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1. Introduction. If S is a compact Riemann surface, the universal
covering of S is biholomorphic to the unit disk if and only if the genus
of S is greater than one. This is equivalent to saying that S admits a
Kaehler metric with negative constant Gaussian curvature. The following
result due to T. Aubin [1] and S. T. Yau [23] is a generalization of the
above fact to higher dimensions from the differential geometric viewpoint.

FACT A ([1], [23]). If M is a compact complex manifold with negative
first Chern class, then M admits an Einstein-Kaehler metric which is
unique up to multiplication by positive numbers.

As an application of Fact A, Yau [22] obtained the following unifor-
mization theorem.

FACT B ([22]). Let M be a complex ^-dimensional compact complex
manifold with negative first Chern class. Then the inequality ( — l)n2(n +
l)c1(M)n~2c2(ikf) :> {-ifnc^Mf holds and the equality occurs if and only
if the universal covering of M is biholomorphic to the open unit ball Bn

in Cn.

The above inequality measures the integrated deviation of the can-
onical Einstein-Kaehler metric in Fact A from the ball-metric.

In dimension two, a much stronger result is known. Miyaoka [14]
obtained the inequality 3c2 ^ c\ for the class of compact complex surfaces
of general type, which includes all surfaces with negative first Chern
class. Recently Miyaoka [15] proved the following more general result:
if M is a compact complex surface of general type, then the inequality
3c2(M) — c^Mf ^ k(M) holds, where k(M) is a nonnegative rational number
which is universally determined by the configuration of all (—2)-curves
(i.e., rational curve with self-intersection number —2) and equal to zero
if and only if there is no ( —2)-curve on M (see p. 77).

Generalizing Yau's method in [23], the author [10] independently
proved the inequality 3c2(M) — c^Mf ^ k(M) ^ 0 . To state our previous
result precisely, we need some definitions. A compact complex space
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X is called a V-manif old if it has at worst isolated quotient singularities
(cf. [19]). Let X be a V-manifold and G a Riemannian metric defined in
the smooth part of X. G is called a V-metric if we obtain G by pushing
down a smooth metric of local unifomizations. Let M be a compact
complex surface of general type and ΦmK the m-canonical map. Then
M' = ΦmK(M) is independent of m if m is sufficiently large (cf. [12]), and
is called the canonical model of M. We obtain Mf by contraction of all
( —2)-curves on M (cf. [12]). M' is a F-manif old with only rational double
points as its singularities. M has negative Chern class if there is no
( —2)-curve on M. We proved in [10] the following:

FACT C ([10]). Let I be a compact complex minimal surface of
general type and Mf the canonical model of M. Then Mr admits an
Einstein-Kaehler V-metric with negative Ricci curvature, which is unique
up to multiplication by positive numbers.

Computing the Chern forms in terms of the above canonical Einstein-
Kaehler V-metric, we have the following uniformization theorem.

FACT D ([10]). Let M be as above. Then the inequality 3c2(ikf) -
c^Mf ;> k{M) holds. The equality occurs if and only if the universal
covering of M minus all ( — 2)-curves is biholomorphic to the open unit
ball minus a discrete set of points. In other words, we obtain Mr by
dividing the open unit ball 2?2 with respect to a discrete group Γ of
automorphisms acting on B2 properly discontinuously and with only
isolated fixed points.

The following example is due to F. Hirzebruch. Consider a surface
in P 4 defined by Zl + Z\ + Z\ + Z\ + Z\ = 0 and Zf + Zf + Zf + Zf +
Zf = 0. This has 50 singularities each of which is resolved in a smooth
curve of genus 6 with self-intersection number —5 and 1875 rational
double points of type A4. The resolution gives a smooth minimal surface
of general type M. M satisfies the extremal equality Sc2(M) — cL(M)2 =
k{M) = 27000. By Fact D, M is the minimal resolution of some Γ\B\

On the other hand, if p19 , pk are distinct points in P\ the universal
covering of P1 — {plf , pk} is biholomorphic to the disk if and only if
k is greater than two. This is equivariant to saying P1 — {plf •••,£>*}
admits a complete Kaehler metric with negative constant Gaussian curva-
ture with finite volume. In this paper, we shall obtain a two-dimensional
analogue of the above fact on punctured Riemann surfaces. To state
our results, we fix some notations. Let M be a compact complex surface
and D a reduced divisor with normal crossings. We assume (Mt D)
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satisfies the following conditions:

(1.1) (i) Let L = KM <8> [D] then U > 0 and L C ^ 0 for all irreducible
curves C on ikί,
(ii) the divisor determined by curves C such that CaD and L C >
0 has only simple normal crossings as its singularities.

(When D = 0 , (1.1) is equivalent to saying that M i s a minimal surface
of general type by the Kodaira classification.) Let ΦmL be the logarithmic
m-canonical map. Then ΦmL(M — D) is independent of m if m is large
enough [18], and called the logarithmic canonical model of M — D, denoted
by Mf. We obtain M' by contraction of all ( —2)-curves contained in
M — D, [18]. Mr is a F-manifold with only rational double points as its
singularities. We shall prove the following existence and uniformization
theorems.

THEOREM 1. Let (M, D) be as above. Then the logarithmic canonical
model Mf ofM—D admits a complete Einstein-Kaehler V-metric with
negative Ricci curvature, which is unique up to multiplication by positive
numbers. Moreover, the total volume is finite and equal to L2 if the Ricci
tensor is —(2π)~ι times the metric.

THEOREM 2. Let (M, D) be as above. Write ct for the i-th logarith-
mic Chern class of (M, D). Then the inequality

(1.2) 3c2 - c\ ^ k(M - D) ^ 0

holds. The equality occurs if and only if the universal covering of M —
D minus ( — 2)-curves is biholomorphic to the open unit ball minus a
discrete set of points. In other words, we obtain M' by dividing B2 with
respect to a discrete group Γ of automorphisms acting on B2 properly
discontinuously and with only isolated fixed points. In this case the
canonical metric in Theorem 1 is the ball-metric.

Here, the logarithmic Chern classes are defined as follows. Let M
be a compact complex manifold of dimension n and D a reduced divisor
with normal crossings. Ω\\ogD) is the bundle on M whose section in a
polydisk Δn in M with Δn Π D = U?=i (coordinate hyperplanes zt = 0) are
given by Σ^iα^^cί^/^ + Σ^=k+ibj(z)dzj where a^zYs and bjizYs are
holomorphic in z. Ci is defined to be ( — lYc^ilog D)).

Let Γ\B2 be the noncompact quotient of B2 with respect to Γ such
that Γ is a discrete group of automorphisms acting freely on B2 and the
volume of Γ\B2 is finite. Let M = (Γ\B2) U D be the minimal smooth
compactification of Γ\JS2. It is shown that (iίf, D) satisfies (1.1). Mum-
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ford [16] has proved that 3c 2 = c\. As a direct consequence of Theorem
2, the converse is also true in the following sense:

COROLLARY. Let (M, D) as in Theorem 2. The equality 3c 2 = c\ holds
if and only if the universal covering of M — D is biholomorphic to B2.

Now we shall show that Theorem 2 is a generalization of Fact D.
Let M be a compact complex surface of general type. Let D = (J A be a
union of mutually disjoint nonsingular elliptic curves Z)£ on M. It is easy
to see that (M, D) satisfies (1.1). From (1.2), we obtain the inequality

(1.3) 3c2(M) - c^M) ^ k(M - D) - Σ D\ .

Since D\ < 0, (1.3) is an estimate better than (1.2). The right hand side
of (1.3) represents an obstruction for the universal covering of M from
being the ball, since any compact quotient of the ball has negative first
Chern class and admits no elliptic curves. The inequality (1.3) is sharp.
In fact, Hirzebruch [8] constructed a sequence Xn(n = 2, 3, •) of minimal
surfaces of general type with the following properties: c2(Xn) = n\
3c2(Xn) — Ci(Xn)

2 = 4%δ. There are 4w4 smooth disjoint elliptic curves on
Xn with self-intersection number — n. So, we have the equality sign in
(1.3). By Theorem 2, the universal covering of Xn — (An2 elliptic curves)
is the ball.

This paper is organized as follows.
In Section 2, we shall construct a F-volume form (whose definition is

similar to that of a F-metric) Ψ on M' whose Ricci form is the —1 times
a complete Kaehler F-metric on Mf. In Section 3, we shall show that
— Ricf is of quasi-bounded geometry (i.e., of bounded geometry in terms
of quasi-coordinates) in the sense similar to [4]. In Section 4, we shall
follow the arguments developed in [4] to solve the Monge-Ampere equation
(a) + λ/^Λddu)2 = exv(u)Ψ, where ω = — Ric Ψ. Then ω + V^ϊddu is a
desired Einstein-Kaehler F-metric in Theorem 1. In Section 5, Theorem
2 will be proved. Examples of Theorem 1 will be given in Section 6.
Section 7 contains miscellaneous remarks.

Finally, the author would like to thank Professor Hajime Sato for
valuable discussions and the referee for helpful comments.

2. Singular Volume Form with Negative Ricci Curvature. In this
section, let (M, D) be as in Theorem 1. Set L = KM®[D\. Denote by
g7 the union of all irreducible curves C with L-C = 0. By the Hodge
index theorem [6], we have C2 < 0. By (i) in (1.1), there exist no ( — 1)-
curves (exceptional curves of the first kind) in M — D. If E is a ( —1)-
curve with L E=0, then E is one of the following: (a) E is a component
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of D such that E intersects the other components of D in exactly two
points, (b) E is not a component of D and E intersects D in exactly one
point. It is easy to see that if ^ contains a (—l)-curve E, the pair
(M', Df) we obtain by blowing down E also satisfies the condition (1.1)
and contains no ( —l)-curves Ef with L'Έ' = Q passing through the point
coming from E. So, we may and do assume that £f has no ( — l)-curves,
i.e., there exist no ( —l)-curves with (a) and (b). We begin with the
classification of the curves C on M with L C•= 0.

LEMMA 1. Let (M, D) and if be as above. Write if = Σ %?v for the
decomposition of g7 into connected components. Then each ^ is of one
of the following five types:

If £fy coincides with a connected component of D, then it is of one
of the followings:

(2.1) a nonsingular ellipitic curve with negative self-inter section
number,

(2.2) a cycle of nonsingular rational curves with self-intersection
number ^—2 and some of them ^ — 3 ,

(2.3) a rational curve with a node with negative self-inter section
number.

If &v is properly contained in some connected component of D, &» is
(2.4) a chain of nonsingular rational curves with selfintersection

number ^—2.
// &v is contained in M — D, ifp is one of the followings:
(2.5) Anf Dm(m ^ 4), EQ, E7, EQ, i.e., the Dynkin diagrams consisting

of { — 2)-curves.

