SQUARE-INTEGRABLE HOLOMORPHIC FUNCTIONS ON A CIRCULAR DOMAIN IN C^{n}

Kazuo Azukawa

(Received June 6, 1983)
0. Introduction. In the preceding paper [2], square-integrable holomorphic n-forms on an n-dimensional complex manifold are studied, and invariants $\mu_{0, m}$ are introduced. The purpose of this paper is to examine how $\mu_{0, m}$ are expressed when the manifold is a circular domain in the n-dimensional complex Euclidean space \boldsymbol{C}^{n}, and to provide several examples concerning these invariants.

Let D be a circular domain in C^{n} which is not necessarily bounded. Let $H(D)$ be the Hilbert space of all square-integrable holomorphic functions on D, and for every integer m, let $H_{m}(D)$ be the subspace of $H(D)$ whose elements are m-homogeneous on D (see Definition 1.1). Then $H_{m}(D)$ are mutually orthogonal. If D is proper, then $H_{m}(D)=\{0\}$ for $m<0$, and all elements of $H_{m}(D)$ for $m \geqq 0$ are actually homogeneous polynomials of degree m. Now, suppose that D is proper and has a finite volume $V(D)$. Let $K(z, \bar{w})=\sum_{m=0}^{\infty} K_{m}(z, \bar{w})$ be the Bergman kernel of D, where K_{m} are homogeneous polynomials of degree m with respect to each of the variables z and \bar{w}. Then it is shown that

$$
\mu_{0, m}\left(\left(\partial_{v}\right)_{o}\right)=V(D)(m!)^{2} K_{m}(v, \bar{v})
$$

for $v \in C^{n}$, where $\partial_{\left(v^{1}, \cdots, v^{n}\right)}=\sum_{j} v^{j} \partial / \partial z^{j}$ (Theorem 2.2). Furthermore, if D is bounded, then every polynomial K_{m} is written as follows (Corollary 2.4):

$$
K_{m}(z, \bar{w})=\left(z^{I_{1}}, \cdots, z^{I_{N}}\right) \bar{G}^{-1}\left(w^{I_{1}}, \cdots, w^{I_{N}}\right)^{*}
$$

where $\left(I_{1}, \cdots, I_{N}\right)\left(N=\left(\begin{array}{c}n+\underset{m}{m}-1\end{array}\right)\right)$ is a numbering of the indices of the set $\left\{\left(i_{1}, \cdots, i_{n}\right) \in \boldsymbol{Z}_{+}^{n} ; i_{1}+\cdots+i_{n}=m\right\}$ and $G=\left(\left(z^{I_{i}}, z^{I_{j}}\right)\right)_{i, j}$ is the Gram matrix of the system ($z^{I_{1}}, \cdots, z^{I_{N}}$) of monomials with respect to the inner product on $H(D)$.

It is well-known ([7], [10]) that when a domain carries a Bergman metric g, the holomorphic sectional curvature of g does not exceed 2. In §3, we see the following from examples:
(i) There exists a domain D in C^{2} with positive, finite dimensional $H(D)$. Moreover, there exists a domain in C^{2} for which the holomorphic
sectional curvature of the Bergman metric is identically 2 (Proposition 3.2).
(ii) For Reinhardt domains in \boldsymbol{C}^{n}, there is no relationship between the existence of Bergman metrics and the hyperbolicity in the sense of Kobayashi [11] (Propositions 3.1 and 3.3).
(iii) For every interval $[\alpha, \beta] \subset(-\infty, 2)$, there exists a bounded pseudoconvex Reinhardt domain in C^{2} for which the image of the holomorphic sectional curvature of the Bergman metric contains $[\alpha, \beta]$ (Proposition 3.5).

1. The Hilbert space $H(D)$ for a circular domain. Let D be a domain in C^{n}. The set of all functions f holomorphic on D such that $\|f\|^{2}=\int_{D}|f|^{2} d \nu_{n}<+\infty$ is denoted by $H(D)$, where $d \nu_{n}$ is the Lebesgue measure on \boldsymbol{C}^{n}. The space $H(D)$ is a separable Hilbert space with inner product $(f, g)=\int_{D} f \bar{g} d \nu_{n}$. Let $\left\{h_{m}\right\}$ be a complete orthonormal system of $H(D)$. Then the function $K(z, \bar{w})=\sum_{m} h_{m}(z) \overline{h_{m}(w)}((z, \bar{w}) \in D \times \bar{D})$ is called the Bergman kernel of D and the function $k(z)=K(z, \bar{z})$ is called the Bergman function of D.

Now, suppose that D is circular, i.e., $e^{i \theta} D \subset D$ for every $\theta \in \boldsymbol{R}$. We denote by $\pi: \boldsymbol{C}^{n}-\{O\} \rightarrow \boldsymbol{P}^{n-1}$ the canonical projection defining the complex projective space \boldsymbol{P}^{n-1}. Take a mapping ψ from \boldsymbol{P}^{n-1} to the unit sphere $S^{2 n-1}$ in C^{n} such that $\pi \circ \psi=1_{P^{n-1}}$, and consider a domain $V=\{(\zeta, r) \in$ $\left.\boldsymbol{P}^{n-1} \times \boldsymbol{R}_{+} ; \boldsymbol{r} \psi(\zeta) \in D\right\}$ in $\boldsymbol{P}^{n-1} \times \boldsymbol{R}_{+}$, where $\boldsymbol{R}_{+}=\{r \in \boldsymbol{R} ; r \geqq 0\}$ endowed with the relative topology. The set V is independent of the choice of ψ, and D is reproduced in terms of V as follows:

$$
\begin{equation*}
D=\left\{r e^{i \theta} \psi(\zeta) ;(\zeta, r) \in V, \theta \in \boldsymbol{R}\right\} \tag{1.1}
\end{equation*}
$$

Conversely, for every domain V in $\boldsymbol{P}^{n-1} \times \boldsymbol{R}_{+}$, the set D defined by (1.1) is a circular domain in C^{n}. We call V the representative domain for the circular domain D.

