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1. Introduction. Let U be the upper half-plane and let Γ be a
Fuchsian group. That is, Γ is a discrete subgroup of the real Mδbius
group PSL(2, R), possibly consisting of only the identity transformation
of PSL(2, R). Let Loo(Γ) be the closed linear subspace of Loo(U) consisting
of those veLoo(U) which satisfy

(1.1) v(Ύ(w))y'(w)/7'(w) = v(w) for every ΎeΓ .

We denote by M(Γ) the open unit ball of Loo(Γ). For ι> in M(Γ), we
denote by z = Fu(w) the uniquely determined automorphism of U which
is a generalized solution in U of the Beltrami equation F^ = \>FW and
which leaves 0 , 1 , °° fixed. The mapping Fv is called the normalized
quasiconformal automorphism of U with complex dilatation v = v(w) (see
Lehto and Virtanen [12, p. 185 and p. 194]). As is known, Fu is ex-
tensible to a homeomorphism of the closure U= U{JR of U in the
extended complex plane C, which we denote by the same letter Fv.

Let σ be a .Γ-invariant closed subset of the extended real line R,
which contains 0, 1 and ©o. Let E be a Γ-invariant measurable, possibly
empty, subset of U such that the closure of E/Γ in {U{J(R\σ)}/Γ is a
compact proper subset of {U{J(R\σ)}/Γ. Let b(w) be a non-negative
bounded measurable function on E, being automorphic for Γ and
satisfying

(1.2) 0 ^ Ci = ess sup b(w) < 1 .
weE

Let D = U\E. By the above property of E, we easily see that the set
D/Γ has a positive measure. For v in M(Γ), we put

(1.3) K(v\D) = (1 + ||»U|co)/(l - llvUU) ,

where \\v\D\\oo means the L^ norm of the restriction v\D of v to D. In
the case E is empty, we use the notation Kip) instead of K(p\π).

Suppose that μ is a prescribed element in M(Γ) satisfying \μ(w)\ ^
b(w) a.e. in E. We consider the class Mμ =Ξ Mμ(Γf σ, E, b) consisting of
those veM(Γ) which satisfy the conditions Fv\σ = Fμ\σ and |v(w)| ^ δ(te )
a.e. in E. We put
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(1.4) k(Mμ) = inf \\v\D\\» , K(Mμ) = (1

where the inίimum is taken over all veMμ. An element v in Mμ which
satisfies ||vU|oo = k(Mμ) is said to be extremal within the class Mμ. By
means of a normal family argument of quasiconformal mappings in [12,
pp. 71-74] and Strebel [18, Satz on page 469], we see that there exists
at least one extremal element within Mμ. We note that Mv = Mμ for
every v e Mμ. We put

(1.5) c0 = ess inf b(w) .
weE

Reich gave characterizations of extremal elements in [16, Theorems 3,
4 and 5] in the case Γ — 1 and 0 < c0 ^ cx < 1. Later, in the case cx = 0,
Gardiner proved in [11] two theorems which can be viewed, to a certain
extent, as analogous to those presented in [16]. Our objective is to
investigate to what extent their results can be generalized.

Main results in this note are Theorems 1, 2, 3 and Corollaries 1, 2
to Theorem 2. In Section 2, we state them with the proof of Theorem
3. Theorem 1 gives sufficient conditions for extremality, and the others
characterize extremal elements under certain conditions. In particular,
Theorem 2, Corollaries 1 and 2 can be viewed as generalized forms of the
corresponding results in [11] and [16] (see Remark 2). In Section 4, we
give the proofs of Theorems 1 and 2. In their proofs, some results from
Teichmiiller space theory and modified arguments in [11] and [16] shall
play important roles. In Section 3, we give a property of extremal ele-
ments with a substantial boundary point (see Theorems 4 and 5).

The author would like to express his sincere gratitude to Professor
Tadashi Kuroda for his constant encouragement and advice, and to the
referee for his helpful comments on the original version of this note.

2. Main theorems. In order to formulate our main theorems, first
we collect necessary definitions and notations. For a prescribed class
Mμ = Mμ{Γ, σt E, δ), we fix the notations under the following relations.
We put

(2.1) F=Fμ, / = F - 1 , κ(z) = fM/fM ,

G = FΓF-1 and δ = F(σ) .

Let Eo be the subset of E consisting of those w e E with b{w) — 0. We
put

(2.2) cΌ = ess inf b(w) .
weE\E0

We denote by k the extension of tc\F{D[JEo) to f/, which satisfies
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(2.3) £(*) = \\μ\D\\-κ(z)lb(f(z)) for zeF(E\E0).

