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1. Introduction. Let f(x) be a locally integrable function on the
real line R. The Fourier integral analogue of Marcinkiewicz function [7] is

/foo \l/2

μ(f)(x) = ( j o W(x + ί) + F(x - t) - 2F(x)\H-sdή

where
F{x) = \Xf(u)du .

JO

We generalize this as follows : for a > 0

(1.1) μa(f)(x) = { j |

coincides with μ(f)(x). (1.1) is the one dimensional form of the
more general Marcinkiewicz function

\\ t

where Ω{u')j\u\k is the Calderόn-Zygmund kernel on fc-dimensional space
and c is a constant depending on k only, see Stein [8].

On the other hand we have generalized the Littlewood-Paley function
as follows

(i.2) g m x ) = {.I r y,dy r ML±ML
I π Jo J-oo \t — x — ιy\2β

where φ(z) — φ(x + iy) is analytic in the upper half-plane and has boundary
value φ{x) = lim^o Φ(% + iy) The original Littlewood-Paley function
ff*(Φ)(%) ίn Fourier integral form corresponds to the case β — 1 in (1.2).

Let σβ(R; x, β) the R-th (C, /3)-mean of Fourier integral of complex
valued function φ(x) and set

(1.3) τβ(R; x, φ) = RjLσβ(R; x, φ) = β{σβ^(R; x, φ) - σβ(R; x, φ)}
all

and set
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Then (1.2) is equivalent to (1.4), that is,

Ahβ(φ)(x) ^ 9f(Φ)(x) ^ Bhβ{φ)(x) ,

where A and B are constants independent of φ and x; see Sunouchi [11].
Here after A and B mean such constants.

Now we consider the functional hβ for imaginary part of φ. Let
σβ(R; x, f) the (C, /5)-mean of the conjugate Fourier integral of any f(x)
and define fβ(R; x, f) and hβ(R; x, f) analogously to the formula (1.3) and
(1.4). We denote by S the Schwartz space on R, that is, the space of
rapidly decreasing C°°-functions. Then our main theorem is as follows.

THEOREM 1. If a + 1/2 = β (a > 0), then

Ahβ(f)(x) ^ μa(f)(x) ^ Bhβ{f){x)

for any function f{x) e S and x e R.

One of the inequalities

hβ(f)(x) <ί Aμa(f)(x)

is already given by Flett [3] for the functions on the unit circle.
For a variant of this, let fa(x) be the Riesz potential of f(x), that is,

Ux) = j ^ \ζ\-af(ζ)eixξdζ and set

Da{f){x) =

THEOREM 2. // a + 1/2 = β (0 < a < 1), then

Ahβ(f)(x) ^ Da(f)(x) ^ Bhβ(f)(x)

for fe S and xeR.

The fact that, for a + 1/2 > β

Da(f)(x) ^ B{hβ(f)(x) + hβ(f)(x)} = Bhβ(φ)(x) ,

is given by Stein [9] for functions of several variables.
Corresponding to hβ(f)(x), we consider

G °° rJ \ 1/2

t -j-MJjt; x, f) dt)
o at

where
Ma(t; x, f) = — I (1 — -l̂ ίL) f(x — u)du .

ί JUÎ ί \ t /
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THEOREM 3. If a - (1/2) = β (a > 0), then

Ahβ(f)(x) ^ δa(f)(x) ^ Bhβ(f)(x)

for fe S and x e R.

In the last section, an analogous relation to the Littlewood-Paley
function g(f)(x), is also established. In particular the relationship
between

= (j;
at

f(χ + ί)}
2 \l/2

dή

and g(f)(x) is clarified. This question is proposed as problem 6(a) of
Stein-Wainger [10, p. 1289] for several variables case.

I wish to express my appreciations to Professor M. Kaneko, whose
valuable suggestions have led to a material improvement in the presenting
of this paper.

2. Notations. We suppose throughout this paper f(x) belongs to
the class S. We write for a fixed x0,

Φit) = φ(t; x 0 , f ) = f(x0 - t ) + f(x0 + ί )

a n d

ψ(t) = ir(t; xQ, f) = f(xQ - t) - /fe + ί) .

For a > 0 and t ^ 0, set

(2.1) φa{t) = φa(t; xQ, f) = SL
t Jo

and

(2.2) ψa(t) = ψa(t; x0, f) = 2L \Ίl - ^ ) a ~ l

t JO \ t I

The generalized Marcinkiewicz function and a variant are written as

(2.3)

(2.4)

t;χo,f) t>

«(/)(*.) = ( j o 4
at

)l/2

For the Cesaro-Riesz mean of f(x), we introduce the well-known
Young function. Let

ya(χ) + iy«(χ) = Γ (i - ty-'e^dt
Jo

where a > 0, x ^ 0, then it is known [1],
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Ύa(x) ~ x~p as x —• oo f where p = Min (2, a) .

