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0. Introduction. In the preceding paper [2], square-integrable holo-
morphic n-forms on an ^-dimensional complex manifold are studied, and
invariants μQ§m are introduced. The purpose of this paper is to examine
how μOjm are expressed when the manifold is a circular domain in the
n-dimensional complex Euclidean space Cn, and to provide several examples
concerning these invariants.

Let D be a circular domain in Cn which is not necessarily bounded.
Let H(D) be the Hubert space of all square-integrable holomorphic func-
tions on D, and for every integer m, let Hm(D) be the subspace of H(D)
whose elements are m-homogeneous on D (see Definition 1.1). Then Hm(D)
are mutually orthogonal. If D is proper, then Hm(D) = {0} for m < 0,
and all elements of Hm(D) for m ^ 0 are actually homogeneous polynomials
of degree m. Now, suppose that D is proper and has a finite volume
V(D). Let K(z, w) — Σm=0 Km(z, w) be the Bergman kernel of D, where
Km are homogeneous polynomials of degree m with respect to each of
the variables z and w. Then it is shown that

J"o,.(0.)o)= V(D){m\)2Km{v,v)

for veCn, where S î,...,,*, = Σj-vjdldzj (Theorem 2.2). Furthermore, if
D is bounded, then every polynomial Km is written as follows (Corollary
2.4):

Km(z, w) = (s's , ^ ) G " W S , w1*)* ,

w h e r e (Ilf , IN) ( N = (n m ~~ j j i s a n u m b e r i n g of t h e i n d i c e s of

the set {(i19 , in)) e Z+; iλ + + in = m} and G = ((z1*, z1*))^ is the
Gram matrix of the system (z*1, , z*N) of monomials with respect to
the inner product on H(D).

It is well-known ([7], [10]) that when a domain carries a Bergman
metric g, the holomorphic sectional curvature of g does not exceed 2.
In § 3, we see the following from examples:

( i ) There exists a domain D in C2 with positive, finite dimensional
H(D). Moreover, there exists a domain in C2 for which the holomorphic
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sectional curvature of the Bergman metric is identically 2 (Proposition
3.2).

(ii) For Reinhardt domains in Cn, there is no relationship between
the existence of Bergman metrics and the hyperbolicity in the sense of
Kobayashi [11] (Propositions 3.1 and 3.3).

(iii) For every interval [α,/3]c(—ooy 2), there exists a bounded
pseudoconvex Reinhardt domain in C2 for which the image of the holo-
morphic sectional curvature of the Bergman metric contains [a, β] (Pro-
position 3.5).

1. The Hubert space H(D) for a circular domain. Let D be a

domain in Cn. The set of all functions / holomorphic on D such that

| | / 1 | 2 = ί \f\2dvn < +oo is denoted by H(D), where dvn is the Lebesgue

measure on Cn. The space H(D) is a separable Hubert space with inner

product (/, g) = \ fgdvn. Let {hm} be a complete orthonormal system of
H(D). Then the function K(z, w) = Σm hm(z%Jw) ((z, w) e D x D) is called
the Bergman kernel of D and the function k(z) — K(z, z) is called the
Bergman function of D.

Now, suppose that D is circular, i.e., eίθDaD for every θeR. We
denote by π: Cn — {0}—•P71"1 the canonical projection defining the complex
projective space Pn~\ Take a mapping ψ from Pn~x to the unit sphere
S2""1 in Cn such that π o ψ = lPn-i, and consider a domain V = {(ζ, r) e
Pn~λ x R+; rψ(ζ) e D) in Pn~γ x R+, where R+ = {re R; r ^ 0} endowed with
the relative topology. The set V is independent of the choice of ψ, and
D is reproduced in terms of V as follows:

(1.1) D - {re'fy(C); (ζ, r) e 7 , ί 6 f i } .

Conversely, for every domain F in Pn~1xR+f the set Z) defined by (1.1)
is a circular domain in Cn. We call V the representative domain for
the circular domain Zλ

DEFINITION 1.1. Let m be an integer. A holomorphic function/on
D is called m-homogeneous if /(λz) = λm/(z) for all λ e C and z 6D with
|λ| el(z), where I(z) denotes the connected component of the set {re
R+ — {0}; rzeD} containing 1 for zeD. Denote by Hm(D) the space of
all functions of H(D) which are m-homogeneous.