As is known, the property of (1.1) of μ implies that G is a Fuchsian
group. A holomorphic function φ on U is called a quadratic differential
for G on U if φ(g(z))g'(z)2 = φ(z) for every g e G. We denote by A(G, 5)
the space consisting of all the quadratic differentials φ for G on U, which
are continuously extensible to R\δ and real on R\δ, and satisfy

\\Φ\\G= \\ (z)\dxdy

In this note, further, we require that A(G, δ) Φ {0}. As is known, this
is equivalent to A(Γ, σ) Φ 0. Thus this requirement eliminates the
following cases, where UΓ is U with all the fixed points in U of elements
of Γ removed: UΓ/Γ is C with three points removed; Γ — 1 and a =
{0, 1, oo}; the limit set A(Γ) of Γ is empty or consists of a single point
and (σ\Λ(Γ))/Γ consists of a single point. We denote by A(G, δ\ the
set of those φeA(G,δ) with | |^| |σ = 1. For every φ in A(G, δ)\{0}f

following [16], we put

D[φ, ιc]=\\ \Φ(z)\ II ~ Φ)Φ(z)/\Φ(z)

E[φ, κ] = \\ \φ(z)\ |1 -
J JF(E)/G

where B(w) = (1 +
We denote by N(G, δ) the space consisting of all the elements a e

Loo(G) which satisfy LG(a)(φ) = 0 for every φeA(G, δ), where

(2.4) Lσ(a)(φ) = Re\[ a(z)φ(z)dxdy .

Let r be an element in M(G) such that Fτ\δ is identical with the identity
automorphism of δ. All such τ form a subset M0(G, δ) of Λf(G).

Now we give the summarizing statements of main theorems as
follows.

THEOREM 1. The condition (I) below is sufficient for the condition
(II) below to hold. The condition (II) is sufficient for μ to be extremal
within Mμ.

Condition (I): Either there exists φQe A(G, δ)λ such that

(2.5) κ(z) = b(f(z))\φo(z)\/φQ(z) ax. in F(E) , and

Φ) = \\μ\D\UΦo(z)\/φo(z) ax. in F(D)

or there exists a sequence {φn} in A(G, δ)1 such that
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(2.6) \imφn(z) = 0 locally uniformly in U\J(R\δ) , and
n—*oo

K m LG(κ)(φn) = \\μ\D\\oo .
n—>oo

Condition (II):

(2.7) inf {K(μ\D)D[φ, ιc\ + E[φ, *]} = 1 ,

where the infimnm is taken over all φ e A(G, δ\.

REMARK 1. If \\μ\D\\<» > 0, then by [17, Corollary 1], we can easily
check that the condition (I) is satisfied if and only if the condition (III)
below is satisfied.

Condition (III):

(2.8) sxιpLβ(κ)(φ) = \\μ\D\\-,

where the supremum is taken over all φ e A(G, δ) with

\φ\dxdy = 1 ,li,)(U\F(EQ))/G

and where k is the extension of κ\Fφ^E^ to Ό satisfying (2.3).

THEOREM 2. Suppose that

(2.9) either cx = 0 in (1.2) or cΌ > 0 in (2.2) .

If II^UU > 0, then each one of the conditions (I), (II) and (III) is necessary
and sufficient for μ to be extremal within Mμ.

COROLLARY 1. Suppose that c0 > 0 in (1.5) and that ||μUU > 0.
Then each one of the conditions (I), (II) and (III) is necessary and
sufficient for μ to be extremal within Mμ.

It is well-known that dim A(Γ, σ)<^ if and only if Γ is finitely gen-
erated and the set (σ\Λ(Γ))/Γ is finite. Thus, by (2.1), dimA(Γ, <7)<°o
if and only if dim A(G, <5)<°o. We note that (2.6) does not occur provided
that dim A(Gf δ) < ©o. Thus, by Theorem 2, we have the following.

COROLLARY 2. Suppose (2.9) and that dim A(Γ, σ)< °°. // | |μUU>0,
then each one of the conditions (2.5), (II) and (III) is necessary and
sufficient for μ to be extremal within Mμ.

REMARK 2. The above Corollary 1 (resp. Corollary 2) can be viewed
as a generalized form of [16, Theorems 3 and 4] (resp. [11, Theorem 1]).