Then the R-th Cesaro-Riesz mean of of the /9-th order for Fourier
integral of f(x) is

(2.5) σβ{R) = σβ(R; x09 f) = c \ φ(u)RΎβ+1(Ru)du
Jo

and for the conjugate Fourier integral of f(x) is

(2.6) σβ(R) = σβ(R; χ0, f) = c'\ ψ(u)RΎβ+1(Ru)du
Jo

where c and cf are constants. Then we have

G oo

and

(2.8) hβ(f)(x0) =

3. Proof of Theorem 1. Let fe Sand fix a point x0 in R. By the
change of the variables u = e~y and t = e~x (2,3) becomes

(3.1)

If we rewrite

(3.2) Ka(x) = \ n " n

I 0 , x > 0

and f(#) = ψ(e~x), then (3.1) becomes

(3.3)

In (2.6) and (2.8), we set u = e~y and R = ex, then (2.8) is

hβ(f)(x0) = Γc'
L

Ίl/2

R J
2 Πl/2

If we rewrite

(3.4) K$(x) = e*(yβ(ex) - Ύβ+1(ex)) =

and Ψ{x) = ψ(e~x)f then

_
(3.5) hβ(f)(x0) =
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To compare (3.3) with (3.5), we apply Fourier transform method.
Since ψ(u) = f(xQ - u) - f(x0 + u)eS, Ψ{x) = ψ(e~x) = 0(e~x) as x -+ oo,

and 0(e~lxl) as cc<-> — ̂ . Since Ka(x) is integrable on (— oo, ©o), (ψ * Ka)(x)
is an ordinary convolution. However, since

Ύβ(ex) ~ e~βx as a? -> oo (0 < /3 ^ 1)

we have

Kf(x) ~ e* e-^x = e(1"j9)aj as x -> oo .

But

If*(a) = 0(βx) as x -> - oo (0 < /3 ^ 1) .

If 1/2 < /3 ^ 1, then 1 - / 3 ^ 0 and J^|(a;) is locally integrable, but not
integrable on (— oo, oo). In fact this is the most interesting case. Hence
we have to consider a distributional Fourier transform. As we shall
show at (3.11), the Fourier transform K*(ξ) belongs to the class L°° and
evidently Ψ(ζ) e L ΓΊ L°°. Accordingly we can apply convolution rule to
(Ψ*Kf)(x), see Katznelson [5, p. 151, Lemma].

Now we take the complex Fourier transform of kernels (3.2) and (3.4).
Let s = ζ — iξ, where ζ is a complex number. Then

(3.6) Γ Ka(x)e8Xdx = a j° e{8+1)x(l - ex)a~ιdx = α Γ ( l - tγ~Hsdt

= Γ(α + 1)Γ(S + 1) ( α > 0 , R e s > - l ) .
Γ(a + s + 1)

Let θ(x)eS, and consider ParsevaΓs formula:

x, θ(x)} = 2 π ( y Kf(x)eζx e " ί f a ; ^ %

Then both sides are analytic functions of a complex variable ζ in an
appropriate domain. Therefore we can calculate the distributional Fourier
transform of K*(x) by analytic continuation method, see [4, p. 171]. We
have

(3.7) Γ K$(x)e*xdx = Γ ex7'β(ex)e8Xdx
J_oo J_oo

- c>
Γ(β - s + 1) sin πs/2

(β > 0, β + 1 > Re s, 2 > Re s > - 2 ) .

Accordingly we have, from (3.6) and (3.7),

(3.8) κa(ξ) = Π£L-LW±^M ( α > 0 )
Γ(a + 1 — iξ)
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and

(3.9) Φ ( f ) = ™ °T ( / 3 ) ( i g! — (/3>0);
Γ(/3 + if + 1) sin τrif/2

Both Ka(ζ) and jRΓ f(f) have no zero on fe(—°o, ©o) and finite.
By the asymptotic formula of the Gamma function

\Γ{β + iζ)\ ~ (2π)-ί/2e-πlζl/2\ξ\a~w) , a e ( - ° s oo)

as |fI -> oo, we have as |f| —• °°,

and as |f |

(3.11)

Hence \ίtj(ξ)lKf(ξ)\ is bounded if α + 1/2 = /9 (α > 0). Thus

0 ^ Γ |(Γ * ίΓα)(a;)|2dx = (2τr)
J_oo

= c 'Γ |(f * Kf)(x)\*dx ,
J_oo

provided that the last term is finite. Since the proof of converse part
is done similarly, Theorem is proved completely.