Definition 1.1. Let m be an integer. A holomorphic function f on D is called m-homogeneous if $f(\lambda z)=\lambda^{m} f(z)$ for all $\lambda \in C$ and $z \in D$ with $|\lambda| \in I(z)$, where $I(z)$ denotes the connected component of the set $\{r \in$ $\left.\boldsymbol{R}_{+}-\{0\} ; r z \in D\right\}$ containing 1 for $z \in D$. Denote by $H_{m}(D)$ the space of all functions of $H(D)$ which are m-homogeneous.

Let v be the volume element on P^{n-1} induced from the Fubini-Study metric, and set $U=\left\{\pi(z) ; z=\left(z^{1}, \cdots, z^{n}\right) \in C^{n}, z^{n} \neq 0\right\}, u^{j}(\zeta)=z^{j} / z^{n}$ for $\zeta=\pi(z) \in U$, and $u=\left(u^{1}, \cdots, u^{n-1}\right): U \rightarrow \boldsymbol{C}^{n-1}$. Then, letting $|u|^{2}=\sum\left|u^{j}\right|^{2}$, we have

$$
\left.v\right|_{\sigma}=\left(1+|u|^{2}\right)^{-n} u^{*} d \nu_{n-1} .
$$

Let α be the mapping from U into $S^{2 n-1}$ given by

$$
\alpha=\left(1+|u|^{2}\right)^{-1 / 2}(u, 1) .
$$

We get the following by elementary calculation.
Lemma 1.2. Let D be a circular domain in \boldsymbol{C}^{n} with representative domain $V \subset \boldsymbol{P}^{n-1} \times \boldsymbol{R}_{+}, f \in H_{l}(D)$ and $g \in H_{m}(D)$. If $l \neq m$, then $(f, g)=0$, while if $l=m$, then

$$
(f, g)=2 \pi \int_{(\zeta, r) \in, \zeta, \zeta \in U} f(r \alpha(\zeta)) \overline{g(r \alpha(\zeta))} r^{2 n-1} v(\zeta) \wedge d r .
$$

We also note the following.
Lemma 1.3. Let f be a holomorphic function on a circular domain D. For every $z \in D$, let $\sum_{m \in \mathcal{Z}} f_{m}(z) \lambda^{m}$ be the Laurent expansion around 0 of the function $\{\lambda \in \boldsymbol{C} ;|\lambda| \in I(z)\} \ni \lambda \mapsto f(\lambda z) \in \boldsymbol{C}$ (see Definition 1.1). Then the function f_{m} is holomorphic on D and m-homogeneous for every m, and the series $\sum_{m} f_{m}$ converges to f uniformly on every compact subset of D.

By virtue of Lemmas 1.2 and 1.3 we can show the following by the same argument as in Skwarczyński [13; Theorem 0.8].

Proposition 1.4. Let D be a circular domain in C^{n} and B_{m} complete orthogonal systems of the space $H_{m}(D)$ for $m \in \boldsymbol{Z}$. Then the union $\cup_{m} B_{m}$ is a complete orthogonal system of $H(D)$.

A circular domain D is called proper if D contains the origin O. By definition, we immediately get the following:

Lemma 1.5. For $m \geqq 0$ (resp. $m<0$), every m-homogeneous function on a proper circular domain D is the restriction to D of a homogeneous polynomial of degree m (resp. is 0). In particular,

$$
\operatorname{dim} H_{m}(D) \begin{cases}=0, & m<0 \\ \leqq\binom{ n+m-1}{m}, & m \leqq 0 .\end{cases}
$$

When a circular domain D is starlike, i.e., $\lambda D \subset D$ for all $\lambda \in[0,1]$, there exists a unique $(0,+\infty]$-valued function R defined on \boldsymbol{P}^{n-1} such that the representative domain V of D is given by

$$
V=\left\{(\zeta, r) \in \boldsymbol{P}^{n-1} \times \boldsymbol{R}_{+} ; r<R(\zeta)\right\} .
$$

The function R is lower semi-continuous, and D is represented in terms
of R as follows, where we let $|\cdot|$ be the Euclidean norm on C^{n} :

$$
D=\left\{z \in \boldsymbol{C}^{n}-\{O\} ;|z|<R \circ \pi(z)\right\} \cup\{O\}
$$

Moreover, it is convenient to consider the upper semi-continuous function $\varphi=-\log R \circ \pi(\cdot, 1)+\log \left(1+|\cdot|^{2}\right)^{1 / 2}$ on C^{n-1}, which is plurisubharmonic for pseudoconvex D (cf. [1]).

