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Abstract. We give some general concepts and results for totally
geodesic foliations &~ on complete Riemannian manifolds. In particular,
we reduce the problem to that of a generalization of the theory of principal
connections. This enables us to show that the global geometry of ^~ is
related to certain sheaves of germs of local Killing vector fields for the
Riemannian structure along the leaves. Further, we define a cohomology
group H?g, and natural mappings from Ht* into the de Rham cohomologies
of the leaves, such that the characteristic classes in Ht*g are mapped to the
characteristic classes of the leaves.

Introduction. A foliation _ 7̂ on a Riemannian manifold M, is said
to be totally geodesic if each geodesic of M is everywhere or nowhere
tangent to ^ 7 The different aspects of such foliations have been examined
by many authors; for different approaches and more references, see for
instance [14], [10], [1] and [4]. In particular, the codimension one case
has been classified [12], and there is a homological classification of the
dimension one case [28].

The purpose of this paper is to apply, to totally geodesic foliations
of arbitrary dimension, the techniques developed in the theory of
Riemannian foliations, and in particular, the works of Molino [16] [21].
Recall that a foliation ^ on a manifold M is Riemannian if there exists
a Riemannian metric on M such that ^ can be defined by local
Riemannian surmersions [23]. Equivalently, ^~ is Riemannian if M
possesses a Riemannian metric whose geodesies are everywhere or nowhere
perpendicular to ^ Ί Riemannian foliations have been extensively studied,
and in particular, there is a strong structure theorem [20]. Given the
evident analogy between totally geodesic and Riemannian foliations, it is
not surprising that there are many concepts and results from the
Riemannian case that find similar expression in the totally geodesic
situation. Indeed, by pursuing this approach one obtains a good geometric
description and a useful cohomology group.

A first application of this work to the dimension ^ 3 cases is given
in [7]. In collaboration with E. Ghys, we have given a detailed account
of totally geodesic foliations on 4-manifolds [9].
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Fundamental to this study is the following result, proven in [2] and
independently in [6]: if ά?" is a totally geodesic foliation on a complete
Riemannian manifold M, and if J?~ is the pull-back of J?~ to the bundle
E of orthonormal frames tangent to the leaves of ^ 7 then ^~ possesses
a parallelism along its leaves that preserves the distribution orthogonal to
<Φ~ (for the Riemannian metric lifted from M to E). Furthermore, there
is a locally trivial fibration ψ: E —> W such that the foliation induced by
^\ on each of the fibers of ψ, possesses a parallelism of Lie type. This
situation is analogous to the case of Riemannian foliations, where one
has a fibration of the bunble of orthonormal transverse frames. However,
in the totally geodesic case, a Lie group G acts on the typical fiber N
of ψ in such a way that G is transitive on the leaves of the foliation
induced on N by _ 7̂ The study of the typical fiber amounts to a
generalization of the theory of connections on principal G-bundles (see
Section 2). In particular, one can introduce invariants of ^~ that are
analogous to such concepts as the holonomy algebra of a principal
connection. Associated to these invariants, there are sheaves of germs
of local Killing vector fields for the Riemannian structure along the leaves
of j ^ ~ (see Section 3).

In particular, this study gives information about the "sheets" of ^\
if x is a point in M, the sheet of &" at x is the subset of M that can
be joined to x by piecewise smooth paths perpendicular to <βΠ, As a
consequence of our main result (Theorem 3.1) we have the following:
(cf. Corollary 3.4): The intersections of the leaves and the closures of
the sheets of J^~ are locally homogeneous Riemannian submanifolds of M.

Analogous to the basic cohomology of a Riemannian foliation (see
[24], [17], [11] and [27]), there is a cohomology group naturally associated
to a totally geodesic foliation (see Section 4). We call this the tangential
cohomology. It is constructed from the complex of forms, along the
leaves, that are "invariant" in directions perpendicular to the leaves.
There are homomorphisms from the tangential cohomology group into the
de Rham cohomology of the leaves, and the images of the characteristic
classes of the tangential cohomology are just the characteristic classes of
the leaves. In particular, we give a result concerning the Euler class.

This paper elaborates and extends results announced in the short
notes [6] and [8]. Finiteness and duality properties of the tangential
cohomology, outlined in [8], will be proven in a separate paper.

It is a pleasure to acknowledge the assistance of Pierre Molino with-
out whose help and encouragement this work would not have been possible.
The author also thanks Etienne Ghys and Vlad Sergiescu for their friendly
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advice.
In all the following, _̂ ~ is a totally geodesic foliation on a connected

complete Riemannian manifold (M, g). The differentiate structures are
C°°. In the last section we suppose that ^~ is orientable.

1. Preliminaries, Let T{M) be the tangent bundle of M, let
A*(M, R) be the complex of real valued forms on M, and let <£f{M) be
the A°(M, JB)-module of vector fields on M. The vector subbundle V(M,
(resp. H{M, ̂ ~)) of T(M), tangent (resp. orthogonal) to the leaves of
is called the vertical (resp. horizontal) bundle. The A°(M, jβ)-module of
sections of V(M, &~) (resp. H(M, jr)) will be denoted £fv{M, ^~) (resp.
<%fH(M, ^ ) ) , and its elements referred to as vertical (resp. horizontal)
vector fields. The orthogonal projection of <3f(JSl) onto <%fv{M, ^) will
be denoted πv. The complex of vertical forms A*(M, ^~\ R) is the sub-
complex of A*(M, R) of forms that are non-zero only on vertical fields;
that is, A?CM, J^R) = {ae A*(M, R)/ixa = 0, for all XeJ??H(M, jr)}.
We will use the symbol πv again to denote the orthogonal projection of
A*(M, R) onto A$(M, ̂ \ R). When there is no risk of confusion, we will
write V, J2?v, A$ etc., instead of V{M, jr), Jtfv(M, jr), A$(M, *βr R)
etc.