Let v be the volume element on Pn~x induced from the Fubini-Study
metric, and set U = {ττ(z); z = (z1, , zn) e Cn, zn Φ 0}, ud(Q = zj/zn for
ζ = π(z) e U, and u = {u\ , u11'1): U-+Cn~\ Then, letting \u\2 = Σ I^Ί2,
we have
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Let a be the mapping from U into S271"1 given by

a = (1 + \u\2)~1/2{u, 1) .

We get the following by elementary calculation.

LEMMA 1.2. Lei D be a circular domain in Cn with representative
domain VaPn-1xR+, feHt{D) and geHm{D). If I Φ m, then (/, g) = 0,
while if I — m, then

){ζ,r)eV,ζeU

We also note the following.

LEMMA 1.3. Let f be a holomorphic function on a circular domain
D. For every zeD, let ^mezfrn^)^™ be the Laurent expansion around
0 of the function {xeC; \X\e I{z)} 3 λι->/(λ«) e C {see Definition 1.1). Then
the function fm is holomorphic on D and m-homogeneous for every mτ

and the series Σmfm converges to f uniformly on every compact subset
of D.

By virtue of Lemmas 1.2 and 1.3 we can show the following by the
same argument as in Skwarczyήski [13; Theorem 0.8].

PROPOSITION 1.4. Let D be a circular domain in Cn and Bm complete
orthogonal systems of the space Hm{D) for meZ. Then the union Um Bm

is a complete orthogonal system of H{D).

A circular domain D is called proper if D contains the origin 0. By
definition, we immediately get the following:

LEMMA 1.5. For m ^ 0 {resp. m < 0), every m-homogeneous function
on a proper circular domain D is the restriction to D of a homogeneous
polynomial of degree m {resp. is 0). In particular,

ί= 0 , m < 0

dim Hm{D)\ in + m - 1\
<; , m ̂  o .

[ \ m J

When a circular domain D is starlike, i.e., xDaD for all λe[0, 1],
there exists a unique (0, +oo]-valued function R defined on P71'1 such
that the representative domain V of D is given by

The function R is lower semi-continuous, and D is represented in terms
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of R as follows, where we let | | be the Euclidean norm on Cn:

D = {zeCn -{0}; \z\ < Roπ(z)}{J{0} .

Moreover, it is convenient to consider the upper semi-continuous function
φ — — logβoττ(., 1) + log (1 + | |2)1/2 o n Cn~\ which is plurisubharmonic
for pseudoconvex D (cf. [1]).

PROPOSITION 1.6. Let D be a starlίke circular domain in Cn, and
φ the function defined above. Then for f,ge Hm(D) with m ^ 0, we have

/, 0) = — S — \ /(•,
m + n jcn-im + n

where f and g are regarded as polynomials (see Lemma 1.5).

PROOF. By Lemma 1.2 we have

(/, g) = — 5 — [ foagoaR2{m+n)v .
m + n JU

Since «<>*(., 1) = (1 + |.|2)"1/2( , 1) and π( , 1)^1^ = (1 + | |8)"n^»-i, the
change of variables yields the desired formula.

Finally, let D be a Reinhardt domain in Cn, i.e., D is a domain in
Cn such that (eίθlz\ •• ,e ί 'V)eZ> for all (z1, . . . , 2 B ) e B and θ'eR. Of
course, D may be unbounded. Let Ω be the real representative domain
of D: Ω = {(1^1, -- ,\zn\); (z\ , zn) eD}aRn

+. We recall the following
two properties of D:

(RJ For a pair of functions z\ zJ e H(D) (/, JeZn), one has (z1, zJ) =
0, if / Φ J, while if / = J = (ix, , in), then

( (r1)2*1*1 ( r " ) 2 ' ^ 1 ^ ^ Λdrn .

(R2) Every holomorphic function on D can be expanded in a Laurent
series around 0, which converges uniformly on every compact subset of
D.
By making use of the facts (Rx) and (R2) we obtain the following improve-
ment of [13; Theorem 0.8]:

(R3) The set {z1; IeZn}f)H(D) is a complete orthogonal system of
the space H(D).