Here we note that the following proposition plays an important role
in the later proof of Theorem 2. The proof of Gardiner [9, Theorem 1]
shows that, if dim A(G, δ) < °o, then the proposition holds even if F(E0)
in the proposition is replaced by any G-invariant measurable subset S of
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ί/such that the measure of the set U\S is positive. Careful examina-
tion and a slight modification of the proof of [9, Theorem 1], however,
show that the proposition is still valid even if dim A(G, δ) = °o under
our hypothesis that F(E0)/G is relatively compact in {U\J(R\δ)}/G. For
the sake of completeness, we give the proof of the proposition in
Section 4. The author thanks the referee and Dr. H. Ohtake very much
for their valuable suggestions and comments on the proof.

PROPOSITION. Suppose that aeN(G,δ) vanishes on F(E0). Then
there exists a curve τ(t) e M0(G, δ), defined in an interval (0, t0), which
satisfies

(2.10) τ(t) vanishes on F(E0) ,

and

(2.11) τ(t) = ta + o{t) as t -> 0 ,

where o(t) term is uniform with respect to z e U.

THEOREM 3. Let Mμ = Mμ{Γy σ, E, b) be a class such that \\μ\D\\co > 0.
Suppose that dim A(Γ, σ) < °° and that E is an open set such that the
boundary 3E of E is a set of measure zero. Suppose, further, that b is
continuous on E. Then each one of the conditions (2.5), (II) and (III) is
necessary and sufficient for μ to be extremal within Mμ.

PROOF. By Theorem 1 and Remark 1, it suffices to prove that the
condition (2.5) is satisfied under the hypotheses of our theorem, provided
that μ is extremal within Mμ.

We define bn by bn(w) = b(w) for every w e E with b(w) > 1/n,
bn(w) = \\n for every w e E with b(w) ^ 1/n. Let μn be an extremal
element within Mμ(Γ, σ, E, bn) and put Fn = Fμn, fn = F'1 and ιcn =
(fn)-z/(fn)z. It follows from definition that b(w) ^ bn+1(w) ^ bn(w) on E.
Thus we have

(2.12) H^UIU ^ | | ^ + 1 U I U ^ k(Mμ) ,

where Mμ means Mμ = Mμ{Γ, σ, E, 6). By a normal family argument of
quasiconformal mappings, there exists a subsequence of {Fn}, which we
call it again {Fn}, such that it converges to Fv for some v e M(Γ) uni-
formly in U with respect to the spherical metric. It is obvious that
Fv\a = Fμ\a. It follows from [18, Satz on page 469] that

(2.13) W(w)\ ^ lim sup \μn{w)\ a.e. in U .

By (2.13), we have \v(w)\ ^ lim supn_oo bn(w) = b{w) a.e. in E. This means
that v belongs to Mμ. Moreover, it follows from (2.12) and (2.13) that
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\v(w)\ ^ limsupn^oo II^IDIU ^ k(Mμ) a.e. in D. Thus we see that v is
extremal within Mμ = Mμ(Γ, σ, E, b) and that

(2.14) k{Mμ) = iμUlU - Km \\μn\D\\» .

Now we assume that μ is extremal within Mμ. Then we have
k{Mμ) = ||μU|oo > 0. Thus, by (2.14), we may assume that \\μn\D\\o* > 0
for every n. Then, by Corollary 2, there exists a sequence {φn} in A(G, δ\
such that

(2.15) fcn(z) = bn(fn(z))\φn(z)\/φn(z) a.e. in Fn(E) , and

*»(*) = II^UUK(z)|/^n(z) a.e in Fn{D) .

Since dim A(G, δ) < °°9 there exists a subsequence of {̂ ra}, which we call
it again {φn}, such that it converges locally uniformly in UU(R\δ) to
some φ0 6 A(G, δ\.

Let E1 be a connected component of the open set E. By [12, p. 76],
we know that FV(E^ coincides with a component of Um=i Int(ΓΊ n=m Fn(Ej)).
Thus, for each z eF^EJ, there exists an open neighborhood V oΐ z and a
natural number n0 such that VaFn{E^ for every w ^ n0. Therefore, by
(2.15) and continuity of 6, we see that

(2.16) lim fcn(z) = b(f(z))\φ0(z)\/φ0(z) a.e. in FV(E) ,

where / denotes the inverse of Fu. Since the sequence {Fn} converges
to Fu uniformly in E with respect to the spherical metric, for each
ze U\FV(E), there exists a natural number nγ such that z e U\Fn(E)
for every n ^ nγ. Then, by (2.14) and (2.15), we see that

