ON THE FUNCTIONS OF LITTLEWOOD-PALEY AND MARCINKIEWICZ

Gen-IChirô Sunouchi

(Received August 27, 1983)

1. Introduction. Let $f(x)$ be a locally integrable function on the real line \boldsymbol{R}. The Fourier integral analogue of Marcinkiewicz function [7] is

$$
\mu(f)(x)=\left(\int_{0}^{\infty}|F(x+t)+F(x-t)-2 F(x)|^{2} t^{-3} d t\right)^{1 / 2}
$$

where

$$
F(x)=\int_{0}^{x} f(u) d u
$$

We generalize this as follows : for $\alpha>0$

$$
\begin{equation*}
\mu_{\alpha}(f)(x)=\left\{\int_{0}^{\infty}\left|\frac{\alpha}{t} \int_{0}^{\infty}\left(1-\frac{u}{t}\right)^{\alpha-1}(f(x-u)-f(x+u)) d u\right|^{2} \frac{d t}{t}\right\}^{1 / 2} \tag{1.1}
\end{equation*}
$$

$\mu_{1}(f)(x)$ coincides with $\mu(f)(x)$. (1.1) is the one dimensional form of the more general Marcinkiewicz function

$$
\mu(f)(x)=\left\{c \int_{0}^{\infty}\left|\frac{1}{t} \int_{|u| \leqslant t} f(x-u) \frac{\Omega\left(u^{\prime}\right)}{|u|^{k-1}} d u\right|^{2} \frac{d t}{t}\right\}^{1 / 2}
$$

where $\Omega\left(u^{\prime}\right) /|u|^{k}$ is the Calderón-Zygmund kernel on k-dimensional space and c is a constant depending on k only, see Stein [8].

On the other hand we have generalized the Littlewood-Paley function as follows

$$
\begin{equation*}
g_{\beta}^{*}(\phi)(x)=\left\{\frac{1}{\pi} \int_{0}^{\infty} y^{2 \beta} d y \int_{-\infty}^{\infty} \frac{\left|\phi^{\prime}(t+i y)\right|^{2}}{|t-x-i y|^{2 \beta}} d t\right\}^{1 / 2} \tag{1.2}
\end{equation*}
$$

where $\phi(z)=\phi(x+i y)$ is analytic in the upper half-plane and has boundary value $\phi(x)=\lim _{y \rightarrow 0} \phi(x+i y)$. The original Littlewood-Paley function $g^{*}(\phi)(x)$ in Fourier integral form corresponds to the case $\beta=1$ in (1.2).

Let $\sigma_{\beta}(R ; x, \beta)$ the R-th (C, β)-mean of Fourier integral of complex valued function $\phi(x)$ and set

$$
\begin{equation*}
\tau_{\beta}(R ; x, \phi)=R \frac{d}{d R} \sigma_{\beta}(R ; x, \phi)=\beta\left\{\sigma_{\beta-1}(R ; x, \phi)-\sigma_{\beta}(R ; x, \phi)\right\} \tag{1.3}
\end{equation*}
$$

and set

$$
\begin{equation*}
h_{\beta}(\phi)(x)=\left(\int_{0}^{\infty} \frac{\left|\tau_{\beta}(R ; x, \phi)\right|^{2}}{R} d R\right)^{1 / 2} . \tag{1.4}
\end{equation*}
$$

Then (1.2) is equivalent to (1.4), that is,

$$
A h_{\beta}(\phi)(x) \leqq g_{\beta}^{*}(\phi)(x) \leqq B h_{\beta}(\phi)(x),
$$

where A and B are constants independent of ϕ and x; see Sunouchi [11]. Here after A and B mean such constants.

Now we consider the functional h_{β} for imaginary part of ϕ. Let $\bar{\sigma}_{\beta}(R ; x, f)$ the (C, β)-mean of the conjugate Fourier integral of any $f(x)$ and define $\bar{\tau}_{\beta}(R ; x, f)$ and $\bar{h}_{\beta}(R ; x, f)$ analogously to the formula (1.3) and (1.4). We denote by S the Schwartz space on \boldsymbol{R}, that is, the space of rapidly decreasing C^{∞}-functions. Then our main theorem is as follows.

Theorem 1. If $\alpha+1 / 2=\beta(\alpha>0)$, then

$$
A \bar{h}_{\beta}(f)(x) \leqq \mu_{\alpha}(f)(x) \leqq B \bar{h}_{\beta}(f)(x)
$$

for any function $f(x) \in S$ and $x \in \boldsymbol{R}$.
One of the inequalities

$$
\bar{h}_{\beta}(f)(x) \leqq A \mu_{\alpha}(f)(x)
$$

is already given by Flett [3] for the functions on the unit circle.
For a variant of this, let $f_{\alpha}(x)$ be the Riesz potential of $f(x)$, that is, $f_{\alpha}(x)=\int_{-\infty}^{\infty}|\xi|^{-\alpha} \widehat{f}(\xi) e^{i x \xi} d \xi$ and set

$$
D_{\alpha}(f)(x)=\left(\int_{0}^{\infty} \frac{\left|f_{\alpha}(x-t)-f_{\alpha}(x+t)\right|^{2}}{t^{1+2 \alpha}} d t\right)^{1 / 2}
$$

Theorem 2. If $\alpha+1 / 2=\beta(0<\alpha<1)$, then

$$
A \bar{h}_{\beta}(f)(x) \leqq D_{\alpha}(f)(x) \leqq B \bar{h}_{\beta}(f)(x)
$$

for $f \in S$ and $x \in \boldsymbol{R}$.
The fact that, for $\alpha+1 / 2>\beta$

$$
D_{\alpha}(f)(x) \leqq B\left\{\bar{h}_{\beta}(f)(x)+h_{\beta}(f)(x)\right\}=B h_{\beta}(\phi)(x),
$$

is given by Stein [9] for functions of several variables.
Corresponding to $h_{\beta}(f)(x)$, we consider

$$
\delta_{\alpha}(f)(x)=\left(\int_{0}^{\infty} t\left|\frac{d}{d t} M_{\alpha}(t ; x, f)\right| d t\right)^{1 / 2}
$$

where

$$
M_{\alpha}(t ; x, f)=\frac{\alpha}{t} \int_{|u| \leq t}\left(1-\frac{|u|}{t}\right)^{\alpha-1} f(x-u) d u
$$

Theorem 3. If $\alpha-(1 / 2)=\beta(\alpha>0)$, then

$$
A h_{\beta}(f)(x) \leqq \delta_{\alpha}(f)(x) \leqq B h_{\beta}(f)(x)
$$

for $f \in S$ and $x \in \boldsymbol{R}$.
In the last section, an analogous relation to the Littlewood-Paley function $g(f)(x)$, is also established. In particular the relationship between

$$
\delta_{0}(f)(x)=\left(\int_{0}^{\infty} t\left|\frac{d}{d t}\{f(x-t)+f(x+t)\}\right|^{2} d t\right)^{1 / 2}
$$

and $g(f)(x)$ is clarified. This question is proposed as problem 6(a) of Stein-Wainger [10, p. 1289] for several variables case.