Let VLC be the Levi-Civita connection on (M, g). The following result
is well known (see [25] or [14]).

PROPOSITION 1.1. // I e ^ and if Y and Z belong to <%fv, then
(i) πvn

cY = πv[X, Y], and
(ii) Xg(Y,Z) = g([X,Y],Z) + g(Y,[X,Z]).

As is also well known, these conditions are each sufficient for an
arbitrary foliation to be totally geodesic.

Recall that a connection on the vertical bundle V is an element V of
Hom ôG T̂ HomΛgrF, JTF)) such that F(X)(fY) - X(f)Y + fV{X)(Y) for
all functions/6 A0 and all vector fields Xe<£f and Ye<gfv. As is usual,
we denote V(X)(Y) by VXY. We will say that a connection V on V is
vertical if VXY = πv[X, Y] for all l e ^ and Ye^v (cf. transverse or
Bott connections [16], [3]). So, by Proposition 1.1 (i), 7ΓFF

Lcf defines a
vertical connection on V, which we will denote by V% and call the
tangential Levi-Civita connection.

We will denote the curvature of V% by Ru, that is, R* is the element
of Hom^o(Λ2^ HomAo(Jg ,̂ £fv)) given by R\X, Y){Z) = V'J/^Z - Vι

γVxZ -
V[XyY^Z, for all Ze<gfv and X and Y in <%?. The following result is given
in [13]. It can also be proven algebraically using Proposition 1.1 and the
Jacobi identity (see [5]).
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PROPOSITION 1.2. For all Xe<g?H and Ye<gfv, one has R\X, Y) =
0.

In general, we will say that a vertical connection is tangential if its
curvature satisfies the condition expressed in the previous proposition.

For all I e ^ the Lie derivation £fx in A* induces a derivation
πγSfx in the complex A$ of vertical forms. We will say that a vertical
form a is tangential if πvj*fxa is zero for all X e J2fH, and we denote by
Afg the complex of tangential forms. Note that Proposition 1.1 (ii) says
that glv is a "symmetric tangential 2-form".

If xeM, we will call the sheet of ^~ at x the subset S(x) of M of
points that can be joined to x by piece wise smooth horizontal arcs. So
A°tg is the ring of functions that are constant on the sheets of

Recall that a vector field l e ^ is said to be foliated if [X,
for all Ye^fv (foliated vector fields are also known as basic or foliate
fields). Analogous to the concept of a foliated vector field, and dual to
that of tangential 1-forms, we will say that a vertical vector field X is
tangential if [X, Y]e<g?H, for all Ye£fH. We denote by £ftg the A°tg-
module of tangential vector fields. Note that if Xe^tg and if aeAr

tg,
then ixaeAr

t~\ In particular, if Xe^tg and aeA\g, then the function
a(X) is constant on the sheets of ^ .

Let I e ^ 7 . Then I e ^ if and only if X commutes with every
local horizontal foliated vector field. Again, I e J t s if a n ( i only if the
local one-parameter subgroups associated to X respect the horizontal dis-
tribution. If J e ^ f f is complete, then its one-parameter subgroup respects
the sheets of ^ .

If ^ has dimension p, then a tangential parallelism of ^ is a set
{Xlf , Xp} of p tangential vector fields of JΓ such that the vectors
Xt(x) are linearly independent at each point x of M. Let m be the sub-
space of <3ftg spanned by the Xt. If all the elements of m are complete
vector fields, then the tangential parallelism is said to be complete. If g
is a Lie algebra, then we say that _̂ ~ is tangentially Q-Lie if m,
furnished with the Lie bracket, is a Lie algebra isomorphic to g.

Let B be the principal GL(p, R)-bundle of vertical frames; that is, the
bundle of frames of V. There is a canonical equivalence between connec-
tions V on V and connections ω on B, where of course, ω is a 1-form on
B with values in the Lie algebra gϊ(p, R). Let ωt be the connection on B
corresponding to the tangential Levi-Civita connection V% on V. Let g be
the lift to Bf determined by ω\ of the Riemannian metric g on M. Let
Jr be the pull-back of ^~ to B. Then the horizontal bundle H(B, β
of ^ depends only on the decomposition T(M) = H(M, &~) φ V{M,
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Indeed, there is a fundamental form θ e A\B, Rp) defined by dz{X) =
z~\πv © π*(X2))> for all zeB and I e ^ ( δ ) , where π is the natural
projection from B to M. It is easy to see that ^ ^ ( J B , ^ ) =
\Xe £f(β)\ Θ{X) = i^d^ = 0}. Alternatively, iϊ(B, i n can be defined from
the natural lifts to B of local foliated horizontal vector fields of &~ (see
[2]).

It is easy to verify that if F is a connection on V, canonically
associated to a connection ω e A\B, gl(p, R)) on B, then F is vertical if
and only if ω e Aγ(B, β~\ gl(p, R))9 and F is tangential if and only if ω e
A\g(B, β~\ gϊ(p, R)). In particular, ω* is a gl(p, iί)-valued tangential 1-form
on B. One can easily check that the fundamental form θ is tangential;
that is, θ e A\a(B, β~\ Rp). It follows that the fundamental and basic
vector fields on B, associated to ωι and θ, define a canonical tangential
parallelism of β~. Since M is complete, the leaves of ^ are complete,
and so the parallelism of £~ is complete.

