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Introduction. In this note, we shall consider the topological degree
of symmetry of a manifold M with a map /: M^(S1)rx(S2)8 of non-zero
degree. Here the topological degree of symmetry of a manifold is, by
definition, the maximum of dimension of compact connected Lie groups
which act on the manifold topologically and almost effectively.

This note is motivated by recent works on the degree of symmetry
of manifolds with large low homotopy groups or cohomology groups such
as K(π, l)-manifolds, Afc-manifolds or hyper-aspherical manifolds ([2], [5],
[6], [8] or [9]). Moreover the results in this note are generalizations of
results in [8].

In the following, we shall consider only topological almost effective
action.

We shall prove the following

THEOREM A. Let M be a closed topological manifold with a map
f: M -» (S1)* x (S2)3 of non-zero degree. Then S3 is the unique, up to local
isomorphism, compact connected simple Lie group which can act on M.

THEOREM B. Let M be as in Theorem A and G a compact connected
Lie group which acts on M. Then G is locally isomorphic to Tu x (S3)",
where v^s. Moreover if the Euler characteristic of M is non-zero, then
we have u + v ̂  s.

A typical example of a manifold as in Theorem A is a connected sum
((Sl)r x (S2)8) # L, where L is a closed topological manifold of dimension
r + 2s. As for such a manifold we have the following

THEOREM C. Let L be an orientable closed manifold of dimension r +
2s and M the connected sum L#((S1)rx(S2)8). Assume an n-dimensional
toral group acts on M. Then we have n ^ r + s.

THEOREM D. Let M and L be as in Theorem B and Theorem C,
respectively. If L is not a rational homology sphere, then X = M%L



34 T. WAT ABE

admits no action of S8. In other words, the topological semisimple degree
of symmetry of X is zero. Here the topological semisimple degree of
symmetry of X is, by definition, the maximum of dimension of compact
connected semisimple Lie group which acts on X.

The author would like to thank the referee for his valuable
suggestions.

In this note, "manifold" means always "compact connected topological
manifold" and we use the following notations;

1. fltCX") and H\X) denote ΐ-th homology and ί-th cohomology group
of X with rational coefficients, respectively.

2. Tn and T denote ^-dimensional and 1-dimensional toral group,
respectively and we call a 1-dimensional toral group a torus.

1. Preliminaries. In this section, we shall recall some rusults about
the Leray spectral sequence of the orbit map and prove some Propositions
which are needed to prove Theorems A, B, C and D. Let G be a compact
connected Lie group and act on a compact connected space X. Let
π:X-*X/G be the orbit map and {£?'*, dr} the Leray spectral sequence
of π. Then we have Eξ * = HP(X/G, Hq(πJ), where Hq(π) is the sheaf
generated by the presheaf tf* -> H*(π-\U*)} for open set tf* in X/G.
Recall that the stalk of H*(π) at #* = π(x) is Hq(G(x)) and the edge
homomorphism e: Hq(X) -»E%>q is given by e(a)(x*) = i?(α), where
ix: G(x)-*X is the inclusion (see [1] for the details).

We have the following

PROPOSITION 1 (see [2]). Let k be the dimension of a principal orbit
of the action of G on X. If the action has a singular orbit, then the
edge homomorphism e: Hk(X) —»Eltk is trivial. In particular, we have
Έ%* = 0.

See [8] for the proof.
By the same argument as in Proposition 1, we can prove the

following

PROPOSITION 2. Let k be as in Proposition 1. // there is a point
x in X such that i*\ Hk(X) —> Hk(G(x)) is trivial, then the edge homomor*
phism e: Hk(X) —> Eίtk is trivial.

The following Propositions 3, 4 and 6 are generalizations of results
in [8] (see Propositions 3 and 5 in [8]).

PROPOSITION 3. Let M be a closed manifold with a map f:M->
(S1)rx(S2)β of non-zero degree. Assume K = SU(2) acts on M with a
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finite principal isotropy subgroup. Then there is a point x in M whose
isotropy subgroup is a torus.