I wish to express my appreciations to Professor M. Kaneko, whose valuable suggestions have led to a material improvement in the presenting of this paper.
2. Notations. We suppose throughout this paper $f(x)$ belongs to the class S. We write for a fixed x_{0},

$$
\phi(t)=\phi\left(t ; x_{0}, f\right)=f\left(x_{0}-t\right)+f\left(x_{0}+t\right)
$$

and

$$
\psi(t)=\psi\left(t ; x_{0}, f\right)=f\left(x_{0}-t\right)-f\left(x_{0}+t\right)
$$

For $\alpha>0$ and $t \geqq 0$, set

$$
\begin{equation*}
\phi_{\alpha}(t)=\phi_{\alpha}\left(t ; x_{0}, f\right)=\frac{\alpha}{t} \int_{0}^{t}\left(1-\frac{u}{t}\right)^{\alpha-1} \phi(u) d u \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{\alpha}(t)=\psi_{\alpha}\left(t ; x_{0}, f\right)=\frac{\alpha}{t} \int_{0}^{t}\left(1-\frac{u}{t}\right)^{\alpha-1} \psi(u) d u \tag{2.2}
\end{equation*}
$$

The generalized Marcinkiewicz function and a variant are written as

$$
\begin{gather*}
\mu_{\alpha}(f)\left(x_{0}\right)=\left(\int_{0}^{\infty}\left|\psi_{\alpha}\left(t ; x_{0}, f\right)\right|^{2} \frac{d t}{t}\right)^{1 / 2} \tag{2.3}\\
\delta_{\alpha}(f)\left(x_{0}\right)=\left(\int_{0}^{\infty} t\left|\frac{d}{d t} \phi_{\alpha}\left(t ; x_{0}, f\right)\right|^{2} d t\right)^{1 / 2} \tag{2.4}
\end{gather*}
$$

For the Cesàro-Riesz mean of $f(x)$, we introduce the well-known Young function. Let

$$
\gamma_{\alpha}(x)+i \bar{\gamma}_{\alpha}(x)=\int_{0}^{1}(1-t)^{\alpha-1} e^{i x t} d t
$$

where $\alpha>0, x \geqq 0$, then it is known [1],

$$
\gamma_{\alpha}(x) \sim x^{-p} \quad \text { as } \quad x \rightarrow \infty, \quad \text { where } \quad p=\operatorname{Min}(2, \alpha) .
$$

Then the R-th Cesàro-Riesz mean of of the β-th order for Fourier integral of $f(x)$ is

$$
\begin{equation*}
\sigma_{\beta}(R)=\sigma_{\beta}\left(R ; x_{0}, f\right)=c \int_{0}^{\infty} \phi(u) R \gamma_{\beta+1}(R u) d u \tag{2.5}
\end{equation*}
$$

and for the conjugate Fourier integral of $f(x)$ is

$$
\begin{equation*}
\bar{\sigma}_{\beta}(R)=\bar{\sigma}_{\beta}\left(R ; x_{0}, f\right)=c^{\prime} \int_{0}^{\infty} \psi(u) R \bar{\gamma}_{\beta+1}(R u) d u \tag{2.6}
\end{equation*}
$$

where c and c^{\prime} are constants. Then we have

$$
\begin{equation*}
h_{\beta}(f)\left(x_{0}\right)=\left(\int_{0}^{\infty}\left|\sigma_{\beta-1}(R)-\sigma_{\beta}(R)\right|^{2} \frac{1}{R} d R\right)^{1 / 2} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{h}_{\beta}(f)\left(x_{0}\right)=\left(\int_{0}^{\infty}\left|\bar{\sigma}_{\beta-1}(R)-\bar{\sigma}_{\beta}(R)\right|^{2} \frac{1}{R} d R\right)^{1 / 2} . \tag{2.8}
\end{equation*}
$$

3. Proof of Theorem 1. Let $f \in S$ and fix a point x_{0} in \boldsymbol{R}. By the change of the variables $u=e^{-y}$ and $t=e^{-x}(2,3)$ becomes

$$
\begin{equation*}
\mu_{\alpha}(f)\left(x_{0}\right)=\left[\int_{-\infty}^{\infty}\left|\int_{x}^{\infty} \alpha e^{(x-y)}\left(1-e^{(x-y)}\right)^{\alpha-1} \psi\left(e^{-y}\right) d y\right|^{2} d x\right]^{1 / 2} . \tag{3.1}
\end{equation*}
$$

If we rewrite

$$
K_{\alpha}(x)=\left\{\begin{array}{cc}
\alpha e^{x}\left(1-e^{x}\right)^{\alpha-1}, & x \leqq 0 \tag{3.2}\\
0, & x>0
\end{array}\right.
$$

and $\Psi(x)=\psi\left(e^{-x}\right)$, then (3.1) becomes

$$
\begin{equation*}
\mu_{\alpha}(f)\left(x_{0}\right)=\left(\int_{-\infty}^{\infty}\left|\left(\Psi * K_{\alpha}\right)(x)\right|^{2} d x\right)^{1 / 2} . \tag{3.3}
\end{equation*}
$$

