(\check{C}_{g+j(k)}^*)$, $p_{j(k)}^* = T^{-1}(\check{p}_{j(k)}^*)$ and $p_{g+j(k)}^* = T^{-1}(\check{p}_{g+j(k)}^*)$ $(k = 1, 2, \dots, g_j)$, and $p_{j(2g_j+l)}^* = T^{-1}(\check{p}_{j(2g_j+l)}^*)$ $(l = 1, 2, \dots, m_j)$. We set $C_{2g+l}^* = T^{-1}(\check{C}_{2g+l}^*)$ for l with $C_{0,2g+j} < C_{0,2g+l}$. We note that all these points and curves are contained in the interior to C_{2g+j}^* .

4.5. For each $k = 0(1), \dots, 0(g_0)$ (resp. $l = j(1), \dots, j(g_j)$), we define a Möbius transformation $A_k^*(\tau, z)$ (resp. $A_l^*(\tau, z)$) by $A_k^*(\tau, z) = A_k(\tau, z)$ (resp. $A_l^*(\tau, z) = T^{-1}\check{A}_l(\tau, z)T$). Let t_k^* ($|t_k^*| < 1$) ($k = 0(1), \dots, 0(g_0)$, $j(1), \dots, j(g_j)$) be the inverse of multipliers of $A_k^*(\tau, z)$. We set $t_k^* = 0$ ($k \in \{1, 2, \dots, g\} \setminus \{0(1), \dots, 0(g_0), j(1), \dots, j(g_j)\}$, i.e., $k \in I$).

By the same way as in [7], we determine ρ_l^* $(l = 1, 2, \dots, 2g - 3)$

from p_1^*, \dots, p_{2g}^* with respect to $\widetilde{\Sigma}_0^*$. We set

$$\tau^* = (t_1^*, \cdots, t_g^*, \rho_1^*, \cdots, \rho_{2g-3}^*)$$
.

Then $\tau^* \in \widehat{\mathfrak{S}}^*_{\mathfrak{g}}(\widetilde{\Sigma}^*_{\mathfrak{g}})$. Let $S^* = S(\tau^*)$ be the Riemann surface with nodes represented by τ^* .

Let α_k^* $(k = 0(1), \dots, 0(g_0), j(1), \dots, j(g_j))$ (resp. α_l^* $(l \in I)$) be the projections of C_k^* (resp. p_l^*) onto S^* . Let γ_l^* $(l = 1, 2, \dots, 2g - 3)$ be the projections of C_{2g+l}^* onto S^* . Now we define a basic system of loops and nodes Σ^* on S^* by

$$\Sigma^* = \{ lpha_1^*, \, \cdots, \, lpha_g^*; \, \gamma_1^*, \, \cdots, \, \gamma_{2g-3}^* \}$$
.

We note that $\Sigma^* \sim \widetilde{\Sigma}_0^*$.

4.6. Here we will construct basic systems of loops Σ_n^* with $\Sigma_n^* \sim \widetilde{\Sigma}_0^*$, and a sequence of points $\{\tau_n^*\} \subset \mathfrak{S}_q(\widetilde{\Sigma}_0^*)$ such that $\tau_n^* \to \tau^*$ and $(S(\tau_n^*), \Sigma_n^*) \to (S(\tau^*), \Sigma^*)$ as *n* tends to ∞ , where $S(\tau_n^*)$ are the Riemann surfaces represented by τ_n^* .

For $l = 1, 2, \dots, 2g - 3$, we set $C_{2g+l,n}^* = C_{2g+l}^*$ $(n = 1, 2, \dots)$. For $k \notin I$, we set $C_{k,n}^* = C_k^*$, $C_{g+k,n}^* = C_{g+k}^*$, $p_{k,n}^* = p_k^*$ and $p_{g+k,n}^* = p_{g+k}^*$ $(n = 1, 2, \dots)$. We set $A_{k,n}^*(z) = A_k^*(\tau, z)$. For $l \in I$, we choose $C_{l,n}^*$ and $C_{g+l,n}^*$ $(n = 1, 2, \dots)$ as follows:

(i) Each $C_{l,n}^*$ (resp. $C_{g+l,n}^*$) is a circle of the radius r(l, n) (resp. r(g+l, n)) about p_l^* (resp. p_{g+l}^*) such that $\lim_{n\to\infty} r(l, n) = 0$ (resp. $\lim_{n\to\infty} r(g+l, n) = 0$).

(ii) For each $l \in I$, let $A_{l,n}^*(z)$ be a Möbius transformation satisfying $A_{l,n}^*(p_{l,n}^*) = p_{l,n}^*$, $A_{l,n}^*(p_{g+l,n}^*) = p_{g+l,n}^*$ and $A_{l,n}^*(C_{l,n}^*) = C_{g+l,n}^*$. Then $\langle G_n^* \rangle = \langle A_{l,n}^*(z), \dots, A_{g,n}^*(z) \rangle$ is a Schottky group.

