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PERIODIC SOLUTIONS OF LINEAR NEUTRAL INTEGRO-
DIFFERENTIAL EQUATIONS
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In this paper, we consider the neutral integrodifferential equations
(1) —d—<Z(t) — S’D(t — s)Z(s)ds) — AZ(t) + YC(t — 8)Z(s)ds, Z(0) = I,
dt 0 0

2) Ly - [ Dt - swe)ds) = Ayt + | e — swierts + 1),

(3) %(x(t) | Dt — 9a(s)ds) = aer) + || ct—sneas + 1@,
where 2, ye R", Z, A, C, D and I are nxn matrices with A constant, C
and D continuous on (— oo, ), I the identity matrix, and f: (— o, ) —
R" is continuous.

Our aim is to get nice formula for periodic solutions of these equa-
tions, and so this paper can be considered as an extension of [2], [3] and
[4].

Let us first consider the Volterra integral equations

(4) Ht) =I+|E¢-9Heds, H is nxn,
(5) o®) = F&) + | Bt — 9)g(0)ds, gk,
(6) o®) = F) + | E¢—99@ds, geR,

where E is an n X% matrix of functions continuous on (—co, =), and
F:(— o, o) —» R" is continuous.

REMARK. It is easy to see that g(¢) is a solution of (5) on (— o, 0]
if and only if g*@t*) := g(—t*), t* = 0, is a solution of
t*
g*t") = F*¢) + | B*¢* - s)g*()ds
0

on [0, =), where F*(t*):= F(—t*), E*(s) := E(—s). This fact shows that
if we have some properties of solutions of (5) on [0, ), then we have
similar properties on (— o, 0].
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The following theorem generalizes an analogous theorem of Burton

(see [1], [2]).

THEOREM 1. If F(t) and E(t) are continuous on (— oo, ), then
(i) there is one and only one solution H(t) of (4) on (— oo, ),
(ii) there is ome and only one solution g(t) of (5) on (— oo, o),
(iii) the unique solution H(t) of (4) is given by

(7) H®) = I+ | Gs)ds,
where G(t) is the nXxn matrix solution of
(8) G(t) = E®) + | Bt — 9)G(s)ds .
Therefore, H'(t) is continuous and satisfies
8% H(®) = E@) + | B¢ — 9H e)ds ,
(iv) the unique solution g(t) of (5) is
(9) o) = F©) + | H'¢ — 5)F()ds .
Moreover, if F'(t) is continuous, then g(t) can be rewritten as
(10) g(t) = HR)F(0) + S:H(t — §)F"(s)ds .

PrROOF. Combining the analogous theorem of Burton [2, Theorem 1.5]
with the remark above, we can show that the solution g(t) of (6) exists
and is unique on (— oo, =) and so does H(t).

To prove (iii), we can show as in the cases (i) and (ii) that the
solution G(t) of (8) exists and is unique on (— o, ). Then we have by
substitution,
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=TI+ S:E(t _ s)(I + S:G(v)dv>ds

=TI+ S:E(t — 8)H(s)ds .

This shows that H(t) = I + StG(s)ds is a solution of (4).
0
To prove part (iv), we only need to show that

o) = F@) + | H'¢ — 5)F(e)ds
is a solution of (5). Indeed, we have by substitution,
F®) + | B¢ — v)g)do
= Ft) + | Bt — o)(Fo) + [ B0 - 9)Fe)ds)do

= F(t) + :E(t — §)F(s)ds + S (SiE(t — WH'(v — s)dv)F(s)ds

t
0

= F(t) + (E(t — 8+ S:"E(t —s— u)H'(u)du)F(s)ds

t
0

|
|
— F(t) + S:E(t — 9)F(s)ds + S(SO'E@ — s — u)H’(u)du)F(s)ds
|
|

=g() .

This proves Theorem 1.
Following Burton [2] and Miller [5], we can also get the following
theorem.

THEOREM 2. If F(t + T) = F(t) for some T >0, and if gt) is a
bounded solution of (56) on [0, ) with E € L'[0, ), then there is a sequence
of positive integers {m;}, n; — oo as j — oo, such that {g(t + n;T)} converges
uniformly on compact subsets of (—co, ) to a function g*(t) which is a
solution of (6).