In (2.6) and (2.8), we set $u=e^{-y}$ and $R=e^{x}$, then (2.8) is

$$
\begin{aligned}
\bar{h}_{\beta}(f)\left(x_{0}\right) & =\left[c^{\prime} \int_{0}^{\infty}\left|\int_{0}^{\infty} \psi(u) R\left\{\bar{\gamma}_{\beta}(R u)-\bar{\gamma}_{\beta+1}(R u)\right\} d u\right|^{2} \frac{d R}{R}\right]^{1 / 2} \\
& =\left[c^{\prime} \int_{-\infty}^{\infty}\left|\int_{-\infty}^{\infty} \psi\left(e^{-y}\right) e^{x-y}\left\{\bar{\gamma}_{\beta}\left(e^{x-y}\right)-\bar{\gamma}_{\beta+1}\left(e^{x-y}\right)\right\} d y\right|^{2} d x\right]^{1 / 2} .
\end{aligned}
$$

If we rewrite

$$
\begin{equation*}
\bar{K}_{\beta}^{*}(x)=e^{x}\left(\bar{\gamma}_{\beta}\left(e^{x}\right)-\bar{\gamma}_{\beta+1}\left(e^{x}\right)\right)=e^{x} \gamma_{\beta}^{\prime}\left(e^{x}\right) \tag{3.4}
\end{equation*}
$$

and $\Psi(x)=\psi\left(e^{-x}\right)$, then

$$
\begin{equation*}
\bar{h}_{\beta}(f)\left(x_{0}\right)=\left(\int_{-\infty}^{\infty}\left|\left(\Psi * \bar{K}_{\beta}^{*}\right)(x)\right|^{2} d x\right)^{1 / 2} . \tag{3.5}
\end{equation*}
$$

To compare (3.3) with (3.5), we apply Fourier transform method.
Since $\psi(u)=f\left(x_{0}-u\right)-f\left(x_{0}+u\right) \in S, \Psi(x)=\psi\left(e^{-x}\right)=0\left(e^{-x}\right)$ as $x \rightarrow \infty$, and $0\left(e^{-|x|}\right)$ as $x \rightarrow-\infty$. Since $K_{\alpha}(x)$ is integrable on $(-\infty, \infty),\left(\Psi * K_{\alpha}\right)(x)$ is an ordinary convolution. However, since

$$
\bar{\gamma}_{\beta}\left(e^{x}\right) \sim e^{-\beta x} \quad \text { as } \quad x \rightarrow \infty \quad(0<\beta \leqq 1)
$$

we have

$$
\bar{K}_{\beta}^{*}(x) \sim e^{x} \cdot e^{-\beta x}=e^{(1-\beta) x} \quad \text { as } \quad x \rightarrow \infty .
$$

But

$$
\bar{K}_{\beta}^{*}(x)=0\left(e^{x}\right) \quad \text { as } \quad x \rightarrow-\infty \quad(0<\beta \leqq 1) .
$$

If $1 / 2<\beta \leqq 1$, then $1-\beta \geqq 0$ and $\bar{K}_{\beta}^{*}(x)$ is locally integrable, but not integrable on $(-\infty, \infty)$. In fact this is the most interesting case. Hence we have to consider a distributional Fourier transform. As we shall show at (3.11), the Fourier transform $\hat{\bar{K}}_{\beta}^{*}(\xi)$ belongs to the class L^{∞} and evidently $\hat{\Psi}(\xi) \in L \cap L^{\infty}$. Accordingly we can apply convolution rule to $\left(\Psi * \bar{K}_{\beta}^{*}\right)(x)$, see Katznelson [5, p. 151, Lemma].

Now we take the complex Fourier transform of kernels (3.2) and (3.4). Let $s=\zeta-i \xi$, where ζ is a complex number. Then

$$
\begin{align*}
& \int_{-\infty}^{\infty} K_{\alpha}(x) e^{s x} d x=\alpha \int_{-\infty}^{0} e^{(s+1) x}\left(1-e^{x}\right)^{\alpha-1} d x=\alpha \int_{0}^{1}(1-t)^{\alpha-1} t^{s} d t \tag{3.6}\\
& \quad=\frac{\Gamma(\alpha+1) \Gamma(s+1)}{\Gamma(\alpha+s+1)} \quad(\alpha>0, \operatorname{Re} s>-1) .
\end{align*}
$$

Let $\theta(x) \in S$, and consider Parseval's formula:

$$
\left\langle\bar{K}_{\beta}^{*}(x) e^{\zeta x}, \theta(x)\right\rangle=2 \pi\left\langle\int_{-\infty}^{\infty} \bar{K}_{\beta}^{*}(x) e^{\tau x} \cdot e^{-i \xi x} d x, \hat{\theta}(\xi)\right\rangle .
$$

Then both sides are analytic functions of a complex variable ζ in an appropriate domain. Therefore we can calculate the distributional Fourier transform of $\bar{K}_{\beta}^{*}(x)$ by analytic continuation method, see [4, p. 171]. We have

$$
\begin{align*}
\int_{-\infty}^{\infty} \bar{K}_{\beta}^{*}(x) e^{s x} d x & =\int_{-\infty}^{\infty} e^{x} \gamma_{\beta}^{\prime}\left(e^{x}\right) e^{s x} d x \tag{3.7}\\
& =c^{\prime} \frac{\Gamma(\beta) s}{\Gamma(\beta-s+1) \sin \pi s / 2} \\
(\beta>0, \beta+1 & \operatorname{Re} s, 2>\operatorname{Re} s>-2)
\end{align*}
$$

Accordingly we have, from (3.6) and (3.7),

$$
\begin{equation*}
\hat{K}_{\alpha}(\xi)=\frac{\Gamma(\alpha+1) \Gamma(1-i \xi)}{\Gamma(\alpha+1-i \xi)} \quad(\alpha>0) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\bar{K}}_{\beta}^{*}(\xi)=\frac{c^{\prime} \Gamma(\beta)(i \xi)}{\Gamma(\beta+i \xi+1) \sin \pi i \xi / 2} \quad(\beta>0): \tag{3.9}
\end{equation*}
$$