4. Proof of Theorem 3. From (2.1),

φa(t) = «. ( 7 i - Ά)*~lφ(u)du = α Γ (1 - v)«~ιφ{tv)dv ,
t Jo \ t ' Jo

and since f(x0 — u) + f(xQ + u)e S,

(4.1) —φJLt) = a [ (1 - v)"-1 - vφ'(tv)dv
dt Jo

f Jo \ t I

where '̂(w) = — {f'(x0 — u) — f'(xQ + u)}.
We set as in §3 u = e~\ t = e~x, then, by (2.4), we have
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o t
(4.2)

We set X(x) = e-χφ'{e-*) and

at
dt

= Γ a[° φ\e~y) e~y e{χ-y\l - eχ-y)a-ιdy dx .

Ka(x) =
aex(l - e*)a~l , x £ 0

0 , x>0.

Then

On the other hand, by (2.5)

σβ(R) = c I φ(u)RΎβ+1(Ru)du
Jo

and

(4.3) σ'β(R) = c[° φ'(u)u7β+1(Ru)du .
Jo

By the definition (2.7)

φ\u) u7β+1(Ru)du

We set u = e~y, i? = e*, then

(4.4) ίλ^(/)(a?o)}2 = Γ I(Z *
J-00

where Z(a?) = e-y(e"x) and Kf(x) = eaΎβ+ι(ea).
Since ^(ίΓ*) = /'(a?0 - e"x) - f\x0 + e—), Z(a?) behaves better than ψ(x)

in §3. However since

Kf(x) - e*'e-{β+ι)* = e " ^ as a? -» oo ,

-BΓ;(a?) behaves for 0 ^ /S > -1/2, as if #;(#) in (3.4). Hence all things
go analogously as in §3.

The complex Fourier transform of KJjx) is

α Γ(α + β + 1)
0, Re s > -1)
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and that of Kf(x) is

S oo C oo

esxexΎβ+1(ex)dx = 1 tsΎβ+1(t)dt
-oo JO

_ π Γ(β + 1)
2 Γ(β + 1 - s) cos πs/2

(β + 1 > 0, β + 1 > Re s, - 1 < Re s < 1) .

Since Ka(ξ) = Γ(α + 1)Γ(1 - if)/Γ(α + 1 - if), |ifα(f)| - c|f |~α and since
£*(£) = Γ(/9 + l)/(Γ(β + 1 - if) cosπif/2), |Jf|(f)| ~ c'\ξ |-^-(1/2).

If /5 > —1/2, then if*(f) is bounded, and the theorem is proved for
a = β + (1/2).

REMARK. If a > 1, we may eliminate differentiability of f(x) in (4.1)
by a partial integration. However 0 < a ^ 1 case, we define φ'a(t) by
(4.1) and σ'β{R) by (4.3) respectively assuming differentiability of f(x).

5. Proof of Theorem 2. For a proof of Theorem, we need two
lemmas.

LEMMA 1. For f in S we have

S r oo

f ~a sin ξtdζ \ ψ(u; x, f) sin uζdu .
o Jo

PROOF. By definition of Riesz potential, we have

f (rf f\ f (γ _I_ f\ — p I \£\-af(£\pixζ(p~itξ Pitζλfi£
j a\fA/ vj j α\«Λ/ ~ v) — i ICI J Vζ"/ V^ ^ / ^ C

= - 2 ΐ c Γ | | | - α sin tξ f(ξ)eixξdξ .
J —oo

Since |f \~a sin if is odd, we may take the odd part of

f(ξ)eix* = Γ f(x + u)eίuξdu ,
J-oo

which implies the lemma.

LEMMA 2. If a + 1/2 = β (0 < α < 1), ^ew /or / e S we have

u

= σβ}a(R; x0, f)

is the (C, β)-mean of the Fourier integral

fa sin ftdξ \ ψ(u; x, f) sin uξdu .

o Jo
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PROOF. We set u = e~y. Then

(5.1) f"JiίglLUL = f-
Jo U2a U J -

where

θ(y) = f{e~y)eav .