PROOF. There are no irreducible curves C with L C = 0 which is
not a component of D and intersects D. Indeed, if C is such a curve,
we have 0 = L C = K-C + D C > K-C. By the Hodge index theorem,
we see C2 < 0. By the adjunction formula ([11, p. 118]), we have 2π(C) —
2 = K C + C2 ^ —2. Hence C is a (-l)-curve with the property (b),
which has been excluded by our assumption. If C is an irreducible curve
with L C = 0 and CaM - D, then K-C = L-C = 0. Since C2 < 0, we
have by the adjunction formula that C is a (—2)-curve. By the Hodge
index theorem and classification of Cartan matrices, each connected com-
ponent of ^ v disjoint from D forms a Dynkin diagram. Next, Suppose
if* coincides with a connected component of D. Write Sf„ = Σ C, for
the decomposition into irreducible components. Then we have 0 = L'Ct =
K-Ct + C\ + ΣnΦi Ci-Cj = 2g(Ci) - 2 + deg (O + Σy** C^Cj9 where Ct is a
normalization of Ct and ct is the conducter of Ct which is an effective
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divisor on C< of even degree. Ct is nonsingular if and only if ct is zero.
So, the following three cases are possible:

( i ) g(CJ = l, deg(Cΐ) = 0, Σ ^ C . Q - O ,
(ii) g(C<) = 0, degfe) = 0, ΣijΦiCsC, = 2,
(iii) ff(Q = 0, degfe) = 0, Σy*< C^Cy = 0.

These curves with L-Ci = 0 have negative self-intersection numbers and
some Ci Ci ^ —3 in the case of (ii), by the Hodge index theorem. Finally,
let £fy be of type (2.4) and C, an irreducible component of gV By the
same argument as above, we see that the possibility is g(Ct) = 0, deg(c<) =
0 and ΣjΦiCi-Cj = 2, i.e., the case (2.4). q.e.d.

LEMMA 2 (See [18]). Let (M, D) be as in Theorem 2. Then there is
a positive integer mo(M, D) with the following properties: for any integer
m ^ mo(M, D), (i) the complete linear system \mL\ has no base points,
(ii) if N + 1 = dim H°(M, έ?(mL)) and {φ0, φlf , φN) is a C-basis for
H°(M, έ?(mL))j then the logarithmic m-canonical map ΦmL: M —> PN; z\-+
(φo(z): φί(z): ΦN(Z)) is a holomorphic map whose restriction to M — &
is biholomorphic onto its image and Φ~l(Φm(z)) = j^L % Z^c^"~

PROOF. Sakai [18] proved this fact under the assumption that D is
semi-stable with some minimality condition and κ(Mf D) — 2. These
assumptions are satisfied under our condition (1.1) and the minimality
condition. Indeed, if C is a nonsingular rational component of D, we
have 0 ^ L-C = K-C + C2 + (D - C)-C = - 2 + (D - C) C, hence C inter-
sects the other components of D in more than one points, i.e., D is
semi-stable. Sakai's minimality condition follows from ours. By the
Riemann-Roch _formula [11], Σ U ( - 1 ) ' dim Hτ\M, έ?(mL)) = (m2U -
mL K)/2 + X(M, έ?). _By (i) in (1.1), we see H\M, έ?(mL)) = 0. Indeed,
Ht(M,<?(mL))9ZH°(M,<?(-(m-l)L-D)) by the Serre duality. If
— (m — 1)L — D contains an effective divisor A, we have 0 ^ L A =
— (m — 1)L2 — L'D < 0 which is absurd. Since U is positive, we have
limmToo ra~2 dim H%M, έ?(mL)) > 0, i.e., ιc(M, D) = 2. q.e.d.

LEMMA 3. Let (M, D) and L be as in Theorem 1. Then cx{L) {in
the de Rham cohomology) is represented by a real closed (1, 1) form 7
with the following properties: (i) 7 is positive definite outside of &, (ii)
for any irreducible component C of g7, i*7 vanishes, where ic is the
inclusion C -> M.

PROOF. Pick m sufficiently large so that the map ΦmL of M to PN

satisfies the properties in Lemma 2. The Fubini-Study metric form of
PN is given by v/^Λ(2π)--1dd log (ΣίU I Zk |

2) where Z= (Zk) is the homo-
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geneous coordinate. This represents the first Chern class of the hyperplane
bundle over PN. Let 7 be defined by ml = v/^ϊ(2π)~1dd log (ΣLo | φk(z) |2),
which is the pull back of the Fubini-Study metric form by ΦmL. Then 7
represents cx{L). Clearly 7 has the desired properties. q.e.d.

The rest of this section is devoted to the construction of a singular
volume form Ψ on M. First, we shall determine the complex structure
around each connected component g7, of ^ :

LEMMA 4. Let ^ = Σ ^ be the decomposition of £f into connected
components. Then there exist mutually disjoint open neighborhoods Uu

of <̂ v with the following properties: for each ifv there exists an open set
Dv in C2 and a discrete group Γv of automorphisms of Du such that the
deleted neighborhood Uu — if,, is biholomorphic to ΓU\DP. More precisely,
Dv and Γv are defined as follows:

( i ) When g^ is of type (2.1), i.e., if, = A, a smooth elliptic curve
with self-inter section number — 6(6 > 0), there exist a positive number a,
real numbers a, β, and a lattice £f in C defined by {m + nω; m,neZ,
lm(co) = a} such that

(1 2i7 i 1712 - 2Λ(7)\ 7 runs over £f, and for each 7 = m +N

0 1 7 I nω, h(Ύ) runs over the class of ma +

0 0 1 I nβ — mna modulo (2a/b)Z
Dv is defined by {(u, v) e C2; Im(u) — \v\2 > k} for some positive number k.
Γ» acts on Dv from the left by

(ii) When &v is of type (2.2), i.e., if, = ΣΓ=ίBt(r ^ 2) a cycle of
smooth rational curves with —Bi-Bi — bi'^2 {some b5 ^ 3), we introduce
an irrational quadratic number wk as the infinitely cyclic continued
fraction [[qk, qk+1, •••]] = l i m β T o o {qk - (qk+1 - - (<?s_i - tfβ"1)"1 0 " 1 ) " 1 } ,
where {qk} is a periodic sequence with period r defined by qk = bk for 0 ^
k ^ r — 1. Let {Rk}kez be a sequence defined by R_λ = w0, Ro — 1, qkRk =
i?A._1 + Rk+1 for keZ. Using these, let M be a free Z-module of rank 2
generated by 1 and w0, V the infinite cyclic multiplicative group generated
by Rr. Then

μ);eeV,μeM\ ,

Dv = {(zl9 z2) e C2; Imfe) > 0, Imfe) > 0, Imfo) Imfe) > fc}
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for some positive number k, and Γv acts on Dv from the left by

e μ

P
where ' means to take the conjugate over Q.

(iii) When *&y is of type (2.4), i.e., ^ is a rational curve with a
node with self-intersection number — 60 (δ0 > 0)> Dp is the same as that in
(ii) and Γv is also the same as that in (ii) provided we let qk — 60 + 2
for all k and r = 1.

(iv) When &v is of type (2.4), i.e., g^ = Σιk=ιEk(r ^ 1) a chain of
smooth rational curves with — EkΈk = bk ^ 2, we let n/q the irreducible
fraction representing bx — (62 — ( (δr_! — δ^1)"1- -)"1)"1- Then we have

ίΛβ group generated by (ί q\ where ξ = exp(2τri/n), αncί Dy — B — {0},

where B is a small ball centered at the origin in C2.
(v) When g^ is o/ type (2.5), Dv is B — {0}, where B is a small

ball centered at the origin in C2 and
(v-i) if &» = An, then

0

where ξ = exp(2τri/^ + 1),

(v-ii) i / g"v = Dw(m ^ 4), ίfeeτι Γ^ = ίfce binary dihedral group ®2(»-2>>
(v-iii) i / g"v = £7β, ίfeen Γv = ίΛe binary tetrahedral group 2Ϊ4,
(v-iv) i / ^ v = J577, ίΛe^ /*„ = the binary octahedral group ©4, αticί
(v-v) i / g"v = E8, then Γu = ίAe binary icosahedral group Sfΰ.

Secondly we shall construct a singular volume form Ψ on M. If we
contract all connected components of g7 lying outside of D, we get a V-
manifold M'.

DEFINITION. A continuous function Λ, on iίί' is called V-smooth if (i)
h is smooth in the smooth part of M', (ii) π*h is smooth where π denotes
a local uniformization.

In the following lemma, we shall use the notations in Lemmas 2 and 4.

LEMMA 5. Let &' = Σ ' if* δe £&e union of all the connected com-
ponents of & lying in D. Write D = Σ A for the decomposition into
irreducible components. Then there exists a smooth volume form Ω on M,
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Hermitian metrics || || for [Dt], mutually disjoint open neighborhoods Uv

of ^ c g 7 ' , functions fu which are Vsmooth outside of &v and a V-
smooth function h on M such that Ψ = hΩ/U \\st\\2 Π ' Λ Π"(log(c| |^ | |" 2) 2

is a V-volume form on M — D with negative Ricci curvature, where
Π ' means to take the product over v such that ^v is contained in
supp CD), Π " to take the product over I such that Dι is disjoint from W
and c a suitably chosen positive number. Moreover, ω = —Ricf has the
following properties: a) is a complete Kaehler V-metric on M — D with
finite total volume and the inequality C"1 < Ψ/(ω2) < C holds in M — D
for some positive number C. Here, fv is a function going to °° at gfw

written as follows:

Case (i) if,, = A is of type (1.1): /„ = {log ||α-||~2}~3 for some Her-
mitian norm || || for [A] and σeΓ(M, [A]) such that (σ = 0) = A. More
precisely, fv\Uv = [log{c(exp( — |z|2))δ7Γ/α|'M;|'~2}]~3 for some positive constant
cffv = constant in a neighborhood of ^ — %?„ where w = exp(6πm/2α),
z = v.

Case (ii) and (iii) ifv = Σ/i=Z Br(r ^ 1) is of type (1.2) or (1.3): let Cl
be a copy of C2 with natural coordinate (uk, vk). We put an identification
uk = uq£Γι vh^ vk — uk-i on the disjoint union JlkezCk. Then (ukf vk) is
a local coordinate in a neighborhood of Bk_x Π Bh for 0 ^ k ^ r — 1 where
B_x = Br_x. fu is written in terms of (uk, vk) as

(Λ*-i log I uk I"1 + Rk log I vk \-YXRL! log | uk I"1 + R'k log | vk I"1)"2 ,

in a neighborhood of Bk_xV\Bk1 f^ = constant in a neighborhood of&— Wu.
Case (iv) gfv = Σ U Ek is of type (1.4): let π: Dv = B - {0} - * ! / „ - g7,

6e ίΛe projection and (λ, μ) ίfcβ natural coordinate of B. Denote by Eo

and Er+1 the irreducible components of D intersecting Ex and ErJ respec-
tively. Then there are continuous functions glf g2 defined in a neighbor-
hood of Σ ί = ί E k such that (i) π*gx|(Uv- g7,) = \μ|2, π*g2\(U» - g7,) = |λ|2, (ii)
ίλe zero-locus of g1 (resp. g2) is &V[JEO (resp. &u{jEr+1), (iii) gx = |σo |2

(resp. g2 = |σ r + 1 | 2) Tteαr JEΌ (resp. near Er+1), where σQ (resp. σr+1) is a
holomorphic section of [Eo] (resp. [Er+1]) with (σ0 = 0) = Eo (resp. (σr+ι —
0) = Er+1) and \\ - \\ is a certain Hermitian metric for [Eo] (resp. [ϋy+J),
(iv) \og(g±) and \og(g2) is smooth outside of Σ ί ί J Ek. Finally, fv has the
following properties: fv = (Iog(c/gr1))

2(log(c/gf2))
2 near Σί ίo Ekf where c is a

positive constant, f = constant in a neighborhood of ^ — £fv.

