ON THE LITTLEWOOD-PALEY AND MARCINKIEWICZ FUNCTIONS IN HIGHER DIMENSIONS

Makoto Kaneko* and Gen-Ichirô Sunouchi

(Received May 2, 1984)

1. Introduction. In this paper we deal with the generalized Littlewood-Paley, Marcinkiewicz and related square functions of spherical sense in the n-dimensional space. So our functions are different from Stein's $g_{\lambda}^{*}(\boldsymbol{x} ; f)$ [14. p. 99] and $\mathscr{D}_{\alpha}(f)(\boldsymbol{x})$ [15, p. 102].

In what follows, we shall use the following notations. $\boldsymbol{x}, \boldsymbol{\xi}, \cdots$ will denote points in the Euclidean n-space $\boldsymbol{R}^{n}(n \geqq 2)$. In coordinate notation we write $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right) ;|\boldsymbol{x}|$ denotes the length of the vector \boldsymbol{x}, i.e., $|\boldsymbol{x}|^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} ; \boldsymbol{x}^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n}^{\prime}\right)$ denotes the unit vector in the direction of \boldsymbol{x}, i.e., $\boldsymbol{x}^{\prime}=\boldsymbol{x} /|\boldsymbol{x}| ; \Sigma$ is the unit sphere, $|\boldsymbol{x}|=1$; and $d \sigma$ is the Euclidean element of measure on Σ, hence $\int_{\Gamma} d \sigma=2 \pi^{n / 2} / \Gamma(n / 2)$.

For $f \in \mathscr{S}\left(\boldsymbol{R}^{n}\right)$, the Schwartz space of rapidly decreasing C^{∞}-functions, the Fourier transform of f is defined by

$$
\tilde{f}(\boldsymbol{\xi})=\int_{\boldsymbol{R}^{n}} f(\boldsymbol{x}) e^{-2 \pi i x \cdot \boldsymbol{\xi}} d \boldsymbol{x},
$$

where $\boldsymbol{x} \cdot \boldsymbol{\xi}=x_{1} \xi_{1}+x_{2} \xi_{2}+\cdots+x_{n} \xi_{n}$. Throughout this paper, we assume $f \in \mathscr{S}\left(\boldsymbol{R}^{n}\right)$ unless otherwise specified.

If $K(\boldsymbol{x})=\Omega\left(\boldsymbol{x}^{\prime}\right) /|\boldsymbol{x}|^{n}$ is the Calderón-Zygmund kernel, then

$$
\tilde{f}_{\Omega}(\boldsymbol{x})=\lim _{\varepsilon \rightarrow 0} \int_{|\boldsymbol{y}|>\varepsilon} K(\boldsymbol{y}) f(\boldsymbol{x}-\boldsymbol{y}) d \boldsymbol{y}
$$

exists almost everywhere and

$$
\left\|\widetilde{f}_{\Omega}\right\|_{p} \leqq A_{p}\|f\|_{p} \quad(1<p<\infty)
$$

\tilde{f}_{Ω} is a conjugate integral in n-dimensions.
The spherical mean of order $\alpha>0$ of f is

$$
\begin{equation*}
\left(M_{t}^{\alpha} f\right)(\boldsymbol{x})=c_{\alpha} t^{-n} \int_{1,1<t}\left(1-|\boldsymbol{y}|^{2} / t^{2}\right)^{\alpha-1} f(\boldsymbol{x}-\boldsymbol{y}) d \boldsymbol{y} \tag{1.1}
\end{equation*}
$$

where $c_{\alpha}=\Gamma(\alpha+n / 2) / \pi^{n / 2} \Gamma(\alpha)$. Also we define

[^0]\[

$$
\begin{equation*}
\left(M_{\Omega, t}^{\alpha} f\right)(\boldsymbol{x})=c_{\alpha} t^{-n} \int_{|\boldsymbol{y}|<t}\left(1-|\boldsymbol{y}|^{2} / t^{2}\right)^{\alpha-1} \Omega\left(\boldsymbol{y}^{\prime}\right) f(\boldsymbol{x}-\boldsymbol{y}) d \boldsymbol{y} \tag{1.2}
\end{equation*}
$$

\]

for $\alpha>0$. We need $\left(M_{t}^{\alpha} f\right)(x)$ and $\left(M_{\Omega, t}^{\alpha} f\right)(x)$ with negative order α. More generally, $M_{t}^{\alpha} f$ and $M_{\Omega, t}^{\alpha} f$ can be defined for complex α as distributions (the finite part in the sense of Hadamard or the canonical regularization of Gel'fand-Shilov [6, vol. 1, §3.7]). Then this $M_{t}^{\alpha} f$ is identical with Stein-Wainger's [20, p. 1270] which was defined by the analytic continuation of its Fourier transform (cf. [6, vol. 1, Ch. II]).
$M_{t}^{\alpha} f$ was studied in Chandrasekharan [2]. See also Stein [17] and Stein-Wainger [20].

Corresponding to these, let the Riesz-Bochner means of order $\beta>-1$ of the Fourier integral and the conjugate Fourier integral of f be

$$
\begin{equation*}
\left(S_{R}^{\beta} f\right)(\boldsymbol{x})=\int_{|\boldsymbol{\xi}|<R}\left(1-|\boldsymbol{\xi}|^{2} / R^{2}\right)^{\beta} \hat{f}(\boldsymbol{\xi}) e^{2 \pi i x \cdot} d \boldsymbol{\xi} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\widetilde{S}_{a, R}^{\beta} f\right)(\boldsymbol{x})=\int_{|\boldsymbol{\xi}|<R}\left(1-|\boldsymbol{\xi}|^{2} / R^{2}\right)^{\beta} \hat{K}(\boldsymbol{\xi}) \hat{f}(\boldsymbol{\xi}) e^{2 \pi i x \cdot \boldsymbol{\xi}} d \boldsymbol{\xi}, \tag{1.4}
\end{equation*}
$$

respectively. From these means, we can define several square functions, see Stein [18]. For example,

$$
\begin{align*}
\left(h^{\beta} f\right)(\boldsymbol{x}) & =\left\{\int_{0}^{\infty}\left|\frac{\partial}{\partial R}\left(S_{R}^{\beta} f\right)(\boldsymbol{x})\right|^{2} R d R\right\}^{1 / 2} \tag{1.5}\\
& =\left[\int_{0}^{\infty}\left|-2 \beta\left\{\left(S_{R}^{\beta} f\right)(\boldsymbol{x})-\left(S_{R}^{\beta-1} f\right)(\boldsymbol{x})\right\}\right|^{2} d R / R\right]^{1 / 2}
\end{align*}
$$

is the generalized Littlewood-Paley function defined by Stein [12, p. 130] and one of the authors [22, p. 504]. Another example is

$$
\begin{equation*}
\left(\mu_{\Omega}^{\alpha} f\right)(\boldsymbol{x})=\left\{\int_{0}^{\infty}\left|\left(M_{\Omega, t}^{\alpha} f\right)(\boldsymbol{x})\right|^{2} d t / t\right\}^{1 / 2} \tag{1.6}
\end{equation*}
$$

This is a generalized Marcinkiewicz function. In fact, if $\alpha=1$, then (1.6) is equivalent to $\mu(f)(\boldsymbol{x})$ defined by Stein [13, p. 435], see $\S 4$.

We give more examples of analogous square functions. For examples, set

$$
\begin{align*}
\left(\widetilde{h}_{a}^{\beta} f\right)(\boldsymbol{x}) & =\left\{\int_{0}^{\infty}\left|\frac{\partial}{\partial R}\left(\widetilde{S}_{\Omega, R}^{\beta} f\right)(\boldsymbol{x})\right|^{2} R d R\right\}^{1 / 2} \tag{1.7}\\
& =\left[\int_{0}^{\infty}\left|-2 \beta\left\{\left(\widetilde{S}_{\Omega, R}^{\beta} f\right)(\boldsymbol{x})-\left(\widetilde{S}_{\Omega, R}^{\beta-1} f\right)(\boldsymbol{x})\right\}\right|^{2} d R / R\right]^{1 / 2}
\end{align*}
$$

and

$$
\begin{align*}
\left(\nu^{\alpha} f\right)(\boldsymbol{x}) & =\left\{\int_{0}^{\infty}\left|\frac{\partial}{\partial t}\left(M_{t}^{\alpha} f\right)(\boldsymbol{x})\right| t d t\right\}^{1 / 2} \tag{1.8}\\
& =\left[\int_{0}^{\infty}\left|-2(\alpha+n / 2-1)\left\{\left(M_{t}^{\alpha} f\right)(\boldsymbol{x})-\left(M_{t}^{\alpha-1} f\right)(\boldsymbol{x})\right\}\right|^{2} d t / t\right]^{1 / 2}
\end{align*}
$$

One of the objects of this paper is to give pointwise relationship among such square functions. For any two square functions $F f$ and $G f$, we shall write $(F f)(\boldsymbol{x}) \approx(G f)(\boldsymbol{x})$, if there exist two positive constants A and B, independent of \boldsymbol{x} and f, such that, for all $\boldsymbol{x} \in \boldsymbol{R}^{n},(G f)(\boldsymbol{x}) \leqq$ $A(F f)(\boldsymbol{x})$, provided that $(F f)(\boldsymbol{x})$ is finite, and $(F f)(\boldsymbol{x}) \leqq B(G f)(\boldsymbol{x})$, provided that $(G f)(\boldsymbol{x})$ is finite. If F and G have some parameters, then A and B may depend on them. When both A and B are independent of some of the parameters, we say that the relation $(F f)(\boldsymbol{x}) \approx(G f)(\boldsymbol{x})$ holds uniformly in them. Our typical theorems are as follows.

Theorem 1. If $\beta=\alpha+n / 2>0$ and Y_{k} is any surface spherical harmonic with degree $k \geqq 1$, then

$$
\left(\mu_{Y_{k}}^{\alpha} f\right)(\boldsymbol{x}) \approx\left(\widetilde{h}_{Y_{k}}^{\beta} f\right)(\boldsymbol{x}) /\left|\boldsymbol{\gamma}_{k, 0}\right|
$$

for $f \in \mathscr{S}\left(\boldsymbol{R}^{n}\right)$, where $\gamma_{k, 0}=i^{-k} \pi^{n / 2} \Gamma(k / 2) / \Gamma((k+n) / 2)$. This relation holds uniformly in Y_{k} and k.

Theorem 2. If $\beta=\alpha+n / 2-1>0$, then

$$
\left(\nu^{\alpha} f\right)(\boldsymbol{x}) \approx\left(h^{\beta} f\right)(\boldsymbol{x})
$$

for $f \in \mathscr{S}\left(\boldsymbol{R}^{n}\right)$.
These theorems arose in connection with the Cesàro-Riesz summation concerning a function and its Fourier transform. In an analogous way, we can define some square functions associated with other summation methods. In particular, the spherical Abel-Poisson summation yields the original Littlewood-Paley function $g(f)(\boldsymbol{x})$.

The plan of this paper is as follows. In $\S \S 2$ and 3 we prove Theorems 1 and 2. $\S 4$ is concerned with Marcinkiewicz function $\mu(f)$ introduced by Stein [13]. §5 contains some theorems about square functions arising as Riesz-potentials. We shall also give there a relationship between our square functions and $g_{\lambda}^{*}(f)$ of Stein [14]. In $\S 6$ we give some theorems on Abel-Poisson and other summations. $\S 7$ is devoted to applications of our theorems. In particular, we can deduce new and known results on the L^{p}-boundedness of several square functions constructed from L^{p}-functions. In this case we can give an answer to a problem by Stein-Wainger [20, p. 1289, Problem 6 (a)].

The method of proof comes from the same idea as in the one-dimen-
sional case by one of the authors [23], that is to say, Wiener's transformation method. However, we shall meet several subtle calculations in the higher dimensional case.

