Tôhoku Math. Journ. 37 (1985), 95-99.

GENERALIZED INVERSES OF TOEPLITZ OPERATORS AND INVERSE APPROXIMATION IN H²

SAICHI IZUMINO

(Received January 12, 1984, revised August 1, 1984)

1. Introduction. Let H^2 (resp. H^{∞}) be the Hardy space of analytic functions in the open unit disc D with square-integrable (resp. essentially bounded measurable) boundary functions, and let π_k ($k \in N$:= {0, 1, \cdots }) be the linear subspace of all polynomials with degree at most k. Following Chui [1], we then define, for $f \in H^{\infty}$, the least-squares inverse in π_k of f as the (unique) polynomial $g = g_k$ such that the L^2 -norm on the unit circle C

$$\|1 - fg\|_{_2} := \left\{ (2\pi)^{_{-1}} \int_{-\pi}^{\pi} |1 - f(e^{it})g(e^{it})|^2 dt
ight\}^{^{1/2}}$$

is minimal when g runs over π_k . Furthermore, the double least-squares inverse $h_{n,k}$ in π_n of f through π_k is defined as the least-squares inverse in π_n of g_k . Using orthogonal polynomials, Chui [1] proved that each g_k is zero-free in the closed unit disc \overline{D} , and that if $f \in \pi_n$ then each $h_{n,k}$ is a very good approximant of f in the same π_n which has no zeros in \overline{D} .

Now, let A be a (bounded linear) operator on H^2 , $\phi \in H^2$ and consider the equation

$$(1.1) Ag = \phi , \quad g \in H^2 .$$

Then an element $g \in H^2$ which minimizes the norm $||Ag - \phi||_2$ is called a least-squares solution of (1.1). It is well-known (cf. [3], [7]) that if Ahas closed range the least-squares solution with minimum norm is unique and is represented as $A^{\dagger}\phi$, where A^{\dagger} stands for the (Moore-Penrose) generalized inverse of A. (The generalized inverse is uniquely determined by the four Penrose identities, $AA^{\dagger}A = A$, $A^{\dagger}AA^{\dagger} = A^{\dagger}$, $(AA^{\dagger})^* = AA^{\dagger}$ and $(A^{\dagger}A)^* = A^{\dagger}A$.)

Suppose that T_f is the Toeplitz operator with symbol $f \in H^{\infty}$, and that E_k is the orthogonal projection from H^2 onto π_k (as a subspace of H^2). Then the product $T_f E_k$ is of finite rank, and hence has closed range. The solution $(T_f E_k)^{\dagger} 1 = E_k (T_f E_k)^{\dagger} 1$ of (1.1) for $A = T_f E_k$, $\phi = 1$ is nothing but the least-squares inverse g_k defined before. Similarly the double least-squares inverse of f is represented as $h_{n,k} = (T_{g_k} E_n)^{\dagger} 1$. Hence the approximation problem of least-squares and double least-squares inverses is identical to the convergence problem of generalized inverses.

In this paper we study convergence of least-squares and double leastsquares inverses, using generalized inverses of Toeplitz operators restricted to finite dimensional subspaces. We extend (or refine) the recent results in [1], and we also settle a conjecture in [1].

The author would like to express his thanks to the referee for his helpful comments on the original version of this note.

2. Least-squares inverses. Every (non-zero) $f \in H^{\infty}$ has the innerouter decomposition f = uF, where u is an inner function in H^{∞} and Fis an outer function in H^{∞} . Let g_k and G_k be the least-squares inverses in π_k of f and F respectively, that is, $g_k = (T_f E_k)^{\dagger} 1$ and $G_k = (T_F E_k)^{\dagger} 1$. Then

LEMMA 2.1. $g_k = \overline{u(0)}G_k$.

PROOF. For the inner function u, we see by [2], [4] that the Toeplitz operator T_u is an isometry and $T_u T_u^*$ is the orthogonal projection from H^2 onto $uH^2 = T_u H^2$. Furthermore, $T_u T_u^* 1 = \overline{u(0)}u$ or $T_u^* 1 = \overline{u(0)}1$. Using those facts, we can show the desired identity by direct computation. We can, however, show it by the reverse order law on generalized inverses:

$$(T_f E_k)^{\dagger} = (T_u \cdot T_F E_k)^{\dagger} = (T_F E_k)^{\dagger} \cdot T_u^*$$
,

which is obtained from the Penrose identities. (Replace A by $T_f E_k$ and A^{\dagger} by $(T_F E_k)^{\dagger} T_u^*$, respectively.) q.e.d.

On the basis of Lemma 2.1 we may restrict the problem on the convergence of least-squares and double least-squares inverses to the case where f is outer.

Now, let f be outer and let $h \in H^2$. Then from the density of fH^2 in H^2 , we can find a sequence $\{l_k\}$ in H^2 such that

$$\|fl_k-h\|_2 \rightarrow 0 \quad \text{as} \quad k \rightarrow \infty$$
.