Both $\hat{K}_{\alpha}(\xi)$ and $\hat{\bar{K}}_{\beta}^{*}(\xi)$ have no zero on $\xi \in(-\infty, \infty)$ and finite. By the asymptotic formula of the Gamma function

$$
|\Gamma(a+i \xi)| \sim(2 \pi)^{-1 / 2} e^{-\pi|\xi| / 2}|\xi|^{a-(1 / 2)}, \quad a \in(-\infty, \infty)
$$

as $|\xi| \rightarrow \infty$, we have as $|\xi| \rightarrow \infty$,

$$
\begin{equation*}
\left|\hat{K}_{\alpha}(\xi)\right| \sim \frac{c|\xi|^{1-(1 / 2)}}{|\xi|^{\alpha+1-(1 / 2)}} \sim c|\xi|^{-\alpha} \tag{3.10}
\end{equation*}
$$

and as $|\xi| \rightarrow \infty$,

$$
\begin{equation*}
\left|\hat{\bar{K}}_{\beta}^{*}(\xi)\right| \sim c^{\prime} \frac{|\xi|}{\mid \xi]^{1+\beta-(1 / 2)} e^{-\pi|\xi| / 2} e^{\pi \mid \xi / 2}} \sim c^{\prime}|\xi|^{(1 / 2)-\beta} . \tag{3.11}
\end{equation*}
$$

Hence $\left|\hat{\bar{K}}_{\alpha}(\xi) / \bar{K}_{\beta}^{*}(\xi)\right|$ is bounded if $\alpha+1 / 2=\beta(\alpha>0)$. Thus

$$
\begin{aligned}
0 & \leqq \int_{-\infty}^{\infty}\left|\left(\Psi * K_{\alpha}\right)(x)\right|^{2} d x=(2 \pi) \int_{-\infty}^{\infty}\left|\hat{\Psi}(\xi) \hat{K}_{\alpha}(\xi)\right|^{2} d \xi \\
& =(2 \pi) \int_{-\infty}^{\infty}\left|\hat{\Psi}(\xi) \cdot \hat{\bar{K}}_{\beta}^{*}(\xi) \cdot \frac{\hat{K}_{\alpha}(\xi)}{\hat{K}_{\beta}^{*}(\xi)}\right|^{2} d \xi \\
& \leqq c \int_{-\infty}^{\infty}\left|\hat{\Psi}(\xi) \hat{\bar{K}}_{\beta}^{*}(\xi)\right|^{2} d \xi \\
& =c^{\prime} \int_{-\infty}^{\infty}\left|\left(\Psi * \bar{K}_{\beta}^{*}\right)(x)\right|^{2} d x,
\end{aligned}
$$

provided that the last term is finite. Since the proof of converse part is done similarly, Theorem is proved completely.
4. Proof of Theorem 3. From (2.1),

$$
\phi_{\alpha}(t)=\frac{\alpha}{t} \int_{0}^{t}\left(1-\frac{u}{t}\right)^{\alpha-1} \phi(u) d u=\alpha \int_{0}^{1}(1-v)^{\alpha-1} \phi(t v) d v,
$$

and since $f\left(x_{0}-u\right)+f\left(x_{0}+u\right) \in S$,

$$
\begin{align*}
\frac{d}{d t} \phi_{\alpha}(t) & =a \int_{0}^{1}(1-v)^{\alpha-1} \cdot v \phi^{\prime}(t v) d v \tag{4.1}\\
& =\alpha \cdot \frac{1}{t^{2}} \int_{0}^{t}\left(1-\frac{u}{t}\right)^{\alpha-1} u \phi^{\prime}(u) d u
\end{align*}
$$

where $\phi^{\prime}(u)=-\left\{f^{\prime}\left(x_{0}-u\right)-f^{\prime}\left(x_{0}+u\right)\right\}$.
We set as in §3 $u=e^{-y}, t=e^{-x}$, then, by (2.4), we have

$$
\begin{align*}
\left\{\delta_{\alpha}(f)\left(x_{0}\right)\right\}^{2} & =\int_{0}^{\infty} \frac{1}{t}\left|t \frac{d}{d t} \phi_{\alpha}(t)\right|^{2} d t \tag{4.2}\\
& =\int_{-\infty}^{\infty}\left|\alpha \int_{x}^{\infty} \phi^{\prime}\left(e^{-y}\right) \cdot e^{-y} \cdot e^{(x-y)}\left(1-e^{x-y}\right)^{\alpha-1} d y\right|^{2} d x
\end{align*}
$$

We set $\chi(x)=e^{-x} \phi^{\prime}\left(e^{-x}\right)$ and

$$
K_{\alpha}(x)=\left\{\begin{array}{cl}
\alpha e^{x}\left(1-e^{x}\right)^{\alpha-1}, & x \leqq 0 \\
0, & x>0
\end{array}\right.
$$

Then

$$
\left\{\delta_{\alpha}(f)\left(x_{0}\right)\right\}^{2}=\int_{-\infty}^{\infty}\left|\left(\chi * K_{\alpha}\right)(x)\right|^{2} d x
$$

On the other hand, by (2.5)

$$
\sigma_{\beta}(R)=c \int_{0}^{\infty} \phi(u) R \gamma_{\beta+1}(R u) d u
$$

and

$$
\begin{equation*}
\sigma_{\beta}^{\prime}(R)=c \int_{0}^{\infty} \dot{\phi}^{\prime}(u) u \gamma_{\beta+1}(R u) d u . \tag{4.3}
\end{equation*}
$$

By the definition (2.7)

$$
\begin{aligned}
\left\{h_{\beta}(f)\left(x_{0}\right)\right\}^{2} & =c^{\prime} \int_{0}^{\infty} \frac{1}{R}\left|R \sigma_{\beta}^{\prime}(R)\right|^{2} d R \\
& =c^{\prime} \int_{0}^{\infty} \frac{1}{R}\left|R \int_{0}^{\infty} \phi^{\prime}(u) \cdot u \gamma_{\beta+1}(R u) d u\right|^{2} d R .
\end{aligned}
$$

We set $u=e^{-y}, R=e^{x}$, then

$$
\begin{equation*}
\left\{h_{\beta}(f)\left(x_{0}\right)\right\}^{2}=\int_{-\infty}^{\infty}\left|\left(\chi * K_{\beta}^{*}\right)(x)\right|^{2} d x \tag{4.4}
\end{equation*}
$$

where $\chi(x)=e^{-x} \phi^{\prime}\left(e^{-x}\right)$ and $K_{\beta}^{*}(x)=e^{x} \gamma_{\beta+1}\left(e^{x}\right)$.
Since $\phi^{\prime}\left(e^{-x}\right)=f^{\prime}\left(x_{0}-e^{-x}\right)-f^{\prime}\left(x_{0}+e^{-x}\right), \chi(x)$ behaves better than $\Psi(x)$ in §3. However since

$$
K_{\beta}^{*}(x) \sim e^{x} \cdot e^{-(\beta+1) x}=e^{-\beta x} \quad \text { as } \quad x \rightarrow \infty,
$$

$K_{\beta}^{*}(x)$ behaves for $0 \geqq \beta>-1 / 2$, as if $\bar{K}_{\beta}^{*}(x)$ in (3.4). Hence all things go analogously as in $\S 3$.