Burton [2, p. 1.15] asserted that if Ht and Ee L0, ) and H()— 0
as t — o, then g(t + n;T) converges to S H(t — s)F'(s)ds = g*(t) which
is a periodic solution of (6). But this is not consistent with his assump-
tions. For, Ee LY0, o) and H(t)— 0 imply S'E(t — 8)H(s)ds — 0, which
implies '
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He) =1+ S:E’(t — HE)ds > I#0 as t— oo,

a contradiction.
Our next results improve this situation and put the ideas in the
correct context.

THEOREM 3. Let F(t) be T-periodic with F' continuous, and let E € L
[0, ). If there is a T-periodic matrix H*(t) such that H(t)— H*(t) e L
t

[0, o) with H(t) — H*{t) — 0 as t — o, and that SH*(t — 8)F'(s)ds s T-
0
periodic, then (6) has a T-periodic solution

g¥(t) = H*®)F(0) + S:H*(t — §)F"(s)ds

+ S;(H(t — 8) — H*(t — 8))F'(s)ds .
Proor. For

gt) = HE)F©) + S:H(t — §)F'(s)ds
= (H(t) — H*®)F(0) + H*®)F(0) + S:H*(t — §)F'(s)ds
+ S:(H(t —§) — H*t — s)F'(s)ds ,

we have that g(¢) is bounded on [0, <) under the assumptions of the
theorem. Then by Theorem 2, we have
9@t + n;T) = (Ht + n;T) — H*t + n;T))F(0) + H*({t + n;T)F(0)

+ S:H*(t — §)F"(s)ds + S' (H(t — 9) = H*(t — )F'(s)ds

—nj

— H*®)F(0) + S:H*(t — &)F(s)ds

+ @9 - B¢ - )F6)s = g*0),

which is a T-periodic solution of (6).

REMARK. In this case, H*(t) is a T-periodic solution of
H*@t) = I+ S E(t — s)H*(s)ds .

THEOREM 4. Suppose that F(t) is T-periodic with E € L'[0, ) and
that there is a T-periodic matrix H'*(t) such that H'(t) — H'*(t) € L'[0, o)

and that StH’*(t — 8)F(s)ds 1s T-periodic. Then (6) has a T-periodic
0
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solution
g*(®) = Ft) + | H*(t — 9)F(e)ds
+| @ -9 - Bt - s)Fs)ds .

REMARK. In this case, if E(t) —0 as t— o, then H'*(t) is a T-
periodic solution of

t
H*¢t) =\ E{— s)H™*(s)ds .
ExXAMPLE 1. Consider the scalar integral equations

(11) HE) =1+ S:e““"(S cos(t — 8) + sin(t — s)—2)H(s)ds ,

t

12)  g(t) = sin 2t + S ¢~49(3 cos(t — ) + sin(t — 8)—2)g(s)ds .

It is easy to see that the unique solution H(t) of (11) is
Ht) = (e + 7sint — cost)/5 + 1,
and that all the conditions of Theorem 3 with H*(t) = (Tsint — cost)/5 + 1
hold. Then (12) has a periodic solution

g*(t) = S’((7 sin(t — 8) — cos(t — 8))/5 + 1)(2 cos 25)ds
0
+ {7 et cos 25)ds
= (28 cost + 4 sint — 25 cos 2t + 25 sin 2¢)/30 .

Moreover, it is easy to verify that for each A, Be R, g(t) = Acost + Bsint
is a periodic solution of

g(t) = S =93 cos(t — s) + sin(t — ) — 2)g(s)ds .

Then we have that the periodic solutions of (12) are
g¥(@t) = Acost + Bsint + (5/6)(sin 2¢ — cos 2¢) ,

where A and B are arbitrary constants.
For this example, Theorem 4 is also applicable to (12), where

H'*() = (Tcost + sint)/5 .

ExaMPLE 2. Consider the scalar integral equations
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18) Ht) =1+ S:(s _ 2t — s))e " H(s)ds ,

(14) g(t) = cos t + S'_w(?, — 2(t — 8))et"g(s)ds .