PROOF OF LEMMAS 4 AND 5. Step 1. Substep 1-1: Let A be a non-
singular elliptic curve with self-intersection number — b (b > 0) on M which
is an isolated component of ^ . We analyse a small neighborhood of A.
We use the following theorem due to Grauert [5]: "Let π: (X, C) -> (X,
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x) be the minimal resolution of the normal two-dimensional singularity
(X, x) such that π~\x) = C is a nonsingular curve of genus g. Let N
denote the normal bundle of C in X. If C2 < 4 — 4#, there are a neigh-
borhood Ϊ7 of C in X, a neighborhood V of the zero-section (=C) of N
and a biholomorphic map σ:U^V such that <7|σ is the identity of C".
Combining this theorem with our assumption, we may assume that
there is a neighborhood V of A in M which is biholomorphic to a neigh-
borhood of the zero-section of the normal bundle N of A in M. Since
A2 = — b φ > 0), N is a negative line bundle of degree —6. We set A =
C/^f, Sf = {Z + Zωm, Im ω > 0}, and denote the projection C—> A by π.
Let α be the area of the fundamental domain of £f measured by the
usual flat metric \dz\2 of C. There is a real closed (1, l)-form η on A
such that τr*77 = i(2a)-1dz Λ dz. By the definition of α, [57] is a generator
of H2(A; R). Let p be the Hermitian metric of the line bundle N-^A
whose Chern form is given by —bη= —ib{2a)~'1dz Λ dz. The curvature
form of the induced Hermitian line bundle π*N —> C is given by

— ibπarι-dz A dz. Since H\C, #**) = {1}, there is an isomorphism C2 —>
τr*iV between holomorphic line bundles over C where C2 is the trivial line
bundle over C. In particular, we may regard p as a positive function
on C. There is an entire holomorphic function ζ(z) such that π*p(z) is
equal to {exp( — |z| 2)| expζ(z) \2}bπ/a. The biholomorphic map of C2 into itself
defined by (w, 2;)ι- (̂exp{ — bπζ(z)/a}-w, z) is an isomorphism of trivial line
bundles over C and the Hermitian metric (exp( — \z\2))bπ/a is pulled back
to the Hermitian metric (exp(—1^(2)| exp ζ(z) |2)δ7Γ/α. We may assume that

π*N = C2, π*p(z) = (exp(-|^|2))δjr/α. Let U be an open subset of C such
that U is contained in a fundamental domain of £f. Let 7 be an arbi-
trarily fixed element of £<?. Since CxU and Cx(U + 7) are local triv-
ializations of N\π{U), there exists a non-vanishing holomorphic function
g(z) defined in (ze)U such that (w,z)eCxU and (w\ z') eCx(U + 7)
represent the same point of N\π{U) if and only if zf = z + 7 and w' —
g(z)-w. g(z) must satisfy the following equality:

M2(exp(Hz|2))-δ*/α = |wT(exp(Hz'|2))-&3r/a

= \g(z)\2\w\2(exv(-\z + Ύ\2))~*/a

for all z e U and w eC. Therefore g{z) must be written as

(2.6) g(z) - exp \-^(ZΎ + il£ +

where 0(7) is a real number determined by 7 e .Sf modulo (2a/b)Z. Now
we look at 0(7) more closely. If z' = 2 + 7 and 2" = z' + 7;(7, 7' 6
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then (w, z), (w't zf) and (w"9 z") represent the same point if and only if
the following three equalities hold:

= exp j-^L(«(7 + 7') + ϊl±J-l + iθ(y + 7'))} w ,r," —

w" = exp I — (W +
α \ 2

= exp {-—(zy + - t t + i0(7))}

Hence 0(7 + 7') = 5(7) + 0(7') - Im(77') modulo (2a/b)Z. Recall that j ^ =
{Z + Zα>; Im ω = a > 0}. It follows that 0(m + naή = m« + n/S — rawα
modulo (2a/b)Z, where a and /3 are fixed representatives of 0(1) and 0(α>),
respectively. Using this 0(7) (jeJzf), we define a group Γ of 3x3
matrices as follows:

ll 2iϊ i | 7 | 2 — 2h(y)\ 7 e£f, h(m + nω) is an element

Γ = 11 0 1 7 I of 0(m + nω) = ma + nβ — mna

\θ 0 1 / modulo (2α/6)Z

Let JB be the unit ball in C2 and Sf the domain in C2 defined by
{(u, v) 6 C2; Im (w) - |v\2 > 0}. Then ^ = (u - ί)(u + i)'1 and 2;2 = (2v)(% +
i)"1 give a biholomorphic map of B to ^ For a positive integer fc, we
consider the subdomain W of S? defined by W = {{u, v) 6 S^\ Im (u) —
\v\2 > k}. W corresponds to the horoball at (1, 0) of B with the Bergman
metric. Γ is a discrete subgroup of the group of the analytic automor-
phisms of ^ acting on Sf properly discontinuously and without fixed
points. W is invariant under the action of Γ. This action is described
as follows:

0 0 j

The map F: W-+C2 defined by (u, v) —> (exp (bπiu/2a), v) maps TFonto
the set V = F(W) = {(w, 2) eC2; 0 < |^|7(exp(-|^|2))δJΓfc/α}. If we define
V= {weN O < p(w, w) < exp (-δπ/b/α)}, then V = π'XF). F is a deleted
neighborhood of the zero-section of N and a punctured disk bundle over
an elliptic curve A. Now we show that Γ\W is biholomorphic to V.
By (2.6) and (2.7), π<>F(u, v) = π<>F(u', v') if and only if \u', vf) = 7*(w, v)
for some ΎeΓ. So, there is a unique biholomorphic map F:Γ\W-+V
with π°F = Fopf where p is the projection W-+Γ\W. The Kaehler
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form of the Bergman metric of B is written in terms of the coordinate
(u, v) of £f as

dv A dv , ( — idu — 2vdv) A (idΰ — 2vdv)
Im(u) -\v\2 4 ( I m ( w ) - \v\2)2

This projects down to a Kaehler metric of V, whose Kaehler form is given
by

dz A dz , ((a/bπ)(dw/w) + zdz) A ((a/bπ)(dw/w) + zdz)
(a/bπ) log Iw | " 2 - | z | 2 {(ajbπ)log \w\~2 - \z|2)2

where (w, z) = F(w, v) = (exp (bπiu/2a), v), i.e., a local trivialization of
F-> A. If we define a function / of V to iJ+ by exp(/(w)) = p(w, w)"1,
then (Fop)*( — iddlogf) is equal to the restriction to TΓ of the Kaehler
metric coming from the Bergman metric of B.

REMARK 1. Let (X, A) be a pair of a complex surface X and a
nonsingular elliptic curve A holomorphically embedded into X with A2 <
0. Then Kx (x) [A] is analytically trivial near A.

Substep 1-2: Let S b e a component of D of type (2.2) in Lemma 1,
i.e., B is a cycle of Pvs with the decomposition J? = Σί=o 2?t(r ^ 2) into
irreducible components. For 0 ^ i ^ r — 1, we define a positive number
bi by —bi = Bi'Bi. By our assumption, 6* ̂  2 for all i, ^ ^ 3 for some
1. Let qk for ί e Z be the periodic sequence of period r with qk = 6fc

with 0 rg fc ^ r — 1. From now on, we choose an open neighborhood X
of B in M and analyse the differential geometric structure of (X, B). By
[5], B can be contracted to a normal singular point x. We review Hirze-
bruch's theory (cf. [8]) of the construction of the minimal resolution
π: (X, B) —> (X, x) in a manner suitable to our purpose. Let E —• P 1 be
the g-th tensor power of the tautological line bundle. Then E is covered
by U{ = C2(ί = 1, 2) with conrdinates (ui9 vt) with the transition rules
u2 = ^r1, 2̂ = ^i^i on C/Ί Π {̂ i ^ 0} = U2 Π {̂ 2 ^ 0}. Combining Grauert's
theorem [5] cited above with this fact, we can naturally construct a
complex manifold containing a cycle of Pvs with the same intersection
matrix as B. This is done as follows. For a integer fc, let C\ be the copy
of C1 with the coordinate (ukf vk). We put the identifications defined by

(2.8) uk = uV^-v^ , vk = wii!

on the disjoint union ILezCfc Let the resulting manifold be denoted by
Y'. It follows that the curve in Y' defined by vk = 0 in Q and uk+1 = 0
in C2+i is a nonsingular rational curve with self-inter section number — qk.
We denote this by Sk. \JkezSk forms a chain of infinitely many P^s.
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The identification (2.8) is written as

(log uk log vk) =

= (log u0 log v0)

Set

oj\i 0/ \i o,

Then qkPk = Pfc_x + Pfc+1, Po = 1, P1 = g0 and <^Qfc = Qfc_x + Q*+1, Qo = 0,
Q1 = 1. {P/Jfc2>i and {Q/Jfĉ i are determined by the continued fractions

[[Qo, ?I, , qk]\ = ?o - (ϊi - (?2 - - tofc-2 - tffc-i)""1 O"1)"1 = Pk/Qk,
where Pk and Qk are mutually prime for positive integers (k ^ 1). We
have assumed that all qk^2 and some ^ ^ 3. The infinite periodic
continued fraction [[q0, qlf , q8, •]] > 1 represents a real quadratic
irrational number w0. Let w8: = [[q8, q8+1, •]] > 1. The sequences {P*}^
and {Qk}^! are strictly increasing and lim^α, PJQk = w0. Now we define
a sequence {Rk}^ by Rk = Pk — Qkw0 (ft ^ 1). Then J?fc's satisfy ĝ i?*. =
i2fe-i + βfc+i Using this, we can define Rk for any integer k. From the
definitions, i?0 = 1, Rι = wϊι, , Rk — w^wϊ1 wk

ι, i2_x = w0, i2_2 = wow_u

. . . , j2_t = wQw1 w_fc+1. So, {Pfc/QjA î approximates w0 and limfc_oo(Pk —
Qkw0) = 0. Λί = Z + Zw0 is a free Z-module of rank 2 and {Rk-lf Rk), for
any integer ft, is a Z-basis of M. Since wfc = wk+r for any integer ft, RrRk =
i2A;+r holds. So, ϋ!rikf = ikf. By the Hamilton-Cayley theorem, Rr and
i2_r = Rr1 are both algebraic integers, in particular, R'r = iΪΓ1, where '
means to take the conjugate over Q. Let V = {i?r}nez = Z under the
correspondence R^^n. Then G(Λf, F) = |ΓQ ̂ j ; ε e F, / / G M | acts on C2

properly discontinuously and without fixed points as follows:

e μ

In particular, the action of V= Z is given by n (zuz^ =
Proper discontinuity follows from lim^*, Rk = 0. The action of G(Λf, V)
on C2 restricts to H2, where H is the upper half plane. Since both Rΐ
and Rrn are algebraic integers, the function Im (zx) Im (z2) is invariant
under the action of G(M, V). We shall show that there is. a neighborhood
Y+ of \JkezSk in F such that Y+ - \JkezSk is biholomorphic to £Γ2/Λί.
The equation
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(2.9) fc 2πifa, z2) = (log uk9 log vk)(

determines the class of fa9 z2) in C2/M. This is well-defined, since if (2.9)fc

holds, then so does (2.9)Λ+1 by the definitions of (uh9 vk) and Rk. Hence
C2/M = Y' — Ufc6zSfc. F + is by definition the closure of the image of
H2/M under this isomorphism, which is given by

Y+ = {(uh9 vk) e Cl) oo ^ Rh_γ log Iuk I"1 + Rk log | % I " 1 > 0

oo ^ JRfc_1 log I uk I
1 + Rk log I vk I"1 > 0} .