The complex Fourier transform of $K_{\alpha}(x)$ is

$$
\alpha \int_{-\infty}^{0} e^{s x} e^{x}\left(1-e^{x}\right)^{\alpha-1} d x=\frac{\Gamma(\alpha+1) \Gamma(s+1)}{\Gamma(\alpha+s+1)} \quad(\alpha>0, \operatorname{Re} s>-1)
$$

and that of $K_{\beta}^{*}(x)$ is

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{s x} e^{x} \gamma_{\beta+1}\left(e^{x}\right) d x & =\int_{0}^{\infty} t^{s} \gamma_{\beta+1}(t) d t \\
& =\frac{\pi}{2} \frac{\Gamma(\beta+1)}{\Gamma(\beta+1-s) \cos \pi s / 2} \\
(\beta+1>0, \beta & +1>\operatorname{Re} s,-1<\operatorname{Re} s<1)
\end{aligned}
$$

Since $\hat{K}_{\alpha}(\xi)=\Gamma(\alpha+1) \Gamma(1-i \xi) / \Gamma(\alpha+1-i \xi),\left|\hat{K}_{\alpha}(\xi)\right| \sim c|\xi|^{-\alpha}$ and since $\hat{K}_{\beta}^{*}(\xi)=\Gamma(\beta+1) /(\Gamma(\beta+1-i \xi) \cos \pi i \xi / 2),\left|\hat{K}_{\beta}^{*}(\xi)\right| \sim c^{\prime}|\xi|^{-\beta-(1 / 2)}$.

If $\beta>-1 / 2$, then $\hat{K}_{\beta}^{*}(\xi)$ is bounded, and the theorem is proved for $\alpha=\beta+(1 / 2)$.

Remark. If $\alpha>1$, we may eliminate differentiability of $f(x)$ in (4.1) by a partial integration. However $0<\alpha \leqq 1$ case, we define $\phi_{\alpha}^{\prime}(t)$ by (4.1) and $\sigma_{\beta}^{\prime}(R)$ by (4.3) respectively assuming differentiability of $f(x)$.
5. Proof of Theorem 2. For a proof of Theorem, we need two lemmas.

Lemma 1. For f in S we have

$$
f_{\alpha}(x-t)-f_{\alpha}(x+t)=c \int_{0}^{\infty} \xi^{-\alpha} \sin \xi t d \xi \int_{0}^{\infty} \psi(u ; x, f) \sin u \xi d u
$$

Proof. By definition of Riesz potential, we have

$$
\begin{aligned}
f_{\alpha}(x-t)-f_{\alpha}(x+t) & =c \int_{-\infty}^{\infty}|\xi|^{-\alpha} \hat{f}(\xi) e^{i x \xi}\left(e^{-i t \xi}-e^{i t \xi}\right) d \xi \\
& =-2 i c \int_{-\infty}^{\infty}|\xi|^{-\alpha} \sin t \xi \cdot \hat{f}(\hat{\xi}) e^{i x \xi} d \xi
\end{aligned}
$$

Since $|\xi|^{-\alpha} \sin t \xi$ is odd, we may take the odd part of

$$
\widehat{f}(\xi) e^{i x \xi}=\int_{-\infty}^{\infty} f(x+u) e^{i u \xi} d u
$$

which implies the lemma.
Lemma 2. If $\alpha+1 / 2=\beta(0<\alpha<1)$, then for $f \in S$ we have

$$
\left(\int_{0}^{\infty} \frac{|\psi(u)|^{2}}{u^{2 \alpha}} \frac{d u}{u}\right)^{1 / 2} \sim\left(\int_{0}^{\infty} R\left|\frac{d}{d R} \bar{\sigma}_{\beta, \alpha}(R)\right|^{2} d R\right)^{1 / 2}
$$

where

$$
\bar{\sigma}_{\beta, \alpha}(R)=\bar{\sigma}_{\beta, \alpha}\left(R ; x_{0}, f\right)
$$

is the (C, β)-mean of the Fourier integral

$$
\int_{0}^{\infty} \xi^{\alpha} \sin \xi t d \xi \int_{0}^{\infty} \psi(u ; x, f) \sin u \xi d u .
$$

Proof. We set $u=e^{-y}$. Then

$$
\begin{equation*}
\int_{0}^{\infty} \frac{|\psi(u)|^{2}}{u^{2 \alpha}} \frac{d u}{u}=\int_{-\infty}^{\infty}|\Theta(y)|^{2} d y, \tag{5.1}
\end{equation*}
$$

where

$$
\Theta(y)=\psi\left(e^{-y}\right) e^{\alpha y} .
$$

On the other side

$$
\bar{\sigma}_{\beta, \alpha}(R)=c \int_{0}^{\infty} \psi(u)\left\{R \int_{0}^{1}(1-z)^{\beta}(R z)^{\alpha} \sin (R z u) d z\right\} d u,
$$

where

$$
\int_{0}^{1}(1-z)^{\beta} z^{\alpha} \sin (z u) d z \quad(\beta>-1, \alpha>-1)
$$

is Kummer's confluent hypergeometric function. Set $u=e^{-y}, R=e^{x}$, then

$$
\begin{align*}
\int_{0}^{\infty} R\left|\frac{d}{d R} \bar{\sigma}_{\beta, \alpha}(R)\right|^{2} d R & =\int_{0}^{\infty} \frac{1}{R}\left|\bar{\sigma}_{\beta-1, \alpha}(R)-\bar{\sigma}_{\beta, \alpha}(R)\right|^{2} d R \tag{5.2}\\
& =c \int_{-\infty}^{\infty}\left|\left(\Theta * \bar{K}_{\beta, \alpha}^{*}\right)(x)\right|^{2} d x
\end{align*}
$$

where

$$
\bar{K}_{\beta, \alpha}^{*}(x)=e^{(\alpha+1) x} \int_{0}^{1}(1-z)^{\beta-1} z^{\alpha+1} \sin \left(e^{x} z\right) d z
$$