Proposition 1.6. Let D be a starlike circular domain in \boldsymbol{C}^{n}, and φ the function defined above. Then for $f, g \in H_{m}(D)$ with $m \geqq 0$, we have

$$
(f, g)=\frac{\pi}{m+n} \int_{c^{n-1}} f(\cdot, 1) \overline{g(\cdot, 1)} e^{-2(m+n) \varphi} d \nu_{n-1}
$$

where f and g are regarded as polynomials (see Lemma 1.5).
Proof. By Lemma 1.2 we have

$$
(f, g)=\frac{\pi}{m+n} \int_{U} f \circ \alpha \overline{g \circ \alpha} R^{2(m+n)} v
$$

Since $\alpha \circ \pi(\cdot, 1)=\left(1+|\cdot|^{2}\right)^{-1 / 2}(\cdot, 1)$ and $\left.\pi(\cdot, 1)^{*} v\right|_{U}=\left(1+|\cdot|^{2}\right)^{-n} d \nu_{n-1}$, the change of variables yields the desired formula.

Finally, let D be a Reinhardt domain in \boldsymbol{C}^{n}, i.e., D is a domain in \boldsymbol{C}^{n} such that $\left(e^{i \theta 1} z^{1}, \cdots, e^{i \theta n} z^{n}\right) \in D$ for all $\left(z^{1}, \cdots, z^{n}\right) \in D$ and $\theta^{j} \in \boldsymbol{R}$. Of course, D may be unbounded. Let Ω be the real representative domain of $D: \Omega=\left\{\left(\left|z^{1}\right|, \cdots,\left|z^{n}\right|\right) ;\left(z^{1}, \cdots, z^{n}\right) \in D\right\} \subset \boldsymbol{R}_{+}^{n}$. We recall the following two properties of D :
$\left(\mathrm{R}_{1}\right) \quad$ For a pair of functions $z^{I}, z^{J} \in H(D)\left(I, J \in \boldsymbol{Z}^{n}\right)$, one has $\left(z^{I}, z^{J}\right)=$ 0 , if $I \neq J$, while if $I=J=\left(i_{1}, \cdots, i_{n}\right)$, then

$$
\left(\boldsymbol{z}^{I}, \boldsymbol{z}^{I}\right)=(2 \pi)^{n} \int_{\Omega}\left(r^{1}\right)^{2 i_{1}+1} \cdots\left(\boldsymbol{r}^{n}\right)^{2 i_{n}+1} d r^{1} \wedge \cdots \wedge d r^{n}
$$

$\left(\mathrm{R}_{2}\right)$ Every holomorphic function on D can be expanded in a Laurent series around O, which converges uniformly on every compact subset of D.

By making use of the facts $\left(R_{1}\right)$ and $\left(R_{2}\right)$ we obtain the following improvement of [13; Theorem 0.8]:
$\left(\mathrm{R}_{3}\right)$ The set $\left\{z^{I} ; I \in \boldsymbol{Z}^{n}\right\} \cap H(D)$ is a complete orthogonal system of the space $H(D)$.
2. Invariants $\mu_{0, m}$ of a proper circular domain. Let D be a domain in C^{n} with the natural coordinate system $\left(z^{1}, \cdots, z^{n}\right)$. Set $\partial_{j}=\partial / \partial z^{j}$ $(j=1, \cdots, n)$, and $\partial^{I}=\partial_{1}^{i_{1}} \cdots \partial_{n}^{i_{n}},|I|=i_{1}+\cdots+i_{n}$ for $I=\left(i_{1}, \cdots, i_{n}\right) \in$ \boldsymbol{Z}_{+}^{n}, where ∂_{j}^{0} means the identity operator acting on functions on D.

Every holomorphic tangent vector $X \in T_{z}(D)$ at $z \in D$ is written as $X=$ $\left(\partial_{v}\right)_{z}$, where $\partial_{v}=\sum_{j} v^{j} \partial_{j}$ with $v=\left(v^{1}, \cdots, v^{n}\right) \in \boldsymbol{C}^{n}$. For every $m \in \boldsymbol{Z}_{+}$, $z \in D$, and $X=\left(\partial_{v}\right)_{z} \in T_{z}(D)$, set

$$
\begin{gathered}
A_{m}(z)=\left\{f \in H(D) ; \partial^{I} f(z)=0 \text { for all } I \in Z_{+}^{n} \text { with }|I|<m\right\}, \\
\mu_{m}(X)=\max \left\{\left|\left(\partial_{v}\right)^{m} f(z)\right|^{2} ; f \in A_{m}(z),\|f\|=1\right\} \quad \text { (cf. [2]) } .
\end{gathered}
$$

For $j=0$, 1 , we consider the following conditions ([10]):
(B.j) For every $z \in D$ and every non-zero $\binom{n+j-1}{j}$-dimensional vector $\left(\xi_{I}\right)_{|I|=j}$, there exists a function $f \in H(D)$ such that $\sum_{I} \xi_{I} \partial^{I} f(z) \neq 0$.