2. Square functions arising from spherical Cesàro-Riesz means of

 functions. $\left(M_{t}^{\alpha} f\right)(\boldsymbol{x})$ and $\left(M_{n, t}^{\alpha} f\right)(\boldsymbol{x})$ are defined by (1.1) and (1.2), respectively. We consider first $\alpha>0$. For the sake of simplicity we set, for a fixed function f and a point \boldsymbol{x}, the average over sphere$$
\begin{equation*}
\phi(t)=\phi(t ; \boldsymbol{x}, f)=\int f\left(\boldsymbol{x}-t \boldsymbol{y}^{\prime}\right) d \sigma\left(\boldsymbol{y}^{\prime}\right) \tag{2.1}
\end{equation*}
$$

Then we can get

$$
\begin{equation*}
\left(M_{t}^{\alpha} f\right)(x)=c_{\alpha} \int_{0}^{1} r^{n-1}\left(1-r^{2}\right)^{\alpha-1} \dot{\phi}(t r) d r \tag{2.2}
\end{equation*}
$$

Analogously, set

$$
\begin{equation*}
\psi(t)=\psi(t ; \boldsymbol{x}, f, \Omega)=\int_{\Sigma} \Omega\left(\boldsymbol{y}^{\prime}\right) f\left(\boldsymbol{x}-t \boldsymbol{y}^{\prime}\right) d \sigma\left(\boldsymbol{y}^{\prime}\right) \tag{2.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(M_{\sim, t}^{\alpha} f\right)(\boldsymbol{x})=c_{\alpha} \int_{0}^{1} r^{n-1}\left(1-r^{2}\right)^{\alpha-1} \psi(t r) d r \tag{2.4}
\end{equation*}
$$

For the sake of calculation, we set

$$
\begin{equation*}
\theta(t)=\theta(t ; \boldsymbol{x}, f)=t \frac{\partial}{\partial t} \phi(t ; \boldsymbol{x}, f)=-\int_{\Sigma} t \boldsymbol{y}^{\prime} \cdot \nabla f\left(\boldsymbol{x}-t \boldsymbol{y}^{\prime}\right) d \sigma\left(\boldsymbol{y}^{\prime}\right) \tag{2.5}
\end{equation*}
$$

Then we get

$$
\begin{align*}
t \frac{\partial}{\partial t}\left(M_{t}^{\alpha} f\right)(\boldsymbol{x}) & =-2\left(\alpha+\frac{n}{2}-1\right)\left\{\left(M_{t}^{\alpha} f\right)(\boldsymbol{x})-\left(M_{t}^{\alpha-1} f\right)(\boldsymbol{x})\right\} \tag{2.6}\\
& =c_{\alpha} \int_{0}^{1} r^{n-1}\left(1-r^{2}\right)^{\alpha-1} \theta(t r) d r
\end{align*}
$$

If we change variables by $r=e^{y}$ and $t=e^{-x}$, then the square functions (1.6) and (1.8) become the L^{2}-norms of convolutions by (2.4) and (2.6) i.e.,

$$
\begin{equation*}
\left(\mu_{a}^{\alpha} f\right)(\boldsymbol{x})=\left\{\int_{-\infty}^{\infty}\left|\left(K_{\alpha} * \Psi\right)(x)\right|^{2} d x\right\}^{1 / 2} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nu^{\alpha} f\right)(\boldsymbol{x})=\left\{\int_{-\infty}^{\infty}\left|\left(K_{\alpha} * \Theta\right)(x)\right|^{2} d x\right\}^{1 / 2} \tag{2.8}
\end{equation*}
$$

where K_{α}, Ψ and Θ are defined by the following formulae.
(2.10) $\Psi(x)=\Psi(x ; \boldsymbol{x}, f, \Omega)=\psi\left(e^{-x}\right) \quad$ and $\quad \Theta(x)=\Theta(x ; \boldsymbol{x}, f)=\theta\left(e^{-x}\right)$.

When $\alpha \neq-n / 2-\nu(\nu=0,1,2, \cdots)$, the above relations are preserved in distributional sense (see the proof of Proposition 1).

We now take the Fourier transform of K_{α} as a distribution and prove the following proposition.

Proposition 1. If $\alpha>-n / 2$, then

$$
\begin{equation*}
\left(\mu_{\Omega}^{\alpha} f\right)^{2}(\boldsymbol{x})=\int_{-\infty}^{\infty}\left|\kappa_{\alpha}(\xi)\{\Psi(\cdot ; \boldsymbol{x}, f, \Omega)\}^{\wedge}(\xi)\right|^{2} d \xi \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nu^{\alpha} f\right)^{2}(\boldsymbol{x})=\int_{-\infty}^{\infty}\left|\boldsymbol{\kappa}_{\alpha}(\xi)\{\Theta(\cdot ; \boldsymbol{x}, f)\}^{\wedge}(\xi)\right|^{2} d \xi, \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa_{\alpha}(\xi)=\frac{\Gamma(\alpha+n / 2) \Gamma(n / 2-i \pi \xi)}{2 \pi^{n / 2} \Gamma(\alpha+n / 2-i \pi \xi)} \tag{2.13}
\end{equation*}
$$

is the distributional Fourier transform of K_{α}, and

$$
\begin{equation*}
A(|\xi|+1)^{-\alpha} \leqq\left|\kappa_{\alpha}(\xi)\right| \leqq B(|\xi|+1)^{-\alpha} \tag{2.14}
\end{equation*}
$$

for $-\infty<\xi<\infty$.
Remark. In the sequel, we write the formula such as (2.14) as

$$
\left|\kappa_{\alpha}(\xi)\right| \sim(|\xi|+1)^{-\alpha} \quad(-\infty<\xi<\infty) .
$$

Proof. Assume that α is complex. Since $\int_{\Sigma} \Omega\left(\boldsymbol{y}^{\prime}\right) d \sigma\left(\boldsymbol{y}^{\prime}\right)=0$, we evidently have $\Psi \in \mathscr{S}(-\infty, \infty)$, and $\Theta \in \mathscr{S}(-\infty, \infty)$ is evident. We can establish convolutional rule for these convolutions. The distributional Fourier tranform of K_{α} is gotten by analytic continuation. See Gel'fandShilov [6, vol. 1, Chap. 2, §2]. When $\operatorname{Re} \alpha>0$, the complex Fourier transform of K_{α} is

$$
\begin{aligned}
\hat{K}_{\alpha}(\zeta) & =c_{\alpha} \int_{-\infty}^{0}\left(1-e^{2 x}\right)^{\alpha-1} e^{(\zeta+n) x} d x=2^{-1} c_{\alpha} \int_{0}^{1}(1-t)^{\alpha-1} t^{(\zeta+n) / 2-1} d t \\
& =2^{-1} c_{\alpha} \frac{\Gamma(\alpha) \Gamma((\zeta+n) / 2)}{\Gamma(\alpha+(\zeta+n) / 2)}=\frac{\Gamma(\alpha+n / 2) \Gamma((\zeta+n) / 2)}{2 \pi^{n / 2} \Gamma(\alpha+(\zeta+n) / 2)}
\end{aligned}
$$

For $\operatorname{Re} \alpha>-n / 2, \hat{K}_{\alpha}(\zeta)$ is also equal to the last term by analytic continuation, so we get

$$
\hat{K}_{\alpha}(-2 \pi i \xi)=\frac{\Gamma(\alpha+n / 2) \Gamma(n / 2-i \pi \xi)}{2 \pi^{n / 2} \Gamma(\alpha+n / 2-i \pi \xi)}=\kappa_{\alpha}(\xi)
$$

Since $\kappa_{\alpha}(\xi) \neq 0(-\infty<\xi<\infty)$, the asymptotic formula of the gamma function, i.e.,

$$
A e^{-\pi|y| / 2}|y|^{x-1 / 2} \leqq|\Gamma(x+i y)| \leqq B e^{-\pi|y| / 2}|y|^{x-1 / 2}
$$

for sufficiently large $|y|$, gives us the conclusion.
q.e.d.
3. Square functions arising from Bochner-Riesz means of Fourier and conjugate Fourier integral. First we define the space of distributions of which test functions are between the space $\mathscr{S}(-\infty, \infty)$ and the space $\mathscr{D}(-\infty, \infty)$ following the method of Zemanian [25, Chap. 3]. We shall prove that in this space the above mentioned functions Ψ and Θ are the convolutes in the sense of Gel'fand-Shilov [6, vol. II, p. 137 and p. 148]. f is the convolute in the space \mathscr{F} of test functions, if the distribution $f \in \mathscr{F}^{\prime}$ has the property that $(\check{f} * \phi)(x)=\langle f(y), \phi(x+y)\rangle \in \mathscr{F}$ for any $\phi \in \mathscr{F}$ and that the relation $\phi_{\nu} \rightarrow 0$ implies $\check{f} * \phi_{\nu} \rightarrow 0$ in the topology of \mathscr{F}.

Let m be a large positive number defined in a moment. $\left\{a_{p}\right\}$ and $\left\{b_{p}\right\}$ are positive decreasing sequences such that

$$
\begin{equation*}
m<a_{p}<m+1, \quad 1 / 2<b_{p}<1 \tag{3.1}
\end{equation*}
$$

$\lim a_{p}=m$ and $\lim b_{p}=1 / 2$. Set

$$
k_{p}(x)= \begin{cases}\exp \left(a_{p} x\right) & (x \geqq 0) \tag{3.2}\\ \exp \left(-b_{p} x\right) & (x<0)\end{cases}
$$

For any $\phi \in C^{\infty}(-\infty, \infty)$, set

$$
\begin{equation*}
\gamma_{p, q}(\phi)=\sup \left\{k_{p}(x)\left|D^{q} \dot{\phi}(x)\right| ;-\infty<x<\infty\right\} \tag{3.3}
\end{equation*}
$$

$(q=0,1,2, \cdots)$. The class of functions $\phi \in C^{\infty}(-\infty, \infty)$ such that

$$
\begin{equation*}
\gamma_{p, q}(\phi)<\infty \quad(q=0,1,2, \cdots) \tag{3.4}
\end{equation*}
$$

is denoted by $\mathscr{L}_{p}=\mathscr{L}_{a_{p}, b_{p}}$ and its topology is defined by the method of Zemanian [25, p. 50]. Set $\mathscr{F}_{m}=\cup_{p=1}^{\infty} \mathscr{L}_{p}$. Then the fundamental space \mathscr{F}_{m} of test functions is contained in $\mathscr{S}(-\infty, \infty)$ and the convergence of \mathscr{F}_{m} implies that of $\mathscr{S}(-\infty, \infty)$; see [25, p. 55]. In \mathscr{F}_{m}^{\prime}, the distributional space defined on \mathscr{F}_{m}, we have the following lemma.

Lemma 1. The function Φ such that

$$
|\Phi(x)| \leqq \begin{cases}C e^{-x} & (x \geqq 0) \tag{3.5}\\ C e^{(m+1) x} & (x<0)\end{cases}
$$

is a convolute in the space \mathscr{F}_{m}.