2. Invariants μQ>m of a proper circular domain. Let D be a domain
in Cn with the natural coordinate system (z1, , zn). Set d3-= d/dzj

(j = 1, - , w), and 37 = dί1 3* f | J | = ix + + in for / = (ilf - , in) e
Z+9 where d] means the identity operator acting on functions on D.
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Every holomorphic tangent vector X e TZ(D) at z e D is written as 1 =
(dυ)z, where dv = ̂ v0d5 with v = (v\ , vn) e C \ For every m e Z + ,
^ 6 ΰ , and X = (dv)zeTz(D), set

Λ>(z) = {feH(D); d'f(z) = 0 for all / e Z ί with | / | < m} ,

jei J X ) = max {| (3X/(z) I2; / e Am(s), || / 1 | = 1} (cf. [2]) .

For j = 0,1, we consider the following conditions ([10]):

(B.j) For every 2 e ΰ and every non-zero (n 4 ~~ J-dimensional

vector (f/)ι/ι=i, there exists a function feH(D) such that Σ/<?/d7/(£) ̂  0.
Now, the Bergman kernel if of D is characterized by the following

reproducing property: K( ,z)eH(D) and f(z) = (f, K(-,z)) for all z e D
and feH(D). The reproducing property of K implies the following (cf.
[2], [4], [5]): If zeD, IeZϊ, and feH(D), then S'j^ , z) eH(D),

(2.1) 3VI[2;) = (/,3'iΓ(.,S)),

(2.2) (dTΛz) = (/, (37ΓiΓ( , z)) and

(2.3) || (d9)»K( , z) ||2 = (3Jm(Wmfc(^)

for v eCn and m 6 Z+, where k is the Bergman function of D. It follows
form (2.1) and (2.2) that

(2.4) Am(z) - {&K('f z); IeZϊ,\I\< m}1 ,

(2.5) μm(X) = max{|(/, (SΓr^ , Z))|2; / e Am(z), | | / | | = 1}

for m 6 Z + and X = (3.), 6 TZ(D).

If D satisfies the condition (B.0), then for every positive integer
meN, the function μ0>m — μjμo on the holomorphic tangent bundle T{D)
is a biholomorphically invariant Finsler pseudometric on D of order 2m
([2; § 4]).

From now on, we suppose that D is a proper circular domain. We
first note the following.

LEMMA 2.1. Let D be a proper circular domain with Bergman kernel

K. Then

HJP) = spanc {§'#(., 0); JeZj, | I | = m)

for m eZ+.

PROOF. Let Bm be a complete orthonormal system of Hm(D) for every
m e Z + , By Proposition 1.4 we have

(2.6) K(z, w) = Σ Σ h{z)h{w) .
j=0heBj
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Let IeZΐ with | / | = m. It follows from (2.6) that

(2.7) 9Jίf(., O) = Σ Σ W W ) = Σ II Jhh ,
i=0 heBj heBm

where /! = i j i«! for / = (ilf , ΐ j and h(w) = Σz^/W1; therefore
97iΓ( , 0)eHm(D) so that spanc {57JBΓ( , 0); | / | = m} is contained in i?mCD).
To prove the opposite inclusion, we fix a numbering (hlf "'fhL) of the
elements of the set Bm and a numbering (ii, , IN) of the indices of
{JeZί; | / | = m} (note that L ̂  ΛΓ). Write Λy(s) = Σf=i<^ J z (i = 1, ,
L), and set /, = dIιK( , 0). Since {fey} is linearly independent, by a change
of the numbering (/,), we may assume that the matrix (flji)\*jtiύL is n o n "
singular. From (2.7) it follows that /, = E y = J i ! ^ (ί = l, » ,L).
Since (aόι)lύjtι^L is non-singular, every λy is a linear combination of
ί/i» # »A} Hence the proof is complete.

The following is the main theorem of this section.

THEOREM 2.2. Let D be a proper circular domain in Cn with finite
volume V(D) with respect to the Lebesgue measure on Cn, and Bm complete
orthonormal systems of Hm(D) for meZ+. Then D satisfies (B.O), and
the invariants μ0>m on the space T0(D) are given by

ft,.((3.)o) = V(D)(mlY Σ IΛMI1 , veC".