If G is a Lie subgroup of GL(p, R), and if i? is a G-reduction of the
principal GL(p, iί)-bundle By then we will say that E is a vertical G-
structure if, for every 2 e £7, the horizontal subspace HZ(B, ̂ ) of TZ(B)
is tangent to E. Then one has (see [5]):

PROPOSITION 1.3. If E is a G-reduction of B, then E is a vertical
G-structure if and only if there exists on B a vertical connection reducible
to a connection on E.

Since the tangential Levi-Civita connection F* on V is a metric con-
nection, the associated connection ωt on B is reducible to a connection
on the O(p, iί)-subbundle E of B of orthonormal vertical frames. So by
the previous proposition, E is a vertical O(p, Λ)-structure on B. We
denote again by ^β* and g respectively the foliation and the metric
induced on E by ^ and g. Then (E, ^) inherits a complete tangential
parallelism from B. In particular, we can apply the following result to
the connected components of B and E. This theorem was announced for
compact manifolds in [6]. Parts (i) and (ii) were proven independently in
[2]

THEOREM 1.4. If ^ possesses a complete tangential parallelism, then
( i ) the sheets of &~ are the leaves of a foliation ^~s on M,
(ii) the closures of the sheets of Jf are the fibers of a locally trivial

fibration ψ: M-+W,
(iii) there is a Lie algebra g such that, for each zeW, the foliation

induced on ψ~\z) by ^ is tangentially Q-Lie.
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PROOF. ( i ) Let A be the set of complete vector fields on M whose
orbits are contained in the sheets of _̂ T If xeM, let A(x) be the sub-
space of TJJM) spanned by A, and let f(x) be the dimension of A(x).
We first show that the function / is constant. Note that if X is a
complete tangential vector field, then the one-parameter group {φt)teR>
associated to X, preserves the sheets of ^~. So, for all teR and Ye A,
the vector field ^ Fis a member of A. Thus, as &~ possesses a complete
tangential parallelism, / is locally constant (hence constant) on the leaves
of ^ 7 Similarly, for all x e M and every horizontal vector Zx e HX(M, ^~),
there exists a complete horizontal vector field Z, on M, having Zx as its
value on x, and so / is constant on the sheets of ^ 7 Thus, as every
sheet meets every leaf, so / is constant on M. The set A therefore induces
a smooth distribution D on M. Now let Y and Z be two elements of
A and let (<pt)t*R be the one-parameter group of Y. For all teR> one
has φt*ZeA, and so by differentiating, one has [Y, Z]eD. Thus D is
integrable, and clearly the sheets of _̂ ~ are just the leaves of the folia-
tion ^~s determined by D.

(ii) Once again, let X be a complete tangential vector field of ^ 7
and let (&)t6Λ be the one-parameter group associated to X. For all t eR,
and ZeA, one has φt*ZeA and so, by differentiating, [X, Z] e D. In other
words, X is a foliated vector field for ^~8. Then, since _̂ "~ possesses a
complete tangential parallelism, the family £f(M9 ^s) of complete foliated
vector fields of ^ s is transitive on M; that is, for each xeM and Xx e
TX(M), there exists Xe£f(M, jrs) such that the value of I at a; is Xx.
So, from [19], the closure of the leaves of ^~8 are the fibers of a locally
trivial fibration ψ: M —> W.

(iii) Let zeW, and set N = ψ~\z). Choose any point yeN. Let
^{z) be the foliation defined on N by ^ and let C be a vector space, of
dimension equal to dim ^~(z), of complete tangential vector fields of _ 7̂
such that, at y, C is tangent to ^(z). The elements of C project to W,
and so C is tangent to ^~(z) at each point of N. Clearly, C induces on
N a vector space g(z) of tangential vector fields of ^~(z). By Proposition
1.1 (ii), for all X and Y in C, the function g(X, Y) is tangential, and
hence constant on N. So the elements of Q(Z) are linearly independent
at each point of N. Again, by Proposition 1.1 (ii), for all X, Y and Z
in C, the function g([X, Y], Z) is constant on N. In other words, g(z)
is a Lie algebra. Thus ^(z) is tangentially g(z)-Lie. Finally, since ^
possesses a complete tangential parallelism, so for all x 6 W, there is a
diffeomorphism of M that maps N onto ψ~\x) and preserves both ^
and the horizontal bundle H of ^ 7 Thus, up to isomorphism, the Lie
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algebra g(z) is independent of z e W. This completes the proof of the
theorem. •

2. Tangentially Lie Foliations. In this section we suppose that
is equipped with a complete Lie parallelism {Xlf •• ,XP}, along its leaves,
that preserves the horizontal bundle H of ^ Ί In the notation of the
previous section, J?~ is a tangentially g-Lie foliation, where g is the Lie
subalgebra of <%ftg spanned by the tangential vector fields Xt. For con-
venience, we suppose that the Xt are orthonormal.

Let G be a simply connected Lie group having g as its Lie algebra
of left-invariant vector fields. Then there is a natural locally free right
action of G on M whose orbits are the leaves of ^ (see [22]). The
action of G preserves the horizontal bundle and the sheets of ^T In this
section, we draw an analogy between the behaviour of jj?~ and that of
principal G-bundles. In this analogy, H plays the role of a connection,
and the elements of g correspond to the fundamental vector fields of the
"connection". The sheets of ^~ are the "holonomy bundles" of H. To
make explicit this analogy, we define the transverse connection of ^ to
be the g-valued 1-form ω on M given by

ω.(X) = ΣgAX, XJX*

for all x e M, where, once again, g is the Riemannian metric on M. (In
the terminology introduced by Molino [18], ω is a "pseudo-connection").
We define the transverse curvature of j^~ to be the g-valued 2-form Ω
on M given by the "structural equation":

Ω = dω + —[ft), ft)] .