Proof. For any $\phi \in \mathscr{L}_{p}$, set $\psi(x)=\int_{-\infty}^{\infty} \Phi(y) \phi(x+y) d y$. We must estimate $I(x)=\left(D^{q} \psi\right)(x)$, where

$$
\begin{equation*}
I(x)=\int_{-\infty}^{\infty} \Phi(y-x)\left(D^{q} \dot{\phi}\right)(y) d y \tag{3.6}
\end{equation*}
$$

Since $\gamma_{p, q}(\phi)<\infty$ by (3.3) and (3.4), we have

$$
|I(x)| \leqq \gamma_{p, q}(\phi)\left(\int_{-\infty}^{0}+\int_{0}^{\infty}\right)\left\{|\Phi(y-x)| / k_{p}(y)\right\} d y=\gamma_{p, q}(\phi)\left(I_{1}+I_{2}\right)
$$

say. Then, by (3.2),

$$
I_{1}=\int_{0}^{\infty}|\Phi(-x-y)| \exp \left(-b_{p} y\right) d y
$$

and

$$
I_{2}=\int_{0}^{\infty}|\Phi(-x+y)| \exp \left(-a_{p} y\right) d y
$$

If $x \geqq 0$, then by (3.5) and (3.1)

$$
I_{1} \leqq C e^{-(m+1) x} \int_{0}^{\infty} \exp \left\{-\left(m+1+b_{p}\right) y\right\} d y \leqq C^{\prime} \exp \left(-a_{p} x\right)
$$

and

$$
\begin{aligned}
I_{2} & \leqq C\left[e^{-(m+1) x} \int_{0}^{x} \exp \left\{\left(m+1-a_{p}\right) y\right\} d y+e^{x} \int_{x}^{\infty} \exp \left\{-\left(1+a_{p}\right) y\right\} d y\right] \\
& \leqq C^{\prime} \exp \left(-a_{p} x\right),
\end{aligned}
$$

because $m+1-a_{p}>0$.
If $x<0$, then

$$
\begin{aligned}
I_{1} & \leqq C\left[e^{x} \int_{0}^{-x} \exp \left\{\left(1-b_{p}\right) y\right\} d y+e^{-(m+1) x} \int_{-x}^{\infty} \exp \left\{-\left(m+1+b_{p}\right) y\right\} d y\right] \\
& \leqq C^{\prime} \exp \left(b_{p} x\right)
\end{aligned}
$$

by $1-b_{p}>0$, and

$$
I_{2} \leqq C e^{x} \int_{0}^{\infty} \exp \left\{-\left(1+a_{p}\right) y\right\} d y \leqq C^{\prime} \exp \left(b_{p} x\right)
$$

Hence by $(3.6) \gamma_{p, q}(\psi)=\sup \left\{k_{p}(x)|I(x)| ;-\infty<x<\infty\right\} \leqq C^{\prime} \gamma_{p, q}(\phi)$.

In (1.4) we set $K(\boldsymbol{x})=Y_{k}\left(\boldsymbol{x}^{\prime}\right) /|\boldsymbol{x}|^{n}$, where Y_{k} is the surface spherical harmonic of degree $k(\geqq 1)$. Then by Stein-Weiss [21, p. 164],

$$
\hat{K}(\boldsymbol{\xi})=\gamma_{k, 0} Y_{k}\left(\boldsymbol{\xi}^{\prime}\right),
$$

where $\gamma_{k, 0}=i^{-k} \pi^{n / 2} \Gamma(k / 2) / \Gamma((k+n) / 2)$. Hence (1.4) becomes

$$
\begin{align*}
\left(\widetilde{S}_{Y_{k}, R}^{\beta} f\right)(\boldsymbol{x}) & =\gamma_{k, 0} \int_{|:|<R}\left(1-|\boldsymbol{\xi}|^{2} / R^{2}\right)^{\beta} Y_{k}\left(\boldsymbol{\xi}^{\prime}\right) \hat{f}(\boldsymbol{\xi}) e^{2 \pi i x \cdot \boldsymbol{\xi}} d \boldsymbol{\xi} \tag{3.7}\\
& =\gamma_{k, 0} \int_{R^{n}} f\left(\boldsymbol{x}-R^{-1} \boldsymbol{y}\right) d \boldsymbol{y} \int_{|\boldsymbol{e}|<1}\left(1-|\boldsymbol{\xi}|^{2}\right)^{\beta} Y_{k}\left(\boldsymbol{\xi}^{\prime}\right) e^{2 \pi i \boldsymbol{y} \cdot \boldsymbol{\xi}} d \boldsymbol{\xi} \\
& =\gamma_{k, 0} \int_{R^{n}} f\left(\boldsymbol{x}-R^{-1} \boldsymbol{y}\right)|\boldsymbol{y}|^{-n} Y_{k}\left(\boldsymbol{y}^{\prime}\right) \tilde{\gamma}_{\beta, k}(|\boldsymbol{y}|) d \boldsymbol{y},
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{\gamma}_{\beta, k}(t)=(2 \pi)^{n / 2} t^{n} \int_{0}^{1} u^{n-1}\left(1-u^{2}\right)^{\beta}(2 \pi i t u)^{k} V_{k+\langle n / 2\rangle-1}(2 \pi t u) d u, \tag{3.8}
\end{equation*}
$$

$V_{\mu}(t)=J_{\mu}(t) / t^{\mu}$ and J_{μ} is the Bessel function of order μ; see Stein-Weiss [21, p. 158].

Now we set as in (2.3)

$$
\begin{equation*}
\psi(t)=\psi\left(t ; \boldsymbol{x}, f, Y_{k}\right)=\int_{\Sigma} Y_{k}\left(\boldsymbol{y}^{\prime}\right) f\left(\boldsymbol{x}-t \boldsymbol{y}^{\prime}\right) d \sigma\left(\boldsymbol{y}^{\prime}\right) . \tag{3.9}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(\widetilde{S}_{Y_{k}, R}^{\beta} f\right)(\boldsymbol{x})=\gamma_{k, 0} \int_{0}^{\infty} \tilde{\gamma}_{\beta, k}(r) \psi(r / R) d r / r \tag{3.10}
\end{equation*}
$$

For $k=1,2, \cdots$, if $\beta<(n-1) / 2$, then

$$
\begin{equation*}
\tilde{\gamma}_{\beta, k}(t) \sim t^{-\beta+(n-1) / 2} \tag{3.11}
\end{equation*}
$$

for large t; see Chang [3, p.p. 17-18, Lemma 7].
If we change variables by $r=e^{y}$ and $R=e^{x}$, and set

$$
\begin{align*}
\Psi(x) & =\Psi\left(x ; \boldsymbol{x}, f, Y_{k}\right)=\psi\left(e^{-x}\right) \text { and } \tag{3.12}\\
\widetilde{K}_{\beta, k}^{*}(x) & =-2 \beta \gamma_{k, 0}\left(\tilde{\gamma}_{\beta, k}\left(e^{x}\right)-\tilde{\gamma}_{\beta-1, k}\left(e^{x}\right)\right\},
\end{align*}
$$

then the square function $\left(\widetilde{h}_{Y_{k}}^{\beta} f\right)(\boldsymbol{x})$ becomes

$$
\begin{equation*}
\left(\widetilde{h}_{Y_{k}}^{\beta} f\right)^{2}(\boldsymbol{x})=\int_{-\infty}^{\infty}\left|\left(\widetilde{K}_{\beta, k}^{*} * \Psi\right)(x)\right|^{2} d x \tag{3.13}
\end{equation*}
$$

by (1.7), (3.10) and (3.12). Now we can prove the following.
Proposition 2. For $\beta>0$,

$$
\begin{equation*}
\left(\widetilde{h}_{Y_{k}}^{\beta} f\right)^{2}(\boldsymbol{x})=\int_{-\infty}^{\infty}\left|\lambda_{\beta, k}^{*}(\xi)\left\{\Psi\left(\cdot ; \boldsymbol{x}, f, Y_{k}\right)\right\}^{\wedge}(\xi)\right|^{2} d \xi, \tag{3.14}
\end{equation*}
$$

where $\lambda_{\beta, k}^{*}$ is the distributional Fourier transform of $\widetilde{K}_{\beta, k}^{*}$,

$$
\begin{equation*}
\lambda_{\beta, k}^{*}(\xi)=\frac{\Gamma(\beta+1) \Gamma(k / 2)}{\Gamma((k+n) / 2)} \frac{\pi^{2 \pi i \xi} \Gamma(1+i \pi \xi) \Gamma((k+n) / 2-i \pi \xi)}{\Gamma(\beta+1+i \pi \xi) \Gamma(k / 2+i \pi \xi)} \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\lambda_{\beta, k}^{*}(\xi)\right| \sim(|\xi|+1)^{-\beta+(n / 2)} \quad(-\infty<\xi<\infty) . \tag{3.16}
\end{equation*}
$$

Proof. By the formulas (3.8), (3.11) and (3.12), we have

$$
\left|\widetilde{K}_{\beta, k}^{*}(x)\right| \leqq C \max \{1, \exp ([-\beta+(n+1) / 2] x)\}
$$

for $x \geqq 0$. If we take a positive number m such that $m>(n+1) / 2-\beta$ in \mathscr{F}_{m} of Lemma 1, then $\widetilde{K}_{\beta, k}^{*} \in \mathscr{F}_{m}^{\prime}$ and the convolution rule is established, because Ψ satisfies the condition (3.5). Hence

$$
\int_{-\infty}^{\infty}\left|\left(\Psi * \widetilde{K}_{\beta, k}^{*}\right)(x)\right|^{2} d x=\int_{-\infty}^{\infty}\left|\hat{\Psi}(\xi)\left(\widetilde{K}_{\beta, k}^{*}\right)^{\wedge}(\xi)\right|^{2} d \xi
$$

where $\left(\widetilde{K}_{\beta, k}^{*}\right)^{\wedge}$ is the distributional Fourier transform of $\widetilde{K}_{\beta, k}^{*}$. However,

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{\zeta x} & \tilde{K}_{\beta, k}^{*}(x) d x \\
& =-2 \beta \gamma_{k, 0} \int_{0}^{\infty} t^{\zeta}\left\{\tilde{\gamma}_{\beta, k}(t)-\tilde{\gamma}_{\beta-1, k}(t)\right\} d t / t \\
& =(2 \pi)^{n / 2} 2 \beta \gamma_{k, 0} \int_{0}^{\infty} t^{\zeta+n-1} d t \int_{0}^{1} u^{n+1}\left(1-u^{2}\right)^{\beta-1}(2 \pi i t u)^{k} V_{k+(n / 2)-1}(2 \pi t u) d u \\
& =2 \beta \gamma_{k, 0} i^{k}(2 \pi)^{-\zeta-(n / 2)+1} \int_{0}^{1} u^{-\zeta+2}\left(1-u^{2}\right)^{\beta-1} d u \int_{0}^{\infty}(2 \pi u t)^{\zeta+k+n-1} V_{k+(n / 2)-1}(2 \pi u t) d t \\
& =\frac{\Gamma(\beta+1) \Gamma(k / 2)}{\Gamma((k+n) / 2)} \frac{\Gamma(-(\zeta / 2)+1) \Gamma((\zeta+k+n) / 2)}{\pi^{\zeta} \Gamma(-(\zeta / 2)+\beta+1) \Gamma((-\zeta+k) / 2)}
\end{aligned}
$$

for $-(k+n)<\operatorname{Re} \zeta<-(n+1) / 2$ by Watson [24, p. 391, (1)]. The last formula is analytic in a broader domain which contains the imaginary axis. Hence by the argument of Gel'fand-Shilov, we get $\left(\widetilde{K}_{\beta, k}^{*}\right)^{\wedge}(\xi)$ by letting $\zeta=-2 \pi i \xi$ in the last formula. We denote this by $\lambda_{\beta, k}^{*}(\xi)$ as in (3.15). Since $\lambda_{\beta, k}^{*}$ has no zero and the asymptotic formula for Γ-function is applicable, we get (3.16).
q.e.d.