(iii) If we set

 $\widetilde{\Sigma}_n^* = \{C_{1,n}^*, \cdots, C_{2g,n}^*; C_{2g+1,n}^*, \cdots, C_{4g-3,n}^*\}$,

then $\widetilde{\Sigma}_n^*$ is a basic system of Jordan curves for $\langle G_n^* \rangle$ with $\widetilde{\Sigma}_n^* \sim \widetilde{\Sigma}_0^*$, where $\widetilde{\Sigma}_n^* \sim \widetilde{\Sigma}_0^*$ means that for each $l = 1, 2, \dots, 2g - 3$, $C_{2g+l,n}^*$ gives the same partition of $\{1, 2, \dots, 2g\}$ as C_{2g+l}^* .

REMARK. We may choose $p_{k,n}^*$, $p_{g+k,n}^*$, $C_{k,n}^*$, $C_{g+k,n}^*$ and $C_{2g+l,n}^*$ as follows:

(i) $p_{k,n}^* \to p_k^*$ and $p_{g+k,n}^* \to p_{g+k}^*$ $(k = 1, 2, \dots, g)$ as $n \to \infty$.

(ii) For $k \notin I$, $C_{k,n}^* \to C_k^*$ and $C_{g+k,n}^* \to C_{g+k}^*$ as $n \to \infty$.

(iii) For each $k \in I$, $C_{k,n}^*$ (resp. $C_{g+k,n}^*$) is a Jordan curve with the diameter r(k, n) (resp. r(g + k, n)) such that $r(k, n) \to 0$ (resp. $r(g + k, n) \to 0$) as $n \to \infty$ and $p_{k,n}^*$ (resp. $p_{g+k,n}^*$) is contained in the interior to $C_{k,n}^*$ (resp. $C_{g+k,n}^*$).

(iv) Let $A_{k,n}^*(z)$ $(k = 1, 2, \dots, g; n = 1, 2, \dots)$ be Möbius transformations satisfying $A_{k,n}^*(p_{k,n}^*) = p_{k,n}^*$, $A_{k,n}^*(p_{g+k,n}^*) = p_{g+k,n}^*$, $A_{k,n}^*(C_{k,n}^*) = C_{g+k,n}^*$, and $\lim_{n\to\infty} \lambda_{k,n}^* = \lambda_k^*$ (resp. ∞) for $k \notin I$ (resp. $k \in I$), where $\lambda_{k,n}^*$ and λ_k^* are the multipliers of $A_{k,n}^*$ and A_k^* , respectively. Then $\langle G_n^* \rangle = \langle A_{1,n}^*(z), \dots, A_{g,n}^*(z) \rangle$ is a Schottky group.

(v) If we set

$$\widetilde{\Sigma}^{*}_{n} = \{C^{*}_{1,\,n},\,\cdots,\,C^{*}_{2g\,,\,n};\,C^{*}_{2g+1},\,\cdots,\,C^{*}_{4g-3}\}$$
 ,

then $\widetilde{\Sigma}_n^*$ is a basic system of Jordan curves for $\langle G_n^* \rangle$ with $\widetilde{\Sigma}_n^* \sim \widetilde{\Sigma}_0^*$.

Let $\tau_n^* \in \mathfrak{S}_g(\widetilde{\Sigma}_0^*)$ be the point corresponding to $\langle G_n^* \rangle$ (cf. Theorem 1 in [7]), that is, $\langle G_n^* \rangle = \langle G(\tau_n^*) \rangle$. Let $\Pi_n: \mathcal{Q}(G(\tau_n^*)) \to \mathcal{Q}(G(\tau_n^*)) / \langle G(\tau_n^*) \rangle =$ $S(\tau_n^*)$ be the natural projection. We set $\alpha_{k,n}^* = \Pi_n(C_{k,n}^*)$ $(k = 1, 2, \dots, g;$ $n = 1, 2, \dots)$ and $\gamma_{l,n}^* = \Pi_n(C_{2g+l,n}^*)$ $(l = 1, 2, \dots, 2g - 3; n = 1, 2, \dots)$. Then $\Sigma_n^* = \{\alpha_{1,n}^*, \dots, \alpha_{g,n}^*; \gamma_{1,n}^*, \dots, \gamma_{2g-3,n}^*\}$ is a basic system of loops on $S(\tau_n^*)$. By the same way as in § 2, we see that $\tau_n^* \to \tau^*$ and $(S(\tau_n^*), \Sigma_n^*) \to (S(\tau^*), \Sigma^*)$ as $n \to \infty$.