It is easy to see that Ω is zero on vertical vector fields, and that Ω is
identically zero if and only if the horizontal bundle H is integrable. The
following result, which expresses the pseudo-tensorial nature of ω and Ω,
is a simple generalization of the classical situation:

PROPOSITION 2.1. For all elements g eG, one has g*ω = Adig'^ω and
g*Ω = Ad(gf~1)i2, where g*ω (resp. g*Ω) is the pull-back of ω (resp. Ω) by
the action of g, and Ad is the standard adjoint representation of G in g.

Now let x e M and let S(x) be the sheet of ^" at x. Let Φ(x) be the
subgroup {g e G\ x g e S(x)} of G, and let Φ\x) be the connected component
of the identity of Φ(x). By Theorem 1.4, the sheets of &~ define a
foliation j^~s on M. It follows that every element of Φ°(x) can be joined
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to the identity by a piecewise smooth path in G which lies in Φ\x). So
Φ\x) is a Lie group. Let §β be the Lie algebra of Φ°(x). We will call
ί)x the transverse holonomy algebra of j^~ at x. Clearly, ί)x is the sub-
algebra of g tangent to J?~s at x. Since the elements of g are foliated
for ^ , so ίjy = §x for all points y in S(x).

The following result can be verified by simply repeating the proof of
the Ambrose-Singer theorem.

PROPOSITION 2.2. If xeM, then ί)x is the subalgebra of g generated
by the elements of the form Ωy(X, Y), where y belongs to the sheet of ^
at x, and X and Y are vector fields on M.

It follows from Propositions 2.1 and 2.2, that for all xeM and geG,
one has ί)x.g = Ad^" 1 )^ .

Now, if xeM, let Ψ(x) be the closure of Φ(x) in G. Then Ψ{x) is a
closed Lie subgroup of G. Let %x be the Lie algebra of Ψ(x). We will
call 8X the structural algebra of ^ at x. Evidently, 8β is the subalgebra
of g tangent at x to the closure of the sheet S(x) of ^~ at x. Once again,
§v = §x for all y e S(x), and 8x.g = Ad^" 1 )^ for all # e G. Since the elements
of 8β are foliated for _ ^ , so ϊjβ is an ideal of 8β

As we have seen, up to isomorphism, the Lie algebras 8β and ήβ are
independent of x 6 ikί. We will call the isomorphism class § (resp. ί)) of
the Lie algebras gβ (resp. JjJ the structural (resp. transverse holonomy)
algebra of ^ 7

We now consider the geometric significance of these algebras. Let L
be an arbitrary leaf of _ 7̂ and let u be a connected open subset of L.
We will say that a vector field X on u is a ϊocαi commuting vector field
of ^~ on u if X commutes with the restriction to u of every tangential
vector field of ^~l The Lie algebra e(w), of local commuting vector fields
of _̂ ~ on ^, has dimension ^ dim _ 7̂ Indeed, if X e ε(u) and if Xy = 0
for some # 6 w, then as X commutes with g, S O I Ξ 0. In fact, dim e(u) ^
dim§, since if Xee(u) then X(/) = 0 for all feA°tg, and so X is tangent
on each point x of w to the closure of S(as).

Let ^(L) be the sheaf of germs of local commuting vector fields of
^ on subsets of L. We will call ^ (L) the commuting sheaf of L.
We have:

THEOREM 2.3. For every leaf L of ^ 7 the commuting sheaf &(L) of
L is locally trivial and has as typical fiber the Lie algebra 3~ anti-
isomorphic to the structural algebra § of J?~. Furthermore, the orbits of
^(L) are the connected components of the intersections with L of the
closures of the sheets of
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PROOF. Let xeL. The Lie group G acts transitively on L and,
corresponding to the right-invariant vector fields on G, there exists, on
some open connected neighbourhood u of x in L, a Lie algebra g~ of
vector fields that commute with the restriction to u of all the elements
of g. Let m be the vector subspace of g" tangent at x to the closure of
the sheet S(x) of ^~ at x. So ωx(m) = $x. Since ωx defines a Lie algebra
anti-isomorphim between g~ and g, so m is anti-isomorphic to 8β. By
Proposition 2.1, one has ωy(m) = $y for all yen. Thus, at each point of
u, the elements of m are tangent to the closures of the sheets of J^~.
Then, since every tangential vector field of ^ can be written as a linear
combination of elements of g, with coefficients in the ring A°tg, it follows
that m is contained in the Lie algebra e(u) of local commuting vector
fields of &~ on u. But we have already seen that t(u) has dimension ^
dim 3β. So m = e(u) and ^(L) is locally trivial and has as its typical
fiber the Lie algebra §~". Finally since ωy(m) = $y for all yen, it is clear
that the orbits of ^(L) are the connected components of the intersections
with L of the closures of the sheets of

REMARK 2.4. It is clear, by the same argument, that if L is a leaf
of ^ 7 then <g%L) has a locally trivial subsheaf, having as typical fiber
the Lie algebra §~ anti-isomorphic to ίj, and having as orbits the connected
components of the intersection with L of the sheets of _^7

It is pertinent to ask whether the commuting sheaves of the leaves
extend to a sheaf on M of germs of local tangential vector fields that
commute with all the (global) tangential vector fields of ^ 7 In order to
examine this question we introduce the "local transverse holonomy
algebras" of ^

Let xeM and let O(x) be the set of open connected ^sa turated
neighbourhoods of x. For each member u of O(x), the foliation ^\u)9

induced on u by _ 7̂ is equipped with a complete tangentially g-Lie
parallelism. Let ^x{u) be the transverse holonomy algebra of j^{u) at x.
Then the local transverse holonomy algebra of ^~ at x is the Lie algebra
§? = (Ί«βo(«>ϊj*(w). By construction, ί)* is a subalgebra of ϊjβ.