We may assume that $l_k \in \pi_k$ for each k, so that

$$\|f \cdot (T_{{}_{f}}E_{k})^{!}h - h\|_{{}_{2}} \leq \|fl_{k} - h\|_{{}_{2}} \! o \! 0$$
 ,

that is,

$$(2.1) f \cdot (T_f E_k)^{\dagger} h \to h \quad \text{as} \quad k \to \infty \; .$$

Hence, if $1/f \in H^{\infty}$, then

$$(T_f E_k)^{\dagger} h \rightarrow (1/f) h = T_{1/f} h \text{ as } k \rightarrow \infty$$
.

96

This implies

$$(2.2) (T_f E_k)^{\dagger} \to T_{\scriptscriptstyle 1/f} \quad \text{strongly as} \quad k \to \infty \ .$$

REMARK. Concerning properties of least-squares inverses, Chui [1] proved the following fact, using orthogonal polynomials.

PROPOSITON. For each k, the least-squares inverses g_k in π_k of $f \in H^{\infty}$ is zero-free if $f(0) \neq 0$.

We want to show this fact more directly, using generalized inverses: For simplicity we assume $||f||_2 = 1$. First we easily see that $g_0 = (1, f) = \overline{f(0)} \neq 0$ Next, to compute g_1 , let $g_1 = a + b(z - c)$, where c = (zf, f). (Note |c| < 1.) Then, using

$$||(z-c)f||_2^2 = 1 - c\overline{c}$$
, $(f, (z-c)f) = 0$ and $(1, (z-c)f) = -\overline{c}\overline{f(0)}$,

we have

$$\begin{split} \|1 - fg_1\|_2^2 &= \|(af-1) + b(z-c)f\|_2^2 = \|af-1\|_2^2 + 2\operatorname{Re}(bcf(0)) + b\overline{b}(1-c\overline{c}) \\ &= \|af-1\|_2^2 + (1-c\overline{c})|b + \overline{c}(1-c\overline{c})^{-1}\overline{f(0)}|^2 - c\overline{c}(1-c\overline{c})^{-1}|f(0)|^2 \ . \end{split}$$

Hence, from the minimality of the norm $||1 - fg_1||_2$, we have $a = g_0 = \overline{f(0)}$ and $b = -\overline{c}(1 - c\overline{c})^{-1}\overline{f(0)}$, that is,

$$g_{_1} = (1 - c \overline{c})^{_{-1}} \overline{f(0)} (1 - \overline{c} z)$$
 .

Hence clearly g_1 is zero-free in \overline{D} . Finally, to see the assertion of the proposition for $k \geq 2$, observe that g_k has degree at least one. Assume that α is a zero of g_k , and put $\phi = f \cdot g_k/(z - \alpha)$. Then $\phi \in H^{\infty}$, and $\phi(0) \neq 0$ which is seen from $g_k(0) \neq 0$, or from

$$egin{aligned} |1-f(0)g_k(0)| &= |(1,1-fg_k)| \leq \|1-fg_k\|_2 \ &\leq \|1-fg_0\|_2 = (1-|f(0)|^2)^{1/2} < 1 \;. \end{aligned}$$

Hence, by the previous argument we see the least-squares inverse $(T_{\phi}E_{1})^{\dagger}1$ in π_{1} of ϕ is zero-free in \overline{D} . Now by the uniqueness of the least-squares inverse, we see that $z - \alpha = (T_{\phi}E_{1})^{\dagger}1$. Hence $\alpha \notin \overline{D}$. This implies that g_{k} has no zeros in \overline{D} . q.e.d.

3. Convergence of double least-squares inverses. On the uniform perturbation of generalized inverses we know by [8] that

$$\|B^{\dagger} - A^{\dagger}\| \leq 3 \max\{\|B^{\dagger}\|^2, \|A^{\dagger}\|^2\}\|B - A\|$$
 ,

where A and B are operators with closed range. From this inequality we can show the following fact (cf. [5], [6]):

LEMMA 3.1. Let A, A_k $(k \in N)$ be operators with closed range, and

suppose that $A_k \to A$ uniformly as $k \to \infty$. Then $A_k^{\dagger} \to A^{\dagger}$ uniformly if (and only if) $\sup_k \|A_k^{\dagger}\| < \infty$.

Now, assume that $f \in H^{\infty}$ be outer as in Section 2. Write $S_k = T_{g_k}$, $V_{n,k} = (S_k E_n)^{\dagger}$ and $P_{n,k} = (S_k E_n)(S_k E_n)^{\dagger}$ for simplicity. $(g_k = (T_f E_k)^{\dagger}1)$. Then, as one more key fact for our discussion we have:

LEMMA 3.2. For each $n \in N$, the set $\{V_{n,k}; k \in N\}$ is bounded, and its limit points (weak, strong and uniform topologies are the same in this case) consist of all operators of the form T_fW , where W runs over the set of weak limit points of the set $\{P_{n,k}; k \in N\}$.