4.7. Let $\Sigma_n = \{\alpha_{1,n}, \dots, \alpha_{g,n}; \gamma_{1,n}, \dots, \gamma_{2g-3,n}\}, \tau_n \text{ and } \langle G(\tau_n) \rangle$ be the images of Σ_n^* , τ_n^* and $\langle G(\tau_n^* \rangle$ under the interchange operator $I_g(i, j)$, respectively. Then we see that $\tau_n \in \mathfrak{S}_g(\widetilde{\Sigma}_0)$ and that Σ_n is a basic system of loops on $S_n = \Omega(G(\tau_n))/\langle G(\tau_n) \rangle$ with $\Sigma_n \sim \widetilde{\Sigma}_0$. Let $\widehat{\Sigma}^* = \{\widehat{\alpha}_1^*, \dots, \widehat{\alpha}_g^*; \widehat{\gamma}_1^*, \dots, \widehat{\gamma}_{2g-3}^*\}$ be the following basic system of loops and nodes on $S^* = S(\tau^*): \widehat{\alpha}_k^* = \alpha_k^* \ (k \neq i), \ \widehat{\alpha}_i^* = \gamma_j^*, \ \widehat{\gamma}_i^* = \gamma_i^* \ (l \neq j) \text{ and } \widehat{\gamma}_j^* = \alpha_i^*.$ Then we note that $\widehat{\Sigma}^* \sim \widetilde{\Sigma}_0$. From § 4.6, we have that $\tau_n \to \tau$ and $(S(\tau_n), \Sigma_n) \to (S(\tau^*), \widehat{\Sigma}^*) \ (\neq (S(\tau), \Sigma))$ as $n \to \infty$.

5. Main theorem—The second step.

5.1. The second step. The case of $J = \{\hat{j}(1), \hat{j}(2)\}$ and $I(J) \neq \emptyset$.

Let $i(1) \in I(\{\hat{j}(1)\})$. Let $\widetilde{\Sigma}_1$ be the image of $\widetilde{\Sigma}_0$ under the interchange operator $I_g(i(1), \hat{j}(1))$. We set $J_1 = \{\hat{j}(2)\}$. We consider the case of $I(J_1) \setminus \{i(1)\} \neq \emptyset$ with respect to $\widetilde{\Sigma}_1$. Let $i(2) \in I(J_1)$. We write $\widetilde{\Sigma}_2$ for the image of $\widetilde{\Sigma}_1$ under the interchange operator $I_g(i(2), \hat{j}(2))$.

The second step is divided into the following three cases: Case 1. $C_{2g+\hat{j}(1)} < C_{2g+\hat{j}(2)}$; Case 2. $C_{2g+\hat{j}(2)} < C_{2g+\hat{j}(1)}$; Case 3. There is no relation between $C_{2g+\hat{j}(1)}$ and $C_{2g+\hat{j}(2)}$, that is, $C_{2g+\hat{j}(1)} \not\leq C_{2g+\hat{j}(2)}$ and $C_{2g+\hat{j}(2)} \not\leq C_{2g+\hat{j}(1)}$. For $C_{i(1)}$ and $C_{g+i(1)}$ (resp. $C_{i(2)}$ and $C_{g+i(2)}$), we have either $C_{2g+\hat{j}(1)} < C_{i(1)}$ or $C_{2g+\hat{j}(1)} < C_{g+i(1)}$ (resp. $C_{2g+\hat{j}(2)} < C_{i(2)}$ or $C_{2g+\hat{j}(2)} < C_{g+i(2)}$). We only consider the following case:

$$C_{2g+\hat{j}(1)} < C_{i(1)}$$
 and $C_{2g+\hat{j}(2)} < C_{i(2)}$.

Other cases are similarly treated.

In the above case, there may be the following twelve cases:

Case 1. $C_{2g+\hat{j}(1)} < C_{2g+\hat{j}(2)}$, therefore in this case $C_{2g+\hat{j}(1)} < C_{i(2)}$ and $C_{2g+\hat{j}(2)} \not< C_{g+i(1)}.$ Case 1-1. $C_{2g+\hat{j}(1)} < C_{g+i(2)}, C_{2g+\hat{j}(2)} \not< C_{i(1)}.$ $C_{2g+\hat{j}(1)} \not< C_{g+i(2)}, \ C_{2g+\hat{j}(2)} \not< C_{i(1)}.$ Case 1-2. Case 1-3. $C_{2g+\hat{j}(1)} < C_{g+i(2)}, \ C_{2g+\hat{j}(2)} < C_{i(1)}.$ Case 1-4. $C_{2g+\hat{j}(1)} \not< C_{g+i(2)}, \ C_{2g+\hat{j}(2)} < C_{i(1)}.$ Case 2. $C_{2g+\hat{j}(2)} < C_{2g+\hat{j}(1)}$, therefore in this case $C_{2g+\hat{j}(2)} < C_{i(1)}$ and $C_{2g+\hat{j}(1)} \not< C_{g+i(2)}.$ Case 2-1. $C_{2g+\hat{j}(2)} < C_{g+i(1)}, C_{2g+\hat{j}(1)} \not< C_{i(2)}.$ $C_{2g+\hat{j}(2)} < C_{g+i(1)}, \ C_{2g+\hat{j}(1)} < C_{i(2)}.$ Case 2-2. $C_{2g+\hat{j}(2)} \not < C_{g+i(1)}, \ C_{2g+\hat{j}(1)} \not < C_{i(2)}.$ Case 2-3. Case 2-4. $C_{2g+\hat{j}(2)} \not< C_{g+i(1)}, \ C_{2g+\hat{j}(1)} < C_{i(2)}.$ Case 3. $C_{2g+\hat{j}(1)} \not< C_{2g+j(2)}$ and $C_{2g+\hat{j}(2)} \not< C_{2g+j(1)}$. $C_{2g+\hat{j}(1)} \not< C_{g+i(2)}, \ C_{2g+\hat{j}(2)} \not< C_{g+i(1)}.$ Case 3-1. Case 3-2. $C_{2g+\hat{j}(1)} < C_{g+i(2)}, \ C_{2g+\hat{j}(2)} \not < C_{g+i(1)}.$ $C_{2g+\hat{j}(1)} \not< C_{g+i(2)}, \ C_{2g+\hat{j}(2)} < C_{g+i(1)}.$ Case 3-3. $C_{2g+\hat{j}(1)} < C_{g+i(2)}, \ C_{2g+\hat{j}(2)} < C_{g+i(1)}.$ Case 3-4. Here we only consider Case 1-3. Other cases are similarly 5.2.