To prove this theorem, we use the following well-known fact (cf.
[2; Lemma 3.8]).

LEMMA 2.3. Let {x19 , xm) (m ^ 0) be a linearly independent system

of a pre-Hilbert space H over C, and xm+1 e H. Then the maximum of

the set {\ (y, xm+1) |2; y e H, {y, x3) = 0 (j = 1, , m), \\y\\ = 1} coincides with

G(xlf , xm+1)/G(xlf ••-,$„), where G(xl9 •••,%) denotes the Gramian of

the system (xlf , xk), that is, G(xlf •••,»*) = det( (^ , a?y))<fy with the con-

vention G(0) = 1.

PROOF OF THEOREM 2.2. By Lemma 2.1 and (2.4) we have Am(O) =
(UytΓo1^)1. Since \JfJo1 Bs is an orthogonal system, Lemma 2.3, together
with (2.3) and (2.5), yields the following:

μΛ(dv)0) = | | (£)-*( . , O)||2 = (dT&

On the other hand, (2.6) implies

k(z) = £ Σ I^)I2

For I,JeZϊ with | / | = \J\ = m, we have
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dΨk(O) = Σ II J\ hjhj ,
heBm

where h(z) = Σ i h^1, so that we get

(dυ)
m(ΪK)mk(O) = (ml)2 Σ tfv'dΨkWIU Jl = (ml)2 Σ \h(v)\2 .

\I\ \j\ heB

Thus, μm((dv)0) = (w!) 2 Σ*βa Λ I Λ-(v) |2. Furthermore, ί?0 consists only of a
constant function F(Z>)-1/2, so that (B.O) holds and μ0((dv)o) = k(O) = V(D)~ι.
The proof is now complete.

When a proper circular domain D is bounded, the set of all monomials
of degree m forms a basis of Hm(D) for every meZ+. In that case, we
have the following.

COROLLARY 2.4. Let D be a bounded, proper circular domain in Cn.
For every meZ+, set

Km(z, w) = (z\ , z*»)G-\w\ , w1*)* ,

where (I19 •••, IN) is a numbering of the set {IeZ%; \I\ — m) and G is
the Gram matrix of the system (z*1, •• ,z Γ *). Then the invariants μo,m

on T0(D) are given by

μ0,m((dv)o) = V(D)(ml)2Km(v, v) , veCn .

PROOF. By Theorem 2.2 the proof is reduced to the following lemma.

LEMMA 2.5. If (flf , fN) is a linearly independent system of H(D),
and {g19 , gN} is an orthonormal basis of the subspace spanned by
{A, ••-,/*}, then

Σff/(*)ffi(w) - (Λ(z), •• ,Λ(«))G-1(/1(w)> •• ,Λ(w))* ,

where G is the Gram matrix of the system (flf • • • , / ^ ) .

PROOF. Let g5 = Σ£=i<Wί (i = 1, , iV), and set A = (atj). Since
(QU ΰj) — δίj9 we have / = *AGA; therefore / = AιAG9 or / = AA*G.
Hence we have

Σ 93-(z)gό(w) = (gλ(z), , gN(z))(gx(w), , ^(w))*
i=i

, , fN(w))*

= (f(z), '9fN(z))G~\fι(w)t ,

3. Examples. When a domain D satisfies the conditions (B.O) and
(B.I) in § 2, it is called B-hyperbolic. In that case, there exists a unique
Hermitian metric g (called the Bergman metric) on D such that μO)1(X) =
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g(X, X) for XeTp(D), and the holomorphic sectional curvature HSC(X)
of the Bergman metric in the direction Xe TP(D) — {0} satisfies the fol-
lowing ([2; Theorem 4.4], [7; p. 525)]:

(3.1) HSC(X) = 2 - μo>2(X)/9(X, Xf

We say that a manifold M is K-hyperbolic if M is hyperbolic in the sense
of Kobayashi [11]. Every bounded domain is both B- and i£-hyperbolic,
and satisfies HSC < 2.

We first consider the following one-parameter family of unbounded
proper Reinhardt domains in C2.

EXAMPLE 1. D8 = {(z1, z2)eC2; \z'\ < 1, |z2|2 < (1 - |^|2)8} 0 < 0).