PROOF. Assume the contrary. Then we have H'(K(xy) = 0 for
i = 1, 2 and for every point x in M. Then the Vietoris-Begle Theorem
shows that π*: H^M/K) —> H*(M) is an isomorphism for i = 1, 2, where
π:M—*M/K is the orbit map. It follows from the existence of /that
there are elements a19 , ar e H\M) and b19 , b$ e H\M) such that
the cup product αx αA bs is non-zero. The above argument shows
that all α/s and 6/s are in the image of π*. Put at = π*(a't) and bj —
7Γ*(&^ ) for i = 1, , r and j = 1, , s. Then we have

0 ^ Λ! αA •••&.= τr*(α; α &ί &ί) = 0 ,

since αί α,δί b's e HάimM(M/K) = 0, which is a contradiction.

PROPOSITION 4. Lei M be a closed manifold with a map f:M-+
(S1)rx(SB')8 of non-zero degree. Assume G — SE7(3) or Sp(2) αcίs on M
with a finite principal isotropy subgroup. Then there is a singular
orbit.

To prove this Proposition, we need the following Lemma.

LEMMA 5. Let X be a closed manifold. Assume a compact connected
simple Lie group G acts on X almost freely, i.e. all isotropy subgroups
are finite. Then we have diml££ > 8 <£l, where {E*>9,dr} is the Leray
spectral sequence of the orbit map π:X—>X/G.

PROOF. It follows from the argument of the proof of Theorem 1
in [3] that the sheaf Hq(π) is locally constant, i.e. for every point x* in
X/G, there is a neighborhood Ϊ7* of x* such that the restriction Hq(π)\U*
is isomorphic to the product U*xHg(G(x)). Thus we have 2S£'8 = the vector
space of all sections of H5&)S=H*(G(x)} = Q. q.e.d.

PROOF OF PROPOSITION 4. Assume the contrary. Consider the Leray
spectral sequence {Eϊ 9,dr} of the orbit map π:M-+M/G. It follows
from the assumption that H*(G(x)) = 0 for i — 1, 2 and for every point,
x in M. This shows that Eξ 1 = Eξ>2 = 0 and that TT*: H^M/G) -> H'(M)
is an isomorphism for i — 1,2. Hence we have the following exact
sequence;

0 >E™ >H\M) >#i 8 »0

H*(M/G)
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It follows from Lemma 5 that dim£«,'s<;i, which implies that
dim H\MjG) = dim E™ ^ dim H\M) - 1. Let αlf , ar 6 H\M) and
&!, , 6.6 H\M) such that αx αA 68 =£ 0. We may assume that
δι» •> &«-ι are in Im ff* Since H*(M/G) = H*(M) via π* for i = 1, 2, we
have

0 ^ Λ! αA &..! = ττ*(αl a'rb[ &Lι) = 0 ,

because a( a'rb( Vs_, e H'^-^M/G) and dim M/G ^ dim M - 8, which
is a contradiction. q.e.d.

We shall prove the following

PROPOSITION 6. Let M be as in Proposition 4. Assume the group
K = S£7(2) acts on M almost freely. Then H*(M) is isomorphic to
Jϊ*(M/jfiΓ)®ίZ"*(S3) as rings. In particular, for every point x in M, the
homomorphism i%: HS(M) —> HB(K(x)) is non-trivial.

PROOF. Consider the Leray spectral sequence [Ef'q, dr} of the orbit
map π: M-+M/K = M*. Assume the edge homomorphism e: H\M) —> E$'*
is not surjective. Then it follows from Lemma 5 that e is trivial, which
implies that E™ = 0. It is easy to see that π*: H'(M*)-+H'(M) is an
isomorphism for i = 1, 2 and 3. The same argument as in Proposition
4 leads a contradiction. This proves that e is surjective. Since the map
π:M—»Λf* behaves as if it were a fiber bundle in rational coefficients,
the argument of the Leray-Hirsch Theorem shows that H*(M) is isomor-
phic to H*(M*) (g)ίί*(S3) as rings (see also [2]). The second part follows
from Proposition 2 and the fact that e is surjective. q.e.d.