It follows that

\ΔΛΌ) £i jM = 1: — U >̂fc
keZ

To make a cycle B of P19s from the chain of Piys, we need to put a
periodic identification on F + . We consider the following Z-action on Y'.
For neZ and {a, β) in the coordinate neighborhood Ck1 n (a9 β) is defined
by (a, β) in terms of the (k + w)-th coordinate. This Z-action restricts
to the action on Y+ — \JkezSk and is compatible with the F(=Z)-action
on H2/M via isomorphism (2.10). Indeed, the point of Y' — \Jk^zSk

expressed as (a, β) in the (k + nr)-th coordinate is written as (aaβh, a~cβ~d)
in the Λ -th coordinate, where

d) Hi 0/U 0/ ' " \1 0

So,

(\ogaaβh loga-'β-*)^'1 J^~1) = (logα log β)
^k-nr

0\

Since c > d > 0 , if | α | < ε and | /31 < 1/ε then the cardinality of n such
that \a~~cβ~d\ ^ 1 is finite. It follows that this Z-action on Y+ is properly
discontinuous and without fixed points. We define Y = Y+/Z by this
action. The image of Sks forms a cycle B = Σί=o Bk of F1Js such that
Bk*Bk — —qk* Summing up the above arguments, there is a canonical
biholomorphic map H2/G(M, V) = Y — B, and the correspondence is given
by (2.9)fc in the fc-th coordinate of Y' and the Euclidean one of if2. The
open set WL of H2 defined by {(z19 z2) e H2; Im fa) x Im fa) > L} is invariant
under the action of G(M, V) and its image in Y — B is a deleted neigh-
borhood of B. By Laufer [13], (q0, qu •• ,gr_i) determines the complex
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structure of the neighborhood of B. Hence there is neighborhood VL

of B in M such that VL — B is biholomorphic to WL/G(M, V) for some
large L. {47r2 Imfe) Im(z2)}~2 defined in H2 projects down to a function
/ defined near B which is given by

f(uk9 vk) = (Λ^log l ^ l " 1 + i2*log l^l-^- CΛLilog l ^ l " 1 + Λίlog \vk

in terms of the fc-th coordinate. The Poincare metric | dzx |2/(l/i)2 +
I dz21

2/(?/2)
2 projects down to a Kaehler metric ΐ331og/.

REMARK 2. If Fz) J3 is as above, then Kγ <g) [I?] is analytically trivial
in a neighborhood of B.

Substep 1-3. Let C be an isolated component of D of type (2.3) in
Lemma 1, i.e., a rational curve with a node. If C2 = — b0 (60 > 0), then
we can reproduce a complex surface Y containing a rational curve with
a node of self-intersection number — b0 by the construction in the pre-
ceeding Substep 1-2 provided we let qk = b0 + 2 for all k and r = 1.
Hence there is the same function / as above which comes from
Im (Zx)-2 Im fe)~2(27r)~2 and whose "idd log" is the Kaehler form coming
from the Poincare metric of H2.

Substep 1-4. Let E be a connected component of D containing
connected components of g7. For brevity, we assume that the number
of such components of gf is one. The following arguments will be easily
extended to the general case. Let g\ = Σ L i ^ be the component of ^
contained in E. By Lemma 1, ίfx is a chain of Plfs with bk = — E\ ^ 2.
Let £Ό and ϋ7r+1 be the irreducible components of E — gf which meets JS70

and i? r, respectively. We cover the chain ifx of Plfs by r + 1 coordinate
neighborhoods (Uk; ukf vk), 0 ^ k ^ r, with the following transition rules:

(2.11) Mx = Uo\ vx = ufc-Vo in £70n U± = {u0 =£ 0} ,

^2 = v - i in U1 Π C72 = {Vx ^ 0} ,

z = ^23 v2 in U2Γ\US = {u2 Φ 0} ,

£?„ is given by {v^i = v8 = 0} if s is odd and by {u8_x = u8 = 0} if s is
even. We may assume that 2£0 is given by {u° = 0} and Er+1 by {̂ r = 0},
if r is odd or by {vr — 0} if r is even. Let n/q be the irreducible repre-
sentation of the continued fraction 6X — (62 — ( (6r_i — &71)"1 -)"1)"1-
Let Γ be the cyclic group of order n generated by ξ = exp(2πi/n). The
P^configuration g7! appears as the minimal resolution of the quotient
singularity Γ\B, where the action of Γ on B is defined by
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The minimal resolution is described in terms of (λ, μ) and (uk, vk) as
follows: Let us assume that r is odd. Then

(2.12) λ = v0 = ttf t fi = = vS

p — U0V0 — — U28 'V28 — W-28 + 1 V28 + l — * — Vr 9

where λ, , ft , and vs are determined by

λ0 = nfX1 = q, bjλj = λy_! + λ i + 1

Λ> = 0, ft = 1, 6yft = ft_x + ft+1

v0 = 1, ^ = 1, 6 ^ = vά_, + p i + 1

for 1 ^ i ^ r. Here, we set μ r = q', and ^ α = qq' — 1, so, λ r = 1, λ r + 1 =
0, μr+1 — n, vr = q' — α, vr+1 = n — q. If r is even, we have only to
interchange vr and ur. The curves £Ό (u0 = 0) and £Jr+1 (ur = 0) corre-
spond to the coordinate lines (μ = 0) and (λ = 0), respectively. With
these in mind, we consider the function / ' defined in neighborhood of g^
by

f'fa., v28) = {log I ^281-2^/-1 ^28 |-^2s+iM}2. { l o g 1 ^2β |-2^s/-jV28|-^e+iM}2 9

which is well-defined, since the transition rules of (ukf vk)'a are given by
(2.12). Since the function (log |λ |- 2) 2(log|^ |" 2) 2 projects down to / ' , the
Kaehler metric |dλ|2/|λ|2(log |λ|~2)2 + \dμ\2/\μ\2(\og \μ\-2)2 defined in ΰ -
(λ = 0) U (μ = 0) also projects down to an Einstein-Kaehler metric idd log / '
in a neighborhood of gflβ The functions \uo\

2\vo\
2q/n and \ur\

2\vr\
2qf/n are

well-defined near Sf\. So, we extend these to nonnegative functions gx

and g2 defined near E with the following properties: (i) g1 and g2 restri-
cted to a neighborhood of gfx are \uo\

2\vo\
29/n and |^r|

2|vr|
2flf//w, (ϋ) the

restriction of g1 (resp. g2) near EQ (resp. Er+1) is written as | |α o | | 2 (resp.
||cτ r + 1 | |

2), where σ0 (resp. σr+1) is a holomorphic section of [£70] (resp. [Er+1])
and II II denotes the norm with respect to a certain Hermitian metric of
[Eo] (resp. [Er+1]), (iii) the zero-locus of gι (resp. g2) is gfi U JEΌ (resp.
£fi U Sr+i). We set / = (log l/^)2(log l/^)2- Finally we introduce a singular
volume form

/fflk.lΓ / Π (l|τ||2.(logl/||r||2)2) ,
0 τ

where Ω is a smooth volume form of M, τ's are local equations of irre-
ducible components of D — (E0U ^UEr+1), σ8 is a local equation of E8, and
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|| || is a certain Hermitian norm of these line bundles. The —1 times
the Ricci form of W is written as

-Ric { ^ / n II°* II2 Π IMI2} - ίdd log/ - ί Σ 33 log(log | |τ | |-2)2 ,

where the first term represents c^Ka ® [D]) ̂  0 near E, the second term
is Einstein-Kaehler near g\ complete toward g^ U Eo U Er+lf the third term
gives the "Poincare metric" in the direction transversal to D — (EQ U
^\jEr+1). By an appropriate choice of || || and by changing / by
(log c/g^Xlog c/g2)

2 for a small positive number c if necessary, we may
assume that —Ric?P*' is a Kaehler metric in a deleted neighborhood of E
complete toward E.

Substep 1-5. Let Όf be a connected component of D which does not
contain any curve of g*. Let D'k denote an irreducible component of D\
Then as in [9], we consider the singular volume form

near D'. We may assume that — Ric?F" is a Kaehler metric in a deleted
neighborhood of Df complete toward D'.

REMARK 3. In the preceding substeps, we constructed the canonical
Kaehler metrics in small deleted neighborhoods of the connected com-
ponents of D. These metrics are complete toward D. The restriction of
each of these metrics to a disk transversal to D is equivalent to the
Poincare metric of the punctured disk near the intersection point with D.

Step 2. Let If, be a connected component of gf of type (2.5) in
Lemma 1. By [10, §1], there is a smooth volume form Ω on M and a
F-smooth function h such that hΩ is a V-volume form whose Ricci form
is the —1 times of a Kaehler F-metric in a neighborhood of &u.

Step 3. Construction of the singular volume form: Let D = Σ i A
be the decomposition into irreducible components. There are a smooth
volume form Ω in M and a Hermitian metric || || for each [DJ such that
the real closed (1, l)-form 7: = -Ric{J2/IL llSill2}, representing 2πc1{L)9

satisfies the conditions in Lemma 3, where s< is a holomorphic section of
[Di\ with Di as its zero-locus.

Substep 3-1. Let A be a nonsingular elliptic curve of type (2.1) in
Lemma 1. As in Substep 1-1, there are a local coordinate (w, z) such
that A is given by w = 0 and the function

f(w, z) =
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whose — i/^Ϊ33 log is a Kaehler metric complete toward A. We extend
/ to a smooth positive function / i n M — A such that (i) / coincides
with / near A, (ii) / is constant in a small neighborhood of other com-
ponents of g7. It follows that there is a positive constant c such that

7 - l / ^ S S log (/ + c) > 0 in M - if
holds.