treated. We use similar procedures as in § 4. First, we use $C_{2g+\hat{j}(1)}, C_{i(1)}$ and $C_{g+i(1)}$ instead of C_{2g+j} , \check{C}_i and C_{g+i} in § 4, respectively. In this case, it is slightly different from the way in § 4. Namely, we have three Schottky groups $\langle G_0(\tau) \rangle$, $\langle \tilde{G}_{\hat{j}(1)}(\tau) \rangle$ and $\langle \check{G}_{\hat{j}(2)}(\tau) \rangle$. We set $p_{g+i(1)}^* = p_{j(1)}^+$, $p_{\hat{j}(2)}^{*-} = p_{g+i(1)}; \tilde{p}_{i(1)}^* = \tilde{p}_{\hat{j}(1)}, \tilde{p}_{\hat{j}(2)}^{*+} = \tilde{p}_{\hat{j}(2)}, \tilde{p}_{g+i(2)}^* = \tilde{p}_{g+i(2)}; \tilde{p}_{\hat{j}(2)}^* = \tilde{p}_{\hat{j}(2)}$ and $\check{p}_{g+i(1)}^* =$ $\check{p}_{i(1)}$ and then we use the same procedure as in § 4 for $\langle G_0(\tau) \rangle$ and $\langle \check{G}_{\hat{j}(2)}(\tau) \rangle$. We denote this procedure by $[C_{2g+\hat{j}(1)}; C_{i(1)}, C_{g+i(1)}]$. We denote by $(C_{2g+j}; C_i, C_{g+i})$ the procedure in § 4. Second, we use $C_{2g+\hat{j}(2)}^*, \tilde{C}_{g+i(2)}^*$, and $C_{i(2)}^*$ instead of C_{2g+j}, C_i and C_{g+i} in § 4, and we use the same procedure as in § 4 for $\langle G_0^*(\tau) \rangle$ and $\langle \tilde{G}_{\hat{j}(2)}^*(\tau) \rangle$. We write $[C_{2g+\hat{j}(1)}; C_{i(1)}, C_{g+i(1)}] - (C_{2g+\hat{j}(2)}^*, C_{g+i(2)}^*, C_{i(2)})$ for the above two procedures.

Given a point $\tau \in \delta^{I,J} \mathfrak{S}_g(\widetilde{\Sigma}_0)$. We get a point $\tau^* \in \mathfrak{S}_g^*(\widetilde{\Sigma}_1)$ from τ by using the procedure $[C_{2g+\hat{j}(1)}; C_{i(1)}, C_{g+i(1)}]$, and a point $\tau^{**} \in \mathfrak{S}_g^*(\widetilde{\Sigma}_2)$ from τ^* by using the procedure $(C_{2g+\hat{j}(2)}^*; C_{g+i(2)}^*, C_{i(2)})$. Let $\Sigma^{**} = \{\alpha_1^{**}, \dots, \alpha_g^{**}; \gamma_1^{**}, \dots, \gamma_{2g-3}^{**}\}$ be a basic system of loops and nodes of $S(\tau^{**})$ which is obtained by the same method as in § 4. We note that $\Sigma^{**} \sim \widetilde{\Sigma}_2$. Next we construct the following sequence of points $\{\tau_n^{**}\} \subset \mathfrak{S}_g(\widetilde{\Sigma}_2)$ by a similar method as in § 4:

 $\tau_n^{**} \to \tau^{**}$ and $(S(\tau_n^{**}), \Sigma_n^{**}) \to (S(\tau^{**}), \Sigma^{**})$