The following proposition is verified by the standard argument for
the local holonomy algebras of a principal connection (see [15]).

PROPOSITION 2.5. If xeM, then there exists ueθ(x) such that

ft? = Uu).

Now let w be an open connected subset of M and let &\w) be the
foliation induced on w by J T In general, the A°tg(w, ^~(w); /ί)-module

of tangential vector fields of ^"(w) contains the restriction
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J, of <gftg(M, ^ Π to w, as a proper subset. We will say that an element
X of £ftg{w, _̂ ~(w)) is a local commuting tangential vector field of ^~ on
w if X commutes with all the elements of J, and we will denote the Lie
algebra of these vector fields by c(w). Since c(w) commutes with g and
with all the local horizontal foliated vector fields of ^~(w), so c(w) has
finite dimension. The elements of c(w) are tangent to the closures of the
sheets of ^ 7 and so dim c(w) ̂  dim 3. Now let x e M and let cβ be the
Lie algebra of germs at x of local commuting tangential vector fields of

We have:

PROPOSITION 2.6. For all xeM, the Lie algebra cx contains a sub-
algebra anti-isomorphic to the centralizer of §ί in 3X.

PROOF. We proceed in a manner similar to the proof of Theorem
2.3. Let 3*0*0 be the centralizer of §? in "8β, and let L be the leaf of
^~ containing x. There exists an open connected neighbourhood v of
x in L and a Lie algebra g~ of vector fields on v that commute with g.
Let π be the vector subspace of g~ tangent at x to 3*0&) By Proposition
2.5, there exists ueθ(x) such that §? = §x(u). Let yev, and let 3(2/) be
the centralizer of \{u) in §y. Then by Proposition 2.1, one has α>f(rt) =
3(y). Let F e n and Ze$,(tO One has [ωf(Z), ^ ( F ) ] = [Z, ωy(Y)] = 0.
Then, by the structural equation, Zyω(Y) = βy(Z, F) + Yyω(Z) +
α>y([^, F]) — [o)y(Z), o)y(Y)], which is zero, term by term. But by
definition, ω(Y) = Σ?=i^(F, Xt)Xt. So, putting at = g(Y9Xt)9 we have
Zy(at) = 0 for all yev and Ze\(u). In other words, the functions α< on
v are constant on the connected components of the intersections with v
of the sheets of the foliation \^~{u) induced on u by ^ 7 So it is clear
that by choosing a sufficiently small neighbourhood w of x in Jlf, we can
extend the elements F of rt to vector fields F' on w, by demanding that
the functions g{ F', Xt) be constant on the connected components of the
intersections with w of the sheets of ^~(u). By construction, we thus
obtain a vector space n', of dimension equal to dim3*(#)> of local com-
muting tangential vector fields of ^~ on w. Finally, because the trans-
verse connection ω induces a Lie anti-isomorphism from g~ onto g, so n'
is a Lie algebra anti-isomorphic to 3*0*0- This completes the proof. •

We can now give the following:

THEOREM 2.7. The following conditions are equivalent:
(i) There exists a sheaf ^ on M of germs of local commuting

tangential vector fields of ^ such that for each leaf L of ^ the restric-
tion of & to L is the commuting sheaf <8%L) of L.
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(ii) The transverse holonomy algebra § of J?~ is contained in the
centre of the structural algebra § of ^ 7

PROOF. By the previous proposition, one has (ii) => (i). Conversely,
suppose that the condition (i) is satisfied. Let xeM and let S(x) be the
sheet of ^~ at x. By Proposion 2.2, the algebra ί)x is generated by the
set {Ωy(ZlfZ2);yeS(x) and Z.e^}. Let Xe§ x . We will show that X
commutes with all the elements of §x. Let y eS(x). By hypothesis, there
exists a local commuting tangential vector field Y of ^ on a neighbour-
hood w of y, such that ωy{Y) = X. So one has [Ωy(Zlf Z2), X] =
[Ωy(Zu Z2), ωy(Y)] = (dΩ)y(Zlf Z2, Y), for all Z.e^, But we may restrict
our attention to vector fields Zt that are local horizontal foliated vector
fields of jr. Then we have [Ωy(Zu Z2), X] = YyΩ(Zlf Z2) = - Yyω([Zlf Z2]),
which is zero, from the definition of α>, because Y is a local Killing vector
field for the Riemannian structure along the leaves and Y commutes with
the local vector fields Zt. Thus X commutes with all the elements of §x,
and the proof is completed. Π

3 Geometric Description of Totally Geodesic Foliations. In this
paragraph, we use the results of the previous section to study the
behaviour of a totally geodesic foliation ^ 7

Let E be the bundle of orthonormal vertical frames of ^~ and let
Jr be the pull-back of ^~ to E. We equip E with the canonical lift
g of the Riemannian metric g on M (see Section 1). Then jβ~ possesses
a complete tangential parallelism, and by Theorem 1.4, the closures of
the sheets of jβ" are the fibers of a locally trivial fibration ψ: E —• W,
and there is a Lie algebra g such that, for each zeW, the foliation
^*(z) induced on ψ~\z) by ^ is tangentially g-Lie. The foliations ^{z)
have dense sheets, and so their structural algebras are isomorphic to g.
We will call g the structural algebra of ^ 7 Similarly, the transverse
holonomy algebras of the foliations ^~(z) are all isomorphic; we call their
isomorphism class the transverse holonomy algebra of ^~ and we denote
it by ί). By choosing any reference point in E, we can regard ί) as an
ideal of g. Note that if ^"" is tangentially Lie, the tangential parallelism
of j r defines a map from M to E which induces diffeomorphisms from
the closures of the sheets of ^~ to the fibres of ψ. As these diffeomor-
phisms respect the foliation structures, the structural and transverse
holonomy algebras of ^~ coincide with those defined in Section 2.