Let Mbe as in Theorem A. As in [8], we shall construct a principal
Γ'-bundle M over M as follows. Let Nt = (S1Y x (SJ x (S2)s~ί(ΐ = 0, , s).
Put NQ = N and N8 = ft. Consider Nί+1 as a principal T-bundle over
jty. (ί = 0, , s — 1). Let Mj. be the pull-back of the bundle Nt -+ ΛΓby
the map / and /x: MΊ —> Λ^ the bundle map covering /. It is easy to see
that fi is a map of non-zero degree. Inductively we can construct a
sequence of manifolds MQ — Af, Λf^ , M3 = M and a sequence of maps
/0 = /, /!, , /. = / such that /<: Λf t —> ΛΓi is a map of non-zero degree
and PS. Mi —* M^ is a principal T-bundle which is a pull-back of
qt: Ni -> ΛΓ^i by /<_! for i = 1, * , s. Put p = ̂  o p2 o ... o p8 and q =
9ι ° % ° ° tfβ It follows from a result in [7] (Theorem 4.1 in [7]) that
every action of Tn on Λί can be lifted over Mt. Let atί9 , α<r e fί

1^),
δϋ, , δίs_4 eH*(N t ) and c<]L, •• ,cίίeH\Ni) be generators of H*(Nt) for
i = 0, , s. Put di = /*(αoi) and 6^ — /*(60ί ) These notations are used
in the following sections.
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We shall prove the following

PROPOSITION 7. Let M be as in Theorem A. Assume Tn acts on
M and there is a point x in M such that the homomorphism
evl: π^T71, e) -» π^M, x), where ev*: Tn -* M defined by ev*(ΐ) = tx, is
trivial. Then we have n ^ s.

PROOF. Note that the homomorphism evl: π^T", e)-*πι(M, x) is trivial
for every point x in M, because of pathwise connectedness of M. Since
the action of Tn on M is lifted over M, we have the following diagram;

where x = p(x). It follows from the assumption and the above diagram
that (ev*)*:H\M)-*H\Tn) and (evx)*f*\H\N)-->H\Tn) are trivial, be-
cause g*(6oy) = 0 for ί = 1, , s. Thus (ev ) * f * : Hk(N) -*Hk(Tn) is trivial
for any k. This implies that i*f*:Hk(N)-*Hk(Tn(x)} is trivial for every
point x and k. Now consider the Leray spectral sequence {£?•*, dr} of
the orbit map π: M-*M/Tn = M*. Since ί*: Hk(M) -+Hk(Tn(x)) is trivial
on Im{f*:Hk(N)->Hk(M)}, the edge homomorphism e: Hk(M) -> Eϊ>h is
trivial on Im /* and hence every element of Im /* has filtration ^> 1
(this implies that Im /* S J1**-1, where Hk(M) = J^^J1'^1^ =)Jfc'°).
In particular, at e J1>0 (i = 1, , r) and bό e J1}1(j = 1, , s). Hence
a^ arbl bs has filtration :>r + s. If dimM* < r + s, then ,E?'g = 0
for p ;> r + s, which means that αx αA b8 is zero. This shows
that dimΛf* must be greater than r + s — 1. Thus we have dimΛP =
r + 2s — n ^ r + s and hence n ^ s. q.e.d.

REMARK. As shown in the proof of Proposition 7, we can replace
the hypothesis that evl: πλ(Tn, e) —> π^M, x) is trivial by the statement
that (/ o ev*)*: π,(Tn

9 e) -> πλ(N, /(a?)) is trivial.

COROLLARY. If the action of Tn has a fixed point, then we have
n ^ s.

This follows from Proposition, because evl is trivial for a fixed
point x.