Substep 3-2. Let S b e a cycle of Pvs or a rational curve with a
node in Lemma 1. The function / : (ukf vk) ι-» CR*_i log | uk

λ \ + Rk log | vk

11)"2

x CRLi log I Mi"11 + Λiloglvί1!)"2 is well-defined and v / ^ δ S l o g / is the
canonical metric coming from the Poincare metric of H2. Note that
l o g / = - c o a t ί . We extend the function log/ to the whole M in the
following manner. First, we consider the image in PN of M under the
logarithmic m-canonical map Φ = ΦmL for m large, where L = KM®[D].

B is mapped to a singular point p. We pick a small neighborhood of p
in P^ and introduce a local coordinate («<) around p — (0, , 0). We set
*(s) = Σ<|Stl2 Secondly, we pick a function τ: i?+—>JB+ for a positive
number μ as follows:

τiβ) = 0 if 0 ^ s ^ JM/2

τ(s) = μ if JM ̂  s

0 ^ τ'(s) ^ 3 for all s ^ 0

-10 ^ r"(s) ^ 10 for all s ^ 0

and consider the function F given by log (F) = (1 — τot/μ) log (/).
V~^Λdd log (F) is positive definite in a neighborhood | ί | < μ/2 of p and
vanishes if \t\ > μ. It may have negative direction in the domain μ/2 ^
\t\ ^ μ. But the following computation tells us that the order of the
negativity is (μ logiμ'1))'1 in μ/2 ^ | ί | ^ μ:

3d log(F) = —l(r"(ί)3ί Λ 5ί + τ'(ί)33£) log(/) - ^ 3 ί Λ 3 log (/)
μ μ

* = Σ t M«<,

log (/) = 2{Rk_1duk/uk + Rkdvk/vk) (#,_! log (uίΓ1) + i2, log (T^1))-1

+ (a similar term).

On the other hand, we can choose a Hermitian metric for the hyperplane
bundle over PN whose curvature is nonnegative and arbitrarily concen-
trates near a hyperplane with respect to the standard metric. Indeed,
if we pull back the curvature form V —139 log |Z | 2 of the hyperplane
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boundle by the linear transformation (Zo: Zλ: : ZN) —> (Zo: ZN_1: XZN),
XeR, we have λ/^Λdd log (1 + | zλ |

2 + + | XzN \2)((d/dzN) A (d/dzN)) =
λ2(l + Σf=lΊ^I 2 ) (l + Σ f c Ί ^ I * + λ 2 | ^ | 2 ) - \ wherh zt = Z,/Zo (1 £ i £ ΛΓ).
If I ^ I = aχ-\ then it is equal to λ2(l + Σ£iΊ«iΓ)(l + Σ f c 1 I^Γ + α2)"1.
Hence there is a positive smooth function a on P ^ such that
l/^ϊdd \og{(ΦZLa)F} + 7 is positive definite in M — if.

Substep 3-3. Let i? be a connected component of D containing a
connected component of if properly. First, we extend the functions gt

and g2 to positive smooth functions o n ϊ - Σ S 1 Ek which are constant
in a neighborhood of other components of g7. Secondly, we note that
there is a positive number c such that 7 + V — lddQogic/gj) log(c/</2)}-

2 is
positive definite in the whole M — gf.

Substep 3-4. Let Σ* C£ be the union of irreducible curves of D with
L-Ci > 0, and s£ the local equations of Ct. Since ΣiC* has only simple
normal crossings, we see that there is a Hermitian metric || || of each
[Ci] and a positive number c such t h a t 7 + ^i/— ldd(logc\\Si\\~2)~2 is

positive definite in M — if. q.e.d.

3. Good Quasi-Coordinate System on (M, — Ric (?")). In this section,
we write ^ 0 for the union of components of i? lying outside of D and
i?o = Σ ^ov the decomposition into connected components.

DEFINITION. Let V be a domain in Cm. Let X be an m-dimensional
complex manifold and φ a holomorphic map of V into X. φ is called a
quasi-coordinate map if ^ is of maximal rank everywhere. In this case,
(V, φ) is called a quasi-coordinate of X.

LEMMA 6. Let (M, D) be as in Theorem 1. Then there exists a
system of local quasi-coordinates 3^ = {(Fα; vι

ay v
2

a)} of M — D, a neigh-
borhood U of D and a neighborhood Uo of £f0 such that

( i ) Uα (Image of Va) [JUO = M-D,
(ii) U«(Image of F α ) n i f 0 = 0 ,
(iii) i/ ίfcβ image of Va does not intersect U then (vι

af v2

a) is a local
coordinate in the usual sence,

(iv) there is a positive number ε independent of Va in Ύ* such that
each Va(cC2) contains a ball of radius e,

( v ) there are positive constants c and Ssfk (k = 0, 1, •) such that

c-\δtJ) < (gaίl) < c(δtJ)

and \d]pl+lqlgai3'ldv*dvq

a\ < J*flp]+[q] for all multi-indices p, q, where —Ric(2r) =
w = i / ^ Σ<,i Qaijdvi A dvi in terms of (vl, v2

a),
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(vi) each connected UOv of UQ is the minimal resolution of the image
of a small ball under the quotient map π0u induced by the action of the
finite subgroup of SU(2) corresponding to ifOv (cf. Lemma 4).

PROOF. This is proved using the method developed in [4]. Since £f0
are treated in [10], it suffices to consider the neighborhood of D. First,
let A be a nonsingular elliptic curve, a component of D of type (1.1) in
Lemma 1. We define Φη\ (u, v) -> (s, t) by s = (1 — η)u/(l + η) and t =
(1 - 7))1/2vl(l + ψ2 for a real number ηe(0, 1). Let B(R)a^(s,t) {&*
is as in Substep 1-1 in the last section) be defined by {(s, t); \s — i/ — 1 | 2 +
4|ί | 2 < R2\s + l / ^ l 2 } for a fixed Re(0, 1). There is a positive constant
e such that 1/e < Im(s) < e. Let Bη(R) = Φ^\B{R))a^{uy v). It follows
that for any positive number K, there exists a real number η e (0,1) such
that Bη(R)dWκ. Indeed,

> ((1 + η)/(X - V))$Ms) + 4-1(|s + V^l\2 - R2\s + V^lf)) .

If we set G = {(u9 v) e S?\ ~(2aπ/b) ^ Re(u) ^ 2ατr/6, v = 0, lm(u) > K},
then G is contained in WκΠ\Jo<v<iB(R). In Substep 1-1 in the last
section, we defined the map F:WK->V by (ufv)-+(exi>φπ\/^Λu/a),v),
which was of maximal rank everywhere. G is mapped by F onto
{(w, 0)eC2; 0 < \w\ < exp(—bπK/2a)}. Therefore, some neighborhood of
A is covered by the images of quasi-coordinate maps caused by F and π.
Local quasi-coordinates are given by (B(R); s, t)aS?(β9 t)cC2, and local
quasi-coordinate maps are given by πoFoφ-1 for (1 — η) a small positive
number. So, the condition (iii) is satisfied. As for (iv), we need to
substitute z = v, w = expφπV^Λuβa); u = (1 + η)s/(l — η), v = ((1 +
7f)/(l - η))V2t into Ί = V^Λifx.\w^\dz|2 + βweizΛto + /β^dwΛdz + δ|dw|2)/ ^
(which represents c^L)) and i/ — 133 log fA. The results are

7 = exp(-6π(l + η) Im(s)/α(l - ff)) {<*'(!" ~^V)\dt\2 + β'^1 ^Jdt Λ ds

and

/ ^ -tdt\2

'Im(s) — \t |2 + (1 — rj)cj{l + η) (Im(s) — \t |2 + (1 — i})c/(l + rj))2

for some positive constant c, where α', /3', 7', and δ' are C°° in (w, z).
Since (s,t)eB(R), and limt_oβ tpβ~* = 0 for any real p, the condition (iv)
is satisfied. Second, let β be a cycle of P17s or a rational curve
with a node of type (2.2) or (2.3) of Lemma 1. Let F be the composite
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map H\z\ z2) -+H*IM-*Y+ - \JkeZSk -+YJZ - \Jlzl Sh, where the second
map is (2.9)* and the third map is the quotient by Z. F is of
maximal rank everywhere. Let WaH2 be defined by {(z1, z2) 6 H2;
Im(zx) Im(z2) > K}. F{W) is a deleted neighborhood of B. If we set
WL = {(z1, z2) e H2; Im(zx) > L, Im(z2) > K/L}, then W = \JL>0WL. We define
a biholomorphic map Φ^ of H2 by ΦμtV(z) = )y(z — μ) Λ μ for μeR and
^G (0, oo). Let 5(α, r) denote the disk in C centered at α with radius r.
Then

WL = [jJR ^ JJ Φ ί i ^ f t + l/^l, 1/2))}

X f U U Φμlv2(B(μ2 + l/^T, 1/2))}
\μ2eR η2^η2(L) )for some positive number Ύ)λ(L) and Ύ]2(L). By substituting £* =

Vi(?i "" ft) "" ft ίn^° ^*(331og/B), where /B is one of the fBj's in Lemma
4, we obtain Σ?-i|dti/(Im(ί<))|2. Here, zt is in Φ^Biμ, + i/=T, 1/2))
if and only if £* is in B(μt + l/ —1, 1/2). On the other hand, the
(1, l)-form which is a pull back of a smooth form in PN under the log-
arithmic pluricanonical map consists of terms | uk \

2 \ vk |
2 dti A dtύlrjiΎ]ό

multiplied by some C°°-function in (uk, vk) and \uk\
2\vk|

2 = exp[2;r{(Jii_i —
R'k)Ύ]Tιlm{k) + (Ru - Rk-Jηϊ'lMUMRu-iffk -> Λ*ΛLi)l, where Rk - Rk_x <
0, JRLI - i2fc < 0, jRfc.ii?; - RkRLi > 0. Therefore, some neighborhood of
B is covered by the images of quasi-coordinate maps given by the restric-
tion of Fo(φ^ηixΦ~lV2) to % + i/^T, 1 / 2 ) x % + i / ^ ϊ , 1/2) for μ<e
Rfijte(0f oo), and the conditions (iii) and (iv) of Lemma 5 are satisfied
by these quasi-coordinate maps. On the other hand, combining the
arguments in Substeps 1-4 in the last section with those in [10, §2], we
can show that there is a quasi-coordinate system with (iii) and (iv) around
the other components of D. q.e.d.

4. Existence of the Canonical Einstein-Kaehler F-metric, Proof of
Theorem 1. Following the arguments developed in [4] together with those
of [10], we shall show the existence of a complete Einstein-Kaehler V-
metric on M' with negative Ricci curvature.

We use the same notations as in the preceding sections.

DEFINITION. A continuous function u on M' is of class V-Ck, where
k is a nonnegative integer possibly °o, if u is of Ck in Mf — g7 and each
TΓotw is Ck in a small ball centered at the origin.