If G is a simply connected Lie group having g as its Lie algebra,
then there is a locally free action of G on each of the fibers of ψ. In
general, these actions do not define a smooth action of G on E. Never-
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theless, for each z e W, there is a neighbourhood u of z, trivializing ψ,
such that G acts smoothly on ψ~\u). (see Lemma 3.2 below).

The following theorem was announced for compact manifolds in [6].

THEOREM 3.1. The closures of the sheets of ^ are submanifolds of
M and if L is an arbitrary leaf of ^ 7 then there exists a locally trivial
sheaf &XL) on L of germs of local Killing vector fields of L (for the
induced Riemannian metric) such that:

(i) the orbits of ^%L) are the connected components of the intersec-
tions with L of the closures of the sheets of jβ~, and

(ii) the typical fiber of ^\L) is a Lie algebra anti-isomorphic to the
structural algebra Q of ^~l

PROOF. First note that since the horizontal bundle H(E, Jr~) of jβ~
projects in M onto the horizontal bundle H(M, ̂ ~) of ^ 7 so the sheets
of jβ~ project in M onto the sheets of j^~. As the action of the or-
thogonal group O(p, R) on E preserves the fibers of ψ, the closures of
the sheets of ^~ project in M onto submanifolds of M. As E is a locally
trivial fibration with compact fibers, the natural projection π: E —> M is
a closed mapping. So the fibers of ψ project onto the closures of the
sheets of β~.

Now let L be a leaf of ^ 7 and let L be a leaf of ^ over L. Let
<g%L) be the sheaf of germs of local vector fields on L that commute
with all the tangential vector fields of ,β~. We will show that <g%£) is
locally trivial, that its typical fiber is anti-isomorphic to g, and that its
orbits are the connected components of the intersections with L of the
fibers of ψ. We first prove the following:

LEMMA 3.2. If zeW and if r is the dimension of W, then there exists
an open connected neighbourhood u of z such that the foliation ^{u),
induced on ψ~~\u) by _^7 is tangentially Q 0 Rr-Lie, and has Q as its
structural algebra.

PROOF. Let u be a sufficiently small neighbourhood of z such that
u trivializes ψ and such that on u there exists r linearly independent
commuting vector fields Yt. If φ: ψ~\z)xu -^ψ~\u) is such a trivializa-
tion, the vector fields Ϋi = <£>*(() + Yt) are tangential for ^(u). If
<^tg(ψ~Xz), ^"(z)) is the (p — r)-dimensional Lie algebra of tangential
vector fields of the foliation ^\z) induced by J?~ on ψ~\z), then the
elements of the Lie algebra α = φ*{<%?tg(ψ~\z)y &\%S) Θ {0}) are tangential
vector fields of ^(u) and they commute with the vector fields F*. So
there is a tangential αφR[Ϋ l y -.., Γr]-Lie parallelism of ^\u), and
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clearly the structural algebra of ^~{u) is α = g. •

Returning to the proof of the theorem, let y be an arbitrary point
in L and let z = ψ(y). By the previous lemma, there exists a connected
open neighbourhood u of z such that ^(u) is tangentially g0iΓ-Lie.
Of course, a parallelism of ^{u) will not, in general, be complete.
Nevertheless, since Theorem 1.4 holds for ^~(u), we may still apply the
results of Section 2 to ^~(u). Let L(u) be the leaf of ^(u) containing
y. So L(u) is an open subset of L. The local sections of the commuting
sheaf ^(L(u)) of L(u) are also local sections of <g%L). Conversely, the
restrictions to L{u), of local sections of ^(L) , define local sections of
<^(L(u)). In other words, ^(L(u)) is just the restriction of ^ ( L ) to
L(u). Our claims concerning ^(L) are therefore verified by Theorem 2.3
applied to ^(L^u)).

Finally, identify L with a connected component of the principal bundle
of orthonormal frames of L. Then, as the elements of ^ (L) commute
with the fundamental and basic vector fields of L, determined by the
Levi-Civita connection on L, so ^(L) projects in L onto a sheaf ^(L)
of germs of local Killing vector fields of L. Clearly, ^ (L) has the desired
properties. •

COROLLARY 3.3. //, at any point, any leaf of &~ has no non-zero
germs of local Killing vector fields, then the sheets of ^ are all closed
and orthogonal to J?~.

COROLLARY 3.4. The closures of the sheets of ^~ are complete
Rίemannian submanifolds of M, and on these submanifolds, J?~ induces
totally geodesic foliations with dense sheets. Furthermore, the leaves of
these foliations are locally homogeneous Riemannian submanifolds of M.
In particular, if ^ has a dense sheet, then the leaves of ^ are locally
homogeneous Riemannian submanifolds of M.

PROOF. Let N be the closure of a sheet of ^~, and let ^~{N) be
the foliation induced on N by ^ 7 Since M is complete, so also is N.
Since ^~{N) satisfies the condition of Proposition 1.1 (ii), so ^(N) is
totally geodesic. Clearly, ^~(N) has dense sheets. Then the corollary is
verified by the theorem applied to the leaves of ^(N). •

COROLLARY 3.5. The union U of sheet closures of ^ of maximal
dimension is an open dense subset of M.