as $n \to \infty$, where Σ_n^{**} is a basic system of loops on $S(\tau_n^{**})$ with $\Sigma_n^{**} \sim \widetilde{\Sigma}_2$ which are obtained by the same method as in § 4. We set $\tau_n^* = I_g^{-1}(i(2), \hat{j}(2))(\tau_n^{**})$ and $\tau_n = I_g^{-1}(i(1), \hat{j}(1))(\tau_n^{*})$. Then it is easily seen that $\tau_n \in \mathfrak{S}_g(\widetilde{\Sigma}_0)$ and $\tau_n \to \tau$ as $n \to \infty$. Let $\hat{\Sigma}^{**} = \{\hat{\alpha}_1^{**}, \cdots, \hat{\alpha}_g^{**}; \hat{\gamma}_1^{**}, \cdots, \hat{\gamma}_{2g-3}^{**}\}$ be the following basic system of loops and nodes on $S(\tau^{**})$: $\hat{\alpha}_{i(1)}^{**} = \gamma_{j(1)}^{**}, \hat{\alpha}_{i(2)}^{**} = \gamma_{j(2)}^{**}, \hat{\alpha}_k^{**} = \alpha_k^{**} \ (k \neq i(1), i(2)), \ \hat{\gamma}_{j(1)}^{**} = \alpha_{i(1)}^{**}, \ \hat{\gamma}_{j(2)}^{**} = \alpha_{i(2)}^{**} \ \text{and} \ \hat{\gamma}_i^{**} = \gamma_i^{**} \ (l \neq \hat{j}(1), \hat{j}(2)),$ We set $\Sigma_n = I_g(i(1), \hat{j}(1))^{-1} \cdot I_g(i(2), \hat{j}(2))^{-1}(\Sigma_n^{**})$. Then we have that

$$(S(\tau_n), \Sigma_n) \to (S(\tau^{**}), \widehat{\Sigma}^{**}) \text{ as } n \to \infty$$
.

5.3. Other cases can similarly be treated to the above. For each case, we use the following procedures:

Case 1-1. $(C_{2g+\hat{j}(1)}; C_{i(1)}, C_{g+i(1)}) - (C^*_{2g+\hat{j}(2)}; C^*_{i(2)}, C^*_{g+i(2)}).$ $(C_{2g+\hat{j}(1)}; C_{i(1)}, C_{g+i(1)}) - (C^*_{2g+\hat{j}(2)}; C^*_{i(2)}, C^*_{g+i(2)}).$ Case 1-2. Case 1-3 was already treated in § 5.2. Case 1-4 does not occur. Case 2-1. $(C_{2g+\hat{j}(1)}; C_{i(1)}, C_{g+i(1)}) - (C^*_{2g+\hat{j}(2)}; C^*_{i(2)}, C^*_{g+i(2)}).$ $(C_{2g+\hat{j}(1)}; C_{i(1)}, C_{g+i(1)}) - (C^*_{2g+\hat{j}(2)}; C^*_{i(2)}, C^*_{g+i(2)}).$ Case 2-2. $[C_{2g+\hat{j}(1)}; C_{i(1)}, C_{g+i(1)}] - (C^*_{2g+\hat{j}(2)}; C^*_{i(2)}, C^*_{g+i(2)}).$ Case 2-3. Case 2-4 does not occur. Case 3-1. $(C_{2g+\hat{j}(1)}; C_{i(1)}, C_{g+i(1)}) - (C^*_{2g+\hat{j}(2)}; C^*_{i(2)}, C^*_{g+i(2)}).$ $(C_{2g+\hat{j}(1)}; C_{i(1)}, C_{g+i(1)}) - (C^*_{2g+\hat{j}(2)}; C^*_{i(2)}, C^*_{g+i(2)}).$ Case 3-2. $[C_{2g+\hat{j}(1)}; C_{i(1)}, C_{g+i(1)}] - (C_{2g+\hat{j}(2)}^*; C_{i(2)}^*, C_{g+i(2)}^*).$ Case 3-3. Case 3-4 does not occur.

6. Main theorem—The third step. Last, we will treat the general case. Let $\tau \in \delta^{I,J} \mathfrak{S}_g(\widetilde{\Sigma}_0)$ be as in §3, where $I \supset I(J) \neq \emptyset$. Let $\widetilde{\Sigma}_0^*$ be as in §3, that is,

$$\widetilde{\Sigma}_{0}^{*} = I_{g}(i_{k(s)}, j_{l(s)}) \cdots I_{g}(i_{k(1)}, j_{l(1)})(\widetilde{\Sigma}_{0})$$

We write Φ for $I_g(i_{k(s)}, j_{l(s)}) \cdots I_g(i_{k(1)}, j_{l(1)})$. Let I^* and J^* be as in §3. By the same methods as in §§ 4 and 5, we determine $\tau_1 \in \widehat{\mathfrak{S}}_g^*(\widetilde{\Sigma}_1)$ from τ , $\tau_2 \in \widehat{\mathfrak{S}}_g^*(\widetilde{\Sigma}_2)$ from $\tau_1, \cdots, \tau_s \in \widehat{\mathfrak{S}}_g^*(\widetilde{\Sigma}_0^*)$ from τ_{s-1} , where $\widetilde{\Sigma}_t = I_g(i_{k(t)}, j_{l(t)})(\widetilde{\Sigma}_{t-1})$ $(t = 1, 2, \cdots, s)$ and $\widetilde{\Sigma}_0^* = \widetilde{\Sigma}_s$.