On the other side

σβ a(R) = c Γ ψ< )̂ ji2 [ (1 - ^(ife)" sin (Rzu)dz\du ,
Jo 1 Jo )

where

Γ (1 - ^)V sin (zu)dz (β > - 1 , α > -1)
Jo

is Kummer's confluent hypergeometric function. Set w = e~y, R = e25,
then

(5.2) σ = Γ l |^_ l f β(Λ) - σβ,a(R)\
Jo i ί

*dR

|(θ *
- o o

where

^ * (x) = e(«+i> Γ (l - zy-V+1 sin (eβ«)d2
Jo

The complex Fourier tranform of K£a(x) is

a + β) cos {(α + s)π/2}

(0 < a < 1, 1/2 < β < 3/2, 1 - a > Re s > -(1 + α))

which is analytic in the strip near the line Re s = 0 and has no zero on
Re s = 0. Furthermore we have

-(ίC| f|/2)| f|/i+l-(l/2)

as |fI -> oo .

Furthermore ίtβ)(X(ξ) is bounded on fe(-oo, co). Thus any necessary
condition analogous to §3 are satisfied. Comparing (5.1) with (5.2) we
get the lemma.

Theorem 2 is obvious from Lemmas 1 and 2.
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6. We consider here the Abel summability analogue of the preceeding
sections. Let f(x) e <S and the Poisson and conjugate Poisson integral of
fix) be

ππ J-00 (x — u)2 + y2 d u
2 π Jo

π }-~(x-u)2 + y2 π Jo u2 +

The Littlewood-Paley function g(f)(x) is defined by

But since

du(x9 y)
dx

_ du(x9 y)
dy

du
dy

du
dy

We separate the real and imaginary part and set

(6.1) h(f)(x0) =

(6.2)

We use notations φ(u) =
and write

(6.3)

and

(6.4)

Then

and

α?0, /) and τ/r(̂ ) = ψ(u; x09 / ) . We set R = y~\

h(f)(xo) = (cf j

_ 1 f"
π Jo 1

00 -D da(l

o dh

R da(R)
dR

Rφ(u)
+ (uR

+ (ul

Q\ 2

' dl

2 \

- dR)

-du

u)d>

\l/2

1/2
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Now we consider h(f)(x0). By definition

{h(f)(xo)Y = c\ ±\\
Jo R I Jo

2

dR.

We set u = e~y, R = e* and W(y) = f(e~y), K*(x) = (e2x/(l + e21)2). Then

(6.5) {h(f)(Xo)Y = ί" |(Γ * K*){x)fdx .
J_oo

The convolution is obviously well-defined. The complex Fourier transform

of K*(x) is

S oo _ foo p{8 +

e8xK*(x)dx = 1 —
J-coΠ +

dx

S oo +8 + 1

— dt
o (1 + ff

— JL . 7Γ

2 sin πs/2 '

For an Abel analogue of Marcinkiewicz function, we set
I f oo / „. \l/2

(6.6) ψ .(ί) = — \ ( —
t Jo \ t •

(see Levinson [6]) and

(6.7) i

Set ί = e~x, u = e~", then

(6.8) {μ.(f)(je»)r = \ iiSP *
J —°°

where

#(#) = β ( 1 + 1 / 2 )-exp(-e )

The complex Fourier transform of K(x) is

^(8+3/2)iB s± \rγ\ ( ΛIX

Therefore

) Z l L 2 ] £ * ( ) £ ί i L as
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c '_l£ί- as \ς\K(ξ) = Γ(3/2 - iζ)

Thus we get the following theorem.

THEOREM 4. For f(x) e S, and x0 e R,

Ah(fXx0) ^ μa(f)(x0) £ Bh(f)(x0) .

= t Γ (±

If we set

and change t — e~x, u = e~y, then the corresponding kernel is

K*(x) =

Since

equals asymptotically to that of ψa(t) as \ξ\ —> oo. Therefore we have

THEOREM 4'. For f(x) e S and xoeR,

Ah(f)(x0) ^ μ*(f)(x0) ^ Bh{f){xQ) ,

where
2 ) 1/2

dt\
Jo \ 16 / 16

For the real part function h(f)(x0), we consider the following function.

Let

(6.9)

and

(6.10)

Moreover put

Φa(t) = J

W)(»o) =

Jo Vί /

—φ(t)
dt

2 \l/2

Φ*Λt) = t \~ (i- '
Jo \u • U

and
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= ([t
dt

2 \ 1/2

dή .
Then we have

THEOREM 5. For fix) e S and XOGR,

Ahif)ix0) ^ δaif)ix0) :£

and

Ahif)ix0) ^ $*aif)ixo) ^ Bhif)ix0)

PROOF. By definition

{hif)ixo)Y = c\" ±
Jo K

dR .