Now, the Bergman kernel K of D is characterized by the following reproducing property: $K(\cdot, \bar{z}) \in H(D)$ and $f(z)=(f, K(\cdot, \bar{z})$) for all $z \in D$ and $f \in H(D)$. The reproducing property of K implies the following (cf. [2], [4], [5]): If $z \in D, I \in \boldsymbol{Z}_{+}^{n}$, and $f \in H(D)$, then $\bar{\partial}^{I} K(\cdot, \bar{z}) \in H(D)$,

$$
\begin{align*}
& \partial^{I} f(z)=\left(f, \bar{\partial}^{I} K(\cdot, \bar{z})\right), \tag{2.1}\\
& \left(\partial_{v}\right)^{m} f(z)=\left(f,\left(\overline{\partial_{v}}\right)^{m} K(\cdot, \bar{z})\right) \quad \text { and } \tag{2.2}\\
& \left\|\left(\overline{\partial_{v}}\right)^{m} K(\cdot, \bar{z})\right\|^{2}=\left(\partial_{v}\right)^{m}\left(\overline{\partial_{v}}\right)^{m} k(z) \tag{2.3}
\end{align*}
$$

for $v \in \boldsymbol{C}^{n}$ and $m \in \boldsymbol{Z}_{+}$, where k is the Bergman function of D. It follows form (2.1) and (2.2) that

$$
\begin{align*}
& A_{m}(z)=\left\{\bar{\partial}^{I} K(\cdot, \bar{z}) ; I \in \boldsymbol{Z}_{+}^{n},|I|<m\right\}^{\perp}, \tag{2.4}\\
& \mu_{m}(X)=\max \left\{\mid\left(f,\left.\left({\overline{\partial_{v}}}^{m} K(\cdot, \bar{z})\right)\right|^{2} ; f \in A_{m}(z),\|f\|=1\right\}\right. \tag{2.5}
\end{align*}
$$

for $m \in Z_{+}$and $X=\left(\partial_{v}\right)_{z} \in T_{z}(D)$.
If D satisfies the condition (B.0), then for every positive integer $m \in N$, the function $\mu_{0, m}=\mu_{m} / \mu_{0}$ on the holomorphic tangent bundle $T(D)$ is a biholomorphically invariant Finsler pseudometric on D of order $2 m$ ([2; §4]).

From now on, we suppose that D is a proper circular domain. We first note the following.

Lemma 2.1. Let D be a proper circular domain with Bergman kernel K. Then

$$
H_{m}(D)=\operatorname{span}_{c}\left\{\bar{\partial}^{I} K(\cdot, O) ; I \in \boldsymbol{Z}_{+}^{n},|I|=m\right\}
$$

for $m \in \boldsymbol{Z}_{+}$.
Proof. Let B_{m} be a complete orthonormal system of $H_{m}(D)$ for every $m \in \boldsymbol{Z}_{+}$. By Proposition 1.4 we have

$$
\begin{equation*}
K(z, \bar{w})=\sum_{j=0}^{\infty} \sum_{h \in B_{j}} h(z) \overline{h(w)} . \tag{2.6}
\end{equation*}
$$

Let $I \in Z_{+}^{n}$ with $|I|=m$. It follows from (2.6) that

$$
\begin{equation*}
\bar{\partial}^{I} K(\cdot, O)=\sum_{j=0}^{\infty} \sum_{h \in B_{j}} h \overline{\partial^{I} h(O)}=\sum_{h \in B_{m}} I!\overline{h_{I}} h, \tag{2.7}
\end{equation*}
$$

where $I!=i_{1}!\cdots i_{n}$! for $I=\left(i_{1}, \cdots, i_{n}\right)$ and $h(w)=\sum_{I} h_{I} w^{I}$; therefore $\bar{\partial}^{I} K(\cdot, O) \in H_{m}(D)$ so that $\operatorname{span}_{c}\left\{\bar{\partial}^{I} K(\cdot, O) ;|I|=m\right\}$ is contained in $H_{m}(D)$. To prove the opposite inclusion, we fix a numbering (h_{1}, \cdots, h_{L}) of the elements of the set B_{m} and a numbering $\left(I_{1}, \cdots, I_{N}\right)$ of the indices of $\left\{I \in \boldsymbol{Z}_{+}^{n} ;|I|=m\right\}$ (note that $L \leqq N$). Write $h_{j}(z)=\sum_{l=1}^{N} a_{j i} z^{I_{l}}(j=1, \cdots$, $L)$, and set $f_{l}=\bar{\partial}^{I_{l}} K(\cdot, O)$. Since $\left\{h_{j}\right\}$ is linearly independent, by a change of the numbering $\left(I_{l}\right)$, we may assume that the matrix $\left(\alpha_{j l}\right)_{l \leq j, l \leq L}$ is nonsingular. From (2.7) it follows that $f_{l}=\sum_{j=1}^{L} I_{l}!\overline{a_{j l}} h_{j} \quad(l=1, \cdots, L)$. Since $\left(a_{j l}\right)_{1 \leq j, l \leq L}$ is non-singular, every h_{j} is a linear combination of $\left\{f_{1}, \cdots, f_{L}\right\}$. Hence the proof is complete.

The following is the main theorem of this section.
Theorem 2.2. Let D be a proper circular domain in C^{n} with finite volume $V(D)$ with respect to the Lebesgue measure on \boldsymbol{C}^{n}, and B_{m} complete orthonormal systems of $H_{m}(D)$ for $m \in \boldsymbol{Z}_{+}$. Then D satisfies (B.0), and the invariants $\mu_{0, m}$ on the space $T_{o}(D)$ are given by

$$
\mu_{0, m}\left(\left(\partial_{v}\right)_{o}\right)=V(D)(m!)^{2} \sum_{n \in B_{m}}|h(v)|^{2}, \quad v \in \boldsymbol{C}^{n}
$$

To prove this theorem, we use the following well-known fact (cf. [2; Lemma 3.8]).