For $\left(h^{\beta} f\right)(\boldsymbol{x})$, we can proceed in an analogous way. Since

$$
\left(S_{R}^{\beta} f\right)(\boldsymbol{x})=\int_{|\dot{\mid}|<R}\left(1-|\boldsymbol{\xi}|^{2} / R^{2}\right)^{\hat{\beta}} f(\boldsymbol{\xi}) e^{2 \pi i z \cdot \boldsymbol{s} \cdot} d \boldsymbol{\xi}
$$

by (1.3), we get

$$
\begin{equation*}
\left(S_{R}^{\beta} f\right)(\boldsymbol{x})=\int_{0}^{\infty} \gamma_{\beta}(r) \phi(r / R ; \boldsymbol{x}, f) d r / r \tag{3.17}
\end{equation*}
$$

where $\phi(t ; \boldsymbol{x}, f)$ is the same as in (2.1) and

$$
\gamma_{\beta}(t)=2^{\beta}(2 \pi)^{n / 2} \Gamma(\beta+1) t^{n} V_{\beta+(n / 2)}(2 \pi t),
$$

see Stein-Weiss [21, p. 171]. Differentiating (3.17) with respect to R, we
get

$$
R \frac{\partial}{\partial R}\left(S_{R}^{\beta} f\right)(\boldsymbol{x})=-\int_{0}^{\infty} \gamma_{\beta}(r) \theta(r / R ; \boldsymbol{x}, f) d r / \boldsymbol{r}
$$

where θ is defined by (2.5). If we set $r=e^{y}$ and $R=e^{x}$, then the square function ($\left.h^{\beta} f\right)(\boldsymbol{x})$ defined by (1.5) becomes

$$
\begin{equation*}
\left(h^{\beta} f\right)^{2}(\boldsymbol{x})=\int_{-\infty}^{\infty}\left|\left(K_{\beta}^{*} * \Theta\right)(x)\right|^{2} d x, \tag{3.18}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{\beta}^{*}(x)=\gamma_{\beta}\left(e^{x}\right)=2^{\beta}(2 \pi)^{n / 2} \Gamma(\beta+1) e^{n x} V_{\beta+(n / 2)}\left(2 \pi e^{x}\right) \tag{3.19}
\end{equation*}
$$

and $\Theta(x)=\theta\left(e^{-x}\right)$ as in (2.10). Since the order of $\gamma_{\beta}(t)$ is $t^{-\beta+(n-1) / 2}$ as t tends to infinity, $K_{\beta}^{*} \notin \mathscr{S}^{\prime}(-\infty, \infty)$, if $\beta<(n-1) / 2$. Now we take $m>$ $(n-1) / 2-\beta$ in Lemma 1 and consider the test function space \mathscr{F}_{m}. Then $K_{\beta}^{*} \in \mathscr{F}_{m}^{\prime}$. Evidently $|\Theta(x)| \leqq C e^{-2 x} \leqq C e^{-x}(x \geqq 0)$, $\leqq C e^{(m+1) x}(x<0)$. Therefore, Θ is a convolute of this space. Hence the convolution rule is true for $K_{\beta}^{*} * \Theta$. The complex Fourier transform of K_{β}^{*} is

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{\zeta x} K_{\beta}^{*}(x) d x & =2^{\beta}(2 \pi)^{n / 2} \Gamma(\beta+1) \int_{0}^{\infty} t^{\zeta+n-1} V_{\beta+(n / 2)}(2 \pi t) d t \\
& =\frac{\Gamma(\beta+1) \Gamma((\zeta+n) / 2)}{2 \pi^{\zeta+(n / 2)} \Gamma(-\zeta / 2+\beta+1)},
\end{aligned}
$$

and is analytic in $-n<\operatorname{Re} \zeta<m-\{(n-1) / 2-\beta\}$. Hence we get the following.

Proposition 3. For $\beta>0$,

$$
\begin{equation*}
\left(h^{\beta} f\right)^{2}(\boldsymbol{x})=\int_{-\infty}^{\infty}\left|\kappa_{\beta}^{*}(\xi)\{\Theta(\cdot ; \boldsymbol{x}, f)\}^{\wedge}(\xi)\right|^{2} d \xi, \tag{3.20}
\end{equation*}
$$

where κ_{β}^{*} is the distributional Fourier transform of K_{β}^{*},

$$
\begin{equation*}
\kappa_{\beta}^{*}(\xi)=\frac{\Gamma(\beta+1)}{2 \pi^{n / 2}} \frac{\pi^{2 \pi i \xi} \Gamma(n / 2-i \pi \xi)}{\Gamma(\beta+1+i \pi \xi)} \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\kappa_{\beta}^{*}(\xi)\right| \sim(|\xi|+1)^{-\beta+(n / 2)-1} \quad(-\infty<\xi<\infty) . \tag{3.22}
\end{equation*}
$$

From Propositions 1, 2 and 3, we get Theorems 1 and 2, because any bounded function is an L^{2}-multiplier. To prove the uniformity in Theorem 1 , it is sufficient to note that (3.16) holds uniformly in k, if $\lambda_{\beta, k}^{*}(\xi)$ is replaced by $\lambda_{\beta, k}^{*}(\xi) / \gamma_{k, 0}$.
4. Other square functions associated with the Marcinkiewicz function. Stein [13] introduced the square function $\mu(f)$:

$$
\begin{equation*}
\mu(f)(\boldsymbol{x})=\left\{\left.\left.\int_{0}^{\infty}\left|t^{-1} \int_{1 . \mid<t}\right| \boldsymbol{y}\right|^{-n+1} \Omega\left(\boldsymbol{y}^{\prime}\right) f(\boldsymbol{x}-\boldsymbol{y}) d \boldsymbol{y}\right|^{2} d t / t\right\}^{1 / 2} . \tag{4.1}
\end{equation*}
$$

This is a generalization of the classical Marcinkiewicz function to the higher dimensional case. Hörmander [8, p. 136] generalized this. We consider now more general square function $\mu_{a}^{*^{\alpha, \delta}} f$. We set first

$$
\begin{equation*}
\left(\widetilde{M}_{\Omega, t}^{\alpha, \delta} f\right)(\boldsymbol{x})=c_{\alpha, \delta}^{\prime} t^{-\delta} \int_{|y|<t}\left(1-|\boldsymbol{y}|^{2} / t^{2}\right)^{\alpha-1}|\boldsymbol{y}|^{-n+\delta} \Omega\left(\boldsymbol{y}^{\prime}\right) f(\boldsymbol{x}-\boldsymbol{y}) d \boldsymbol{y} \tag{4.2}
\end{equation*}
$$

for $\delta>0$, where $c_{\alpha, \delta}^{\prime}=\Gamma(n / 2) \Gamma(\alpha+\delta / 2) / \pi^{n / 2} \Gamma(\alpha) \Gamma(\delta / 2)$ and define $\mu_{\Omega}^{* \alpha, \delta} f$ by

$$
\begin{equation*}
\left(\mu_{\Omega}^{* \alpha, s} f\right)(\boldsymbol{x})=\left\{\int_{0}^{\infty}\left|\left(\tilde{\boldsymbol{M}}_{\Omega, t}^{\alpha, \delta} f\right)(\boldsymbol{x})\right|^{2} d t / t\right\}^{1 / 2} \tag{4.3}
\end{equation*}
$$

Obviously $\left(\mu_{\Omega}^{* 1, \delta} f\right)(x)$ coincides with the one defined by Hörmander and $\left(\mu_{\Omega}^{* 1,1} f\right)(\boldsymbol{x})=\left\{\Gamma(n / 2) / 2 \pi^{n}{ }^{2}\right\} \mu(f)(\boldsymbol{x})$. Furthermore, $\left(\mu_{\Omega}^{\alpha} f\right)(\boldsymbol{x})=\left(\mu_{\Omega}^{* \alpha, n} f\right)(\boldsymbol{x})$. Tracing the proof of Proposition 1, we have the following.

Proposition 4. Let

$$
\tilde{\kappa}_{\alpha, \delta}(\xi)=\frac{\Gamma(n / 2) \Gamma(\alpha+\delta / 2)}{2 \pi^{n / 2} \Gamma(\delta / 2)} \frac{\Gamma(\delta / 2-i \pi \xi)}{\Gamma(\alpha+\delta / 2-i \pi \xi)} .
$$

If $\alpha>-\delta / 2$ and $\delta>0$, then

$$
\begin{equation*}
\left(\mu_{2}^{* \alpha, \delta} f\right)^{2}(\boldsymbol{x})=\int_{-\infty}^{\infty}\left|\tilde{\kappa}_{\alpha, \delta}(\xi)\{\Psi(\cdot ; \boldsymbol{x}, f, \Omega)\}^{\wedge}(\xi)\right|^{2} d \xi \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\tilde{\kappa}_{\alpha, \delta}(\xi)\right| \sim(|\xi|+1)^{-\alpha} \quad(-\infty<\xi<\infty) . \tag{4.5}
\end{equation*}
$$

Taking (2.14) and (4.5) into account, we have the following from (2.11) and (4.4).

Theorem 3. If $\alpha>-\delta / 2$ and $\delta>0$, then

$$
\left(\mu_{\Omega}^{* \alpha, \delta} f\right)(\boldsymbol{x}) \approx\left(\mu_{\Omega}^{\alpha} f\right)(\boldsymbol{x})
$$

for $f \in \mathscr{S}\left(\boldsymbol{R}^{n}\right)$, and the relation holds uniformly in Ω.
We set further

$$
\left(T_{\Omega, t}^{\beta} f\right)(\boldsymbol{x})=c_{\beta}^{\prime} \int_{\boldsymbol{R}^{n}} t^{-n} V_{\beta+(n / 2)}(2 \pi|\boldsymbol{y}| / t) \Omega\left(\boldsymbol{y}^{\prime}\right) f(\boldsymbol{x}-\boldsymbol{y}) d \boldsymbol{y},
$$

where $c_{\beta}^{\prime}=2^{\beta}(2 \pi)^{n / 2} \Gamma(\beta+1)$, and

$$
\left(\tau_{a}^{\beta} f\right)(\boldsymbol{x})=\left\{\int_{0}^{\infty}\left|\left(T_{\Omega, t}^{\beta} f\right)(\boldsymbol{x})\right|^{2} d t / t\right\}^{1 / 2}
$$

Then

$$
\left(T_{\Omega, t}^{\beta} f\right)(\boldsymbol{x})=\left\{K_{\beta}^{*} * \Psi(\cdot ; \boldsymbol{x}, f, \Omega)\right\}(x) \quad\left(t=e^{-x}\right),
$$

where K_{β}^{*} is defined by (3.19). As shown in $\S 3$,

$$
\left|\hat{K}_{\beta}^{*}(\xi)\right|=\left|\kappa_{\beta}^{*}(\xi)\right| \sim(|\xi|+1)^{-\beta+(n / 2)-1} \quad(-\infty<\xi<\infty) .
$$

Comparing this with Proposition 1, we have the following.
Theorem 4. If $\beta=\alpha+n / 2-1>0$, then

$$
\left(\boldsymbol{\tau}_{\Omega}^{\beta} f\right)(\boldsymbol{x}) \approx\left(\mu_{\alpha /}^{\alpha} f\right)(\boldsymbol{x})
$$

for $f \in \mathscr{S}\left(\boldsymbol{R}^{n}\right)$, and the relation holds uniformly in Ω.
5. Spherical square functions arising as Riesz potentials. In this section we assume $\hat{f}(\boldsymbol{\xi})=0$ near the origin for $f \in \mathscr{S}\left(\boldsymbol{R}^{n}\right)$ and denote the class of all such f by $\mathscr{S}_{0}\left(\boldsymbol{R}^{n}\right)$. The Riesz potential of f is defined by

$$
\begin{equation*}
\left(I_{\alpha} f\right)(\boldsymbol{x})=\int_{\boldsymbol{R}^{n}}|\boldsymbol{\xi}|^{-\alpha} \hat{\boldsymbol{f}}(\boldsymbol{\xi}) e^{2 \pi i x \cdot \frac{:}{2}} d \boldsymbol{\xi} \tag{5.1}
\end{equation*}
$$

Set

$$
\begin{equation*}
\left(I^{\alpha} f\right)(\boldsymbol{x})=\int_{R n}|\boldsymbol{\xi}|{ }^{\alpha} \hat{f}(\underline{\xi}) e^{2 \pi i x \cdot \boldsymbol{\xi}} d \boldsymbol{\xi} \tag{5.2}
\end{equation*}
$$