(2.17) limicn(«) = ||v|z,||co|̂ («)l/Λ(2) a.e. in U\FU(E) .
71—>OO

It follows from our hypotheses that 3i? = E\E and that the measure
of the set Fv(dE) = FV(E\E) is zero. Thus, by (2.16), (2.17) and [12,
Chap. IV, Theorem 5.2], we have the following equalities up to a set of
measure zero, where K is the complex dilatation of / ;

κ(z) = b(f(z))\φo(z)\/φo(z) for zeFAE), and

ί(z) = \\v\D\\-\Φo(z)\/φo(z) for zeFΛD).

In this case, by Remark 3 below, we see that v is uniquely extremal
within Mμ. Therefore, v is identical with μ. This means that μ satisfies
the condition (2.5).

REMARK 3. If /c is of the form (2.5) and if veMμ is different from
μ, then \v{w)\ > \μ(w)\ on a set of positive measure. In particular, μ is
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uniquely extremal within Mμ. In the case Γ = 1 and σ = R, this result
follows from Reich and Strebel [13, Theorem 3]. We can, however,
easily check that the proof in [13] goes through verbatim for arbitrarily
prescribed Γ and σ.

3. Extremal elements with a substantial boundary point. Recalling
(2.1), we let h (resp. j): R-* R be the boundary mapping induced by F
(resp. / ) . Let xeσ and let q be a quasiconformal mapping of an open
neighborhood V(x) of x in Ό onto an open neighborhood of F(x) in U9

which satisfies q(V(x)f]R)dR and qlrωnσ — Λ|r<*>nσ Following Strebel [19]
and Fehlmann [7], we define the local dilatation H°h(x) of h at x with
respect to σ as the infimum of the maximal dilatations K(q) of all q
with the above properties. Since K{q) — K(q~x), we have

(3.1) Hδ

ό(F{x)) = H%{x) f o r e v e r y x e σ .

In this section, we suppose that Γ is a Fuchsian group of the second
kind, that is, Λ(Γ) §Ξ R. Let Mμ = Mμ(Γ, σ, E, b) be a class such that
σ^Λ(Γ). If there exists some xoeσ\Λ(Γ) such that

(3.2) Hl(x0) = K{μ\D) ,

then we say that μ\D has a substantial boundary point xQ with respect
to (Γ, σ). In this case, we have the following.

THEOREM 4. Let Γ be a Fuchsian group of the second kind. Let
Mμ = Mμ(Γ, σ, E, b) be a class such that σ 3 MΓ) Suppose that
llμUU > 0 and that μ\D has a substantial boundary point xoeσ\Λ(Γ)
with respect to (Γ, σ). Then there exists a sequence {φn} in A(G, δ\
which satisfies (2.6) and which converges to 0 locally uniformly in the
complement in U of the closure of the set {g(F(x0)); geG}.

PROOF. Let /c* e M(G) be the extension of κ\F(D) to U such that
ιc*(z) = 0 on F(E). Let j*: R-> R be the boundary mapping induced by
Fκ*. By (3.1) and our assumption (3.2), we have

(3.3) HKF(x0)) - K(κ\F{D)) = K(ιc*) .

Since F(x0) & A(G), there exists an open neighborhood V of F(x0) in Ό
such that g{V)Π V = 0 if geG is not the identity transformation of
PSL(2, R). Thus we see that Vf] UcF(D) for sufficiently small V, since
otherwise the closure^ of F(E)/G in {U{J(R\δ)}/G is not a compact
proper subset of {Ul)(R\δ)}/G. Thus we have /c* = K on Vn U. There-
fore, on Vf] U, Fκ* is represented as Fκ followed by a conformal mapping.
This implies
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(3.4) HI(F(xQ)) =

Let dn be the closure in R of the set {g(x); g eG, xe Inf)δ}, where In

is the open interval in R with the midpoint F(x0) such that the spherical
length of In is equal to 1/n. Then, for each n, by (3.3), (3.4) and
definition of Hί*(F(x0)), we see that K(ιc*) ̂  K(x) for every λ 6 Λf(l) such
that Fλ\τ^nδ — FR*\—n{λδ Since ||/c*||oo > 0, as is known, this implies the
following; for each n, there exists a sequence {Ψn,m} in A(l, InΓϊδ)1 such
that ||ic*||oo = limŵ oo L1(yc*)(?r