The complex Fourier tranform of $\bar{K}_{\beta, \alpha}^{*}(x)$ is

$$
\begin{gathered}
\int_{-\infty}^{\infty} \bar{K}_{\beta, \alpha}^{*}(x) e^{s x} d x=\frac{\Gamma(\beta) \Gamma(1-s) \Gamma(1+\alpha+s) \cos \{(\alpha+s) \pi / 2\}}{\Gamma(\beta+1-s)} \\
(0<\alpha<1,1 / 2<\beta<3 / 2,1-\alpha>\operatorname{Re} s>-(1+\alpha))
\end{gathered}
$$

which is analytic in the strip near the line $\operatorname{Re} s=0$ and has no zero on Re $s=0$. Furthermore we have

$$
\begin{aligned}
\left|\hat{\bar{K}}_{\beta, \alpha}^{*}(\xi)\right| & \sim c \frac{e^{-(\pi x|\xi| 2)}|\xi|^{1-(1 / 2)} e^{-(\pi|\xi| / 2)}|\xi|^{\alpha+1-(1 / 2)} e^{\pi \mid \xi / 2}}{e^{-(\pi|\xi| / 2)}|\xi|^{\beta+1-(1 / 2)}} \\
& =c|\xi|^{-\beta+\alpha+(1 / 2)} \quad \text { as } \quad|\xi| \rightarrow \infty .
\end{aligned}
$$

Furthermore $\hat{\bar{K}}_{\beta, \alpha}^{*}(\xi)$ is bounded on $\xi \in(-\infty, \infty)$. Thus any necessary condition analogous to $\S 3$ are satisfied. Comparing (5.1) with (5.2) we get the lemma.

Theorem 2 is obvious from Lemmas 1 and 2.
6. We consider here the Abel summability analogue of the preceeding sections. Let $f(x) \in S$ and the Poisson and conjugate Poisson integral of $f(x)$ be

$$
\begin{aligned}
& u(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y f(u)}{(x-u)^{2}+y^{2}} d u=\frac{1}{\pi} \int_{0}^{\infty} \frac{y \phi(u ; x, f)}{u^{2}+y^{2}} d u \\
& \bar{u}(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{(x-u) f(u)}{(x-u)^{2}+y^{2}} d u=\frac{1}{\pi} \int_{0}^{\infty} \frac{u \psi(u ; x, f)}{u^{2}+y^{2}} d u
\end{aligned}
$$

The Littlewood-Paley function $g(f)(x)$ is defined by

$$
g(f)(x)=\left\{\int_{0}^{\infty} y\left(\left|\frac{\partial u}{\partial x}\right|^{2}+\left|\frac{\partial u}{\partial y}\right|^{2}\right) d y\right\}^{1 / 2}
$$

But since

$$
\begin{gathered}
\left|\frac{\partial u(x, y)}{\partial x}\right|^{2}=\left|\frac{\partial \bar{u}(x, y)}{\partial y}\right|^{2}, \\
g(f)(x)=\left\{\int_{0}^{\infty} y\left(\left|\frac{\partial u}{\partial y}\right|^{2}+\left|\frac{\partial \bar{u}}{\partial y}\right|^{2}\right) d y\right\}^{1 / 2}
\end{gathered}
$$

We separate the real and imaginary part and set

$$
\begin{align*}
& h(f)\left(x_{0}\right)=\left(\int_{0}^{\infty} y\left|\frac{\partial u\left(x_{0}, y\right)}{\partial y}\right|^{2} d y\right)^{1 / 2} \tag{6.1}\\
& \bar{h}(f)\left(x_{0}\right)=\left(\int_{0}^{\infty} y\left|\frac{\partial \bar{u}\left(x_{0}, y\right)}{\partial y}\right|^{2} d y\right)^{1 / 2} \tag{6.2}
\end{align*}
$$

We use notations $\phi(u)=\phi\left(u ; x_{0}, f\right)$ and $\psi(u)=\psi\left(u ; x_{0}, f\right)$. We set $R=y^{-1}$, and write

$$
\begin{equation*}
a(R)=a\left(R ; x_{0}, f\right)=\frac{1}{\pi} \int_{0}^{\infty} \frac{R \phi(u)}{1+(u R)^{2}} d u \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{a}(R)=\bar{a}\left(R ; x_{0}, f\right)=\frac{1}{\pi} \int_{0}^{\infty} \frac{R^{2} \cdot u \psi(u)}{1+(u R)^{2}} d u \tag{6.4}
\end{equation*}
$$

Then

$$
h(f)\left(x_{0}\right)=\left(c \int_{0}^{\infty} R\left|\frac{d a(R)}{d R}\right|^{2} d R\right)^{1 / 2}
$$

and

$$
\bar{h}(f)\left(x_{0}\right)=\left(c^{\prime} \int_{0}^{\infty} R\left|\frac{d \bar{a}(R)}{d R}\right|^{2} d R\right)^{1 / 2}
$$

Now we consider $\bar{h}(f)\left(x_{0}\right)$. By definition

$$
\left\{\bar{h}(f)\left(x_{0}\right)\right\}^{2}=c \int_{0}^{\infty} \frac{1}{R}\left|\int_{0}^{\infty} \psi(u) \cdot \frac{2 R^{2} u}{\left(1+R^{2} u^{2}\right)^{2}} d u\right|^{2} d R
$$

We set $u=e^{-y}, R=e^{x}$ and $\Psi(y)=\psi\left(e^{-y}\right), \bar{K}^{*}(x)=\left(e^{2 x} /\left(1+e^{2 x}\right)^{2}\right)$. Then

$$
\begin{equation*}
\left\{\bar{h}(f)\left(x_{0}\right)\right\}^{2}=\int_{-\infty}^{\infty}\left|\left(\Psi * \bar{K}^{*}\right)(x)\right|^{2} d x \tag{6.5}
\end{equation*}
$$

The convolution is obviously well-defined. The complex Fourier transform of $\bar{K}^{*}(x)$ is