Now we will define such a spherical square function as

$$
\begin{equation*}
\left(D^{\alpha} f\right)(\boldsymbol{x})=\left[\int_{0}^{\infty}\left|t^{-\alpha} \int_{\Sigma}\left\{f\left(\boldsymbol{x}-t \boldsymbol{y}^{\prime}\right)-f(\boldsymbol{x})\right\} d \sigma\left(\boldsymbol{y}^{\prime}\right)\right|^{2} d t / t\right]^{1 / 2} . \tag{5.3}
\end{equation*}
$$

Then $\left(D^{\alpha} f\right)(\boldsymbol{x})$ is essentially smaller than

$$
\begin{equation*}
\mathscr{D}_{\alpha}(f)(\boldsymbol{x})=\left\{\int_{\boldsymbol{R}^{n}}|f(\boldsymbol{x}-\boldsymbol{y})-f(\boldsymbol{x})|^{2}|\boldsymbol{y}|^{-n-2 \alpha} d \boldsymbol{y}\right\}^{1 / 2} \tag{5.4}
\end{equation*}
$$

of Stein [15, p. 102], because

$$
\mathscr{D}_{\alpha}(f)(\boldsymbol{x})=\left\{\int_{0}^{\infty} \int_{\Sigma}\left|f\left(\boldsymbol{x}-t \boldsymbol{y}^{\prime}\right)-f(\boldsymbol{x})\right|^{2} d \sigma\left(\boldsymbol{y}^{\prime}\right) t^{-1-2 \alpha} d t\right\}^{1 / 2}
$$

We will prove the following.
Theorem 5. If $\beta=\alpha+n / 2$ and $0<\alpha<1$, then

$$
\begin{equation*}
\left(h^{\beta} f\right)(\boldsymbol{x}) \approx D^{\alpha}\left(I_{\alpha} f\right)(\boldsymbol{x}) \tag{5.5}
\end{equation*}
$$

for any $f \in \mathscr{S}_{0}\left(\boldsymbol{R}^{n}\right)$.
For the proof of Theorem 5, we give the following two propositions. First we consider

$$
\left(\tau_{R}^{\beta} f\right)(\boldsymbol{x})=\left(S_{R}^{\beta} f\right)(\boldsymbol{x})-\left(S_{R}^{\beta-1} f\right)(\boldsymbol{x}) .
$$

Then elementary calculation yields

$$
\begin{align*}
& \tau_{1 / t}^{\beta}\left(I^{\alpha} f\right)(\boldsymbol{x}) \tag{5.6}\\
& =-(2 \pi)^{n / 2} t^{-\alpha} \int_{0}^{\infty}\left\{r^{n-1} \int_{0}^{1} u^{\alpha+n+1}\left(1-u^{2}\right)^{\beta-1} V_{(n / 2)-1}(2 \pi r u) d u\right\} \\
& \quad \times \phi(t r ; \boldsymbol{x}, f) d r,
\end{align*}
$$

where $\phi(t)=\phi(t ; \boldsymbol{x}, f)$ is given by (2.1). Set

$$
\begin{align*}
\Gamma_{0}(t) & =\int_{0}^{t} r^{n-1} d r \int_{0}^{1} u^{\alpha+n+1}\left(1-u^{2}\right)^{\beta-1} V_{(n / 2)-1}(2 \pi r u) d u \tag{5.7}\\
& =t^{n} \int_{0}^{1} u^{\alpha+n+1}\left(1-u^{2}\right)^{\beta-1} V_{n / 2}(2 \pi t u) d u .
\end{align*}
$$

Then by integration by parts we have

$$
\begin{equation*}
\tau_{1 / t}^{\beta}\left(I^{\alpha} f\right)(\boldsymbol{x})=(2 \pi)^{n / 2} t^{-\alpha} \int_{0}^{\infty} \Gamma_{0}(r) \theta(t r ; \boldsymbol{x}, f) d r / \boldsymbol{r}, \tag{5.8}
\end{equation*}
$$

where $\theta(t)=\theta(t ; \boldsymbol{x}, f)$ is given by (2.5). Moreover, we set

$$
\begin{equation*}
\theta_{-\alpha}(t)=\theta_{-\alpha}(t ; \boldsymbol{x}, f)=t^{-\alpha} \theta(t ; \boldsymbol{x}, f) . \tag{5.9}
\end{equation*}
$$

As in the preceding sections, putting $K^{*}(x)=K_{\alpha, \beta}^{*}(x)=(2 \pi)^{n / 2} e^{\alpha x} \Gamma_{0}\left(e^{x}\right)$ and $\Theta_{-\alpha}(x ; \boldsymbol{x}, f)=\theta_{-\alpha}\left(e^{-x}\right)$, (5.8) becomes

$$
\tau_{1 / t}^{\beta}\left(I^{\alpha} f\right)(\boldsymbol{x})=\left\{K^{*} * \Theta_{-\alpha}(\cdot ; \boldsymbol{x}, f)\right\}(x) \quad\left(t=e^{-x}\right) .
$$

The complex Fourier transform of K^{*} is

$$
\begin{aligned}
& \int_{-\infty}^{\infty} e^{\zeta x} K^{*}(x) d x \\
& \quad=(2 \pi)^{n / 2} \int_{0}^{\infty} t^{\zeta+\alpha+n-1} d t \int_{0}^{1} u^{\alpha+n+1}\left(1-u^{2}\right)^{\beta-1} V_{n / 2}(2 \pi t u) d u \\
& \quad=(2 \pi)^{n / 2} \int_{0}^{1} u^{\alpha+n+1}\left(1-u^{2}\right)^{\beta-1} d u \int_{0}^{\infty} t^{\zeta+\alpha+n-1} V_{n / 2}(2 \pi u t) d t \\
& \quad=\frac{\Gamma(\beta) \Gamma(-\zeta / 2+1) \Gamma((\zeta+\alpha+n) / 2)}{4 \pi^{\zeta+\alpha+(n / 2)} \Gamma(-\zeta / 2+\beta+1) \Gamma(-\zeta / 2-\alpha / 2+1)}
\end{aligned}
$$

for $-(\alpha+n)<\operatorname{Re} \zeta<-\alpha-(n-1) / 2$. By an argument analogous to that in Proposition 2, we have:

Proposition 5. For $-n<\alpha \leqq 1$ and $\beta>0$,

$$
\begin{equation*}
\left\{h^{\beta}\left(I^{\alpha} f\right)(\boldsymbol{x})\right\}^{2}=\int_{-\infty}^{\infty}\left|\eta_{\alpha, \beta}^{*}(\xi)\left\{\Theta_{-\alpha}(\cdot ; \boldsymbol{x}, f)\right\}^{\wedge}(\xi)\right|^{2} d \xi, \tag{5.10}
\end{equation*}
$$

where $\eta_{\alpha, \beta}^{*}$ is the distributional Fourier transform of $K_{\alpha, \beta}^{*}$, that is to say,

$$
\eta_{\alpha, \beta}^{*}(\xi)=\frac{\Gamma(\beta+1)}{2 \pi^{\alpha+(n / 2)}} \frac{\pi^{2 \pi i \xi} \Gamma(1+i \pi \xi) \Gamma((\alpha+n) / 2-i \pi \xi)}{\Gamma(\beta+1+i \pi \xi) \Gamma(-\alpha / 2+1+i \pi \xi)}
$$

and

$$
\begin{equation*}
\left|\eta_{\alpha, \beta}^{*}(\xi)\right| \sim(|\xi|+1)^{\alpha-\beta+(n / 2)-1} \quad(-\infty<\xi<\infty) . \tag{5.11}
\end{equation*}
$$

Concerning $\left(D^{\alpha} f\right)(x)$ defined by (5.3) we proceed analogously. By (2.1), (2.5) and (5.9), we have

$$
\phi(t ; \boldsymbol{x}, f)-\phi(0 ; \boldsymbol{x}, f)=\int_{0}^{1} \theta(t r ; \boldsymbol{x}, f) d r / r
$$

and

$$
\begin{equation*}
t^{-\alpha}\{\phi(t ; \boldsymbol{x}, f)-\phi(0 ; \boldsymbol{x}, f)\}=\int_{0}^{1} r^{\alpha} \theta_{-\alpha}(t r ; \boldsymbol{x}, f) d r / \boldsymbol{r} \tag{5.12}
\end{equation*}
$$

Hence, if we set $K(x)=e^{\alpha x}(x \leqq 0)$ and $=0(x>0)$, then (5.12) becomes

$$
\left\{K * \Theta_{-\alpha}(\cdot ; \boldsymbol{x}, f)\right\}(x)
$$

with $t=e^{-x}$. Hence we get:
Proposition 6. If $0<\alpha<1$, then

$$
\left(D^{\alpha} f\right)^{2}(\boldsymbol{x})=\int_{-\infty}^{\infty}\left|\kappa(\xi)\left\{\Theta_{-\alpha}(\cdot ; \boldsymbol{x}, f)\right\}^{\wedge}(\xi)\right|^{2} d \xi,
$$

where $\kappa(\xi)=(\alpha-2 \pi i \xi)^{-1}$ and

$$
|\kappa(\xi)| \sim(|\xi|+1)^{-1} \quad(-\infty<\xi<\infty)
$$

Theorem 5 follows, if we take $I_{\alpha} f$ as f in Propositions 5 and 6.
For $\left(\widetilde{h}_{Y_{k}}^{\beta} f\right)(\boldsymbol{x})$, we get analogous one. For a surface spherical harmonic Y_{k} of degree $k(\geqq 1)$, set

$$
\begin{equation*}
\left(D_{Y_{k}}^{\alpha} f\right)(\boldsymbol{x})=\left\{\int_{0}^{\infty}\left|t^{-\alpha} \int_{\Sigma} f\left(\boldsymbol{x}-t \boldsymbol{y}^{\prime}\right) Y_{k}\left(\boldsymbol{y}^{\prime}\right) d \sigma\left(\boldsymbol{y}^{\prime}\right)\right|^{2} d t / t\right\}^{1 / 2} \tag{5.13}
\end{equation*}
$$

Theorem 6. If $\beta=\alpha+n / 2$ and $0<\alpha<1$, then the relation

$$
\left(\widetilde{h}_{Y_{k}}^{\beta} f\right)(\boldsymbol{x}) /\left|\gamma_{k, 0}\right| \approx D_{Y_{k}}^{\alpha}\left(I_{\alpha} f\right)(\boldsymbol{x})
$$

holds uniformly in Y_{k} and k for any $f \in \mathscr{S}_{0}\left(\boldsymbol{R}^{n}\right)$, where the constant $\gamma_{k, 0}$ is the same as in Theorem 1.