Lemma 2.3. Let $\left\{x_{1}, \cdots, x_{m}\right\}(m \geqq 0)$ be a linearly independent system of a pre-Hilbert space H over \boldsymbol{C}, and $x_{m+1} \in H$. Then the maximum of the set $\left\{\left|\left(y, x_{m+1}\right)\right|^{2} ; y \in H,\left(y, x_{j}\right)=0(j=1, \cdots, m),\|y\|=1\right\}$ coincides with $G\left(x_{1}, \cdots, x_{m+1}\right) / G\left(x_{1}, \cdots, x_{m}\right)$, where $G\left(x_{1}, \cdots, x_{k}\right)$ denotes the Gramian of the system $\left(x_{1}, \cdots, x_{k}\right)$, that is, $G\left(x_{1}, \cdots, x_{k}\right)=\operatorname{det}\left(\left(x_{i}, x_{j}\right)\right)_{i, j}$ with the convention $G(\varnothing)=1$.

Proof of Theorem 2.2. By Lemma 2.1 and (2.4) we have $A_{m}(O)=$ $\left(\cup_{j=0}^{m-1} B_{j}\right)^{\perp}$. Since $\cup_{j=0}^{m-1} B_{j}$ is an orthogonal system, Lemma 2.3, together with (2.3) and (2.5), yields the following:

$$
\mu_{m}\left(\left(\partial_{v}\right)_{o}\right)=\left\|\left(\overline{\partial_{v}}\right)^{m} K(\cdot, O)\right\|^{2}=\left(\partial_{v}\right)^{m}\left(\overline{\partial_{v}}\right)^{m} k(O)
$$

On the other hand, (2.6) implies

$$
k(z)=\sum_{j=0}^{\infty} \sum_{h \in B_{j}}|h(z)|^{2}
$$

For $I, J \in Z_{+}^{n}$ with $|I|=|J|=m$, we have

$$
\partial^{I} \bar{\partial}^{J} k(O)=\sum_{h \in B_{m}} I!J!h_{I} \overline{h_{J}}
$$

where $h(z)=\sum_{I} h_{I} z^{I}$, so that we get

$$
\left(\partial_{v}\right)^{m}\left(\overline{\partial_{v}}\right)^{m} k(O)=(m!)^{2} \sum_{|I|=|J|=m} v^{I} \bar{v}^{J} \partial^{I} \bar{\partial} J(O) / I!J!=(m!)^{2} \sum_{h \in B_{m}}|h(v)|^{2} .
$$

Thus, $\mu_{m}\left(\left(\partial_{v}\right)_{o}\right)=(m!)^{2} \sum_{h \in B_{m}}|h(v)|^{2}$. Furthermore, B_{0} consists only of a constant function $V(D)^{-1 / 2}$, so that (B.0) holds and $\mu_{0}\left(\left(\partial_{v}\right)_{o}\right)=k(O)=V(D)^{-1}$. The proof is now complete.

When a proper circular domain D is bounded, the set of all monomials of degree m forms a basis of $H_{m}(D)$ for every $m \in \boldsymbol{Z}_{+}$. In that case, we have the following.

Corollary 2.4. Let D be a bounded, proper circular domain in \boldsymbol{C}^{n}. For every $m \in \boldsymbol{Z}_{+}$, set

$$
K_{m}(z, \bar{w})=\left(z^{I_{1}}, \cdots, z^{I_{N}}\right) \bar{G}^{-1}\left(w^{I_{1}}, \cdots, w^{I_{N}}\right)^{*}
$$

where $\left(I_{1}, \cdots, I_{N}\right)$ is a numbering of the set $\left\{I \in \boldsymbol{Z}_{+}^{n} ;|I|=m\right\}$ and G is the Gram matrix of the system $\left(z^{I_{1}}, \cdots, z^{I_{N}}\right)$. Then the invariants $\mu_{0, m}$ on $T_{o}(D)$ are given by

$$
\mu_{0, m}\left(\left(\partial_{v}\right)_{o}\right)=V(D)(m!)^{2} K_{m}(v, \bar{v}), \quad v \in \boldsymbol{C}^{n} .
$$

Proof. By Theorem 2.2 the proof is reduced to the following lemma.
Lemma 2.5. If $\left(f_{1}, \cdots, f_{N}\right)$ is a linearly independent system of $H(D)$, and $\left\{g_{1}, \cdots, g_{N}\right\}$ is an orthonormal basis of the subspace spanned by $\left\{f_{1}, \cdots, f_{N}\right\}$, then

$$
\sum_{j=1}^{N} g_{j}(z) \overline{g_{j}(w)}=\left(f_{1}(z), \cdots, f_{N}(z)\right) \bar{G}^{-1}\left(f_{1}(w), \cdots, f_{N}(w)\right)^{*}
$$

where G is the Gram matrix of the system $\left(f_{1}, \cdots, f_{N}\right)$.
Proof. Let $g_{j}=\sum_{i=1}^{N} a_{i j} f_{i}(j=1, \cdots, N)$, and set $A=\left(a_{i j}\right)$. Since $\left(g_{i}, g_{j}\right)=\delta_{i j}$, we have $I={ }^{t} A G \bar{A}$; therefore $I=\bar{A}^{t} A G$, or $I=A A^{*} \bar{G}$. Hence we have

$$
\begin{aligned}
\sum_{j=1}^{N} g_{j}(z) \overline{g_{j}(w)} & =\left(g_{1}(z), \cdots, g_{N}(z)\right)\left(g_{1}(w), \cdots, g_{N}(w)\right)^{*} \\
& =\left(f_{1}(z), \cdots, f_{N}(z)\right) A A^{*}\left(f_{1}(w), \cdots, f_{N}(w)\right)^{*} \\
& =\left(f_{1}(z), \cdots, f_{N}(z)\right) \bar{G}^{-1}\left(f_{1}(w), \cdots, f_{N}(w)\right)^{*}
\end{aligned}
$$