7l)W) (see [17, Lemma 1] and the references
quoted there). For each n, we choose sufficiently large m and put
Φn — Ψn,m. We may assume that {Φn} converges locally uniformly in
U\{F(x0)} to the limit function Φ and that

(3.5) ||Λ*||oo

The holomorphic function Φ is real on U\{F(x0)} and satisfies
liminfn^oo ||Φn||i = 1. In this case, as noted in Reich [15, p. 400], we see
that Φ — 0. The Poincare series φn = ΘGΦn of Φn is defined by φn =
ΈAgeGΦn{g(z))g'(z?- It is known that φn belongs to A(G, δn) and that
II^JI^ ^ 1 (see [4]). By (3.5) and [17, Theorem 2], we see that

(3.6) ||Λ:*||oo
n—*oo

(3.7) lim \\φn\\β = 1 .
71-t OO

Considering a conjugate group of G, if necessary, we easily check
that it suffices to prove our theorem under the hypothesis that °o 6
R\Λ(G). Then it is well-known that Σffeί?0'(z)2 converges absolutely
and locally uniformly in U\A(G). Thus the sequence {φn} converges to
0 locally uniformly in the complement in U of the closure of the set
{g(F(xo));geG}. If we put φn - φn/\\φn\\G, then, by (3.6) and (3.7), the
sequence {φn} has the desired properties.

REMARK 4. Let the hypotheses of Theorem 4 be satisfied. Then it
follows from Theorems 1 and 4 that μ is extremal within Mμ. But this
is directly and more easily checked. In fact, since xQ£Λ{Γ), as noted in
the proof of Theorem 4, we see that there exists an open neighborhood
Fof x0 in U such that VΠ UczD. From this and (3.2), it easily follows
that μ is extremal within Mμ.

We have the reverse implication of the above Theorem 4, provided
that Γ is finitely generated and of the second kind. To be specific, we
have the following theorem. We note that the essential part of the
proof of the theorem is due to Fehlmann [8, Theorem 2.1]. For the sake
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of completeness, we give the proof.

THEOREM 5. Let Γ be a finitely generated Fuchsίan group of the
second kind. Let Mμ = Mμ(Γ, σ, E, b) be a class such that σ ^ A(Γ).
Suppose that the condition (2.6) is satisfied. Then there exists some
xoeσ\Λ(Γ) such that K(μ\D) = Hσ

h(x0).

PROOF. Let /c* and j* be defined as in the proof of Theorem 4.
By (3.1) and (3.4), it suffices to prove that there exists some x1 e δ \ Λ(G)
such that

(3.8) H'M = K(ιc*) .

First assume that Γ is torsion free and that E is empty. In this
case, [8, Theorem 2.1] says that if the condition (2.6) is satisfied, then
there exists some x1eδ\Λ(G) such that H](x^) = K(ιc). Further, since E
is empty, we have K = £*, j = j*. Thus we see that (2.6) implies (3.8).

Next we consider the general case. Since G is finitely generated,
we know as the Selberg theorem that there exists a torsion free sub-
group G1 of G of finite index m (see [4, p. 20] and the references quoted
there). It clearly follows that A(G, δ)cA(Gl9 δ), Λ(G) = Λ(Gt) and that
\\Φ\\G = II^LjM f° r every φ in A(G, δ). Furthermore, G1 is also finitely
generated and of the second kind.

Assume that the condition (2.6) is satisfied. Then the sequence {φn}
in A(G, δ\ in (2.6) satisfies

(3.9) l i m LG(fc*)(φn) = ||Λ*||CO .
n—*oo

But we can rewrite (3.9) as follows:

(3.10) lim Laί(κ*)(φn/m) = | |«*| |. .
n—»oo

Here the sequence {φjm} in A(Glf δ\ converges to 0 locally uniformly in
U\J(R\δ). Thus, by (3.10) and the former part of the proof, we see
that (3.8) holds for some x1eδ\Λ(G1) = δ\Λ(G).

4. Proofs of Theorems 1 and 2. In this section, we give the proofs
of Theorems 1, 2 and Proposition. For this purpose, first we recall some
results from Teichmϋller space theory and prove some lemmas.