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{s x} \bar{K}^{*}(x) d x & =\int_{-\infty}^{\infty} \frac{e^{(s+2) x}}{\left(1+e^{2 x}\right)^{2}} d x \\
& =\int_{0}^{\infty} \frac{t^{s+1}}{\left(1+t^{2}\right)^{2}} d t \\
& =\frac{s}{2} \cdot \frac{\pi}{\sin \pi s / 2}
\end{aligned}
$$

For an Abel analogue of Marcinkiewicz function, we set

$$
\begin{equation*}
\psi_{a}(t)=\frac{1}{t} \int_{0}^{\infty}\left(\frac{u}{t}\right)^{1 / 2} e^{-u / t} \psi(u) d u, \tag{6.6}
\end{equation*}
$$

(see Levinson [6]) and

$$
\begin{equation*}
\mu_{a}(f)\left(x_{0}\right)=\left(\int_{0}^{\infty}\left|\psi_{a}(t)\right|^{2} \frac{d t}{t}\right)^{1 / 2} . \tag{6.7}
\end{equation*}
$$

Set $t=e^{-x}, u=e^{-y}$, then

$$
\begin{equation*}
\left\{\mu_{a}(f)\left(x_{0}\right)\right\}^{2}=\int_{-\infty}^{\infty}|(\Psi * K)(x)|^{2} d x \tag{6.8}
\end{equation*}
$$

where

$$
K(x)=e^{(1+1 / 2) x} \exp \left(-e^{x}\right)
$$

The complex Fourier transform of $K(x)$ is

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{s x} K(x) d x & =\int_{-\infty}^{\infty} e^{(s+3 / 2) x} \exp \left(-e^{x}\right) d x \\
& =\int_{0}^{\infty} t^{(s+1 / 2)} e^{-t} d t=\Gamma\left(\frac{3}{2}+s\right) .
\end{aligned}
$$

Therefore

$$
\hat{\bar{K}}^{*}(\xi)=\frac{-i \xi}{2} \cdot \frac{\pi}{\sin \pi(-i \xi) / 2} ; \quad \hat{\bar{K}}^{*}(\xi) \sim \frac{c|\xi|}{e^{\pi|\xi| / 2}} \quad \text { as } \quad|\xi| \rightarrow \infty
$$

and

$$
\hat{K}(\xi)=\Gamma(3 / 2-i \xi) ; \quad \hat{K}(\xi) \sim c^{\prime} \frac{|\xi|}{e^{\pi|\xi| / 2}} \quad \text { as } \quad|\xi| \rightarrow \infty
$$

Thus we get the following theorem.
Theorem 4. For $f(x) \in S$, and $x_{0} \in \boldsymbol{R}$,

$$
A \bar{h}(f)\left(x_{0}\right) \leqq \mu_{a}(f)\left(x_{0}\right) \leqq B \bar{h}(f)\left(x_{0}\right)
$$

If we set

$$
\psi_{a}^{*}(t)=t \int_{0}^{\infty}\left(\frac{t}{u}\right)^{1 / 2} e^{-t / u} \psi(u) \frac{d u}{u^{2}}
$$

and change $t=e^{-x}, u=e^{-y}$, then the corresponding kernel is

$$
K_{a}^{*}(x)=e^{-(1+1 / 2) x} \exp \left(-e^{-x}\right) .
$$

Since

$$
\int_{-\infty}^{\infty} e^{s x} K_{a}^{*}(x)=\Gamma\left(\frac{3}{2}-s\right), \quad \widehat{K}_{a}^{*}(\xi)=\Gamma\left(\frac{3}{2}+i \xi\right)
$$

equals asymptotically to that of $\psi_{a}(t)$ as $|\xi| \rightarrow \infty$. Therefore we have
Theorem 4'. For $f(x) \in S$ and $x_{0} \in \boldsymbol{R}$,

$$
A \bar{h}(f)\left(x_{0}\right) \leqq \mu_{a}^{*}(f)\left(x_{0}\right) \leqq B \bar{h}(f)\left(x_{0}\right)
$$

where

$$
\mu_{a}^{*}(f)\left(x_{0}\right)=\left\{\int_{0}^{\infty} \frac{1}{t}\left|t \int_{0}^{\infty}\left(\frac{t}{u}\right)^{1 / 2} e^{-t / u} \psi(u) \frac{d u}{u^{2}}\right|^{2} d t\right\}^{1 / 2}
$$

For the real part function $h(f)\left(x_{0}\right)$, we consider the following function. Let

$$
\begin{equation*}
\phi_{a}(t)=\frac{1}{t} \int_{0}^{\infty}\left(\frac{u}{t}\right)^{-1 / 2} e^{-u / t} \phi(u) d u \tag{6.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{a}(f)\left(x_{0}\right)=\left(\int_{0}^{\infty} t\left|\frac{d}{d t} \phi_{a}(t)\right|^{2} d t\right)^{1 / 2} \tag{6.10}
\end{equation*}
$$

Moreover put

$$
\phi_{a}^{*}(t)=t \int_{0}^{\infty}\left(\frac{t}{u}\right)^{-1 / 2} e^{-t / u} \phi(u) \frac{d u}{u^{2}}
$$

and

$$
\delta_{a}^{*}(f)\left(x_{0}\right)=\left(\int_{0}^{\infty} t\left|\frac{d}{d t} \phi_{a}^{*}(t)\right|^{2} d t\right)^{1 / 2}
$$

Then we have
Theorem 5. For $f(x) \in S$ and $x_{0} \in \boldsymbol{R}$,

$$
A h(f)\left(x_{0}\right) \leqq \delta_{a}(f)\left(x_{0}\right) \leqq B h(f)\left(x_{0}\right)
$$

and

$$
A h(f)\left(x_{0}\right) \leqq \delta_{a}^{*}(f)\left(x_{0}\right) \leqq B h(f)\left(x_{0}\right)
$$

Proof. By definition

$$
\left\{h(f)\left(x_{0}\right)\right\}^{2}=c \int_{0}^{\infty} \frac{1}{R}\left|R \frac{d}{d R} a(R)\right|^{2} d R .
$$