DEFINITION. Let u be of class F-C°°. For a nonnegative integer k
and a e (0,1), the V-Ck'a(M) norm of u is defined by || w||FfJbfβ = max(A, B),
with
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]sup Σ |3"l+lfl7φί(ζ)/3ζ*3ζ |
\ ζeB \p\ + \q\^k

+ sup Σ IC - ζ'|"αId*7r£«(ζ)/3ζ*3ζ< - d"πtu{OIK'dl"I\ ,

ζ , ζ ' ε 5 l2>| + lgl=fe )

B = sup {sup ( Σ Jd^+lqlu(z)ldvp

advl\

+ sup Σ \z — zf\~a\dku(z)/dvζdvq

a — dku(z')/dvpdvq

a\ \ ,
z,z'eVa \p\ + \q\=k )

zφz'

where u is locally lifted to a function in (Va; vi, v2

a), if necessary.

DEFINITION. For a nonnegative integer k and a e (0,1) the function
space V-Cki<x(M) is the Banach space obtained as the completion of V-
C°°(M) with respect to the norm || ||Ffjb,β

LEMMA 7. Lei Ψ be the singular volume form defined in Lemma 5.
Then the function \og(Ψ/a?) is of class V-Ck'a(M) for any admissible k
and a.

PROOF. This comes from the arguments in §2. q.e.d.

By Lemma 5, ω = — Ric Ψ is an V-C°° Kaehler metric on M = M — D
which is complete toward D. We consider the equation

(4.1) Δωu - b(x)u = f{x) ,

where Δω is the Laplacian with respect to ω and we assume that b(x)
and f(x) are of class V-Ck>a{M).

LEMMA 8. If b(x) ^ b for some positive number 6, the equation (4.1)
has a unique solution u belonging to V-Ck+2'a(M).

PROOF. Let M — U* Ωt be the exhaustion of M by an increasing
sequence of domains Ω^M with smooth boundary. We may assume that
each Ωi contains gf0. Consider the Dirichlet problem

[ΔωUt — b(x)ut = f in Ωi

[ut = 0 on

Although the metric ω is singular along |f0, we can use the direct method
in the calculus of variations to produce a weak solution of (4.2). Let us
consider the Hubert space V-Hl{Ω?) which is the completion of the vector
space V-C™(Ωi) of all V-C°° functions with compact support in Ωif with
respect to the norm
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We find a weak solution of (4.2) in this function space by minimizing the
functional

\ + 2fφ)ω2 for φeV-HKΩ,).

Since b(x) ^ 6 in M, it is shown by the standard arguments that there

is an element φ of V-Hl(Ω^ which minimizes J*. φ satisfies the Euler-

Lagrange equation of J*:

[ {φΔωψ + φψ + fψ}ω2 = 0 , for any ψ e

Hence φ is a weak solution of (4.2) and the regularity theorem (cf. [2,
p. 85]) tells us that φ is of class V-Ck+2>"{Q%) with zero boundary value.
Here, the singularity of ω along if0 causes no trouble, since πtΦ\uQυ is a
weak solution of the equation Aπou*ωu + (πOU*b\UQu)u = πOi/*f\uQu

 ί n B (ί e >
< £ k , = &v satisfies \ ((dφ0v, dψ)^ω + φOvψ + fψ)(πQu*ω)2 - 0, for any
α/r 6 C*(B)) and πOV*ft) is a smooth metric of JB. By the maximum principle,
|wj ίS maxjf 1/1/6, for the unique solution ut of (4.2). Hence ut

9s are
bounded above by a constant independent of ί. Applying the interior
Schauder estimate to %/s in (Va; Va, v2

a), we can show that a subsequence
of {ut}T=i converges to a function u of class V-Ck+2'a(M), and u is a solution
of (4.2). Uniqueness comes from the inequality \\ut \\v,k+2,a ^ C(!i^ίllo +

fc.α) f ° r a n y solution Ut of (4.2), where C depends only on M. q.e.d.

Now we are ready to prove Theorem 1 by following the arguments
developed in [4], By Lemma 5, there is a V-C°° Kaehler metric ω on M
which is complete toward D. We claim that for all / of class V-Ck+2'a(M)
(Jc ^ 5, a e (0,1)), there is a unique solution u of

(4.3) (ω + i / ^ a S u ) 2 = exp(u + f)ω2

belonging to ^ = {ue V-Ck'a(M); c~ιω < ω + V^Λddu < cω, for some
positive constant c}. This is proved by the method of "bounded geome-
try" (cf. Lemma 5) provided we lift everything up to Va's by quasi-
coordinate maps near D, lift everything up to B by πOif; B^UOv near each
^ O v and represent everything in terms of coordinates (vi, v2

a) of Va or
(ζ1, ζ2) of J5, respectively. To prove the claim, we consider the map
Φ:V-Ck>"(M) ~^V-Ck-2>a(M), u\-+e-u{ω + V^Λddu)^2. I t suffices to show
that C = {t e [0,1]; there is a solution u of Φ(u) = etf belonging to ^ } 9
0 is open and closed. For example, openness follows from the fact that
the Frechet derivative Φ'(u)\V-Ck>a(M)— V-Ck-2'a(M) of Φ a t u e ^ which
is given by Φf(u)h — Δ«;h — h (he V-Ck'a(M)), is an isomorphism by Lemma
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7. Uniqueness of the V-C°° Einstein-Kaehler metric complete toward D
follows from Yau's generalized maximum principle [20]. q.e.d.

REMARK. One of the main tools in the proof of Lemma 7 and Theorem
2 is Yau's maximum principle. We remark here that the singularity of
of ω along gf0 causes no trouble. Indeed, let u be a function bounded
above on {M, ω). If u has a maximum value in some relatively compact
domain in M, there is no trouble provided we lift everything up to B
by π0u: B->UOv. If sup^tt) > maxβ(%) for all compact subdomains Ω of M,
we can use Yau's maximum principle provided we modify the Kaehler
metric ω near £f0 to a smooth complete metric of M.

5. Logarithmic Miyaoka-Yau Inequality. In this section we prove
Theorem 2. Let us begin with general remarks. Let (E, h) be a Hermi-
tian vector bundle of rank r over a complex manifold N and eυ = {ely e2,
• , eτ) a local holomorphic frame valid in U. Let h = {hj3), hj5 = h(ejf et)
be the Hermitian metric of E. The connection form and the curvature
form of (E, h) are given by θπ = h~xdh and Θv = dθv = d{hrιdh), respec-
tively. If eπ = evgvu is the transition rule between local holomorphic
frames, 0^ and θv are related by θσ = gϊl&vβru

Let (M, D) be as in Theorem 1 and ω = — Ric Ψ and ώ = ω + i/^ϊddu
the canonical Einstein-Kaehler metric in Theorem 1.

LEMMA 9. 7i and % be the Chern forms of the Hermitian vector
bundle (TM, ώ), where TM denotes the holomorphic tangent bundle of M.

Then 7ϊ and % are summable over M with their values \ Ί\ = c1{M9 Df,
72 = c2(M, D) — <5. Here, ct(M, D) = ct denotes the i-th logarithmic Chern

M -
class of {M9 D), δ is a rational number determined by &0, which is non-
positive and zero if and only if ίfo= 0.

PROOF. Let τ< denote the i-th Chern form of ω. Since u belongs
to Ήf for any admissible k and α, the following equalities clearly hold:

S 7i = \ τff \ 72 = I 72. Let h be a smooth Hermitian metric of E —
M JM JM JM

J2 (̂log D)*. We think of ω as a Hermitian metric hr of E with singularity
along D. The Chern forms with respect to the Hermitian connection of
the Hermitian metric K are Ίγ and 72 in the complement of D, since any
local holomorphic frame for E is a local holomorphic frame for TM in
the complement of D. By [6, pp. 400-406], Ύk = Ύk{E, h') = yk{E, h) +
d{Pk{θ{h) -θ{h'),Θ{h),Θ{h'))}, where .(Λ) and .(Λ') are the connection or
the curvature form of h and h', respectively and Pk is a universal
polynomial. If {d; u, v) is a coordinate polydisk in M such that ΛΓ\D
is given by the coordinate lines, the local expression with respect to
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(u, v) of the connection form and the curvature form of hf are of order
at D described in the following table:

equation
of Jf)D

v -0

v = 0

uv = 0

uv = 0

Mv = 0

equation
of df)Df)^

v = 0

—

!W = 0

v = 0

—

order of the
connection form

(I dv/v I + 1 du |)/log | v Γ1

1 cϊu I/I tJ 1 log | v | Ί~ du |

(1 du/u | -f~ | dv/v |)(log | u \
~\~ log 1 v I"" )""

1 cίu 1 /1 u |(log 1 uI "i log v ~ )

Idttl/lwlloglwl- 1

+ |(fo|/|t; | logM- 1

order of the
curvature form

~t~ | cίt61 /log

1 dv 1 /| v 1 dog | v ] ) ~h 1 du I

~1~ log | v ι )~2

(\du\/\u\(\og

du / u (log u \ )
"ι ctv 1 /ιv| (log 1 v 1 )

Let {Ωn} be an exhaustion of M by relatively compact domains Ωn

with smooth boundary. Then limn \ (yλ(Ef h) Λ Pi) = 0, limn I Px Λ

S JdΩn JdΩn

P2 = 0, by the estimates in the above table. Here
dΩn r

w e h a v e u s e d t h e f a c t t h a t I \dz\2/\z\\\og I z ^ 1 ) 2 f o r 0 < c < l i s
Jo<UI<c

finite. Let UOv be a small neighborhood of g*Ol,. Then by [10, Proposition
4], the following equalities hold (see p. 77, Added in Proof):

\ yx{E, hj - \ UE, h)2 = 0,

[ 72 (E, h') - \ UE, h)=- lim Σ Λ P*= - [Σ. in(n + 2)/ (n + 1)} x *(type
JM JM J3ϋ"θv

Aπ) + Σ » {(4»2 - 4n - 9)/4(w - 2)}x*(type D m ) w ^ 4) + {167/24}x*(type
£ β) + {383/48} x*(type £"7) + {1079/120} x"(type Ee)\ = -δ, where "lim" means
to go to the limit as UOv tends smaller and smaller. Then we have the
following two equalities:

\ Ύ\=\ 7Ϊ = t ΎΛE, h'Y = ί Ίλ{E, hf + 2 lim ί Ύ^E, h) A Px

+ lim ( P! Λ dPi = ( ^(£7, Λ)2 = c?,

( % = \ % = ( 7 t(S, fcO = ί Ίt{E, h) - δ + lim ( P2

J3f Jif JM JM n JdΩn

= ( 72(#, Λ) - δ = c, - δ . q.e.d.
PROOF OF THEOREM 2. We begin with the following general remark
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due to Chen and Ogiue [3]. Let (X, ds2) be an arbitrary Einstein-Kaehler
surface. Write s and R^s for the scalar curvature and the Riemann
curvature tensor. We introduce the tensor Ta-βγ-δ which measures the
pointwise deviation of ds2 from the complex space form metric. This is
given by Ta~βγ-δ = Rajfδ — s(δaβδn + δaδδβr)/6. By a direct tensor calculation,
we see 0 ^ Σ I Taβfδ\

2 = Σ \Hajfs\
2 - s2β. On the other hand, 3τ2 - 7ϊ =

(l/16^ 2 )(3Σl^α^Γ - s2), where 7, denotes the i-th Chern form formally
computed from ds2. We apply this to our case. Let (M'f ώ) be the
complete Einstein-Kaehler F-manifold in Theorem 1. Then we have 3T 2 —
7i ^ 0. We thus have the required inequality by integrating this point-
wise inequality on ikΓ and applying Lemma 9. Next, we consider the
case where the equality holds. In general, let (Y, g) be a F-manifold
with a complete F-metric q. The notion of geodesies on a F-manifold
was defined as follows. Let 7' be a curve in Y passing through a singular
point p. We say that 7' is a geodesic through p if 7' is a push down
of a geodesic in a local uniformization, i.e., if π:B->Br is a local unifor-
mization near p, there is a geodesic 7 in B such that 7' = π7. In our
case, Y — Mr and ds2 is the canonical complete Einstein-Kaehler F-metric.
The equality sign holds in our inequality if and only if Ta-βr-δ vanishes
identically on ikΓ, i.e., ώ is of negative constant holomorphic sectional
curvature and hence the ball-metric. There are domains U in J52, Ur in
M' and an isometry φ:U—*Uf. Choose a point o in U. We define a con-
tinuous map Φ of B2 to M', which is an extention of φ, as follows:

Φ(expo(v)) = exp, ( o )(^O)) , for v e T0B
2 .