2. Proof of Theorem A. In this section, we shall prove Theorem A.
To prove it, it is sufficient to show that G — SU(S) or Sp(2) cannot act
on M, because the exceptional group G2 and simple Lie group of rank ^ 3
contain SZ7(3) or Sp(2). Since the case of Sp(2) is completely parallel to
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the case of SZ7(3), we shall prove only that Sϊ7(3) cannot act on M.
From now on, we assume M admits an action φ of G = SU(S). Let

K=SU(2) be the standard subgroup of SU(S) and faKxM-^M the
restriction of the action φ. Let Mt be as before and ψt (resp. fa) the
lifting of φ (resp. ^ ) over M*. Put φs — φ and α/rs — ̂ .

First we shall prove the following

LEMMA 8. 2%e action fa Λαs α ./w&iίe principal isotropy subgroup.

PROOF. Assume the contrary. Then every isotropy subgroup contains
a torus and hence the center C of K is contained in every isotropy sub-
group. This implies that every isotropy subgroup of the action of G
contains C and C is contained in the ineffective kernel of the action φ.
Hence C is contained in the center of G, which is easily seen to be
impossible. q.e.d.

We shall prove the following

PROPOSITION 9. The action ψ is almost free.

To prove this, we need the following two Lemmas.

LEMMA 10. There is a point x in M such that the homomorphism
i*f*:H*(N)-*IP(K(x)) is non-trivial.

PROOF. Assume the contrary. It follows that the edge homomor-
phism e: H\M) — » Eξ * of the Leray spectral sequence of the orbit map
π:M-+M/Ki* trivial on the Im/*. This implies that f*(H*(N)) is con-
tained in the kernel of e, which equals π*(H*(MIK)). Since TT*: H\MjK) ->
H\M) is an isomorphism by the Vietoris-Begle Theorem, a± ajb^ bs

is zero, which is a contradiction. q.e.d.

Choose x in M such that ί*f* is non-trivial. We may assume
iχ(bί) ^ O In fact, we have ^(α^ ) = i?(α<)i?(α, ) = 0, because H\K(x)) = 0.
Consider the lifting fa and put Pι(xt) = x. Then we have the following

LEMMA 11. The homomorphism i^: H*(M^ — > H\K(xJ) is non-trivial.

PROOF. Since HφJ^Q, K(x) = S2 and pϊl(K(x)) -> K(x) is a non-
trivial principal Γ-bundle, which implies pϊ\K(x)) — K(x^). Then Lemma
follows from the following commutative diagram;

H\N) - > H*(N3 - > HZ(N)

H\M)

4** |
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where each horizontal sequence is the Gysin sequence. q.e.cL

Now we shall prove Proposition 9. Assume the contrary. Then ̂  has
a singular orbit and hence fa has a singular orbit. Since fa has a finite
principal isotropy subgroup, the edge homomorphism eλ\ H*(M^ — >£r

2

0>3 of
the Leray spectral sequence of the orbit map π^ Mt — > MJK is trivial,
because of Proposition 1. Therefore the homomorphism i*j H*(M^ ->
H*(K(y^) is trivial for every point yl in Mί9 which contradicts Lemma 11.
This completes the proof. q.e.d.

It follows from Propositions 6 and 9 that, for every point x in M,
the homomorphism i*: H*(M) -» Hz(K(x)) is non-trivial. Consider the
following commutative diagram;

- — > H\G(x))

H\K(x}) .

By the above argument, we can conclude that the homomorphism j* is
non-trivial for every point x in M, which implies that H*(G(x)) ^ 0. It
follows from a result in [8] (Proposition 8 in [8]) that Gx is finite for
every point x in M, which contradicts Proposition 4. This completes the
proof of Theorem A.

REMARK. One can prove Proposition 8 in [8] for Sp(2) by a similar
way as in [8].

