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1. Introduction. Let H? (resp. H*) be the Hardy space of analytic
functions in the open unit disc D with square-integrable (resp. essentially
bounded measurable) boundary functions, and let =, (ke N:={0,1, ---})
be the linear subspace of all polynomials with degree at most k. Following
Chui [1], we then define, for fe H*, the least-squares inverse in 7, of
f as the (unique) polynomial g = g, such that the L*-norm on the unit
circle C

11— fylli= {@m| 11— fegepae}”

is minimal when g runs over x,. Furthermore, the double least-squares
inverse h, , in 7, of f through =, is defined as the least-squares inverse
in 7, of g,. Using orthogonal polynomials, Chui [1] proved that each g,
is zero-free in the closed unit disc D, and that if fex, then each &, , is
a very good approximant of f in the same z, which has no zeros in D.

Now, let A be a (bounded linear) operator on H? ¢ € H* and consider
the equation

(1.1) Ag=¢, geH*.

Then an element g € H* which minimizes the norm || Ag — ¢||, is called a
least-squares solution of (1.1). It is well-known (cf. [3], [7]) that if A
has closed range the least-squares solution with minimum norm is unique
and is represented as A'¢, where A' stands for the (Moore-Penrose) gen-
eralized inverse of A. (The generalized inverse is uniquely determined
by the four Penrose identities, AA'A = A, ATAA' = A', (AA"* = AA"and
(ATA)* = A'A.)

Suppose that T, is the Toeplitz operator with symbol fe€ H*, and
that E, is the orthogonal projection from H?® onto =, (as a subspace of
H?®). Then the product 7 E, is of finite rank, and hence has closed
range. The solution (T;E,)'l1 = E,(T;E,)'l of (1.1) for A = T,E,, ¢ =1
is nothing but the least-squares inverse g, defined before. Similarly the
double least-squares inverse of f is represented as k,, = (T, E,)'l. Hence
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the approximation problem of least-squares and double least-squares in-
verses is identical to the convergence problem of generalized inverses.

In this paper we study convergence of least-squares and double least-
squares inverses, using generalized inverses of Toeplitz operators restricted
to finite dimensional subspaces. We extend (or refine) the recent results
in [1], and we also settle a conjecture in [1].

The author would like to express his thanks to the referee for his
helpful comments on the original version of this note.

2. Least-squares inverses. Every (non-zero) fe€ H* has the inner-
outer decomposition f = uF', where % is an inner function in H* and F'
is an outer function in H=. Let g, and G, be the least-squares inverses
in 7, of f and F respectively, that is, g, = (T,E),)'l and G, = (TE,)'1.
Then

LEMMA 2.1. g, = u(0)G,.

PrOOF. For the inner function u, we see by [2], [4] that the Toeplitz
operator 7T, is an isometry and T,T} is the orthogonal projection from
H* onto uH® = T,H®. Furthermore, T,T}1 = u(0)u or T}1 = u(0)1. Using
those facts, we can show the desired identity by direct computation. We
can, however, show it by the reverse order law on generalized inverses:

(TE)" = (Tu- TeE)' = (TED"- T,

which is obtained from the Penrose identities. (Replace A by T E, and
At by (T-E,)!T}, respectively.) q.e.d.

On the basis of Lemma 2.1 we may restrict the problem on the
convergence of least-squares and double least-squares inverses to the

case where f is outer.
Now, let f be outer and let h € H>. Then from the density of fH*
in H?, we can find a sequence {l,} in H* such that

Nfly — k|, —0 as k— oo .
We may assume that [, e, for each k, so that
I f-(TE)'h — kil = |/l — 2], —0,
that is,
2.1) [ (T:E)h—h as k— oo,
Hence, if 1/fe€ H>, then
(TsE)'h— Q[ )h = T,sh as k— oo .
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This implies
2.2) (T;E,)'—T,, strongly as k— oo .

REMARK. Concerning properties of least-squares inverses, Chui [1]
proved the following fact, using orthogonal polynomials.

PROPOSITON. For each k, the least-squares inverses g, in w, of fe H®
18 zero-free if f(0) = 0.

We want to show this fact more directly, using generalized inverses:
For simplicity we assume || f|l, =1. First we easily see that g,=(1, f) =
f(0) =0 Next, to compute g,, let g, = a + b(z — ¢), where ¢ = (zf, f).
(Note |¢| < 1.) Then, using

l—ofli=1—c&, (fiz—0f)=0 and (1, (z—)f) = —2cf0),

we have
11— fa.ll = [l(af = 1) + bz — o) f [} = ||af — 1|5 + 2Re(bef(0)) + bb(1 — c2)

=llaf = 1|+ 1 —ce)|b + e — &) f0)|? —cc(1 — )| F(O)* .
Hence, from the minimality of the norm |1 — fg,|,, we have a = g, = £(0)
and b = —¢(1 — ¢&)~'£(0), that is,

9= 1 — )" FO)1 — 7).