By (6.3) we have id/dRMR) = c \~{uφ'iu)/il + iRnf))du. Now set u = e~v,

R = ex, Xix) = e-χφ\e-χ) and K*&) = e*Hl + eix), then

(6.11) {hif)ixo)Y = [" |(Z * K*)ix)\>dx .
J-oo

On the other hand, since
I foo / η . \-l/2 foo

φa(t) = Λ- \ φiu)(—) e-u/tdu = \ φitv)v-
t Jo \ t ' Jo

S oo foo / ». \l/2

φ\tv)vι-{ι/2)e~υdv = \ φ'(u)(^) e~u/tdu .
o Jo \ t /

Set t = e~x, u = e~\ X(x) = e~xφ\e-χ) and

K(x) = ex/2exv(-ex)

then

(6.12) {daif)MY = \a * K)ix)\*dx .
J —°°

The Fourier transforms of the kernels (6.11) and (6.12) are

•iξ H ) and K*(ζ) = ,

2/ 2cosτr( — iξ)/2
respectively. Hence we get the first part of Theorem. By the same
method we can prove the another part.

7. Here we give some corollaries of the above theorems. Fefferman
[2] proves that hβ(f)(x) and hβ(f)(x) is of weak type (p, p) for 1 < p < 2
and β = (1/p). We assume this results in the sequel. In fact he proved
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the theorem in several variables form.

COROLLARY 1. For a = (XI p) - (1/2) and 1 < p < 2, the operator
Ar(/)(aO is of weak type (p, p).

This is given from Theorem 1. a — (lip) — (1/2), so if a = (1/2) then
A/2(/)G*0 is of strong type (p, p) for any p ( l<p<2). Zygmund [12] proved
that μ(f)(x) = j"i(/)(a?) is of strong type (p, p) for any p > 1.

COROLLARY 2. For a = (1/p) - (1/2) and 1 < p < 2, ίλe operator
Da(f)(x) has weak type (p, p).

This comes from Theorem 3. Fefferman [2] remarks that this
corollary is established by the same method to proof of g$(f)(x).

COROLLARY 3. For a = (XI p) + (1/2) and 1 < p < 2, the operator
δa(f)(%) has weak type (p, p).

Since, hβ(f)(x) is of weak type (p, p) for 1 < p < 2, the corollary comes
from Theorem 2.

COROLLARY 4. Let

l/2

ί)}

Then, for aλ > α2 > 0

KfXaO - *.(/)(*) •< δaι(f)(x) < δa2(f)(x) < δo(f)(x)

and for β1 > β2 > -1/2

Hf)(x) < hβl(f)(x) < hβ%(f)(x) - δβ2+1/i(f)(x) < δo(f)(x) ,

where -< means that if the right side is finite then the left side is finite.

A comparison each other of Fourier transform of corresponding
kernels and Theorems 3 and 5 yield the corollory.

This is an answer of Problem 6 (a) of Stein-Wainger [11, p. 1289]
in one dimensional form.

REMARK. Several variables analogues in spherical sense of the above
theorems will appear in the forthcoming paper.

LITERATURES

[1] L. S. BOSANQUET, On the summability of Fourier series, Proc. London Math. Soc, 31
(1930), 144-164.

[2] C. FEFFERMAN, Inequalities for strongly singular convolution operators, Acta, Math.,
124 (1970), 9-36.

[3] T. M. FLETT, On the absolute summability of a Fourier series and its conjugate series,



FUNCTIONS OF LITTLEWOOD-PALEY AND MARCINKIEWICZ 519

Proc. London Math. Soc, 8 (1958), 258-311.
[4] I. M. GELFAND AND G. E. SHIROV, Generalized functions I, Academic Press, 1968.
[5] Y. KATZNELSON, An introduction to harmonic analysis, John Wiley, 1968.
[6 ] N. LEVINSON, On the Poisson summability of Fourier series. Duke Math. Journ., 2 (1936),

138-146.
[ 7 ] J. MARCINKIEWICZ, Sur quelques integrales de type de Dini, Annales de la Soc. Polonaise,

17 (1928), 42-50.
[8] E. M. STEIN, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans.

Amer. Math. Soc, 88 (1958), 430-466.
[ 9 ] E. M. STEIN, The characterization of functions arising as potentials, Bull. Amer. Math.

Soc, 67 (1961), 102-104.
[10] E. M. STEIN AND S. WAINGER, Problems in harmonic analysis related to curvature, Bull.

Amer. Soc, 84 (1978), 1239-1295.
[11] G. SUNOUCHI, On functions regular in a half-plane, Tδhoku Math. Journ., 9 (1957),

37-44.
[12] A. ZYGMUND, On certain integrals, Trans. Amer. Math. Soc, 58 (1944), 170-204.

DEPARTMENT OP TECHNOLOGY

TAMAGAWA UNIVERSITY

MACHIDA, TOKYO 194

JAPAN