Since the Hopf-Rinow theorem is true for (ikΓ, ώ), Φ is a continuous
surjective map. Let Q be the set of all singular points of Jlί'. Q is a
discrete set in M'. Φ~\Q) is also discrete in M'. Note that B2 — Φ~\Q)
is simply-connected. In the following, we shall prove that Φf — Φ\(B2 —
Φ~\Q)) is a locally biholomorphic universal covering map of Mf — Q. Let
7: [0, I] —> B2 be a broken geodesic outside of Φ~\Q) starting from o, with
the break points 0 = ί0 < tx < < tn < ίn+1 = i. Write /y for 7|[0, ίt]
and Xi for the tangent vector to Ύ\[tu ti+1] at ί4. We define a broken
geodesic 7' in ikΓ starting from φ(p) as follows. Define X7': [0, ί j —> ikΓ by

X7'(ί) = exp^tyΛ&o)). If <τ': [0, ί j -^ ikΓ is defined, we define i+1Y: [0, ti+1] ->
ikΓ by

p'(ί) if «6[0fίJ
1+1 (exp i Γ ( t i )((ί - tt)(Ptr o ^* o P - 1 ^ ) ) ) if ί G [ί,, ί<+1] ,

where Pr stands for the parallel transportation along a piecewise smooth
curve 7. Using broken geodesies 7 and 7', we define a map Ψ: B2 — Φ~1(Q)-^>
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M' — Q as follows. For a broken geodesic 7: [0,1] —• B2 outside of Φ~\Q),
we define Ψ{Ί{ΐ)) = 7'(£) This is well defined as a map to M'y since Φ~\Q)
is discrete in j?2. Suppose W(7(t)) — Y(t) is in Q, for some 7 not passing
through Φ~\Q). We consider the geodesic 70 in i?2 from o to 7(ί) and
approximate 70 by broken geodesies from o to 7(ί) disjoint from Φ~\Q).
By the continuity argument, we see Φ(7(ί)) = 7'(ί) is in Q, which is absurd.
We claim that Ψ is a local isometry. Let R and 5 be the Riemann
curvature tensor of B2 and (ikf, ώ). If we set <pr = Pγφ^P^1, then we
have φr(R(x, v)z) = R(Φr(%), Φr(v))Φr(z), for any broken geodesic 7 in 5 2 -
Φ~\Q) starting from o, since the curvature tensor is parallel for the ball-
metric. Hence the claim follows. Since any isometry between germs of
real-analytic Riemannian manifolds is real-analytic, Ψ is real-analytic on
B2 — Φ~\Q). By the continuity argument, Ψ coincides with Φ'. So, Φ'
is real-analytic. Since Φ' is holomorphic in U9 Φ

f is holomorphic in B2 —
Φ~\Q) by analytic continuation. Since Ψ is of maximal rank everywhere
on B2 - Φ-\Q), so is Φ' everywhere. Therefore Φ'\ B2 - Φ~\Q) -> M' - Q
is locally biholomorphic universal covering map. The deck transformation
group consists of biholomorphic automorphisms of B2 — Φ~ί{Q). By the
Hartogs theorem, these are extended to biholomorphic automorphisms of
B2. Thus we obtain a group Γ acting properly discontinuously on B2

with only isolated fixed points such that Γ\B2 ~ M\ q.e.d.

6. Examples.

EXAMPLE 1. Let D' consist of n lines in general position in P 2. We
blow up n(n — 3)/2 intersection points so that there remain two points
not blown up on each line. Let M be the resulting manifold and D the
proper transform of D'. Then D is a cycle of P"&. If n ^ 7, then (M, D)
is an example of Theorem 1. In this case, c\ = (n2 — 9n + 18)/2, c2 =
n2 - An + 3.

EXAMPLE 2. Let D' consist of three nonsingular curves of degree 3
in general position in P 2. Blow up all 27 intersections. Let M be the
resulting manifold and D the proper transform of D'. Then D consists
of three nonsingular elliptic curves of negative self-intersection number.
(M, D) is an example of Theorem 1. In this case, c\ = 9, c2 = 57.

EXAMPLE 3. Let B2 be the open unit ball in C2, Γ a discrete group
of automorphisms acting on B without fixed points. Assume that the
volume of Γ\B is finite. Then we can compactify Γ\B by adding non-
singular elliptic curves to a nonsingular protective surface M. This is
verified by representing B2 as the Siegel domain of the second kind and
determining the form of the parabolic automorphisms fixing the boundary
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point w = oo. By a simple matrix computation, we can show that they
are of the form (w, v) ι-> (u + 2iyv + i | τ | 2 + (real number), v + 7). The
resulting pair (M, J9), where D is a divisor at infinity consisting of
mutually disjoint elliptic curves, is an example of Theorem 1.

EXAMPLE 4. In [17, p. 134], U. Persson gives an example of the
degenerations of Godeaux surfaces π: M —> Δ, where M is a smooth three-
fold, Δ an open disk, and π a proper surjective holomorphic map. A
Godeaux surface is a compact complex surface whose universal cover is
a nonsingular quintic surface in P 3 and whose fundamental group is Z6.
Mt = π"1^), t Φ 0, is a nonsingular Godeaux surface, and Mo = π~\0) is a
singular surface. We obtain Mo by contraction of a multisection of a
certain elliptic ruled surface as follows. There is a blown up elliptic
ruled surface M with the following structure. There is an elliptic curve
C which is a five-section in M (i.e., the restriction of the projection Λf —•
B to C is a five fold covering over the elliptic curve B) with the nu-
merical conditions (KM + [C])2 = 1, C2 = —3. There are two singular fibers
in M both of which consist of two ( —l)-curves meeting transversely at
one point. C cuts these (—l)-curves as in Figure 1. Et and E\ are ( —1)-
curves in this figure. We shall show that (M, C) satisfies the condition
(*) in Theorem 2. In general, let X —> B be a blown up elliptic ruled
surface, C an elliptic curve which is an ^-section. Let π:X—>XQbe the
blowing up from a minimal model X09 N the number of blow ups and Et

(ί = 1, , N) the exceptional divisors. Assume that C cuts each 2^ at
v< points. Then C = π*C0 - Σf=i M^, K = π*K0 + Σf=i Et, where iΓ = Λfr,
Ko — Kχ0. H2(X0, Z) is generated by the homology classes a? of a fiber and
y of a section such that y2 = —e ( — 1 ^ e). Since iΓ0 = — 2̂ / — βα? and
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(UL0 + C0)C0 = Σ ί U ^ f a — 1) (the Plϋcker relation), Co can be written as
Co = ny + ax with a = Σί=i ^ifa - l)/2(w - 1) + ne/2. Since (JSΓ + C)C =
0, we get

(K + C)2 = (K+ C)K = (τr*(ίΓ0 + Co) - Σ fa - 1 ) ^ ) ( W O + Σ
i=l \ ί=l

= ((» - 2)2/ + (α - β)a;)(-2i/ - e«)+ Σ (v« - 1)

= 2β(n - 2)-2(α - β)-β(n - 2) + Σ (v, - 1)

- -iV - Σ y*(υ* - !)/(« - 1) + Σ v(

ί = l ΐ = l

By [17, Propositions 1.2 and 1.3], we may assume that each vt ^ n/2.
Then van - vt) - (n - 1) = - f a - w/2)2 + (w2/4) - (n - 1) ^ 0, where the
equality occurs if and only if every vt equals one. Hence if (K + C)2 >
0, then N > 0 and some I;, ̂  2, in particular n^2vt^ 4. In Persson's
example,_ (K + C)2 = 1, C2 = - 3 , N = 2 and vx = v2 = 2. Namely, one
obtains Xo by blowing down E1 and J?ί in Figure 1, and Co has ordinary
double points at the images of Ex and E[. Now we try to find necessary
additional conditions for K + C to be ample outside of C (i.e., K + C
satisfies the numerical conditions (K + C)2 > 0, (K + C)Z ̂  0 for all irre-
ducible curves Z in X and (iΓ + C)Z = 0 if and only if Z = C). If Z is
a curve contained in Ei9 then (JBΓ + C)Z = (7Γ*(iΓ0 + Co) - Σf=i fa - l)Et)Z =
fa - l)(EtZ). So, if (ίΓ + C)Z > 0, then every v, ^ 2 . If Z is a general
fiber, then (K + C)Z = (Ko + C0)x = n - 2. If Z is an irreducible curve
which is not a fiber and cuts each Et μ rtimes, then Z is written as Z =
qy + p#, where p ^ (eg/2) + {Σί=i Vifa — Σf=i^(^ — l)g/2(w — l)}/n, because
Cô o = (nv + θίx)(qy + pa?) ^ Σί^i^Λ Therefore,

C)Z = (ττ*(ίΓ0 + Co) - Σ fa - D^)(^*^o - Σ μ

= (Jζ, + C0)Z0 - Σ (v, - D ^ = -ββ(Λ - 2)
ΐ = l

- 2)e/2} + p(n - 2)

^ 9 Σ w«(v« - i)M(n - l) + ^ ^ Σ v^i - Σ (Wi - « Λ
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Here, vt(Vt — l)/n(n — 1) + (n — 2)vjn — (y< — 1) = 1 —

1) > 0, since 2 ^ ^ ^ n/2 for every i. From the above arguments, we
conclude the following: If 2 ^ vt ^ w/2 and N > Q, then the pair satisfies
the condition (*) of Theorem 1. In this case, K^ ® [C] is ample outside
of C.

The logarithmic Chern numbers are given by

c\ = -N + Σ ^ O ~ J>*)/(w - 1) - —JV - C\ c2 = N .