Hence clearly g, is zero-free in D. Finally, to see the assertion of the
proposition for k = 2, observe that g, has degree at least one. Assume
that a« is a zero of g,, and put ¢ = f-9,/(# — «). Then g€ H=, and
#(0) == 0 which is seen from g,(0) # 0, or from

11— 090 =11, 1—fa)l =11 = fgll

=1 —fol. =1 = [£O)P)” < 1.

Hence, by the previous argument we see the least-squares inverse (T,E,)'1
in 7, of ¢ is zero-free in D. Now by the uniqueness of the least-squares

inverse, we see that z — a = (T,E))'l. Hence a¢ D. This implies that
g, has no zeros in D. q.e.d.

3. Convergence of double least-squares inverses. On the uniform
perturbation of generalized inverses we know by [8] that
| B — A"| < 83max{|| B'|I', | A"} B — Al ,

where A and B are operators with closed range. From this inequality
we can show the following fact (cf. [5], [6]):

LEMMA 3.1. Let A, A, (ke N) be operators with closed range, and
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suppose that A, — A uniformly as k— . Then A, — A" uniformly if
(and only if) sup, || A}] < oo.

Now, assume that fe H> be outer as in Section 2. Write S, =T,
Ve =(S:E,)' and P, , = (S,E,)(S,E,)" for simplicity. (g9,=(T,E,)'1). Then,
as one more key fact for our discussion we have:

LEMMA 3.2. For each m€ N, the set {V,,; ke N} is bounded, and its
limit points (weak, strong and uniform topologies are the same in this
case) consist of all operators of the form T,W, where W runs over the
set of weak limit points of the set {P,,; ke N}.

ProOF. Since the L*-norm and L®-norm are equivalent on the finite
dimensional subspace 7, of L=, it follows from (2.1) that for hex, with
k], 1, |1 = fag)h|,—0 as k— oo, or equivalently, that

R,.:=Q1-T,S,)E,—0 (uniformly) as k—co.
Hence, for sufficiently large k& the operator 1 — R,, is invertible and
1—R,,)*—1lask— . Now, since (S,E,)V,,=P,, and 1—-E)V,, =
0, we have

1 - Rn,k) Vn,k = {1 - (1- TfSk)En} Vn,k = Tan,k .
Hence

Viie=QQ — R, )7 TP,
and the assertion follows.
THEOREM 8.3 (cf. [1, Theorem 4.1]). If 1/fe H*, then
limV,, = (TyE,) for meN.

k—o

Proor. By (2.2), g,—1/f, so that S,E, > T,,E,. Hence, since
I(SLE,)'|| = ||V, is bounded by Lemma 3.2, we see, from Lemma 3.1,

Var = (S.E,) — (TyE). q.e.d.
If (the outer function) f is in x,, then the double least-squares
inverse h,,, in =, of f converges to f as k— oo by [1, Theorem 2.1].
The following result extends this fact.
THEOREM 3.4. If fem,, then
limV,,,.E, =T;E, for neN.

k—o0

Proor. Since fherx,.,, for herx,, we see that
9k Visnih — hll: = [|9efh — k. = l(gef — DR|;—0
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as k— o (cf. Proof of Lemma 3.2). This implies that S,V,..E,— E, or
T:S:Vupinilbn—T;E, as k— oo .

On the other hand, since ||V,,, .| is bounded (Lemma 3.2) we have

I TS Vain B = Vit | S [(T5Sy — DEpsn|| [| Visarll >0 as k— oo .

Hence we conclude that V., ,— T E,. q.e.d.

The following theorem shows that the conjecture raised in [1, p. 157]
is true.

THEOREM 3.5. If f =TI~ (z — a;)p, where |a;] =1 =1,2,-+-,m)
and p € H* is outer, then

;cimVn,k=0 for n=0,1,.--,m—1.

Proor. Take h e H* and any non-zero limit point [ of the bounded
set {V,.h; ke N}. Then the point [ belongs to x,, and is of the form
T;Wh for some operator W on H* (Lemma 3.2). Hence,

UMl (2 — a) = p-Whe H* .

But this is possible only when n = m.
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