3. Examples. When a domain D satisfies the conditions (B.0) and (B.1) in §2, it is called B-hyperbolic. In that case, there exists a unique Hermitian metric g (called the Bergman metric) on D such that $\mu_{0,1}(X)=$
$g(X, \bar{X})$ for $X \in T_{p}(D)$, and the holomorphic sectional curvature $H S C(X)$ of the Bergman metric in the direction $X \in T_{p}(D)-\{0\}$ satisfies the following ([2; Theorem 4.4], [7; p. 525)]:

$$
\begin{equation*}
H S C(X)=2-\mu_{0,2}(X) / g(X, \bar{X})^{2} \tag{3.1}
\end{equation*}
$$

We say that a manifold M is K-hyperbolic if M is hyperbolic in the sense of Kobayashi [11]. Every bounded domain is both B - and K-hyperbolic, and satisfies $H S C<2$.

We first consider the following one-parameter family of unbounded proper Reinhardt domains in C^{2}.

Example 1. $D_{s}=\left\{\left(z^{1}, z^{2}\right) \in \boldsymbol{C}^{2} ;\left|z^{1}\right|<1,\left|z^{2}\right|^{2}<\left(1-\left|z^{1}\right|^{2}\right)^{s}\right\}(s<0)$.
By Lemma 1.5 we have $\left(z^{1}\right)^{m}\left(z^{2}\right)^{n} \notin H\left(D_{s}\right)$ for $m, n \in \boldsymbol{Z}$ with $m<0$ or $n<0$. By (R_{1}) in $\S 1$ we have

$$
\left\|\left(z^{1}\right)^{m}\left(z^{2}\right)^{n}\right\|^{2}=\frac{\pi^{2}}{n+1} \int_{0}^{1} t^{m}(1-t)^{s(n+1)} d t, \quad m, n \in \boldsymbol{Z}_{+}
$$

so that if $m, n \in \boldsymbol{Z}_{+}$then

$$
\begin{equation*}
\left(z^{1}\right)^{m}\left(z^{2}\right)^{n} \in H\left(D_{s}\right) \Leftrightarrow n<-1 / s-1 . \tag{3.2}
\end{equation*}
$$

In particular, $H\left(D_{s}\right)=\{0\}$ if $s \leqq-1$. Suppose that $-1<s<0$. Put $N(s)=-[1 / s+2]\left(\in Z_{+}\right)$. Then $n<-1 / s-1$ if and only if $n \leqq N(s)$; in this case, one has

$$
\left\|\left(z^{1}\right)^{m}\left(z^{2}\right)^{n}\right\|^{2}=\frac{\pi^{2}}{n+1} \frac{m!}{(s(n+1)+m+1) \cdots(s(n+1)+1)}
$$

By the formula

$$
\begin{align*}
(1-x)^{-\alpha}=\sum_{m=0}^{\infty} \frac{(\alpha+m-1)(\alpha+m-2) \cdots \alpha}{m!} x^{m}, \tag{3.3}\\
|x|<1, \quad \alpha \in \boldsymbol{R},
\end{align*}
$$

the Bergman kernel $K(z, \bar{w})$ of D_{s} is written as

$$
K(z, \bar{w})=\pi^{-2}\left(1-z^{1} \bar{w}^{1}\right)^{-s-2} \sum_{n=0}^{N(s)} a_{n+1} U_{s}(z, \bar{w})^{n}
$$

where $a_{n}=n^{2} s+n$ and $U_{s}(z, \bar{w})=\left(1-z^{1} \bar{w}^{1}\right)^{-s} z^{2} \bar{w}^{2}$. It is easily shown that the image of the function U_{s} on $D_{s} \times \overline{D_{s}}$ is the whole C; therefore the Bergman kernel K vanishes at some point in $D_{s} \times \overline{D_{s}}$. On the other hand, the image of the function $u_{s}(z)=U_{s}(z, \bar{z})$ on D_{s} is the interval [0, 1). Therefore, making use of (3.3) again, we obtain the following expression for the Bergman function $k(z)=K(z, \bar{z})$ of D_{s} :

$$
k(z)=\frac{F_{s}\left(u_{s}(z)\right)}{\pi^{2}\left(1-\left|z^{1}\right|^{2}\right)^{s+2}\left(1-u_{s}(z)\right)^{3}},
$$

where F_{s} is a polynomial given by

$$
F_{s}(u)=(s+1)+(s-1) u-a_{N+2} u^{N+1}-\left(2 s-a_{N+1}-a_{N+2}\right) u^{N+2}-a_{N+1} u^{N+3}
$$

with $N=N(s)$.
Now, all the domains D_{s} are K-hyperbolic by virtue of the following theorem formulated by Sibony [12; p. 366] and essentially due to Kiernan [9]:
(K-S) Let E, M be two complex manifolds, and f a surjective holomorphic mapping from E onto M. Suppose that M is K-hyperbolic and admits an open covering $\left\{U_{\nu}\right\}$ such that $f^{-1}\left(U_{\nu}\right)$ is K-hyperbolic for all ν. Then E is K-hyperbolic.

It is well-known that the domain $C-\{0,1\}$ is K-hyperbolic ([11]) and not B-hyperbolic (in fact $H(C-\{0,1\})=\{0\}$). We have found such an example among Reinhardt domains.