By Lemma 1.5 we have (zι)m{z2)n &H(D8) for m,neZ with m < 0 or
n < 0. By (RL) in § 1 we have

|| (zT(*Ύ IΓ = — ^ — [ tm(l - t)8{n+ι)dt , m,neZ+,
n + 1 Jo

so that if m, ne Z+ then

(3.2) (^Hz2)71 e H(D§) ~ n < -1/β - 1 .

In particular, Jff(D.) = {0} if s ^ - 1 . Suppose that - 1 < s < 0. Put
jV(s) = _[i/s + 2] (eZ+). Then w < -1/β - 1 if and only if w ^ N(s);
in this case, one has

\\(zT(zΎ\\2 = ** m !

11 x 7 " n + 1 (s(n + l) + m + l) . . . (s(n + 1) + 1)

By the formula

yo oj \± "—' JU) — /1

a?I < 1 , aeR ,

the Bergman kernel K(z, w) of D8 is written as
iV(s)

K(z, w) = π-\l - zιwιy-* Σ an+1U,(z, w)n ,

where an = tι2s •+ n and £7,(z, w) = (1 — z1^1)'^2-^2. It is easily shown that
the image of the function U8 on D8xD8 is the whole C; therefore the
Bergman kernel K vanishes at some point in D8 x D8. On the other hand,
the image of the function u8{z) = U8{z, z) on D8 is the interval [0,1).
Therefore, making use of (3.3) again, we obtain the following expression
for the Bergman function k(z) = K(z, z) of D8\



CIRCULAR DOMAIN 23

FJjuJjz))

τr2(i - | * τ ) 8 + 2 ( i -u8(z)y
where F8 is a polynomial given by

F8{u) = (β + 1) + (β - l)u - aN+2u
N+1 - (2s - α^+1 - aN+2)uN+2 - < w ^ " + 3

with N = N(s).
Now, all the domains D8 are i£-hyperbolic by virtue of the following

theorem formulated by Sibony [12; p. 366] and essentially due to Kiernan
[9]:

(K-S) Let E, M be two complex manifolds, and / a surjective holo-
morphic mapping from E onto M. Suppose that M is ίC-hyperbolic and
admits an open covering {£7J such that f~\Uv) is if-hyperbolic for all v.
Then E is i£-hyperbolic.

It is well-known that the domain C — {0, 1} is iί-hyperbolic ([11]) and
not ΰ-hyperbolic (in fact H(C — {0, 1}) = {0}). We have found such an
example among Reinhardt domains.

PROPOSITION 3.1. The domain D8 with s ^ —1/2 is K-hyperbolicf but
not B-hyperbolic.

Example 1 suggests the existence of a Reinhardt domain D in C2

with positive finite dimensional H(D). The following is such.

EXAMPLE 2. D8tt = D8\J{(z\ z2); (z2, z')eDt) (s, t < 0). From (3.2) it
follows that

(3.4) (zY(z2)n e H(D9tt) <=> m < -1/t - 1 , n < -1/s - 1

for m, ne Z+.

PROPOSITION 3.2. // -1/2 < s ^ -1/3 and -1/2 < ί <£ -1/3, then
the domain D8t is B-hyperbolic, and the holomorphic sectional curvature
of the Bergman metric is identically 2.

PROOF. In view of (3.4), the assumptions for s and t imply that
the space H(D8>t) contains all polynomials of degree ^ 1, and contains
no polynomial of degree ^ 2; therefore the properties (B.0) and (B.I)
hold and μ2 = 0, so that μ0f2 = 0. By (3.1) we get HSC = 2.

EXAMPLE 3. D8 = D8t8U{(z1, z2) e C2; \z'\ ̂  1, | z 2 | ^ l , {\zl\~2i8 - l )x
Qz2\-2/8 - 1) < 1} (s < 0). Similarly to (3.4), we have

(3.5) (zY(z2)ne H(D8) <=> m, n < -1/s - 1

for m, neZ+.

P R O P O S I T I O N 3.3. The domain D = D8U{{z\ z2) e C2; | z ι | < 1, \z2\ < 2}

with —1/2 < s < 0 is B-hyperbolic but not K-hyperbolic.
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PROOF. The assumption for s and (3.5) imply that all the polynomials
of degree <; 1 belong to both H(D8) and H(D); therefore D satisfies (B.O)
and (B.I). Furthermore, since D contains a complex line Cx{l}, it is
not if-hyperbolic.