PROOF. Let L be an arbitrary leaf of ^ 7 and let (va)aeI be a covering
of L by open connected sets that trivialize the commuting sheaf ^(L) of
L. For each a el, the set UΓ\va is the union of the orbits of maximal
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dimension of a Lie algebra of Killing vector fields of va. According to
[21], the set Ur\va is open and dense in va. It follows that Uf]L is open
and dense in L. Then, as U is the saturation of UΓ\L by the closures
of the sheets of _ 7̂ we have the desired result. •

If L is a leaf of ^ then we will call the sheaf ^(L), constructed
in the course of the proof of the previous theorem, the commuting sheaf
of L.

REMARK 3.6. ( i ) To justify the notation, note that the elements
of ^(L) commute with all the tangential vector fields of _ 7̂ This follows
from the fact that the natural lifts of the local sections of <g%L), to the
bundle B of vertical frames of ^ 7 commute with the canonical tangential
parallelism of (B, J?~) (see Section 1).

(ii) By a standard argument, if L is a simply connected leaf of ^ 7
then ^(L) is globally trivial.

(iii) It is clear from Remark 2.4, that for all leaves L of ^ the
sheaf <g%L) has a subsheaf whose orbits are the connected components
of the intersections with L of the sheets of ^ and whose typical fiber
is anti-isomorphic to the transverse holonomy algebra § of ^ 7

(iv) We have shown in [5], using the ideas of [21], that when M is
compact, the space W of sheet closures of ^ is compact and metrizable
(for the quotient topology) and that the subset of Q of sheet closures
of maximal dimension is equipped with a structure of a Satake manifold
[26].

We now use Theorem 2.7. Let u be an open subset of M and let
^"{u) be the foliation induced on u by ^~. We will say that a tangential
vector field X of ^(u) is a local tangential Killing vector of &~ on u
if X is a Killing vector field for the Riemannian structure along the leaves
of ^T

Let z e W, and let ^{z) again denote the foliation induced on ψ~\z)
by ^r: Let Y be a local commuting tangential vector field of ^(z) (see
Section 2). Then, using Lemma 3.2, we can extend Y locally in E to a
local commuting tangential vector field Z of ^~. Clearly, Z projects in
M onto a local tangential Killing vector field of ^~. Thus the following
theorem results without difficulty from Theorem 2.7.

THEOREM 3.7. // the transverse holonomy algebra ί) of j ^ ~ is con-
tained in the centre of the structural algebra g of ^~, then there exists
a locally trivial sheaf ^ on M of germs of local tangential Killing vector
fields such that:



TOTALLY GEODESIC FOLIATIONS 51

( i ) the orbits of ^ are the connected components of the intersections
of the leaves and the closures of the sheets of j^~,

(ii) the typical fiber of & is anti-isomorphic to g,
(iii) the elements of ^ commute with all the (global) tangential

vector fields of

REMARKS 3.8. ( i ) The condition that Ij be contained in the centre
of g is, of course, quite strong. For example, if g is semi-simple, the
condition is equivalent to § being zero; that is, to the horizontal bundle
H being integrable.

(ii) If iί? is the universal covering space of M, then the pull-back
<β~ of ^~ to M is totally geodesic and M is complete, for the lifted
Riemannian metric. It is easy to see that the transverse holonomy
algebra of ^ is isomorphic to §. So the condition that M be simply
connected does not imply that ί) is Abelian, as might have been thought
by analogy with the structural algebra of a Riemannian foliation [19].
It follows from Proposition 2.6 however, that if πλ(M) = 0, then the
centralizer of f) in g is Abelian. Furthermore, it is easy to show that
if πx(M) = 0 and if ί) is Abelian, then g is also Abelian. Using the
arguments of [20], if g is Abelian, then the maximal dimension of the
closures of the sheets is equal to dim g + codim ^ 7

(iii) The structural and transverse holonomy algebras, and the com-
muting sheaves of the leaves depend only on the orthogonal decomposition
T(M) = HφV. This follows from the fact that the action of GL(p, R),
on the bundle B of vertical frames of _ 7̂ preserves the sheet closures
of the pull-back J^ of ^~ to B. In particular, the local sections of
the commuting sheaves ^(L), and the local sections of ^ , when it exists,
are local Killing vector fields, along the leaves, for every Riemannian
metric on M for which J?~ is totally geodesic and for which T(M) =
Hξ&V is the orthogonal decomposition of the tangent bundle of M.

(iv) If, in addition, j^~ is a Riemannian foliation (for instance, if
M and the leaves of ^~ are compact), then the local tangential Killing
vector fields of ^ are local Killing vector fields of M, for any Rieman-
nian metric which makes ^ both totally geodesic and Riemannian, and
which preserves T(M) = H® V.

4. Characteristic Classes. In this section, we suppose that ^ is
oriented.

Recall from Section 1 the definition of the complex Afg of tangential
forms on M; this is the complex of forms, along the leaves, that are
"invariant" in the directions perpendicular to the leaves. The exterior
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derivative d on A* induces a differential operator dv = ττF o d on A**, thus
making (A*,, dF) a graded differential algebra. Let H*g = φ?= 0 H

r

tg be the
associated cohomology group. We call H*a the tangential cohomology
group of ^ 7

We now define the characteristic classes in Hfg. Let Pk be an
invariant polynomial of degree k on the Lie algebra &>(p, Jί). Recall that
the Pontrjagin class Pk{^) of ^~~ is the element of HH^JKM) obtained
by substituting, for the arguments of Pk, the curvature of a connection
F on the vertical bundle V of j r Let us write P*C^Π = [P*(F)] The
class thus obtained is independent of the connection F. By restricting
the choice of F to the set of tangential connections (see Section 1) one
obtains an element Pk

g(^~) — [πvP
k(F)] of the tangential cohomology. We

call the elements of Hfβ thus obtained the tangential characteristic classes
of _ 7̂ To see that these classes are well defined, note first that the
set of tangential connections is not empty (see Section 1) and secondly
that one has:

PROPOSITION 4.1. The tangential characteristic classes do not depend
upon the tangential connection used in their definition.