The method of proof is the same as that for Theorem 1 and the one above. If we set

$$
\psi_{-\alpha}\left(t ; \boldsymbol{x}, f, Y_{k}\right)=t^{-\alpha} \psi\left(t ; \boldsymbol{x}, f, Y_{k}\right)
$$

and

$$
\Psi_{-\alpha}\left(x ; \boldsymbol{x}, f, Y_{k}\right)=\psi_{-\alpha}\left(e^{-x} ; \boldsymbol{x}, f, Y_{k}\right),
$$

then we have

$$
\begin{equation*}
\left(D_{Y_{k}}^{\alpha} f\right)^{2}(\boldsymbol{x})=\int_{-\infty}^{\infty}\left|\Psi_{-\alpha}\left(x ; \boldsymbol{x}, f, Y_{k}\right)\right|^{2} d x \tag{5.14}
\end{equation*}
$$

by definition. On the other hand, by an argument parallel to that in the proof of Proposition 2, we have

$$
\widetilde{S}_{Y_{k}, R}^{\beta}\left(I^{\alpha} f\right)(\boldsymbol{x})=\gamma_{k, 0} \int_{0}^{\infty} \tilde{\gamma}_{\alpha, \beta, k}(r) \psi_{-\alpha}\left(r / R ; \boldsymbol{x}, f, Y_{k}\right) d r / r
$$

and

$$
\left\{\widetilde{h}_{Y_{k}}^{\beta}\left(I^{\alpha} f\right)(\boldsymbol{x})\right\}^{2}=\int_{-\infty}^{\infty}\left|\left\{\widetilde{K}_{\alpha, \beta, k}^{*} * \Psi_{-\alpha}\left(\cdot ; \boldsymbol{x}, f, Y_{k}\right)\right\}(x)\right|^{2} d x,
$$

where $\widetilde{K}_{\alpha, \beta, k}^{*}(x)=-2 \beta \gamma_{k, 0}\left\{\tilde{\gamma}_{\alpha, \beta, k}\left(e^{x}\right)-\tilde{\gamma}_{\alpha, \beta-1, k}\left(e^{x}\right)\right\}$ and

$$
\tilde{\boldsymbol{\gamma}}_{\alpha, \beta, k}(t)=(2 \pi)^{n / 2} t^{\alpha+n} \int_{0}^{1} u^{\alpha+n-1}\left(1-u^{2}\right)^{\beta}(2 \pi i t u)^{k} V_{k+(n / 2)-1}(2 \pi t u) d u
$$

Furthermore, the same calculation as in the proof of Proposition 2 yields that the complex Fourier transform of $\widetilde{K}_{\alpha, \beta, k}^{*}$ is equal to

$$
\begin{equation*}
\pi^{-\alpha} \frac{\Gamma(\beta+1) \Gamma(k / 2)}{\Gamma((k+n) / 2)} \frac{\pi^{-\zeta} \Gamma(-\zeta / 2+1) \Gamma(\zeta / 2+(\alpha+k+n) / 2)}{\Gamma(-\zeta / 2+\beta+1) \Gamma(-\zeta / 2-\alpha / 2+k / 2)} \tag{5.15}
\end{equation*}
$$

Let $\lambda_{\alpha, \beta, k}^{*}(\xi)$ be in the form which we obtain by exchanging ζ by $-2 \pi i \xi$ in (5.15). Then

$$
\begin{equation*}
\left\{\widetilde{h}_{Y_{k}}^{\beta}\left(I^{\alpha} f\right)(\boldsymbol{x})\right\}^{2}=\int_{-\infty}^{\infty}\left|\lambda_{\alpha, \beta, k}^{*}(\xi)\left\{\Psi_{-\alpha}\left(\cdot ; \boldsymbol{x}, f, Y_{k}\right)\right\}^{\wedge}(\xi)\right|^{2} d \xi \tag{5.16}
\end{equation*}
$$

By the asymptotic estimate of Γ-function, we have

$$
\begin{equation*}
\left|\lambda_{\alpha, \beta, k}^{*}(\xi)\right| /\left|\gamma_{k, 0}\right| \sim(|\xi|+1)^{\alpha-\beta+(n / 2)} \quad(-\infty<\xi<\infty) \tag{5.17}
\end{equation*}
$$

uniformly in k. Replacement of f by $I_{\alpha} f$ in (5.14) and (5.16), and the relation (5.17) prove Theorem 6.

Now, we give a relation between $h^{\beta} f$ defined by (1.5) and the LittlewoodPaley g^{*}-function $g_{\lambda}^{*}(f)$:

$$
\begin{equation*}
g_{\lambda}^{*}(f)(\boldsymbol{x})=\left\{\int_{0}^{\infty} \int_{\boldsymbol{R}^{n}} \frac{t^{\lambda+1}}{\left(|\boldsymbol{x}-\boldsymbol{y}|^{2}+t^{2}\right)^{(\lambda+n) / 2}}|\nabla u(\boldsymbol{y}, t)|^{2} d \boldsymbol{y} d t\right\}^{1 / 2}, \tag{5.18}
\end{equation*}
$$

defined by Stein [14], where u is the Poisson integral of f.
As remarked in the definition of $\mathscr{D}_{\alpha}(f)$ in (5.4), we have $\left(D^{\alpha} f\right)(x) \leqq$ $C_{n} \mathscr{D}_{\alpha}(f)(\boldsymbol{x})$. Theorem 5 shows $\left(h^{\beta} f\right)(\boldsymbol{x}) \leqq C_{\beta} D^{\alpha}\left(I_{\alpha} f\right)(\boldsymbol{x})(\beta=\alpha+n / 2,0<$ $\alpha<1)$. Stein [15] showed that $\mathscr{D}_{\alpha}\left(I_{\alpha} f\right)(\boldsymbol{x}) \leqq C_{\alpha, 2} g_{\lambda}^{*}(f)(\boldsymbol{x}) \quad(0<\alpha<1,0<$ $\lambda<2 \alpha)$. Therefore we have

$$
\begin{equation*}
\left(h^{\beta} f\right)(\boldsymbol{x}) \leqq C_{\beta, \lambda} g_{\lambda}^{*}(f)(\boldsymbol{x}) \quad(0<\lambda<2, \lambda+n<2 \beta) . \tag{5.19}
\end{equation*}
$$

Next we consider the relation between $\mu_{2}^{* \alpha} f=\mu_{2}^{* \alpha, 1} f$ and $g_{\lambda}^{*}(f) . \quad$ By Theorems 3, 1 and 6 , we have

$$
\left(\mu_{Y_{k}}^{* \alpha} f\right)(\boldsymbol{x}) \approx D_{Y_{k}}^{\alpha}\left(I_{\alpha} f\right)(\boldsymbol{x}) \quad(0<\alpha<1)
$$

uniformly in Y_{k}. Hence, by the Schwarz inequality and the above result of Stein,

$$
\begin{aligned}
D_{Y_{k}}^{\alpha}\left(I_{\alpha} f\right)(\boldsymbol{x}) \leqq & \left\|Y_{k}\right\|_{L^{2}(\Omega)} \mathscr{D}_{\alpha}\left(I_{\alpha} f\right)(\boldsymbol{x}) \leqq C_{\alpha, \lambda}\left\|Y_{k}\right\|_{L^{2}(\Sigma)} g_{\lambda}^{*}(f)(\boldsymbol{x}) \\
(0 & <\alpha<1,0<\lambda<2 \alpha)
\end{aligned}
$$

Therefore we have

$$
\begin{equation*}
\left(\mu_{F_{k}}^{* \alpha} f\right)(\boldsymbol{x}) \leqq C_{\alpha, \lambda}\left\|Y_{k}\right\|_{L^{2}\left(^{\prime}\right)} g_{\lambda}^{*}(f)(\boldsymbol{x}) \tag{5.20}
\end{equation*}
$$

for $0<\alpha<1$ and $0<\lambda<2 \alpha$. If we have any good condition for the expansion $\Omega=\sum Y_{k}$, we shall be able to get

$$
\left(\mu_{a}^{*^{\alpha}} f\right)(\boldsymbol{x}) \leqq C_{\alpha, \lambda . \Omega} g_{\lambda}^{*}(f)(\boldsymbol{x}) \quad(0<\alpha<1,0<\lambda<2 \alpha) .
$$

6. Square functions arising from the Abel-Poisson summation. We define the spherical Abel-Poisson means of a function f by

$$
\begin{equation*}
\left(A_{t}^{m, \alpha} f\right)(\boldsymbol{x})=c_{m, \alpha} \int_{\boldsymbol{R}^{n}}|\boldsymbol{y}|^{\alpha} \exp \left(-|\boldsymbol{y}|^{m+1}\right) f(\boldsymbol{x}-t \boldsymbol{y}) d \boldsymbol{y} \tag{6.1}
\end{equation*}
$$

where $c_{m, \alpha}=(m+1) \Gamma(n / 2) / 2 \pi^{n / 2} \Gamma((\alpha+n) /(m+1)), m>-1$ and $\alpha>-n$, following Levinson [11]. The corresponding square function is

$$
\begin{align*}
\left(\delta^{m, \alpha} f\right)(\boldsymbol{x}) & =\left\{\int_{0}^{\infty}\left|\frac{\partial}{\partial t}\left(A_{t}^{m, \alpha} f\right)(\boldsymbol{x})\right|^{2} t d t\right\}^{1 / 2} \tag{6.2}\\
& =\left[\int_{0}^{\infty}\left|-(\alpha+n)\left\{\left(A_{t}^{m, \alpha} f\right)(\boldsymbol{x})-\left(A_{t}^{m, \alpha+m+1} f\right)(\boldsymbol{x})\right\}\right|^{2} d t / t\right]^{1 / 2}
\end{align*}
$$

We also define the square function from the spherical means of AbelPoisson type of Fourier transform. Let

$$
\begin{equation*}
u_{m}(\boldsymbol{x}, t)=c_{m}^{\prime \prime} \int_{R^{n}}\left(|\boldsymbol{y}|^{2(m+1)}+1\right)^{-(n+1) / 2} f(\boldsymbol{x}-t \boldsymbol{y}) d \boldsymbol{y} \tag{6.3}
\end{equation*}
$$

where $m>-1 /(n+1)$ and the constant $c_{m}^{\prime \prime}$ is taken so that $u_{m}(\boldsymbol{x}, 0)=$ $f(\boldsymbol{x})$. Set

$$
\begin{equation*}
g_{m+1}(f)(\boldsymbol{x})=\left\{\int_{0}^{\infty}\left|\frac{\partial}{\partial t} u_{m}(\boldsymbol{x}, t)\right|^{2} t d t\right\}^{1 / 2} \tag{6.4}
\end{equation*}
$$

When $m=1$ and $\alpha=0$, (6.1) agrees with the Gauss-Weierstrass integral of f, and when $m=0$, (6.3) is the Poisson integral of f and (6.4) is the "real part" of the original Littlewood-Paley function $g(f)(\boldsymbol{x})$. See Stein [16, p. 83], where it is denoted by $g_{1}(f)(\boldsymbol{x})$.

We can prove the following:
Theorem 7. If $m>-1 /(n+1)$ and $\alpha=(m-1) n / 2$, then

$$
\left(\delta^{m, \alpha} f\right)(\boldsymbol{x}) \approx g_{m+1}(f)(\boldsymbol{x})
$$

for $f \in \mathscr{S}\left(\boldsymbol{R}^{n}\right)$.
The proof uses the same idea as that in the preceding sections.
Proposition 7. For $m>-1$ and $\alpha>-n$,

$$
\left(\delta^{m, \alpha} f\right)^{2}(\boldsymbol{x})=\int_{-\infty}^{\infty}\left|\hat{\mathscr{A}}_{m, \alpha}(\xi)\{\Theta(\cdot ; \boldsymbol{x}, f)\}^{\wedge}(\xi)\right|^{2} d \xi
$$

where Θ is defined by (2.10),

$$
\hat{\mathscr{A}}_{m, \alpha}(\xi)=\frac{\Gamma(n / 2)}{2 \pi^{n / 2} \Gamma((\alpha+n) /(m+1))} \Gamma\left(\frac{\alpha+n-i 2 \pi \xi}{m+1}\right)
$$

and

$$
\begin{aligned}
\left|\hat{\mathscr{A}}_{m, \alpha}(\xi)\right| \sim(|\xi|+1)^{(\alpha+n) /(m+1)-(1 / 2)} \exp \left(-\pi^{2}|\xi| /(\right. & m+1)) \\
& (-\infty<\xi<\infty) .
\end{aligned}
$$

Proposition 8. For $m>-1 /(n+1)$,

$$
\begin{equation*}
\left\{g_{m+1}(f)(\boldsymbol{x})\right\}^{2}=\int_{-\infty}^{\infty}\left|\hat{P}_{m}(\xi)\{\Theta(\cdot ; \boldsymbol{x}, f)\}^{\wedge}(\xi)\right|^{2} d \xi \tag{6.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{P}_{m}(\xi)=c_{m}^{\prime \prime \prime} \Gamma\left(\frac{n-i 2 \pi \xi}{2(m+1)}\right) \Gamma\left(\frac{m(n+1)+1+i 2 \pi \xi}{2(m+1)}\right) \tag{6.6}
\end{equation*}
$$

with $c_{m}^{\prime \prime \prime}=\Gamma(n / 2) / 2 \pi^{n / 2} \Gamma(n / 2(m+1)) \Gamma(\{m(n+1)+1\} / 2(m+1))$, and

$$
\begin{equation*}
\left|\hat{P}_{m}(\xi)\right| \sim(|\xi|+1)^{(n-1) / 2} \exp \left(-\pi^{2}|\xi| /(m+1)\right) \quad(-\infty<\xi<\infty) \tag{6.7}
\end{equation*}
$$

Proof of Proposition 7. Set

$$
\mathscr{A}_{m, \alpha}(x)=c_{m, \alpha} e^{(\alpha+n) x} \exp \left(-e^{(m+1) x}\right)
$$

Then, by the change of variables $t=e^{-x}$, we have

$$
t \frac{\partial}{\partial t}\left(A_{t}^{m, \alpha} f\right)(\boldsymbol{x})=\left\{\mathscr{A}_{m, \alpha} * \Theta(\cdot ; \boldsymbol{x}, f)\right\}(x)
$$

as in the proof of Proposition 1. In this case, the convolution is ordinary and we can prove Proposition 7 without the concept of distribution. It is easy to calculate the Fourier transform $\hat{\mathscr{A}}_{m, \alpha}$ of $\mathscr{A}_{m, \alpha}$ and we get Proposition 7.