By Propositions 3.1 and 3.3 we see that for Reinhardt domains there
is, in general, no relationship between iί-hyperbolicity and 2?-hyperbolicity.
It is noted that if a domain is 2?-hyperbolic, and if the holomorphic
sectional curvature of the Bergman metric is bounded from above by a
negative constant, then the domain is if-hyperbolic (cf. [11; p. 61]).

REMARK 3.4. The following domain ([14; p. 415]) also satisfies the
same property as D in Proposition 3.3:

D = {{z\ z2) e C2; | z2|2 < exp (-1 z112/8)} (s > 0) .

Indeed, all polynomials belong to H(D), and the Bergman kernel is given by

K(z, w) = A- Σ ^rf1——&wT{z2w2y ,

7Γ2 m,n=o sΓ(s{m + 1))

while D contains a complex line Cx{0}.
Finally, we give an example of a bounded pseudoconvex Reinhardt

domain for which the holomorphic sectional curvature of the Bergman
metric possesses a positive value. Let D be a bounded proper Reinhardt
domain in C2 with a real representative domain Ω. For m, neZ+, set

(3.6) amn =

Then the formula (3.1), together with Theorem 2.2, implies the following:
(R4) The holomorphic sectional curvature HSC of the Bergman metric

on D at the origin 0 is given by

HSC((dυ)o) = 2 - 4α 0 0(α 2 0# 2 + anxy + a02y
2)(a10x + aoly)~2

for v = (v\ v2) 6 C2 - {0} w i t h x = b 1 ! 2 , V = \v2\2.

(Rδ) If α 0 1 = α1 0, α0 2 = α2 0, a n d 2α 2 0 ^ α n , t h e n

(min HSC((dυ)o) = 2 - αoo(2α2O + au)/aio
J vΦO

max HSC((d,)0) = 2- 4α00α20/α?0 .

EXAMPLE 4 ([3]). The domain D(N) = {{z\ z%) 6 C2; l? 1 ! 2^ + W\VN < 1}
(NeN) is pseudoconvex, and the values amn of (3.6) for this domain are

_ 4(m + n + 2)(JV(m + w + 2) - 1)!
i\Γ(iV(m + 1) - 1)! (N(n + 1) - 1)!
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Since 2α20 ^ αn, by the formula in (R5) we have

min HSC((dv)o) < 2 - -f Π (l + -JL-) < 2 - ±(±Y ,

max HSC((dv)0) = 2 - -f- Π (l - > 2 - 4 ( |
\ 9

f Π (l ( ^ ϊ ) > 2 4(|
9 J=I \ \3iV — j I / \ 9

From this we get the following.

PROPOSITION 3.5. jPor any interval [α, β]c(— oo, 2), ί/̂ ere βίcίsίs α
hounded pseudoconvex Reinhardt domain in C2 for which inf HSC < a
and sup ϋSC > β.

REMARK 3.6. It is well-known that there exist homogeneous, bounded
domains for which max HSC ^ 0. For example, the Siegel domain D[q]
in C3+ff, q = 3, 4, , considered in D'Atri [6; § 4] satisfies min HSC =
-2/3 and max HSC = 1/3 - 2/(q + 3).

Now, let C be the Caratheodory metric on a bounded domain D.
Then the following is well-known (Hahn [8], Burbea [4], [5]):

(3.7) C2 < μ0}1 on T(D) - {the zero section} .

Moreover, the following is also known ([4; Theorem 2]):

(3.8) 4C4 < (2 - HSC)μ2

0>1 on T{D) - {the zero section}.

The assertion (3.8) is equivalent to 4C4 < μ0t2 by (3.1). As a corollary to
Proposition 3.5 we get the following assertion concerning the opposite
inequality of (3.7):

COROLLARY 3.7. For any a > 0, there exists a bounded pseudoconvex
Reinhardt domain in C2 for which C2 ^ aμOtl.

PROOF. It follows from (3.8) that

inf C(X)2/μ0 X(X) ^ 2^(2 - sup HSC)1/2 .
XeT(D),XΦ0

Hence, the desired assertion follows from Proposition 3.5.
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