It is easy to see that the unique solution H{(¢) of (13) is
HE) =4t + et
and then we have
H@) —4=—eteLy0, «).
Thus, all the conditions of Theorem 4 with H'*(t) = 4 hold. Then (14)
has a periodic solution

t
g*@t) =cost + 4sint +\| (—e “)cossds = (cost + Tsint)/2.

Note that H(t) — H*(t)¢ L'[0, ) for all 2z-periodic H*(t) and that
Theorem 3 is not applicable. This fact makes a difference between Theorem
3 and Theorem 4.

Our next result concerns the fundamental properties of solutions of
1) and (2).

THEOREM 5. There exists a unique matrix solution Z(t) of (1) on
(— o0, ) and for each y,€ R" there is a unique solution y(t) = y(, 0, %)
of (2) on (— oo, o) with

t
Y(t) = 2ty + | 2t — 5)f(s)ds .
PrOOF. Note that (1) and (2) are equivalent to the integral equations

Z) = I+ S'E(t — 8)Z(s)ds
and

y(t) = F(t) + S:E‘(t — 8)y(s)ds

respectively, where F() = y, + S'f(s)ds and Et) = A + D(t) + S'C(s)ds.
0 (1]
Now, our assertions follow from Theorem 1 directly.

THEOREM 6. Let C, De L0, ) and f(t + T) = f(t) for some T > 0.
If y(t) = y(@, 0, ¥,) is a bounded solution of (2) on [0, ), then there is a
sequence of positive integers {n;}, n; — o as j — oo, such that {y(t + n;T)}
converges uniformly on compact subsets of (— oo, ) to a function x*(t)
which is a solution of (8).
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Note that C, De L0, o) does not imply E(t) = A + D(t) + StC(s)dse
0
L'[0, ), and so this theorem can be considered as a counterpart to
Theorem 2 above.

PROOF OF THEOREM 6. Let C, De L'[0, «), and let y(t) be a bounded
solution of (2) on [0, ). We want to show that {y(¢t + nT):n =1,2, -}
is equicontinuous and uniformly bounded on any fixed interval [—F, k].

For ¢, = t, = —nT, we integrate (2) from ¢, + nT to ¢, + nT and get

Yy, + nT) — y@&, + nT)
to+nT t;+nT
- S D, + nT — s)y(s)ds — S D(t, + nT — s)y(s)ds

0

+ Stz+n7‘<Ay(t) + S:C(t — 8)y(s)ds + f(t) >dt .

t1+nT

y(t) and f(t) are bounded, hence there exists an M with | f(t)| £ M, |y(®)| <
M for t = 0. Moreover, since Ce L'[0, <), we have S |C(s)|ds = N< 0.
0

Thus
Stg-{-nT
t1+nT

where M, = M(|A| + 1 + N). Moreover, since D e L'[0, ), for any ¢ > 0,
there is a k& > 0 such that

ay® + 0 — swlords + £ de < Mile,— ],

rlD(s)lds <¢/8M for t=1k,

and so t
S:|D(t2 — b+ v) — Dw)|dv < e/AM .

By the continuity to D, there exists a 6, > 0 such that v€[0, k] and 0 <
t, — ¢, <9, imply

| D@, — t, + v) — D()| < ¢/4dkM
and

S”“"| D(v)|dv<e/4M

Thus o

0

§t2+nTD(t2 + T — s)y(s)ds — S:1+nTD(t1 + nT — s)y(s)ds
= StmrlD(tg + 0T — ) — D(t, + nT — 8)| |y(s)|ds

+ g”mwm + T — 8)| |y(s)|ds

t1+nl
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< MS:ID(tZ —t, 4+ ) — DO)|dv + MS:{D(tz —t, + v) — D()|dv

+ MS:z_tllD(v)ldv

<¢e/d+ /4 + /4 = 3¢/4

if 0<=t,—t <9,. Let 6 = min(6, ¢/4M,). Then we have

lyit, + nT) — yt, + nT)| < 8¢/d + /4 = ¢
if 0t —t, <0. Obviously

lyt +nT)| =M for n=1,2 .

This implies that {y(¢ + »nT)} is equicontinuous and uniformly bounded on
any fixed interval [—k, k], k=1,2, ---. Thus it contains a subsequence
{y(t + n;T)} converging uniformly on [—1, 1], which contains a subsequence
converging uniformly on [—2, 2]. In this way we obtain a subsequence,
say {y(t + n;T)} again, converging uniformly on any fixed interval [k, k]
to a continuous function x*(¢).