PROOF. Let Pk be an invariant polynomial on 8o(p, R), and suppose
that F° and F1 are two tangential connections on V. Let ^[ (resp. ^ 2 )
be the foliation on MxR whose leaves are of the form LxR (resp.
Lx{*}) whose L is a leaf of ^ 7 and let i0, ix: M-^ MxR be the injections
given by iQ(x) = (x, 0) and i,{x) = (x, 1). If H, if: Hfg{MxR, J*7) ->
Hfg(M, J?") are the cohomology mappings induced by ΐ0 and ilf then it is
easy to show that it = if (see [3]). We will construct a connection V on
the vertical bundle V2 of ^ such that πvP\V) e Afg(MxR, J*7) and such
that H{[πvP\V)]) = [τrFP

fc(F0)] and if([πFP
fc(F)]) = [πvP\F1)].

In order to define F it suffices to define its action on the sections Z
of V2 that are constant in the iί-direction. Following [3], we set
Vd/HZ = 0 and VXZ = W\Z + (1 - tψ\Z, for all Xe T{Xtt)(Mx{t}). Then
if R° (resp. R\ resp. i2) is the curvature of F° (resp. F1, resp. F), one
has R(X, d/dt)Z = 0, and R(X, Y)Z = tR\X, Y)Z + (1 - ^ ( X , Γ)Z, for
all sections Y and Z of F2 that are constant in the /ϊ-direction, and all
-2ΓeT(jM)(Λfx{ί}). It follows that if X is perpendicular to ^ , then
R(X, Y)Z = 0. It is easily verified then that F has the required prop-
erties. •

We now consider the tangential Euler class ltg{^r) e Hfg. Recall that
the Euler (or Pfaffian) class is calculated from the invariant polynomial
(2π)~p/2 det1/2. Let E be the bundle of orthonormal vertical frames of
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Then, by the product formula for det, one sees that Xtg(^~) is zero if
there exists on E a tangential connection reducible to a SO(k, R) 0
SO(p — k, i?)-reduction of E, for some odd integer k. Expressing this
differently, we have the following:

THEOREM 4.2. Suppose that there exists a vector subbundle K of the
vertical bundle V of ^~, such that, for all vector fields X tangent to K
and Y tangent to the horizontal bundle H of J?~, the vector field [X, Y]
is tangent to K@H. Then if K has odd rank, the tangential Euler
class Xtg(^~) of ^ is zero.

Before proving this result, we give the following immediate conse-
quences:

COROLLARY 4.3. // there exists a nowhere zero tangential vector
field on M, then Xtg{^~') is zero.

COROLLARY 4.4. If the sheets of ^, or their closures, define an odd
codimensional foliation on M, then Xtg(^~) ^s zero.

PROOF OF THEOREM 4.2. Let K be as in the statement of the
theorem. Let K1 be the orthogonal complement of K in V, and let πκ

(resp. πκ±) be the orthogonal projection of V onto K (resp. K1). Then
if F* is the tangential Levi-Civita connection on V, let V be the connec-
tion on V defined by V = πκV

ιπκ + πκ\.V%πKL. Then to show that Xta(^~)
is zero, it suffices to prove that V is a tangential connection.

First note the following consequence of the hypothesis. Let X (resp.
Y, resp. Z) be a vector field on M tangent to H (resp. K, resp. K1).
Then, since g([X, Y], Z) = 0, so by Proposition 1.1 (ii), one has
g([X, Z\ Y) = 0. Thus VXY = F*XY = πv[X, Y], and similarly, VXZ =
πv[X, Z], That is, V is a vertical connection (see Section 1). It remains
to show that if R is the curvature of 7, then R(X, Y) = R(X, Z) = 0.
But we can easily verify this by calculating R(X, Y)η and R(X, Z)η
where ΎJ is a vector field tangent to K or K1, and using the fact that
V% is tangential. Π

Now let L be a leaf of ^~ and let i{: Hfg —> H$e nh&m(L) be the
homomorphism induced by the natural injection of L into M. The
tangential Levi-Civita connection F*f on the vertical bundle V, induces
on L the Levi-Civita connection of L (with the induced Riemannian
metric). It follows that the images under i{, of the tangential character-
istic classes, are just the standard characteristic classes of L.

The following theorem was announced in [8]. Its proof, which is
rather long, will be presented in a subsequent paper.
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THEOREM 4.5. ( i) If M is compact then H*g has finite dimension
and Hfg = 0 or R. Furthermore, if Hfg = R, then Hfg = Hfg~*.

(ii) If ^ has a compact leaf L, then H?gH = %g~* and furthermore,
the homomorphism i{: H% —• H*e Rhzm(L) is injective.

Now, if L is a compact leaf and if a characteristic class Pk(L) of L
is zero, then by part (ii) of the previous theorem, Pίg{^) is zero. So
we have immediately the following:

THEOREM 4.6. If a Pontrjagin class Pk(L), of a compact leaf L of
is zero, then for all leaves U of j^~, the class Pk(U) is zero.
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