We set $\tau^* = \tau_s$. Let $\Sigma^* = \{\alpha_1^*, \dots, \alpha_g^*; \gamma_1^*, \dots, \gamma_{2g-3}^*\}$ be a basic system of loops and nodes on $S(\tau^*)$ with $\Sigma^* \sim \widetilde{\Sigma}_0^*$ which is obtained by the same method as in §§ 4 and 5. We note that α_k^* $(k \in I^*)$ and γ_l^* $(l \in J^*)$ are nodes, and α_k^* $(k \notin I^*)$ and γ_l^* $(l \notin J^*)$ are loops. As in §§ 4 and 5, we construct the following sequence of points $\{\tau_n^*\} \subset \mathfrak{S}_g(\widetilde{\Sigma}_0^*): \tau_n^* \to \tau^*$ and $(S(\tau_n^*), \Sigma_n^*) \to (S(\tau^*), \Sigma^*)$, where Σ_n^* are basic systems of loops on $S(\tau_n^*)$ with $\Sigma_n^* \sim \widetilde{\Sigma}_0^*$ which are obtained as in §§ 4 and 5. We set $\tau_n = \Phi^{-1}(\tau_n^*)$. Then the sequence of points $\{\tau_n\} \subset \mathfrak{S}_g(\widetilde{\Sigma}_0)$ satisfies the following:

$$\tau_n \to \tau$$
 and $(S(\tau_n), \Sigma_n) \to (S(\tau^*), \tilde{\Sigma}^*)$ as $n \to \infty$

SCHOTTKY GROUPS

where $\Sigma_n = \Phi^{-1}(\Sigma_n^*)$ and $\hat{\Sigma}^*$ is the basic system of loops and nodes on $S(\tau^*)$ with $\hat{\Sigma}^* \sim \tilde{\Sigma}_0$ which is obtained from Σ^* as in §§ 4 and 5. Then we have the following main theorem.

THEOREM 2. Let $\langle G_0 \rangle$ and $\tilde{\Sigma}_0$ be a fixed marked Schottky group and a fixed basic system of Jordan curves for $\langle G_0 \rangle$, respectively. Given a point $\tau \in \delta^{I,J} \mathfrak{S}_g(\tilde{\Sigma}_0)$, where $I \supset I(J) \neq \emptyset$. Let $\tilde{\Sigma}_0^*$, I^* and J^* be as in § 3. Let $\tau^* \in \delta^{I^*,J^*} \mathfrak{S}_g(\tilde{\Sigma}_0^*)$ be the point obtained from τ as in the above. Then there exists the following sequences of points $\{\tau_n\} \subset \mathfrak{S}_g(\tilde{\Sigma}_0)$:

 $au_n \to au$ and $(S(au_n), \Sigma_n) \to (S(au^*), \hat{\Sigma}^*)$ as $n \to \infty$,

where Σ_n and $\hat{\Sigma}^*$ are a basic system of loops on $S(\tau_n)$ with $\Sigma_n \sim \tilde{\Sigma}_0$ and a basic system of loops and nodes on $S(\tau^*)$ with $\hat{\Sigma}^* \sim \tilde{\Sigma}_0$, respectively, as above.

COROLLARY. Given $\tau \in \delta^{I,J} \mathfrak{S}_g(\widetilde{\Sigma}_0)$, where $I \supset I(J)$. If $I(J) \neq \emptyset$, then there exists a sequence of points $\{\tau_n\} \subset \mathfrak{S}_g(\widetilde{\Sigma}_0)$ such that (i) $\tau_n \to \tau$ as $n \to \infty$ and (ii) $S(\tau_n)$ does not converge to $S(\tau)$ as marked surfaces.

REMARK. By similar methods as in [5] and in the proof of Theorem 1, we easily show that if $\widetilde{\Sigma}_0$ is a standard system of Jordan curves, then $S(\tau_n)$ converges to $S(\tau)$ as marked surfaces for any point $\tau \in \widehat{\mathfrak{S}}^*_{\mathfrak{g}}(\widetilde{\Sigma}_0)$ and for any sequence of points $\{\tau_n\} \subset \mathfrak{S}_{\mathfrak{g}}(\widetilde{\Sigma}_0)$ with $\tau_n \to \tau$.

7. An example. Here we will give an example for Theorem 2. We write (a, b; c, d) for a matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

For $n = 10, 11, 12, \dots$, we set

$$egin{aligned} &A_{1,n}=(n,\,-1/n;\,n,\,0)\;,\ &A_{2,n}=(n^2+3,\,-(2n^2+6+(1/n^2));\,n^2,\,-2n^2)\;,\ &C_{1,n};\,|z|=2/3\;,\ &C_{2,n};\,|z-2|=1/n^2\;,\ &C_{3,n};\,|z-1|=3/(2n^2)\;,\ &C_{4,n};\,|z-(1+(3/n^2))|=1/n^2\;,\ &C_{5,n};\,|z-1|=5/n^2\;. \end{aligned}$$