3. Proof of Theorem B. In this section, we shall prove Theorem B.
Let M be as in Theorem B. If a compact connected Lie group G acts
on M, then G must be locally isomorphic to Tu x (S3)", because of Theorem
A. Now we shall prove v ^ s. Let Gl — (SB)V and Tv a maximal torus
of G!. Since evl: π^T*, e) — > π^(Glt e) -* 7Γι(Af, x) is trivial, it follows from
Proposition 7 that we have v <£ s. The last part of Theorem B follows
from Corollary to Proposition 7. This completes the proof of Theorem B.

4. Proof of Theorem C. Consider the case where the fundamental
group TΓ^L) is non-trivial. If dim M — 2, the result is well known. Hence
we may assume dim M ̂  3. Then π^M) has trivial center, because
7Γi(M) = π^L) * τr1((S1)r). Since the image of the homomorphism
evl:^(T*,e)-*^(M) is contained in the center of πt(M) (see [4] section
4), ev£ is trivial. It follows from Proposition 7 that n ̂  s. Next
consider the case where πλ(L) is trivial. Let K = kernel of evl: πί(Tn

ί e) — »
^((ST) and put t — rk K. It is clear that n — t ^ r. We can
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decompose Tn as a product Tn = Γ*x Tn-* such that evl: ^(T\e)-*
is trivial. It follows from Proposition 7 that t ^ s. This implies that
n ^ r + s and completes the proof of Theorem C.

5. Proof of Theorem D. Let M and L be as in Theorem D and
X = M $ L. Let g: M-» N = (Sl)r x (S2)8 be a map of non-zero degree and
c:X— >M the collapsing map. Then the composition g o c has non-zero
degree. As before, we can construct a T8-bundle X over X and a map
/: X-+N — (S1Y x (S8)8 of non-zero degree. We have the following diagram
of fibre bundles and bundle maps;

I ! I
where M is the Γ8-bundle over M constructed from g and / = gc .

We have the following observations.
( 1 ) X is homeomorphic to the space

(M - int Dm x Ts) U (L - int Dm} x T8 ,

where m = dim M.
( 2 ) Consider the following commutative diagram;

Hk(X, (L - int Dm) x T8) = Hk(M - int Dm x T8, S™-1 x T8)

Hk(X, ft - int D" x Γ ) - » ίί*(X) - - » fl*(Jlί - int I> x Γ )

1- ^ «1 ., -1
Hk((L-mϊ Dm) x T8, S™-1 x Γ8) - > Hk((L-int Dm) x Γ8) -̂ -> ίί̂ S"1-1 x Γ8) .

Here the vertical and horizontal sequences are exact and q and r are
collapsing maps: X -> Xj(M - int D m x T8) and 1" -> 5/(L - int Dm) x Γ8,
respectively and the other maps are inclusions. Then it follows that
Im/* is contained in Imr* = Keri0*.

( 3 ) Let r = min. {r'; Hr'(L) Φ 0}. Since L is not a rational homology
sphere, we have 1 ̂  r ^ m — 1. Choose elements α/eif r(L) and 6'e
Hm~r(L) such that α'δ' ^ 0. Note that α'x[Γ8] 6 H8+r((L - int Dw)x Γ8)
and δ' x 1 e Hm~r((L - int Z>TO) x Γ8) are in Ker i8* Then there exist a and
6 in #*(-£) such that i0*(α) - α'x[Γ8] and i?(6) = δ'xl. Then we have
ab Φ 0.

These observations are slight generalizations of results in [8] (Obser-
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vations (1), (2) and (3) in [8]). We omit their proof.
Now we assume K — SU(2) acts on X. Consider the action ψ> of

K over X which is a lift of the action ψ of K on X. We have the
following

PROPOSITION 12. The action fy is almost free.