Let τ e M0(G, δ) and let Rτ be the right translation of M(G) which is
defined by the relation Rτp = λ for p, λ 6 M(G) if and only if FP o Fτ = Fλ.
By these translations, the group M0(Gf δ) acts on M(G) on the right.
The generalized Teichmϋller space T(G, δ) is defined as the factor space
M(G)/MQ(G,δ).^ Let Ω denote C\δ (resp. the lower half-plane) if δ Φ R
(resp. if δ = R). Let λ^ be the Poincare metric on Ω. We define B(G, δ)
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as the space consisting of all the quadratic differentials φ for G on Ω
which satisfy φ(z) — φ(z) if δ Φ R, and

supλ^z)- 2 !^)! < °° .
zeΩ

The following theorem is known as an implicit result of Bers [1],
[2] in the case δ — R, and is due to Earle [5], [6] in the case where δ is
identical with the limit set Λ(G) of G. We can check that the arguments
developed in [5] and [6] still work for arbitrarily prescribed G and δ such
that A(G, δ) Φ {0}.

THEOREM A. There exists an open real analytic (resp. complex
analytic) mapping Jδ: M(G) -»B(G, δ) if δ Φ R (resp. if δ = R) satisfying
the following properties:

(a) Jδ(M(G)) is a bounded domain in B(G, δ),
(b) the kernel of Jδ is identical with M0(G, δ),
(c) for every X in M(G), the differential mapping DJδ(X): Loo(G) —•

B(G, δ) is surjective and has a continuous linear section,
and
(d) the kernel of DJδ(0) is identical with N(G, δ).

Theorem A implies that M0(G, δ) is an analytic closed submanifold
of M(G) and that the tangent space of M0(G, δ) at 0 is identical with
N(G, δ). Furthermore, Γ(G, δ) carries an analytic structure induced by
Jδ. The tangent space of Γ(G, δ) at [0] is Loo(G)/N(Gf δ) which is isomor-
phic to the dual space of A(G, δ) by the pairing (2.4).

PROOF OF PROPOSITION. Let V = U\F(E0) and let L^(V9 G) be the
subspace of Loo(G) consisting of those xeL^(G) which vanish on F(E0).
We denote by M(V, G) the open unit ball of Loo(V, G). Put X = Jδ\M(v,G)
As noted in the proof of [9, Theorem 1], it suffices to prove that the
mapping DX(0): Loo(V, G) —»B(G, δ) is surjective and that the kernel of
DX(0) splits in Loo(V, G). Let X be an arbitrary element in Loo(G). We
define λx by Xx(z) — X(z) on F(E0), Xλ(z) = 0 on V. P u t λ2 = X — Xίt We

abbreviate the space {φ\v; φ e A(G, δ)} to A(G, δ)\v. Since, the closure of
F(E0)/G in {UlJ(R\δ)}/G is a compact proper subset of {U\J(R\δ)}/G,
we easily see that the linear functional TΊ(λ) (resp. T2(λ)) on A(G9 δ)\v

sending φeA(G, δ)\v into —LG(X1)(φ) (resp. LG(x2)(φ)) is bounded. Then,
by the Hahn-Banach and Riesz representation theorems, there exist
λ?eLoo(F, G), i = l, 2, which satisfy ||λf ||oo = || Γt(λ) || and LG(Xf)(φ) =
Ti(X)(φ) for every φeA(G, δ)f where ||Γi(λ)|| means the operator norm of
Tt(X) on A(G, δ)\v. Let a e Loo(G) be the extension of λ|i?(̂ 0) which satisfies
a(z) = \*(z) on V. By our construction, we see that aeN(G, δ) and that
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λ - a e Loo(F, G). Thus, by Theorem A, we have DX(0)(X - a) = DJδ(0)(X).
This implies that the mapping DZ(0): Loo(F, G)-+B(G, δ) is surjective, be-
cause the choice of λ 6 Loo(G) is arbitrary and the mapping DJδ(0): Loo(G) —>
JB(G, §) is surjective.

Let XβLoo(V, G). Then clearly we see that X — λ2* belongs to the
kernel of DX(0) and that ||λ2*|U = ||Γ2(λ2*)||. Noting these facts and
Theorem A, we can easily check that the kernel of DX(0) is closed in
Loo(F, G) and that it has a closed complementary subspace {xeL^V, G);

= ||Γ2(λ)||} in Loo(F, G). This completes the proof of Proposition.

As was shown in [16, Lemma 2.1], we obtain (4.1) below as an
immediate consequence of the "main inequality" of Reich and Strebel for
the configuration (G, δ) (see Strebel [20], Bers [4, Theorem 2] and Gardiner
[10, Theorem 4.2] for the "main inequality"). The inequality (4.2) follows
from (4.1), (1.3) and (1.4).