Proposition 3.1. The domain D_{s} with $s \leqq-1 / 2$ is K-hyperbolic, but not B-hyperbolic.

Example 1 suggests the existence of a Reinhardt domain D in C^{2} with positive finite dimensional $H(D)$. The following is such.

Example 2. $\quad D_{s, t}=D_{s} \cup\left\{\left(z^{1}, z^{2}\right) ;\left(z^{2}, z^{1}\right) \in D_{t}\right\} \quad(s, t<0)$. From (3.2) it follows that

$$
\begin{equation*}
\left(z^{1}\right)^{m}\left(z^{2}\right)^{n} \in H\left(D_{s, t}\right) \Leftrightarrow m<-1 / t-1, \quad n<-1 / s-1 \tag{3.4}
\end{equation*}
$$

for $m, n \in \boldsymbol{Z}_{+}$.
Proposition 3.2. If $-1 / 2<s \leqq-1 / 3$ and $-1 / 2<t \leqq-1 / 3$, then the domain $D_{s, t}$ is B-hyperbolic, and the holomorphic sectional curvature of the Bergman metric is identically 2.

Proof. In view of (3.4), the assumptions for s and t imply that the space $H\left(D_{s, t}\right)$ contains all polynomials of degree $\leqq 1$, and contains no polynomial of degree $\geqq 2$; therefore the properties (B.0) and (B.1) hold and $\mu_{2}=0$, so that $\mu_{0,2}=0$. By (3.1) we get $H S C=2$.

Example 3. $\quad D^{s}=D_{s, 8} \cup\left\{\left(z^{1}, z^{2}\right) \in C^{2} ;\left|z^{1}\right| \geqq 1,\left|z^{2}\right| \geqq 1, \quad\left(\left|z^{1}\right|^{-2 / s}-1\right) \times\right.$ $\left.\left(\left|z^{2}\right|^{-2 / s}-1\right)<1\right\}(s<0)$. Similarly to (3.4), we have

$$
\begin{equation*}
\left(z^{1}\right)^{m}\left(z^{2}\right)^{n} \in H\left(D^{s}\right) \Leftrightarrow m, n<-1 / s-1 \tag{3.5}
\end{equation*}
$$

for $m, n \in \boldsymbol{Z}_{+}$.
Proposition 3.3. The domain $D=D^{s} \cup\left\{\left(z^{1}, z^{2}\right) \in C^{2} ;\left|z^{1}\right|<1,\left|z^{2}\right|<2\right\}$ with $-1 / 2<s<0$ is B-hyperbolic but not K-hyperbolic.

Proof. The assumption for s and (3.5) imply that all the polynomials of degree $\leqq 1$ belong to both $H\left(D^{s}\right)$ and $H(D)$; therefore D satisfies (B.0) and (B.1). Furthermore, since D contains a complex line $C \times\{1\}$, it is not K-hyperbolic.

By Propositions 3.1 and 3.3 we see that for Reinhardt domains there is, in general, no relationship between K-hyperbolicity and B-hyperbolicity. It is noted that if a domain is B-hyperbolic, and if the holomorphic sectional curvature of the Bergman metric is bounded from above by a negative constant, then the domain is K-hyperbolic (cf. [11; p. 61]).

Remark 3.4. The following domain ([14; p. 415]) also satisfies the same property as D in Proposition 3.3:

$$
D=\left\{\left(z^{1}, z^{2}\right) \in C^{2} ;\left|z^{2}\right|^{2}<\exp \left(-\left|z^{1}\right|^{2 / s}\right)\right\} \quad(s>0) .
$$

Indeed, all polynomials belong to $H(D)$, and the Bergman kernel is given by

$$
K(z, \bar{w})=\frac{1}{\pi^{2}} \sum_{m, n=0}^{\infty} \frac{(n+1)^{s(m+1)+1}}{s \Gamma(s(m+1))}\left(z^{1} \bar{w}^{1}\right)^{m}\left(z^{2} \bar{w}^{2}\right)^{n}
$$

while D contains a complex line $C \times\{0\}$.
Finally, we give an example of a bounded pseudoconvex Reinhardt domain for which the holomorphic sectional curvature of the Bergman metric possesses a positive value. Let D be a bounded proper Reinhardt domain in \boldsymbol{C}^{2} with a real representative domain Ω. For $m, n \in \boldsymbol{Z}_{+}$, set

$$
\begin{equation*}
a_{m n}=\left(\int_{\Omega}\left(r^{1}\right)^{2 m+1}\left(r^{2}\right)^{2 n+1} d r^{1} \wedge d r^{2}\right)^{-1} \tag{3.6}
\end{equation*}
$$

Then the formula (3.1), together with Theorem 2.2, implies the following:
$\left(\mathrm{R}_{4}\right)$ The holomorphic sectional curvature HSC of the Bergman metric on D at the origin O is given by

$$
H S C\left(\left(\partial_{v}\right)_{o}\right)=2-4 a_{00}\left(a_{20} x^{2}+a_{11} x y+a_{02} y^{2}\right)\left(a_{10} x+a_{01} y\right)^{-2}
$$

for $v=\left(v^{1}, v^{2}\right) \in \boldsymbol{C}^{2}-\{0\}$ with $x=\left|v^{1}\right|^{2}, y=\left|v^{2}\right|^{2}$.
$\left(\mathrm{R}_{5}\right)$ If $a_{01}=a_{10}, a_{02}=a_{20}$, and $2 a_{20} \leqq a_{11}$, then

$$
\left\{\begin{array}{l}
\min _{v \neq 0} H S C\left(\left(\partial_{v}\right)_{o}\right)=2-a_{00}\left(2 a_{20}+a_{11}\right) / a_{10}^{2} \\
\max _{v \neq 0} H S C\left(\left(\partial_{v}\right)_{o}\right)=2-4 a_{00} a_{20} / a_{10}^{2}
\end{array}\right.
$$