PROOF. First we shall prove that fy has a finite principal isotropy
subgroup. Assume the contrary. Then a principal isotropy subgroup
Hψ is a torus or the normalizer Nτ of a torus T. If H^ = Nτ, then
H*(X) — H*(X/K) via the homomorphism π* induced by the orbit map
π:X->X/K, because H\K(x)) = 0 for i^l and xeX. This is easily
seen to be a contradiction. Thus H% is a torus and it is easy to see
that a principal isotropy subgroup H^ is also a torus. If ψ has an
exceptional orbit or singular orbit, then it follows from Proposition 2
that El? — 0, where {Eίt9, dr} is the Leray spectral sequence of the orbit
map π: X-+X/K. This implies H\X/K) = E^ = H*(X). Since H\XJK) =
E%° = Hl(X) by the Vietoris-Begle Theorem, it is easy to lead a contradic-
tion. Thus α/r and ty have a unique orbit type S2. If there is a point a?
in X such that the homomorphism i*: H\X) —> H2(K(x)) is trivial, then
this holds for every point a? in X, which implies that the edge homo-
morphism e: H\X] —> E%>2 is trivial. This is a contradiction as shown
above. Thus the homomorphism i* is not trivial for every point x in
X. We may assume if/*(60ι) ^ 0. Consider the T-bundle p^J^—»JΓ,
which is the pull-back of jNΊ —> N by /. It is easy to see that pϊ\K(x))
is ^-invariant and equals S3. Since the action fa has a torus as a
principal isotropy subgroup, fa must have a fixed point, which is a con-
tradiction. This shows that ψ and hence ^ has a finite principal isotropy
subgroup. The proof of the fact that fy is almost free is completely
parallel to the proof of the Proposition 9. q.e.d.

It follows from Proposition 6 that H*(X) is isomorphic to H*(XJK) (x)
H*(SB) as rings. We have the following observation.

( 4 ) There is an element w in HB(X) such that w is contained in
Im/*, but not in Imir*.

In fact, we have the following exact sequence;

0 >E^ >H\X) >E^ >0

1 =

H\XJK) .

Let weH*(X) be the element corresponding to a generator of H5(SS).
Since Im{/*: H\N) -> H\X)}<£lm{π*\ H\X/K) -> H\X}}, we can choose
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w in Im/*.

It follows from observation 2 that i*(w) — 0. Since H*(X) =
H*(X/K) 0 wH*(XjK) and if (US) = 0, a and 6 can be chosen from Imπ*,
in other words, a = ττ*(α") and b — π*(b"), where α" and 6" are in
H*(%/K). This implies that ab = π*(a"b") = 0, which is a contradiction.
Thus we have completed the proof of Theorem D.

REFERENCES

[ 1 ] G. BREDON, Sheaf Theory, McGraw-Hill, New York, 1967.
[2] D. BURGHELEA AND R. ScHULTZ, On the semisimple degree of symmetry, Bull. Soc. Math.

France 103 (1975), 433-440
[3] P. E. CONNER, Orbits of uniform dimension, Michigan, Math. J. 6 (1958), 25-32
[ 4 ] P. E. CONNER AND F. RAYMOND, Actions of compact Lie groups on aspherical manifolds,

Topology of manifolds (Proc. Inst. Univ. of Georgia, Athens) 1970, 227-264
[ 5 ] H. DONNELLY AND R. SCHULTZ, Compact group actions and maps into aspherical manifolds,

Topology 21 (1982), 443-455
[6] H-T. Ku AND M-C. Ku, Group actions on Afc-manifolds, Trans, of Amer. Math. Soc. 245

(1978), 469-492
[7] T. E. STEWART, Lifting group actions in fibre bundles, Ann. of Math. 74 (1961), 192-198
[8] T. WATABE, Semisimple degree of symmetry and maps of degree one into a product

of 2-spheres, J. Math. Soc. Japan 35 (1983), 683-692
[ 9 ] R. WASHIYAMA AND T. WATABE, On the degree of symmetry of a certain manifold, J.

Math. Soc. Japan 35 (1983), 53-58

DEPARTMENT OP MATHEMATICS
FACTULTY OF SCIENCE
NIIGATA UNIVERSITY
NIIGATA, 950-21
JAPAN