Now, we want to show that x*(¢) is a solution of (3). Integrating
(2) from ;T to t + n;T, we have

y(t + n;T) — y(n,;T)
= S”nﬂD(t + n; T — s)y(s)ds — SMTD(’MT — s)y(s)ds

+ S::iT<Ay(v) + S:C@ — 8)y(s)ds + f(v))dv

_ S‘_ Dt — )y + n,T)dv - \

v—nyg

TD(—v)y(v + n; T)dv

u

+ §:<Ay(u +n,T) + s Ol — vy + n,T)dv + f(u))du .

Since C, De L'[0, ), by Lebesgue’s dominated convergence theorem,
letting 7 — -, we have

—nj

5*(t) — £*(0) = S_ D(t — va*®)dv — S_ D(—v)a*(v)dv
+ S:(Ax*(u) + S Clu — v)a*(@w)dv + f(u’))du .
Therefore by differentiation, we have

'o%<”*(t) — St_wD(t _ v)w*(v)dv) = Az*(t) + S;C(t — @)y + f)

and so the limit function z*(¢) is a solution of (8).
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Our next theorem can be considered as a counterpart of Theorem 3
above.

THEOREM 7. Suppose that C, De L0, ) and fit + T)= f¢). If
there is a T-periodic matriz Z*(t) such that Z(t) — Z*(t) € L'[0, <o), Z(t) —
Z*t) — 0 as t — «, and that S:Z*(t — 8)f(s)ds is T-periodic, then (3) has
a T-periodic solution

o) = 2°0u, + | 27 — 9f@ds + | (2~ 5) — 2°¢ — )f(s)ds,

where Y, € R™ 1s an arbitrary constant.

The proof of this theorem is very similar to that of Theorem 3 and
therefore is omitted.

ExAMPLE 8. Consider the scalar equations

t

(15) Tjt_(zu) - Soe “‘"’Z(s)ds) = —Z@) + S:e““‘“”Z(s)ds, Z0 =1,

t

t
e~ 95(s)ds + 2 cos t

(16) -C(li—t(x(t)—g e““’""x(s)ds) = —alt) +S

+ sint .

Here C(t) = D(t) = e™* € L[0, ) with f(¢) = 2cost + sint periodic.
It is not difficult to show that

Z(t) = (3/2)e™ — (1/2)e™*

is the unique solution of (15) and that all the conditions of Theorem 7
with Z*(t) = 0 hold. Then (16) has a periodic solution

o (t) = St_wZ(t — §)f(s)ds

= St ((8/2)e=*® — (1/2)e**"*)(2 cos s + sin s)ds
= 2sint + (1/2) cos t.

ExXAMPLE 4. Consider the scalar equations

%)) Z'(t) = Z(t) — Ste"“"(cos(t — 8) + 2sin(t — s))Z(s)ds, Z(0) =1,

18) «'(t) = x(t) — St e~ (cos(t — 8) + 2sin(t — s))x(s)ds + sin 2t .

Here C(t) = —e f(cost + 2sint) € L'[0, ) and D(t) = 0.
It is easy to see that the unique solution Z(¢) of (17) is
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Z(t) = (e7* + cost + 3sint)/2

and that all the conditions of Theorem 7 with Z*(t) = (cost + 3 sint)/2
hold. Then (18) has a periodic solution

2*(t) = k(cost + 3sint) + St(l/Z)(cos(t — 8) + 3sin(t — ) sin 2sds

+ S’ (1/2)e~—*(sin 25)ds
= (8k + 1)(cos t + 3sint)/3 — 2(3sin 2t + 4 cos 2t)/15 ,

where k& is an arbitrary constant.
Moreover, it is easy to see that for each a, be R, 2(t) = acost + bsint
is a periodic solution of

2t = a(t) — S e~—9(cos(t — s) + 2sin (t — 8))a(s)ds .

—00

So, the periodic solutions of (18) are
2*(t) = acost + bsint — 2(3 sin 2t + 4 cos 2¢)/15 ,

where a, b are arbitrary constants.

The following theorem can be considered as a counterpart of Theorem
4 above.