LEMMA 1. Suppose that v e Mμ. Then the following two inequalities
hold for every φ e A(G, δ)\ {0}:

(4.1) \\φ\\G ^ K(v\D)D[φ, K] + E[φ, ic] ,

(4.2) \\φ\\G ̂  K(Mμ)D[φ, tc\ + E[φ, ιc] .

LEMMA 2. There exists a positive number r such that

D[φ, iί\ ^ r for every φ e A(G, δ\ .

PROOF. Suppose the contrary. Then there exists a sequence {φn} in
A(G, δ)1 such that limn̂ oo D[φn, K] — 0. By the mean value property of
holomorphic functions, A(G, δ)λ forms a normal family with respect to
locally uniform convergence. Thus we may assume that the sequence
{φn} converges to some φoeA(G,δ) locally uniformly in U{J(R\d).

It follows from definition that

D[φn,ιc\^K{μ\D)-Λ\ \φn\dxdy .

Thus we have

0 = lim D[φn, K] ̂  Kiμlv)-1 Km inf (\ \φn\ dxdy
w-^oo n-»oo JJF(D)/G

\Φo\dxdy .\
JF(D)/G

Since the set D/Γ has a positive measure, so does F(D)/G. Hence
the above inequality implies that ψ0 — 0. Therefore we see that
lim^oo E[φn, K] = 0 and that lim^oo K(μ\D)D[φny K] + E[φn, κ\ = 0. This
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contradicts (4.1). Thus we have the lemma.

LEMMA 3. Let {φn} be a sequence in A(G, δ)ί which converges to 0
locally uniformly in U\J(R\δ). Then the conditions (2.6) and (4.3) below
are simultaneously true or false:

(4.3) UmLG(tc(l - \φ-\φn) = \\μ\D\Ul - \\μ\D\\lYι .
n—>oo

PROOF. Let Λ;* be the extension of ιc\F{D) to U such that ιc*(z) = 0
on F(E). Since \\μ\D\\oo = ||/c*|U and the integral of \φn\ over F(E)/G
converges to 0 as n tends to oo? W e may replace tc (resp. ||μ|z)||oo) in (2.6)
and (4.3) by ic* (resp. ||Λ:*||OO). Thus we have only to consider the case
k0 = ll^iμ > 0. We put Sc = {z e U; \κ*(z)\ ^ c) for 0 < c < k0. Then, in
the same way as in Reich and Strebel [14, pp. 382-383], we easily see
that, given any ε > 0 there exists some c, 0 < c < k0, such that

|LG(/e*(l - l / c T n ω - (1 - ΛSrLβOOWl

φn\ dxdy + εk0 .\ [ \
J JSC/G

Thus it suffices to prove that if any one of (2.6) and (4.3) is satisfied,
then, for every c, 0 < c < k0, the integral of \φn\ over SJG converges to
0 as n tends to <χ>. But, as noted in [14, p. 381], we can easily check
this.

Now we give the proof of Theorem 1.

PROOF OF THEOREM 1. If (2.5) holds, then it follows from definition
that K(μ\D)D[φ0, tc] + E[φ0, tc] = 1. Thus, by (4.1), we have (2.7).

Now we assume (2.6). Then, by Lemma 3, we have (4.3). Thus, by
(4.1), we can easily check that limn_oo E[φn, κ] = 0 and that limn_oo D[φn, tc] =
l/K(μ\D). Therefore we have (2.7).

Next we assume (2.7) and show that μ is extremal within Mμ. Take
an arbitrary positive number ε. By (4.2) and (2.7), there exists φιe
A(G, δ\ such that

K(μ\D)D[φlf tc] + l - K(Mμ)D[φ19 tc] ^ K{μ\D)D[φx, tc] + E[φlf tc] < 1 + ε .

Thus, by Lemma 2, we see that there exists a positive number r such
that

K(μ\D) - K(Mμ) < elD[φlf tc] ^ ε/r .

Since ε is arbitrary, we see that K{μ\D) ^ K(Mμ). This implies that μ is
extremal within Mμ.

After proving one more lemma, we give the proof of Theorem 2.
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L E M M A 4. Suppose that /c0 = ||/̂ lz>l|oo >̂ 0. Let τ(ί) eM(G) be a curve
defined in an interval (0, ί0) which satisfies (2.10) and (2.11) for some
αeLoo(G). Let H = Fτ{t) and let v(t) be the complex dilatation of H ° F.
Suppose that the conditions (2.9) and (4.4) below hold:

(4.4) \\(ic - α ) U \ F ( J ϊ o ) | | o o = a < k0 .