In particular, we set $A_i = A_{i,10}$ (i = 1, 2), $\langle G_0 \rangle = \langle A_1, A_2 \rangle$, $C_i = C_{i,10}$ (i = 1, 2, 3, 4, 5) and $\widetilde{\Sigma}_0 = \{C_1, C_2, C_3, C_4; C_5\}$. Then $\langle G_0 \rangle$ is a marked Schottky group and $\widetilde{\Sigma}_0$ is a basic system of Jordan curves for $\langle G_0 \rangle$. We apply the interchange operator $I_g(1, 1)$ on $\widetilde{\Sigma}_0$ and $\langle G_0 \rangle$. If we set $\widetilde{\Sigma}_0^* = I_g(1, 1)(\widetilde{\Sigma}_0) = \{C_1^*, C_2^*, C_3^*, C_4^*, C_5^*\}$, then we have $C_1^* = A_1^{-1}(C_5)$, $C_2^* = C_2$, $C_3^* = C_5$, $C_4^* = A_1^{-1}(C_4)$ and $C_5^* = C_1$. If we set $\langle G_0^* \rangle = I_g(1, 1)(\langle G_0 \rangle) = \langle A_1^*, A_2^* \rangle$, then we have $A_1^* = A_1$ and $A_2^* = A_1^{-1}A_2$.

We set $\langle G_n \rangle = \langle A_{1,n}, A_{2,n} \rangle$ $(n = 10, 11, 12, \cdots)$ where $\langle G_{10} \rangle = \langle G_0 \rangle$. We easily see that $\langle G_n \rangle$ are marked Schottky groups $(n = 10, 11, \cdots)$. Let $\tau_n = (t_{1,n}, t_{2,n}, \rho_{1,n})$ be the points in $\mathfrak{S}_g(\widetilde{\Sigma}_0)$ corresponding to $\langle G_n \rangle$ $(n = 10, 11, \cdots)$. If we set $\langle G_n^* \rangle = I_g(1, 1)(\langle G_n \rangle) = \langle A_{1,n}^*, A_{2,n}^* \rangle$, then we have $A_{1,n}^* = A_{1,n}$ and $A_{2,n}^* = A_{1,n}^{-1}A_{2,n} = (n, -2n; -3n, 6n + (1/n))$. Let $\tau_n^* = (t_{1,n}^*, t_{2,n}^*, \rho_{1,n}^*)$ be the points in $\mathfrak{S}_g(\widetilde{\Sigma}_0^*)$ corresponding to $\langle G_n^* \rangle$. Set $S_n^* = \mathcal{Q}(G_n^*)/\langle G_n^* \rangle$ and $S_n = \mathcal{Q}(G_n)/\langle G_n \rangle$. Let Π_n (resp. $\Pi_n^*)$ be the natural projections of $\mathcal{Q}(G_n)$ (resp. $\mathcal{Q}(G_n^*)$) onto S_n (resp. S_n^*). We set $\alpha_{i,n} = \Pi_n(C_{i,n})$ $(i = 1, 2), \quad \gamma_{1,n} = \Pi_n(C_{5,n}), \quad \alpha_{i,n}^* = \Pi_n^*(C_{i,n}^*)$ (i = 1, 2) and $\gamma_{1,n}^* = \Pi_n^*(C_{5,n}^*)$. Then $\Sigma_n = \{\alpha_{1,n}, \alpha_{2,n}; \gamma_{1,n}\}$ and $\Sigma_n^* = \{\alpha_{1,n}^*, \alpha_{2,n}^*; \gamma_{1,n}^*\}$ are basic systems of loops on S_n and S_n^* , respectively, and $\Sigma_n^* = I_g(1, 1)(\Sigma_n)$.

Let $\lambda_{i,n}$, $p_{i,n}$ and $p_{2+i,n}$ (resp. $\lambda_{i,n}^*$, $p_{i,n}^*$ and $p_{2+i,n}^*$) be the multipliers, the attracting and the repelling fixed points of $A_{i,n}$ (resp. $A_{i,n}^*$), respectively, for $n = 10, 11, 12, \cdots$, where $|\lambda_{i,n}| > 1$ (resp. $|\lambda_{i,n}^*| > 1$). Then we have

$$\begin{array}{ll} p_{1,n} = (n - \sqrt{n^2 - 4})/2n \ , & p_{3,n} = (n + \sqrt{n^2 - 4})/2n \ , \\ p_{2,n} = (3(n^2 + 1) + \sqrt{n^4 - 6n^2 + 5})/2n^2 \ , \\ p_{4,n} = (3(n^2 + 1) - \sqrt{n^4 - 6n^2 + 5})/2n^2 \ , \\ \lambda_{1,n} = (n^2 - 2 + n\sqrt{n^2 - 4})/2 \ , \\ \lambda_{2,n} = (n^4 - 6n^2 + 7 + \sqrt{n^8 - 12n^6 + 50n^4 - 84n^2 + 45})/2 \\ p_{1,n}^* = p_{1,n} \ , & p_{3,n}^* = p_{3,n} \ , \\ p_{2,n}^* = (5n + (1/n) + \sqrt{49n^2 + 10 + (1/n^2)})/6n \ , \\ p_{4,n}^* = (5n + (1/n) - \sqrt{49n^2 + 10 + (1/n^2)})/6n \ , \\ \lambda_{1,n}^* = \lambda_{1,n} \ , & \text{and} \\ \lambda_{2,n}^* = (49n^2 + 12 + (1/n^2) \\ & + \sqrt{2401n^4 + 1176n^2 + 238 + (24/n^2) + (1/n^4)})/2 \ . \end{array}$$