Example 4 ([3]). The domain $D(N)=\left\{\left(z^{1}, z^{2}\right) \in C^{2} ;\left|z^{1}\right|^{2 / N}+\left|z^{2}\right|^{2 / N}<1\right\}$ ($N \in N$) is pseudoconvex, and the values $a_{m n}$ of (3.6) for this domain are

$$
a_{m n}=\frac{4(m+n+2)(N(m+n+2)-1)!}{N(N(m+1)-1)!(N(n+1)-1)!}
$$

Since $2 a_{20} \leqq a_{11}$, by the formula in $\left(\mathrm{R}_{5}\right)$ we have

$$
\begin{gathered}
\min _{v \neq 0} H S C\left(\left(\partial_{v}\right)_{o}\right)<2-\frac{8}{9} \prod_{j=1}^{N}\left(1+\frac{N}{3 N-j}\right)<2-\frac{8}{9}\left(\frac{4}{3}\right)^{N}, \\
\max _{v \neq 0} H S C\left(\left(\partial_{v}\right)_{o}\right)=2-\frac{32}{9} \prod_{j=1}^{N}\left(1-\left(\frac{N}{3 N-j}\right)^{2}\right)>2-4\left(\frac{8}{9}\right)^{N+1} .
\end{gathered}
$$

From this we get the following.
Proposition 3.5. For any interval $[\alpha, \beta] \subset(-\infty, 2)$, there exists a bounded pseudoconvex Reinhardt domain in C^{2} for which $\inf H S C<\alpha$ and $\sup H S C>\beta$.

Remark 3.6. It is well-known that there exist homogeneous, bounded domains for which $\max H S C \geqq 0$. For example, the Siegel domain $D[q]$ in $C^{3+q}, q=3,4, \cdots$, considered in D'Atri $[6 ; \S 4]$ satisfies $\min H S C=$ $-2 / 3$ and $\max H S C=1 / 3-2 /(q+3)$.

Now, let C be the Carathéodory metric on a bounded domain D. Then the following is well-known (Hahn [8], Burbea [4], [5]):

$$
\begin{equation*}
C^{2}<\mu_{0,1} \text { on } T(D)-\{\text { the zero section }\} \tag{3.7}
\end{equation*}
$$

Moreover, the following is also known ([4; Theorem 2]):

$$
\begin{equation*}
4 C^{4}<(2-H S C) \mu_{0,1}^{2} \quad \text { on } T(D)-\{\text { the zero section }\} \tag{3.8}
\end{equation*}
$$

The assertion (3.8) is equivalent to $4 C^{4}<\mu_{0,2}$ by (3.1). As a corollary to Proposition 3.5 we get the following assertion concerning the opposite inequality of (3.7):

Corollary 3.7. For any $\alpha>0$, there exists a bounded pseudoconvex Reinhardt domain in \boldsymbol{C}^{2} for which $C^{2} \nsupseteq \alpha \mu_{0,1}$.

Proof. It follows from (3.8) that

$$
\inf _{X \in T(D), X \neq 0} C(X)^{2} / \mu_{0,1}(X) \leqq 2^{-1}(2-\sup H S C)^{1 / 2}
$$

Hence, the desired assertion follows from Proposition 3.5.

References

[1] K. Azukawa, Hyperbolicity of circular domains, Tôhoku Math. J. 35 (1983), 403-413.
[2] K. Azukawa and J. Burbea, Hessian quartic forms and the Bergman metric, Kodai Math. J. 7 (1984), 133-152.
[3] K. Azukawa, Bergman metric on a domain of Thullen type, Math. Rep. Toyama Univ. 7 (1984), 41-65.
[4] J. Burbea, The Carathéodory metric and its majorant metrics, Canad. J. Math. 29 (1977), 771-780.
[5] J. Burbea, Inequalities between intrinsic metrics, Proc. Amer. Math. Soc. 67 (1977), 50-54.
[6] J. E. D'Atri, Holomorphic sectional curvatures of bounded homogeneous domains and related questions, Trans. Amer. Math. Soc. 256 (1979), 405-413.
[7] B. A. Fuks, Ricci curvature of a Bergman metric invariant under biholomorphic mappings, Soviet Math. Dokl. 7 (1966), 525-529.
[8] K. T. HaHn, Inequality between the Bergman metric and Carathéodory differential metric, Proc. Amer. Math. Soc. 68 (1978), 193-194.
[9] P. Kiernan, Some results concerning hyperbolic manifolds, Proc. Amer. Math. Soc. 25 (1970), 588-592.
[10] S. Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1959), 267290.
[11] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.
[12] N. Sibony, A class of hyperbolic manifolds, Ann. of Math. Studies 100, Princeton Univ. Press, 1981, 357-372.
[13] M. Skwarczyński, Biholomorphic invariants related to the Bergman function, Dissertationes Math. 173 (1980), 1-50.
[14] G. Springer, Pseudo-conformal transformations onto circular domains, Duke Math. J. 18 (1951), 411-424.

Department of Mathematics
Toyama University
Toyama, 930
Japan