Then there exists a positive number t1 such that the following inequalities

(4.5) and (4.6) hold for every t <; ίx:

(4.5) IWOUloo < fc0 ,

(4.6) W)(w)\ ^ 6(w) a.e. in E .

PROOF. Noting (2.1), we put w = f(z), p — fz. Then it is well-known
that

(4.7) v{t)(w) = (τ(t)(z) - φ))(l - τ{t){z)ic{z)Yιplp

holds a.e. in U. By (2.11) and (4.7), we have

- ta(z))(l + to(«)ί(«)) + o(jt)\

/c(̂ ) + ί(l - \fc(z)\*Xφ) - a(z))\ + o(t)

c0 - a) + o(ί)

for almost every point w in D. Thus, by (4.4), we have (4.5). We note
that the above procedure of the estimate of \v{t)(w)\ is due to Bers [3,
p. 42].

It remains to prove (4.6). By (2.10) and (4.7), it is obvious that

(4.8) W){w)\ = \fc(z)\ = \μ(w)\ ̂  b(w) = 0 a.e. in EQ .

In the case cx — 0, (4.8) is none other than (4.6). Thus we have only to
consider the case c'o > 0.

We modify the argument developed in [16, p. 109]. We put

V1 = {z e F(E\E0); \φ)\ ^ (k0 + a)b(f(z))/2k0} ,

F2 = {zeF(E\EQ); (fc0 + a)b(f(z))/2kQ < \φ)\ ^ b(f(z))} .

Let Vf = f(Vi) for i = 1, 2. Then we have

(4.9) &(/(«)) - \tc(z)\ ̂  (fc0 - a)b(f(z))/2k0 ^ (fc0 - a)c'QβkQ > 0

a.e. in VΊ. By (2.11), (4.7) and (4.9), we can easily check that there
exist positive numbers rx and sί such that

(4.10) \v(t)(w)\ ̂  b{w) - rxt for every t ^ s, ,

and almost every point w in Fx*.
Since c'o > 0, |/c(2)| is bounded away from 0 on V2 up to a set of

measure zero. Expanding (4.7), we have
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(4.11) \v{t){w)\ = \κ(z)\ - ί(l - |yc(z)|2) Re (a(z)ic(z))/\ιc(z)\ + o(t) ,

where o(ί) term is uniform with respect to almost every point z in V2.
We put β = Λ; — α on F 2 . Then, by (2.3) and (4.4), we have

aκ = (κ- β)κ = kQ\κ\2/φ o f) - βϋ ,

Re α£ ^ fco|ic|2/(6 o /) - \β\ \κ\ ^ \rc\ (k0 - a)/2 > 0

a.e. in V2. Thus we have

(4.12) (1 - \fc(z)\2) Re (a(z)κ(z))/\κ{z)\ ^ (1 - cf)(fc0 - α)/2 > 0

a.e. in F 2 . Therefore, by (4.11) and (4.12), we see that there exist
positive numbers r2 and s2 such that

(4.13) W)(w)\ ^ b(w) - r2ί for every t ^ s2

and almost every point w in V*.
By (4.8), (4.10) and (4.13), we have (4.6). This completes the proof

of Lemma 4.

PROOF OF THEOREM 2. Since \\μ\D\U > 0, by Theorem 1 and Remark
1, we have only to prove (2.8) provided that μ is extremal within Mμ.
Assume the contrary. Then the value a of the left hand side of (2.8)
is less than fc0 — II^UU. We note that K\F{EQ) = 0. By the Hahn-Banach
and Riesz representation theorems, there exists β e L«>(G) which vanishes
on F(E0) and which satisfies the conditions ||/3||oo = a and LG(£)(φ) =
LG(β)(φ) for every φeA(G, δ). Put a = k — β. Then a is an element in
N(G, δ) which vanishes on F(E0) and which satisfies

(4.14) \\ίc — a\\oo = a < k0 .

By Proposition, there exists a curve τ{t) e M0(G, δ) which satisfies (2.10)
and (2.11). Let v(t) be the complex dilatation of Fnt) © F. Since τ(ί)
belongs to M0(G, δ), we have FHt)\σ — F\a. Thus, by (4.14) and Lemma 4,
we see that v(t)eMμ and that HvOOUU < K for a sufficiently small t.
Therefore μ is not extremal within Mμ. This contradiction proves
Theorem 2.
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