By (6.3) we have $(d / d R) a(R)=c \int_{0}^{\infty}\left\{u \phi^{\prime}(u) /\left(1+(R u)^{2}\right)\right\} d u$. Now set $u=e^{-y}$, $R=e^{x}, \chi(x)=e^{-x} \phi^{\prime}\left(e^{-x}\right)$ and $K^{*}(x)=e^{x} /\left(1+e^{2 x}\right)$, then

$$
\begin{equation*}
\left\{h(f)\left(x_{0}\right)\right\}^{2}=\int_{-\infty}^{\infty}\left|\left(\chi * K^{*}\right)(x)\right|^{2} d x \tag{6.11}
\end{equation*}
$$

On the other hand, since

$$
\begin{aligned}
& \phi_{a}(t)=\frac{1}{t} \int_{0}^{\infty} \phi(u)\left(\frac{u}{t}\right)^{-1 / 2} e^{-u / t} d u=\int_{0}^{\infty} \phi(t v) v^{-1 / 2} e^{-v} d v, \\
& \phi_{a}^{\prime}(t)=\int_{0}^{\infty} \phi^{\prime}(t v) v^{1-(1 / 2)} e^{-v} d v=\int_{0}^{\infty} \phi^{\prime}(u)\left(\frac{u}{t}\right)^{1 / 2} e^{-u / t} d u .
\end{aligned}
$$

Set $t=e^{-x}, u=e^{-y}, \chi(x)=e^{-x} \phi^{\prime}\left(e^{-x}\right)$ and

$$
K(x)=e^{x / 2} \exp \left(-e^{x}\right)
$$

then

$$
\begin{equation*}
\left\{\delta_{a}(f)\left(x_{0}\right)\right\}^{2}=\int_{-\infty}^{\infty}|(\chi * K)(x)|^{2} d x \tag{6.12}
\end{equation*}
$$

The Fourier transforms of the kernels (6.11) and (6.12) are

$$
\hat{K}(\xi)=c \Gamma\left(-i \xi+\frac{1}{2}\right) \quad \text { and } \quad \hat{K}^{*}(\xi)=\frac{\pi}{2 \cos \pi(-i \xi) / 2}
$$

respectively. Hence we get the first part of Theorem. By the same method we can prove the another part.
7. Here we give some corollaries of the above theorems. Fefferman [2] proves that $\bar{h}_{\beta}(f)(x)$ and $h_{\beta}(f)(x)$ is of weak type (p, p) for $1<p<2$ and $\beta=(1 / p)$. We assume this results in the sequel. In fact he proved
the theorem in several variables form.
Corollary 1. For $\alpha=(1 / p)-(1 / 2)$ and $1<p<2$, the operator $\mu_{\alpha}(f)(x)$ is of weak type (p, p).

This is given from Theorem 1. $\quad \alpha=(1 / p)-(1 / 2)$, so if $\alpha=(1 / 2)$ then $\mu_{1 / 2}(f)(x)$ is of strong type (p, p) for any $p(1<p<2)$. Zygmund [12] proved that $\mu(f)(x)=\mu_{1}(f)(x)$ is of strong type (p, p) for any $p>1$.

Corollary 2. For $\alpha=(1 / p)-(1 / 2)$ and $1<p<2$, the operator $D_{\alpha}(f)(x)$ has weak type (p, p).

This comes from Theorem 3. Fefferman [2] remarks that this corollary is established by the same method to proof of $g_{\beta}^{*}(f)(x)$.

Corollary 3. For $\alpha=(1 / p)+(1 / 2)$ and $1<p<2$, the operator $\delta_{\alpha}(f)(x)$ has weak type (p, p).

Since, $h_{\beta}(f)(x)$ is of weak type (p, p) for $1<p<2$, the corollary comes from Theorem 2.

Corollary 4. Let

$$
\delta_{0}(f)(x)=\left(\int_{0}^{\infty} t\left|\frac{d}{d t}\{f(x-t)+f(x+t)\}\right|^{2} d t\right)^{1 / 2}
$$

Then, for $\alpha_{1}>\alpha_{2}>0$

$$
h(f)(x) \sim \delta_{a}(f)(x) \prec \delta_{\alpha_{1}}(f)(x) \prec \delta_{\alpha_{2}}(f)(x) \prec \delta_{0}(f)(x)
$$

and for $\beta_{1}>\beta_{2}>-1 / 2$

$$
h(f)(x) \prec h_{\beta_{1}}(f)(x) \prec h_{\beta_{2}}(f)(x) \sim \delta_{\beta_{2}+1 / 2}(f)(x) \prec \delta_{0}(f)(x),
$$

where $<$ means that if the right side is finite then the left side is finite.
A comparison each other of Fourier transform of corresponding kernels and Theorems 3 and 5 yield the corollory.

This is an answer of Problem 6 (a) of Stein-Wainger [11, p. 1289] in one dimensional form.

Remark. Several variables analogues in spherical sense of the above theorems will appear in the forthcoming paper.

Literatures

[1] L. S. Bosanquet, On the summability of Fourier series, Proc. London Math. Soc., 31 (1930), 144-164.
[2] C. Fefferman, Inequalities for strongly singular convolution operators, Acta, Math., 124 (1970), 9-36.
[3] T. M. Flett, On the absolute summability of a Fourier series and its conjugate series,

Proc. London Math. Soc., 8 (1958), 258-311.
[4] I. M. Gelfand and G. E. Shirov, Generalized functions I, Academic Press, 1968.
[5] Y. Katznelson, An introduction to harmonic analysis, John Wiley, 1968.
[6] N. Levinson, On the Poisson summability of Fourier series. Duke Math. Journ., 2 (1936), 138-146.
[7] J. Marcinkiewicz, Sur quelques integrales de type de Dini, Annales de la Soc. Polonaise, 17 (1928), 42-50.
[8] E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc., 88 (1958), 430-466.
[9] E. M. Stein, The characterization of functions arising as potentials, Bull. Amer. Math. Soc., 67 (1961), 102-104.
[10] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Soc., 84 (1978), 1239-1295.
[11] G. Sunouchi, On functions regular in a half-plane, Tôhoku Math. Journ., 9 (1957), 37-44.
[12] A. Zygmund, On certain integrals, Trans. Amer. Math. Soc., 58 (1944), 170-204.
Department of Technology
Tamagawa University
Machida, Tokyo 194
Japan