Proof of Proposition 8. We set

$$
P_{m}(x)=c_{m}^{\prime \prime} e^{n x}\left\{e^{2(m+1) x}+1\right\}^{-(n+1) / 2}
$$

Moreover, by the change of variables $t=e^{-x}$, then

$$
t \frac{\partial}{\partial t} u_{m}(\boldsymbol{x}, t)=\left\{P_{m} * \Theta(\cdot ; \boldsymbol{x}, f)\right\}(x) .
$$

The Fourier transform of P_{m} is (6.6).
q.e.d.

Remark. Except when $m=0, u_{m}(\boldsymbol{x}, t)$ in (6.3) does not represent the exact Abel-Poisson mean of Fourier transform of f. In fact, in the case $m=1$ and $\alpha=0,\left(A_{t}^{m, \alpha} f\right)(x)$ is the Gauss-Weierstrass mean of function f and also that of its Fourier transform coincidentally. However, if we take $m=1$ and $\alpha=0$ in Proposition 7 and $m=0$ in Proposition 8, then we have

$$
\begin{aligned}
& \left|\hat{\mathscr{A}}_{1,0}(\xi)\right| \sim(|\xi|+1)^{(n-1) / 2} \exp \left(-\pi^{2}|\xi| / 2\right) \quad \text { and } \\
& \left|\hat{P}_{0}(\xi)\right| \sim(|\xi|+1)^{(n-1) / 2} \exp \left(-\pi^{2}|\xi|\right) .
\end{aligned}
$$

These show that the square function ($\left.\delta^{1,0} f\right)(\boldsymbol{x})$ arising from the GaussWeierstrass summation is not smaller than the classical Littlewood-Paley function $g_{1}(f)(\boldsymbol{x})$. Hardy [7, p. 176] already observed that a summable (W) Fourier series is certainly summable (A).

It may be natural to consider the square functions

$$
\left(\tilde{\delta}_{\Omega,}^{m}, f\right)(\boldsymbol{x})=\left\{\int_{0}^{\infty}\left|\left(\tilde{A}_{\Omega, t}^{m, \alpha} f\right)(\boldsymbol{x})\right|^{2} d t / t\right\}^{1 / 2}
$$

for $m>-1$ and $\alpha>-n$, and

$$
\widetilde{g}_{\Omega, m+1}(f)(\boldsymbol{x})=\left\{\int_{0}^{\infty}\left|\tilde{u}_{\Omega, m}(\boldsymbol{x}, t)\right|^{2} d t / t\right\}^{1 / 2}
$$

for $m>-1 /(n+1)$, as the counterparts of $\left(\delta^{m, \alpha} f\right)(\boldsymbol{x})$ and $g_{m+1}(f)(\boldsymbol{x})$, where

$$
\left(\widetilde{A}_{\Omega, t}^{m, \alpha} f\right)(\boldsymbol{x})=c_{m, \alpha} \int_{\boldsymbol{R}^{n}} \Omega\left(\boldsymbol{y}^{\prime}\right)|\boldsymbol{y}|^{\alpha} \exp \left(-|\boldsymbol{y}|^{m+1}\right) f(\boldsymbol{x}-t \boldsymbol{y}) d \boldsymbol{y}
$$

and

$$
\tilde{u}_{\Omega, m}(\boldsymbol{x}, t)=c_{m}^{\prime \prime} \int_{\boldsymbol{R}^{n}} \Omega\left(\boldsymbol{y}^{\prime}\right)\left(|\boldsymbol{y}|^{2(m+1)}+1\right)^{-(n+1) / 2} f(\boldsymbol{x}-t \boldsymbol{y}) d \boldsymbol{y} .
$$

Between them, we have the following relation:
Theorem 8. If $m>-1 /(n+1)$ and $\alpha=(m-1) n / 2$,

$$
\left(\tilde{\delta}_{l,}^{m, \alpha} f\right)(\boldsymbol{x}) \approx \widetilde{\boldsymbol{g}}_{\Omega, m+1}(f)(\boldsymbol{x})
$$

for $f \in \mathscr{S}\left(\boldsymbol{R}^{n}\right)$ and the relation is uniform in Ω.
The proof is similar to that of Theorem 7.
If we take $\Omega_{j}(\boldsymbol{y})=y_{j} /|\boldsymbol{y}|(j=1,2, \cdots, n)$ as Ω, then we have the relation

$$
g_{\boldsymbol{x}}(f)(\boldsymbol{x})=\left\{\int_{0}^{\infty}\left|\nabla_{x} u(\boldsymbol{x}, t)\right|^{2} t d t\right\}^{1 / 2} \approx \sum_{j=1}^{n}\left(\tilde{\delta}_{\Omega_{j}, \alpha} f\right)(\boldsymbol{x})
$$

($\alpha=-n / 2+1$), where u is the Poisson integral of f. The left hand side in the above relation is another part of the classical Littlewood-Paley g-function. See Stein [16, p. 83].
7. Applications. Let $H^{p}\left(\boldsymbol{R}^{n}\right), 0<p<\infty$, be the Hardy spaces in the sense of Fefferman-Stein [4]. If $1<p<\infty$, then $H^{p}\left(\boldsymbol{R}^{n}\right)$ coincides with $L^{p}\left(\boldsymbol{R}^{n}\right)$ and its norms are comparable. So for any $p, 0<p<\infty$, we assume that $\|f\|_{p}$ denotes the $H^{p}\left(\boldsymbol{R}^{n}\right)$-norm of f. Moreover, we denote by $\|g\|_{L^{p}\left(\boldsymbol{R}^{n}\right)}$ the $L^{p}\left(\boldsymbol{R}^{n}\right)$-norm of $g \in L^{p}\left(\boldsymbol{R}^{n}\right), 0<p<\infty$.

It is known that the class $\mathscr{S}_{0}\left(\boldsymbol{R}^{n}\right)$ defined in $\S 5$ is dense in $H^{p}\left(\boldsymbol{R}^{n}\right)$, $0<p \leqq 1$, and $L^{p}\left(\boldsymbol{R}^{n}\right)=H^{p}\left(\boldsymbol{R}^{n}\right), 1<p<\infty$. See Calderón-Torchinsky [1, II, pp. 104-105]. This is useful for extension of f.

The square function arising from the Cesàro summation is generally greater than that arising from the Abel summation, except for a constant factor (Flett [5, p. 116]). Thus concerning the inequality $\|S(f)\|_{L^{p}\left(R^{n)}\right.} \leqq$ $A_{p}\|f\|_{p}$ for any square function $S(f)$, if $S(f)$ is generated from a Cesàro type summation, then it is better than the inequality whose $S(f)$ is generated from an Abel type summation.

The following two H^{p}-boundedness theorems about square functions are fundamental for our argument.

Theorem A. For $0<p<\infty$,

$$
\|f\|_{p} \leqq A_{p}\left\|g_{1}(f)\right\|_{L^{p}\left(\mathbb{R}^{n)}\right.} \quad \text { and } \quad\|f\|_{p} \leqq A_{p}^{\prime}\left\|g_{x}(f)\right\|_{L^{p}\left(\mathbf{R}^{n}\right)} .
$$

This was given by Fefferman-Stein [4, p. 185] and Calderón-Torchinsky [1, I, p. 55].

Theorem B. For $\beta>n(1 / p-1 / 2)+1 / 2(0<p \leqq 2)$ and $\beta>(n-1)$ $(1 / 2-1 / p)+1 / 2(2 \leqq p<\infty)$,

$$
\left\|h^{\beta} f\right\|_{L^{p}\left(\boldsymbol{R}^{n}\right)} \leqq B_{p, \beta}\|f\|_{p}
$$

For $1<p \leqq 2$, Theorem B was given by Sunouchi [22]. We cannot find the case $0<p \leqq 1$ in the literature, but it can be proved by the atomic decomposition of $H^{p}\left(\boldsymbol{R}^{n}\right)$; see Latter [10]. Furthermore, when $0<p<1$ and $\beta=n(1 / p-1 / 2)+1 / 2, h^{\beta}$ is weak type $\left(H^{p}, L^{p}\right)$. For the
case $2 \leqq p<\infty$, we can prove Theorem B as follows.
As proved in Theorem 5, for $\beta=\alpha+n / 2,0<\alpha<1$,

$$
\left(h^{\beta} f\right)(\boldsymbol{x}) \approx D^{\alpha}\left(I_{\alpha} f\right)(\boldsymbol{x}) \leqq A_{\alpha} \mathscr{D}_{\alpha}\left(I_{\alpha} f\right)(\boldsymbol{x})
$$

However, for $p \geqq 2$, Stein [15, p. 103, Lemma 1] showed that, for $\alpha>0$,

$$
\left\|\mathscr{D}_{\alpha}\left(I_{\alpha} f\right)\right\|_{L^{p}\left(\boldsymbol{R}^{n}\right)} \leqq A_{p, \alpha}\|f\|_{p} .
$$

Hence, for $n / 2<\beta<n / 2+1$ and $p \geqq 2$,

$$
\left\|h^{\beta} f\right\|_{L^{p}\left(\boldsymbol{R}^{n}\right)} \leqq A_{p, \beta}\|f\|_{p}
$$

So we can get the conclusion by interpolation between $p_{1}=2, \beta>1 / 2$ and $p_{2}=p, \beta>n / 2$.

This result is better than that of Igari-Kuratsubo [9].
Combining these two theorems with our results in the preceding sections, we have following Corollaries $1,2,3$ and 4.

Corollary 1. For $\alpha>n / p-n+3 / 2(0<p \leqq 2)$ and $\alpha>-(n-1) / p+1$ $(2 \leqq p<\infty)$,

$$
A_{p, \alpha}\|f\|_{p} \leqq\left\|\nu^{\alpha} f\right\|_{L^{p}\left(R^{n}\right)} \leqq B_{p, \alpha}\|f\|_{p}
$$

COROLLARY 2. For $\alpha>n / p-n+1 / 2(0<p \leqq 2)$ and $\alpha>-(n-1) / p$ $(2 \leqq p<\infty)$,

$$
A_{p, \alpha, k}\left\|\tilde{f}_{Y_{k}}\right\|_{p} \leqq\left\|\mu_{Y_{k}}^{\alpha} f\right\|_{L^{p}\left(\mathbf{R}^{n}\right)} \leqq B_{p, \alpha, k}\left\|\tilde{f}_{Y_{k}}\right\|_{p}
$$

Since $\left\|\tilde{f}_{Y_{k}}\right\|_{p} \leqq C_{p, Y_{k}}\|f\|_{p}$, we have

$$
\begin{equation*}
\left\|\mu_{Y_{k}}^{\alpha} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqq C_{p, \alpha, Y_{k}}\|f\|_{p} \tag{7.1}
\end{equation*}
$$

for the above range. By Theorem 3, we can replace $\mu_{Y_{k}}^{\alpha} f$ by $\mu_{Y_{k}}^{* \alpha} f=\mu_{Y_{k}}^{* \alpha, 1} f$ in (7.1) for $\alpha>-1 / 2$. In particular for $\alpha \geqq 1 / 2$, we get

$$
\left\|\mu_{Y_{k}}^{*_{k}^{\alpha}} f\right\|_{L^{p}\left(\boldsymbol{R}^{n}\right)} \leqq C_{p, \alpha, Y_{k}}\|f\|_{p} \quad(1<p<\infty) .
$$

So the case $\alpha=1$ is true. This case was studied by Stein [13] and Hörmander [8]. Their operators are more general than ours, but the methods of proofs are different.