The inequality 3c 2 ^ c2. is rewritten as 4ΛΓ ̂  - C 2 = Σf=i »t(n - »i)l(n - 1).
X — X — C admits a unique complete Einstein-Kaehler metric with nega-
tive Ricci curvature up to constant multiple. We do not know the
convergence of the canonical Einstein-Kaehler metric of Mt to the can-
onical Einstein-Kaehler metric of X = Mo — (singular point).

EXAMPLE 5. Let D' be a sum of three curves Cx\ z" + zΐ + z2 = 0,
C2: z0 = 0, and C3: zx = 0, where n ^ 2, in P 2. Let ε = exp(27rί/w), and g: P 2 —>
P 2 be the automorphism defined by g(zQ: zx: z2) = (ε£0: ε

kzx: z2), with (w, k) =
1. The group G generated by f̂ is Z/nZ. Each element of G has a unique
fixed point (0: 0:1). By Fact E in the next section, there is a unique
Einstein-Kaehler metric in P 2 — D' with negative Ricci curvature. It
follows that (P2 — D')jG admits a unique Einstein-Kaehler metric which
comes from that of P 2 — D'. On the other hand, the quotient variety
M' — P2/G has one singular point corresponding to the fixed point (0: 0:1).
The exceptional set E of the minimal resolution M of Mr is given by
the chain of Pvs with self-intersection numbers (b19 b2, , 6r), where δ/s
are determined by the continued fraction n/k = bx — (62 — ( (6r_x —

Let D be the sum of E and the proper transform of D'. Then (M,
D) satisfies the condition (1.1) of Theorem 1. KM® [D] is not ample be-
cause (KM + D)Z — 0 for any curve Z in EaD but it is not trivial near
D, because (KM + D)Z > 0 for any curve in D — E.

7. Miscellaneous Results. I would like to take this opportunity to
state some consequenses of the following:

FACT E (cf. [9]). Let M be a compact complex manifold and D a
divisor with only simple normal crossings. Suppose that the first Chern
class of KM® [D] is positive. Then there is a complete Einstein-Kaehler
metric on M—M—Ό with negative Ricci curvature which is unique up
to multiplication of positive numbers.

We shall prove the following:
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THEOREM 3. There exists a simply-connected noncompact complex
manifold which admits a complete Einstein-Kaehler metric of finite
volume with negative Ricci curvature but which admits no Riemannian
metric with nonpositive sectional curvature.

The following well-known result can also be proved using Fact E.

PROPOSITION 1. Let (M, D) be as in Fact E. Then the group of
biholomorphic automorphisms of M = M — D is a finite group.

In the proof of Proposition 1, we shall use the following:

PROPOSITION 2. Let (M, D) be as in Fact E. Then any biholomorphic
automorphism f: M — D —>M — D extends to that of M preserving D.

We can prove Proposition 2 by induction using the following: (1)
There exists a complete Einstein-Kaehler metric on M — D with negative
Ricci curvature (Fact E). (2) The general Schwarz lemma of Yau [21]
tells us that any biholomorphic map between complete Einstein-Kaehler
manifolds of the same negative scalar curvature is an isometry. (3) If
An is a coordinate polydisk of M such that (M— D) Π Δn = (J*)fc x Jn~k, then
the canonical Einstein-Kaehler metric of M—D is equivalent to (zί*, the
Poincare metric)fc x (J, the flat metric)71"* in a small deleted neighborhood
of ΰ in / . (4) Write C, = Σ ; DtΓiDj for the intersection of Dt with
the other D/s, which is a redused divisor with only simple normal
crossings. Then KM ® [D] \ Dt = KD. (g) [CJ and cx(KΌi (x) [CJ) > 0.

The rest of this section contains proofs of Theorem 3 and Proposi-
tion 1.

PROOF OF THEOREM 3. Let S be a nonsingular hypersurface in Pn

(n ^ 2) of degree d ^ n + 2. Since c^Kpn) = ~(n + ΐ)h and c^SJ) = dh,
where h is the Poincare dual of a hyperplane, we see cγ{KPn (x) [S]) > 0.
By Fact E, there exists a complete Einstein-Kaehler metric with negative
Ricci curvature on Pn — S. So, it suffices to prove that the universal
covering of Pn — S does not admit any Riemannian metrics of nonpositive
sectional curvature. We give a proof of a classical result πλ{Pn — S) = Zd.

( 1 ) Case w ^ 3 : Since Pn and S are simply connected and S i s non-
singular, πx{JPn — S, p) is generated by a single element g represented by
a loop starting from p and linking S simply. Let I be a line through p
intersecting S transversely at plf — ,pd. Let gi be a loop which starts
from p and goes around Pi alone. Then each gi is homotopic to g in
Pn — S. Since I is topologically a 2-sphere, it is clear that gλg2 gd = 1
in 7ΓX(Z — Pί Pd) and hence gd = 1 in πx(Pn — S). Moreover no lower



74 R. KOBAYASHI

power of g is equal to the identity. Otherwise, there are only drfold
coverings of Pn — S where dt < d. On the other hand, if S is given by
the zero locus of a homogeneous polynomial f(x0, x19 , xd) of degree d,
then the zero locus of xi+ί — f(x0, xlf , xd) in Pn+1 is a d-told branched
covering of Pn branched over S, a contradiction. Hence TΓ^P71 — S) is
the cyclic group of order d.

(2) Case n = 2: Note TΓ^S) ^ 0. To begin with, we note that any
loop 7 in P% — S can be deformed in P 2 - S to a loop lying in a generic
line of P 2 . Let I be a line intersecting S transversely. Then P2 — I = C2.
7 can be deformed in P 2 — S to a polygon 7 with a finite number of
edges. Let K be the union of all lines determined by two vertices of
7. Pick a point x from P2 - S - I - K. Regard P2 - x as the total
space of the hyperplane bundle over Pι. Then each fiber contains at
most a finite number of points of 7. After rotating 7 by the £7(l)-action
on P2 — x if necessary, we can deform 7 to lie in I. Let p be in l\S,
lf\S = {#!, , prf}, and & a loop determined by ϊ, p, pt as above. Then
π±(P2 — S) is generated by gl9 -*-,gd- In the homotopy exact sequence
0 ^π^S1) ^πtfN) -tn^S) -+0, of the ^-bundle N(S)-*S, every ft comes
from S1. We may assume ft = #2= =gd under suitable orientation of
ft's. The rest goes exactly the same as in the case of n ^ 3.

From the above arguments, the universal cover of Pn — S is the
nonsingular hypersurface xi+1 — f(x0, , xn) = 0 minus S. Let it be de-
noted by M and the compactification of M in Pn+1 by M = MUS. There
is a complete Einstein-Kaehler metric on M with negative Ricci curvature.
Now we show that M admits no Riemannian metric of nonpositive curva-
ture. Suppose there is such a metric on M. The Cartan-Hadamard
theorem tells us that M = M — S is diffeomorphic to R2n and therefore
there is a small tubular neighborhood N(S) such that X — M — N(S) is
homotopic to M - S~ R2n. It follows that dX = N(S) is a homology
(2n — l)-sphere by the exact sequence

, Hq{X) -> Hq{X, dX) - fl f

Applying the Gysin exact sequence to the Sx-bundle 8X-+S, we obtain
the following exact sequence.

> Hq(3X) -> Hq(S) -> i/g_2(S) -> H f ̂ (SX) ->•••.

Since dX is a homology (2n — l)-sphere, S has the same Betti numbers
as P71-1. On the other hand, the total Chern class of S is given by

C(S) = (1 + h)n+\l + dΛ)-\ where h e H\S) is the restriction to S of the
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Poincare dual of a hyper plane in Pn. Hence

(-ly-'c^S) = {(d - 1)*+1 - (-l)»(n + l)d + (-I)*}*- 1/* ,

and

-D-^^ίS) > nd/2 , n =

A contradiction. q.e.d.

PROOF OF PROPOSITION 1. There exists a canonical complete Einstein-
Kaehler metric on M—D by Fact E. Any biholomorphic map of M — D
is an isometry with respect to the canonical metric. Since the volume
of M — D measured by the canonical metric is finite, the group of iso-
metries is compact with respect to the compact-open topology. Let ft

( — 1 ^ t :g 1) be a smooth one-parameter family of biholomorphic maps of
M—D. By Proposition 1, we can and do extend this family to a family
of holomorphic maps ft of M. The vector field defined by X(z) =
(d/dt)t==oft(z) in M is a Killing vector field in M — D with respect to the
canonical metric. By the same arguments as in Proposition 2, we may
assume that D is a nonsingular hypersurface. The extended ft induces
a smooth one-parameter family gt of biholomorphic maps of D. Since
C^KD) > 0, the group of biholomorphic maps of D is a finite group. Thus
gt = gQ. It follows that X(z) = 0 on D. Hence the length of X(z) measured
by the canonical metric goes to zero at infinity D. Indeed, if D is given
locally by zx = 0, the length of X is of order 0(1^1), and the canonical
metric is of order | dzL |2/| zx |

2(log | zx |~
2) + | dz21

2 + +1 dzn |
2. For any Killing

vector field Y,

(1.1) Δ(||Γ||2/2) = Σ || VvΎψ - Ric(Γ, Y) ,

where Δ is the Laplacian, {FJ an orthonormal frame. Suppose that \\X\\
is not identically zero. Then ||X|| has a relative maximum at a point z
in M — D, since | |X|| goes to zero at infinity. At z, the left hand side
of (1.1) is nonpositive and the right hand side is strictly positive, since
the Ricci tensor of the canonical metric is negative, a contradiction.
Hence X = 0 and ft = fQ. The group of automorphisms of M — D is
discrete in a compact set and is a finite group. q.e.d.

REMARK 1. Yau [22] obtained the following result: There exists a
simply-connected compact complex manifold which admits an Einstein-
Kaehler metric with negative Ricci curvature. For example, consider
any smooth hypersurface of degree d ^ n + 2 in Pn (n ^ 3). Then this
is a compact complex manifold satisfying the condition of Fact A. In
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particular, the above space does not admit any Riemannian metrics of
nonpositive sectional curvature. Therefore Theorem 3 is regarded as a
noncompact version of the above result of Yau.

REMARK 2. The differential geometric aspects of the results in [15]
will be treated in the forthcoming article, which contains a sufficient
condition for the simultaneous resolution of quotient singularities in terms
of "Chern classes". This corresponds to the existence of a complete
Einstein-Kaehler F-metric with negative constant holomorphic curvature.
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Added in proof. The formula for d = —k(M)β in [10, Proposition 4]
(see [10, p. 398 and the formula (4) on p. 393]) was incorrect and should
read as follows:

k(M) = 3JΣ {n(n + 2)/(n + 1)} x #(type An) + Σ {(4m2 - 4m - 9)/4(m - 2)}
\ n m

x #(type Dm, m ̂  4) + (167/24) x #(tpye E6) + (383/48)

x#(type#7) + (1079/120)

As a result, the proof of the proposition was wrong from p. 398 line 14
on. However, it follows as a special case from Theorem 2 in my paper
"Einstein-Kahler metrics on open Satake F-surfaces with isolated quotient
singularities", to appear in Math. Ann.. Thanks are due to David
Morrison, who pointed out the error.