PROOF. Since the L^2 -norm and L^{∞} -norm are equivalent on the finite dimensional subspace π_n of L^{∞} , it follows from (2.1) that for $h \in \pi_n$ with $\|h\|_2 \leq 1$, $\|(1 - fg_k)h\|_2 \to 0$ as $k \to \infty$, or equivalently, that

$$R_{n,k} := (1 - T_f S_k) E_n \rightarrow 0$$
 (uniformly) as $k \rightarrow \infty$.

Hence, for sufficiently large k the operator $1 - R_{n,k}$ is invertible and $(1 - R_{n,k})^{-1} \rightarrow 1$ as $k \rightarrow \infty$. Now, since $(S_k E_n) V_{n,k} = P_{n,k}$ and $(1 - E_n) V_{n,k} = 0$, we have

 $(1 - R_{n,k}) V_{n,k} = \{1 - (1 - T_f S_k) E_n\} V_{n,k} = T_f P_{n,k}.$

Hence

$$V_{n,k} = (1 - R_{n,k})^{-1} T_f P_{n,k}$$

and the assertion follows.

THEOREM 3.3 (cf. [1, Theorem 4.1]). If $1/f \in H^{\infty}$, then

$$\lim_{h \to \infty} V_{n,k} = (T_{1/f} E_n)^{\dagger} \quad for \quad n \in N.$$

PROOF. By (2.2), $g_k \to 1/f$, so that $S_k E_n \to T_{1/f} E_n$. Hence, since $||(S_k E_n)^{\dagger}|| = ||V_{n,k}||$ is bounded by Lemma 3.2, we see, from Lemma 3.1,

$$V_{n,k} = (S_k E_n)^{\dagger} \rightarrow (T_{1/f} E_n)^{\dagger} . \qquad \text{q.e.d.}$$

If (the outer function) f is in π_m , then the double least-squares inverse $h_{m,k}$ in π_m of f converges to f as $k \to \infty$ by [1, Theorem 2.1]. The following result extends this fact.

THEOREM 3.4. If $f \in \pi_m$, then

$$\lim_{k\to\infty} V_{m+n,k} E_n = T_f E_n \quad for \quad n \in N.$$

PROOF. Since $fh \in \pi_{m+n}$ for $h \in \pi_n$, we see that

$$\|g_k \cdot V_{m+n,k}h - h\|_2 \leq \|g_k fh - h\|_2 = \|(g_k f - 1)h\|_2 o 0$$

as $k \to \infty$ (cf. Proof of Lemma 3.2). This implies that $S_k V_{m+n} E_n \to E_n$ or $T_f S_k V_{m+n,k} E_n \to T_f E_n$ as $k \to \infty$.

On the other hand, since $||V_{m+n,k}||$ is bounded (Lemma 3.2) we have $||T_f S_k V_{m+n,k} E_n - V_{m+n,k} E_n|| \leq ||(T_f S_k - 1) E_{m+n}|| ||V_{m+n,k}|| \to 0$ as $k \to \infty$. Hence we conclude that $V_{m+n,k} \to T_f E_n$. q.e.d.

The following theorem shows that the conjecture raised in [1, p. 157] is true.

THEOREM 3.5. If $f = \prod_{j=1}^{m} (z - \alpha_j)p$, where $|\alpha_j| = 1$ $(j = 1, 2, \dots, m)$ and $p \in H^{\infty}$ is outer, then

$$\lim_{k\to\infty} V_{n,k} = 0 \quad \text{for} \quad n = 0, 1, \dots, m-1.$$

PROOF. Take $h \in H^2$ and any non-zero limit point l of the bounded set $\{V_{n,k} h; k \in N\}$. Then the point l belongs to π_n , and is of the form $T_f Wh$ for some operator W on H^2 (Lemma 3.2). Hence,

$$l/\prod_{j=1}^m \left(z-lpha_j
ight)=pm{\cdot} Wh\in H^2$$
 .

But this is possible only when $n \ge m$.

References

- C. K. CHUI, Approximation by double least-squares inverses, J. Math. Anal. Appl. 75 (1980), 149-163.
- [2] R.G. DOUGLAS, Banach Algebra Technique in Operator Theory, Academic Press, New York, 1972.
- [3] C. W. GROESTCH, Generalized Inverses of Linear Operators: Representation and Approximation, Dekker, New York and Basel, 1977.
- [4] K. HOFFMAN, Banach Space of Analytic Functions, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
- [5] S. IZUMINO, Convergence of generalized inverses and spline projectors, J. Approx. Theory 38 (1983), 269-278.
- [6] S. IZUMINO, Generalized inverse method for subspace maps, Tôhoku Math. J. 35 (1983), 649-659.
- [7] M.Z. NASHED, ed., Generalized Inverses and Applications, Academic Press, New York and London, 1976.
- [8] G. W. STWART, On the perturbations of pseudo-inverses, projections and linear squares problems, SIAM Review 19 (1977), 634-662.

FACULTY OF EDUCATION TOYAMA UNIVERSITY 3190 GOFUKU, TOYAMA-SHI 930 JAPAN