In order to get converse inequalities for $\mu_{Y_{k}}^{\alpha} f$, we need $\|f\|_{p} \leqq$ $C\left\|\widetilde{f}_{Y_{k}}\right\|_{p}$. From this point of view, if $Y_{\dot{k}}$ is the j-th component of the Riesz transform, i.e., $Y_{k}\left(\boldsymbol{x}^{\prime}\right)=x_{j} /|\boldsymbol{x}|$, then

$$
A_{p, \alpha}\|f\|_{p} \leqq \sum_{j=1}^{n}\left\|\mu_{j}^{\alpha} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqq B_{p, \alpha}\|f\|_{p}
$$

for the same range as in Corollary 2, where $\mu_{j}^{\alpha} f$ means $\mu_{\Omega}^{\alpha} f$ for $\Omega\left(\boldsymbol{x}^{\prime}\right)=$ $x_{j} /|\boldsymbol{x}|$. This was also given by Stein and Hörmander.

Corollary 3. For $1>\alpha>n / p-n+1 / 2(2 n /(2 n+1)<p<2 n /(2 n-1))$ and $1>\alpha>0(2 n /(2 n-1) \leqq p<\infty)$,

$$
A_{p, \alpha}\|f\|_{p} \leqq\left\|D^{\alpha}\left(I_{\alpha} f\right)\right\|_{L^{p}\left(\boldsymbol{R}^{n}\right)} \leqq B_{p, \alpha}\|f\|_{p}
$$

and

$$
A_{p, \alpha, k}\left\|\tilde{f}_{Y_{k}}\right\|_{p} \leqq\left\|D_{Y_{k}}^{\alpha}\left(I_{\alpha} f\right)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqq B_{p, \alpha, k}\left\|\tilde{f}_{Y_{k}}\right\|_{p},
$$

where Y_{k} is a surface spherical harmonic of degree $k \geqq 1$.
Corollary 4. When $m \geqq 0$ and $\alpha=(m-1) n / 2$, the relation

$$
A_{p, m}\|f\|_{p} \leqq\left\|\delta^{m, \alpha} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqq B_{p, m}\|f\|_{p}
$$

holds for $0<p<\infty$.
Stein-Wainger's "Problem 6 (a)" in [20, p. 1289] is concerned with $g(f)(\boldsymbol{x})$ and $\left(\nu^{\alpha} f\right)(\boldsymbol{x})$ for $\alpha=0$. However, $g_{1}(f)(\boldsymbol{x}) \approx\left(\delta^{0,-n / 2} f\right)(\boldsymbol{x})$ is concerned with the Abel means and $\left(\nu^{\alpha} f\right)(x)$ with the Cesàro means. These facts and Corollaries 1 and 4 may be an answer to the problem.

Let $\mathscr{M}^{\alpha} f$ be the maximal function for $\left(M_{t}^{\alpha} f\right)(\boldsymbol{x})$ of (1.1), i.e.,

$$
\left(\mathscr{M}^{\alpha} f\right)(\boldsymbol{x})=\sup \left\{\left|\left(M_{t}^{\alpha} f\right)(\boldsymbol{x})\right| ; 0<t<\infty\right\} .
$$

Corollary 5. For $\alpha>n / p-n+1(0<p \leqq 2)$ and $\alpha>(-n+2) / p$ $(2 \leqq p<\infty)$,

$$
\left\|\mathscr{M}^{\alpha} f\right\|_{L^{p}\left(\boldsymbol{R}^{n}\right)} \leqq C_{p, \alpha}\|f\|_{p}
$$

Proof. For $0<p \leqq 2$, we can deduce the conclusion by a routine argument from Corollary 1. The other case is immediate from interpolation between the case $p=2$ and $p=\infty$, which is obvious.
q.e.d.

Stein-Wainger [20, p. 1283, Th. 14] and Stein-Taibleson-Weiss [19, Th. II] gave this result. In particular, for $n /(n-1)<p<\infty, n \geqq 3$,

$$
\|\mathscr{M} f\|_{L^{p}\left(\boldsymbol{R}^{n}\right)} \leqq C_{p}\|f\|_{L^{p}\left(\boldsymbol{R}^{n}\right)},
$$

where $(\mathscr{M} f)(\boldsymbol{x})=\left(\mathscr{M}^{0} f\right)(\boldsymbol{x})$. This had already been proved by Stein [17].
Let ϕ be a $C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$-function with $\hat{\phi}(0)=1$ and set $\phi_{t}(\boldsymbol{x})=t^{-n} \phi\left(t^{-1} \boldsymbol{x}\right)$. Then Stein-Wainger [20, p. 1271] gave the following definition:

$$
\begin{equation*}
\left(g_{\alpha} f\right)(\boldsymbol{x})=\left\{\int_{0}^{\infty}\left|\left(M_{t}^{\alpha} f\right)(\boldsymbol{x})-\left(f * \dot{\phi}_{t}\right)(\boldsymbol{x})\right|^{2} d t / t\right\}^{1 / 2} \tag{7.2}
\end{equation*}
$$

and proved for $\alpha>(1-n) / 2$,

$$
\left\|g_{\alpha} f\right\|_{2} \leqq C_{\alpha}\|f\|_{2}
$$

To avoid confusion of this notation $\left(g_{\alpha} f\right)(\boldsymbol{x})$ in (7.2) with (6.4), we denote (7.2) by ($\left.N^{\alpha} f\right)(x)$ instead of $\left(g_{\alpha} f\right)(\boldsymbol{x})$.

Corollary 6. For $\alpha>n / p-n+1 / 2(0<p \leqq 2)$ and $\alpha>-(n-1) / p$
$(2 \leqq p<\infty)$,

$$
\left\|N^{\alpha} f\right\|_{L^{p}\left(\boldsymbol{R}^{n}\right)} \leqq C_{p, \alpha}\|f\|_{p} .
$$

Proof. Take N so that $\alpha+N>2$. Then

$$
\begin{align*}
\left(N^{\alpha} f\right)(\boldsymbol{x}) \leqq & \sum_{\nu=1}^{N}\left\{\int_{0}^{\infty}\left|\left(M_{t}^{\alpha+\nu} f\right)(\boldsymbol{x})-\left(M_{t}^{\alpha+\nu-1} f\right)(\boldsymbol{x})\right|^{2} d t / t\right\}^{1 / 2} \tag{7.3}\\
& +\left\{\int_{0}^{\infty}\left|\left(K_{t} * f\right)(\boldsymbol{x})\right|^{2} d t / t\right\}^{1 / 2},
\end{align*}
$$

where $K_{t}(\boldsymbol{x})=t^{-n} K\left(t^{-1} \boldsymbol{x}\right)$ and $K(\boldsymbol{x})=c_{\alpha+N}\left(1-|\boldsymbol{x}|^{2}\right)_{+}^{\alpha+N-1}-\phi(\boldsymbol{x})$. If we apply Corollary 1 for the first term in (7.3) and apply a multiplier theorem in Stein [16, p. 46, Th. 5] for the last term, then we have the conclusion in the case $1<p<\infty$. For $0<p \leqq 1$, it is obtained, if N is taken sufficiently larger and the atomic decomposition of f is applied to the last term on the right hand side of (7.3).
q.e.d.

Analogously, if we use Theorem B instead of Corollary 1, then we get the following.

Corollary 7. For $\beta>n(1 / p-1 / 2)-1 / 2 \quad(0<p \leqq 2)$ and $\beta>$ $(n-1)(1 / 2-1 / p)-1 / 2(2 \leqq p<\infty)$,

$$
\left\|G^{\beta} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqq C_{p, \beta}\|f\|_{p}
$$

where

$$
\left(G^{\beta} f\right)(\boldsymbol{x})=\left\{\int_{0}^{\infty}\left|\left(S_{R}^{\beta} f\right)(\boldsymbol{x})-\left(f * \phi_{1 / R}\right)(\boldsymbol{x})\right|^{2} d R / R\right\}^{1 / 2}
$$

and $\left(S_{R}^{\beta} f\right)(\boldsymbol{x})$ is given by (1.3).

References

[1] A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, I, Adv. in Math. 16 (1975), 1-64; II, ibid. 24 (1977), 101-171.
[2] K. Chandrasekharan, On the summation of multiple Fourier series, I, Proc. London Math. Soc. (2) 50 (1948), 210-222.
[3] C. P. Chang, On certain exponential sums arising in conjugate multiple Fourier series, Ph. D. Thesis, Chicago Univ., Illinois, 1964.
[4] C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), 137-193.
[5] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957), 113-141.
[6] I. M. Gel'fand and G. E. Shilov, Generalized functions, vol. 1, 2, Academic Press, New York-London, 1964, 1968.
[7] G. H. Hardy, Remarks on some points in the theory of divergent series, Ann. of Math. 36 (1935), 167-181.
[8] L. Hörmander, Estimates for translation invariant operators in L^{p} spaces, Acta Math. 104 (1960). 93-140.
[9] S. Igari and S. Kuratsubo, A sufficient condition for L^{p}-multipliers, Pacific J. Math. 38 (1971), 85-88.
[10] R. H. Latter, A characterization of $H^{p}\left(\boldsymbol{R}^{n}\right)$ in terms of atoms, Studia Math. 62 (1978), 93-101.
[11] N. Levinson, On the Poisson summability of Fourier series, Duke Math. J. 2 (1936), 138-146.
[12] E. M. Stein, Localization and summability of multiple Fourier series, Acta Math. 100 (1958), 93-147.
[13] E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466.
[14] E. M. Stein, On some functions of Littlewood-Paley and Zygmund, Bull. Amer. Math. Soc. 67 (1961), 99-101.
[15] E. M. Stein, The characterization of functions arising as potentials, Bull. Amer. Math. Soc. 67 (1961), 102-104.
[16] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical series 30, Princeton Univ. Press, Princeton, New Jersey, 1970.
[17] E. M. Stein, Maximal functions: Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), 2174-2175.
[18] E. M. Stein, The development of square functions in the work of A. Zygmund, Bull. Amer. Math. Soc. 7 (1982), 359-376.
[19] E. M. Stein, M. H. Taibleson and G. Weiss, Weak type estimates for maximal operators on certain H^{p} classes, Suppl. Rend. Circ. Mat. Palermo 1 (1981), 81-97.
[20] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.
[21] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical series 32, Princeton Univ. Press, Princeton, New Jersey, 1971.
[22] G. Sunouchi, On the Littlewood-Paley function g^{*} of multiple Fourier integrals and Hankel multiplier transformations, Tôhoku Math. J. 19 (1967), 496-511.
[23] G. Sunouchi, On the functions of Littlewood-Paley and Marcinkiewicz, Tôhoku Math .J. 36 (1984), 505-519.
[24] G. N. Watson, A treatise of the theory of Bessel functions, Cambridge Univ. Press, London, 1966.
[25] H. Zemanian, Generalized integral transformations, Interscience, New York, 1968.

Department of Mathematics	and
College of General Education	Department of Mathematics Tamagawa University Tôhoku University
Kawauchi, Sendai, 980	Machida, Tokyo, 194

Japan

[^0]: * Partly supported by the Grand-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan.