Let T_n be the Möbius transformations determined by

 $T_{\scriptscriptstyle n}(p_{\scriptscriptstyle 1,n})=0$, $T_{\scriptscriptstyle n}(p_{\scriptscriptstyle 3,n})=1$ and $T_{\scriptscriptstyle n}(p_{\scriptscriptstyle 2,n})=\infty$

for $n = 10, 11, 12, \cdots$. Then $\rho_{1,n} = T_n(p_{4,n})$. By simple calculation, we have

$$ho_{{\scriptscriptstyle 1,n}} = rac{(2n^2+3)^2 - (\sqrt{n^4-6n^2+5}-n\sqrt{n^2-4})^2}{4n\sqrt{n^2-4}\sqrt{n^4-6n^2+5}},$$

Hence $\rho_{1,n} \to 1$ as $n \to \infty$.

SCHOTTKY GROUPS

On the other hand, let T_n^* be the Möbius transformation determined by

$$T^*_n(p^*_{1,n})=0$$
 , $T^*_n(p^*_{3,n})=1$ and $T^*_n(p^*_{4,n})=\infty$

for $n = 10, 11, 12, \cdots$. Then we have

$$1-(1/
ho_{1,n}^{*})=rac{32n^{4}+96n^{2}+64+(4/n^{2})}{(9n^{2}-5+\sqrt{n^{2}-4}\sqrt{49n^{2}+10+(1/n^{2})})^{2}}$$

Hence $\rho_{1,n}^* \to 8/7$ as $n \to \infty$.

Since $t_{i,n} = 1/\lambda_{i,n}$ and $t_{i,n}^* = 1/\lambda_{i,n}^*$ $(i = 1, 2), \tau_n \to \tau = (0, 0, 1)$ and $\tau_n^* \to \tau^* = (0, 0, 8/7)$ as $n \to \infty$. τ (resp. τ^*) is a point in the augmented Schottky space $\widehat{\otimes}_g^*(\widetilde{\Sigma}_0)$ (resp. $\widehat{\otimes}_g^*(\widetilde{\Sigma}_0^*)$). Let S and S^* be the Riemann surfaces represented by τ and τ^* , respectively. Let $\Sigma^* = \{\alpha_1^*, \alpha_2^*; \gamma_1^*\}$ be a basic system of loops and nodes on S^* with $\Sigma^* \sim \widetilde{\Sigma}_0^*$ such that α_i^* (i = 1, 2) are nodes and γ_1^* is a loop. Let $\widehat{\Sigma}^* = \{\widehat{\alpha}_1^*, \widehat{\alpha}_2^*; \widehat{\gamma}_1^*\}$ be a basic system of loops and nodes on S^* such that $\widehat{\alpha}_1^* = \gamma_1^*$, $\widehat{\alpha}_2^* = \alpha_2^*$ and $\widehat{\gamma}_1^* = \alpha_1^*$. We note that $\widehat{\Sigma}^* \sim \widetilde{\Sigma}_0$. Then by using the method of the proof of Theorem 1, we have that

$$(S_n^*, \Sigma_n^*) \to (S^*, \Sigma^*)$$
 as $n \to \infty$.

Since $S_n = S_n^*$ except markings and $S \neq S^*$, we have that

$$(S_n, \Sigma_n) \to (S^*, \Sigma^*) \ (\neq (S, \Sigma)) \text{ as } n \to \infty$$

References

- W. ABIKOFF, Degenerating families of Riemann surfaces, Ann. of Math. 105 (1977), 29-44.
- [2] L. BERS, Spaces of degenerating Riemann surfaces, Ann. of Math. Studies 79 (1974), 43-55.
- [3] L. BERS, Automorphic forms for Schottky groups, Advances in Math. 16 (1975), 332-361.
- [4] J. S. BIRMAN, The algebraic structure of surface mapping class groups, in Discrete groups and automorphic functions, 1977, (W. J. Harvey, ed.), Academic Press, London-New York-San Francisco, 163-198.
- [5] H. SATO, On augmented Schottky spaces and automorphic forms, I, Nagoya Math. J. 75 (1979), 151-175.
- [6] H. SATO, A property of new coordinates defining augmented Schottky spaces, Nagoya Math. J. 88 (1982), 73-78.
- [7] H. SATO, Intoroduction of new coordinates to the Schottky space—The general case—, J, Math. Soc. of Japan 35 (1983), 23-35.
- [8] H. SATO, Augmented Schottky spaces and a uniformization of Riemann surfaces, Tôhoku Math. J. 35 (1983), 557-572.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE SHIZUOKA UNIVERSITY 836 OHYA, SHIZUOKA 422 JAPAN