TuEoREM 8. Let C, DeLi[0, ), and let F(t) = yy + Stf(s)ds be T-
0
periodic. If there is a T-periodic mXmn matric Z'*(t) such that Z'(t) —
t
Z'*(t) e L'[0, ) and that SZ’*(t — 8)F(s)ds is T-periodic, then
[]

o*(t) = F(t) + S:Z’*(t — s)F(s)ds + S’_m(z'(t — §) — Z'*(t — s))F(s)ds

18 @ T-periodic solution of (3).

The proof of this theorem is quite similar to that before and is
omitted.

For Example 4, Theorem 8 is also applicable to (18) with Z'*(¢) =
(8 cost — sin t)/2.

XAMPLE 5. Consider the scalar equations
(19) %(Z(t) —~ S'4e~2“-'>Z(s)ds) = —Z(t) + 8’4(1: — 8)e 9 Z(s)ds ,
[} 0

Z0)=1,
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(20) %(x(t) - S;4e‘2““’x(s)ds) = —2(b) + S'_w4(t — $)e~tz(s)ds

+ sint.
Here C(t) = 4te* e L'[0, ), D(t) = 4e™* e L'[0, ), and F(t) =y, +
Stsin sds = (y, + 1) — cost is 2z-periodiec.
’ It is easy to see that the unique solution Z(t) of (19) is

Z({t) =4t + e7*.
Then we have
Z't) —4 = —ete L0, ).
Let Z'*(t) = 4, and let ¥y, = —1. Then

StZ’*(t — )F(s)ds = §’4(—cos s)ds = —4sint,
0 0

which is 2r-periodic. Thus, all the conditions of Theorem 8 hold, and
(20) has a periodic solution

t
x*(@t) = —cost — 4sint + g (—e ) (—cos s)ds
= —(Tsint + cost)/2 .

We now consider the question of the existence of T-periodic solutions
of (2).

THEOREM 9. Suppose that C, D, Zec L'[0, «) and Z(t) —0 as t— oo,
and that f(t) is T-periodic. Then

(i) all solutions of (2) approach a periodic solution of (8) as t — oo,

(ii) 4f Q) has a T-periodic solution y*(t), then y*(t) is unique and
18 also a T-periodic solution of (3).

Proor. (i) By Theorem 7 with Z* = 0, (8) has a T-periodic solution
B*(t) = S Zt — 8)f(s)ds .

For any solution y(t) of (2), we have by Theorem 5

y(t) = 2@ + | 2 — )/ 6)ds .
Then
ue) - 5*@) = 20 — |2t - 9f(s)ds

= Z(t)y(0) — SjZ(u)f(t —wWdu—0 as t— oo,
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since Z(t) — 0 as t — oo, Sle(u)ldu—»O as t — oo, and f is bounded .
(ii) From (i) above, we have
y*@t) —x*(t) —0 as t— oo,
which implies y*(¢t) = x*(t), since y*(¢t) and xz*(t) are both T-periodic.

THEOREM 10. Suppose that all the conditions of Theorem 9 hold.
Then

(i) (2) has a T-periodic solution if and only if
(21) [ @t -9 - z002(—s)f(6)ds = 0,
(i) (2) has a T-periodic solution for any continuous and T-periodic
Sunction f(t) if and only if
Z(t — s) = Z()Z(—s) .
PrOOF. For the proof we refer to [3].

In addition to Example 3, we consider the following scalar equation

22) gt-(y(t) — S:e-“t--’y(s)ds) = —y) + S:e-“t-"y(s)ds + 2cost + sint.

It is easy to verify that (21) holds, that is,

S‘)_M(Z(t —s) — Z(t)Z (—s)> f(s)ds

= (e + ™) S (e* — e*)(2coss + sins)ds =0 .

Hence there is a periodic solution of (22) by Theorem 10 which must be
equal to the periodic solution 2*(t) = 2 sint + (1/2) cos ¢t of (16) by Theorem 9.
Finally, we want to point out that (22) is reduced to

y@t) = (3/4)82(6”4“"’ — Dy(s)ds + y(0) + 2sint — cost + 1,

but Theorem 3 is not applicable, since E(t) = e™* — 1 ¢ L'[0, ).

The author wishes to thank the referee for many helpful suggestions.
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