ON NORMAL SUBGROUPS OF CHEVALLEY GROUPS OVER COMMUTATIVE RINGS

Leonid N. Vaserstein*

(Received March 1, 1985)

1. Introduction. Let G be an almost simple Chevalley-Demazure group scheme with root system Φ (see, for example [1], [2], [6], [7], [8], [10], [17], [19], [20], [21], [24]). For any commutative ring R with 1, let $E(R)$ denote the subgroup of $G(R)$ generated by all elementary unipotent (root elements) $x_{\varphi}(r)$ with φ in Φ and r in R. Here is an example: $G=S L_{n}, G(R)=S L_{n} R, E(R)=E_{n} R, \Phi=A_{n-1}$.

As in [1], [2], we are interested in normal subgroups of $G(R)$. More precisely, we want to describe all subgroups of $G(R)$ which are normalized by $E(R)$.

The case when the rank of G is 1 , i.e. G is of type A_{1}, i.e. G is isogenous to $S L_{2}=S p_{2}$, is known to be exceptional (see, for example, [9]). So for the rest of this paper we assume that the rank of G is at least 2.

When R is a field, it is known [21] that every non-central subgroup of $G(R)$ normalized by $E(R)$ contains $E(R)$, unless G is of type C_{2} or G_{2} and R consists of two elements. In particular, with these exceptions, $E(R)$ modulo its center is a simple (abstract) group.

When R is not a field, there are normal subgroups of $G(R)$ involving (proper) ideals J of R. For every ideal J of R we define $G(R, J)$ to be the inverse image of the center of $G(R / J)$ under the canonical homomorphism $G(R) \rightarrow G(R / J)$. The kernel of this homomorphism, i.e. the congruence subgroup of level J, is denoted by $G(J)$. Let $E(J)$ denote the subgroup of $E(R) \cap G(J)$ generated by all $x_{\varphi}(u)$ with φ in Φ and u in J. Let $E(R, J)$ be the normal subgroup of $E(R)$ generated by $E(J)$.

Theorem 1. For any ideal J of R, the subgroup $E(R, J)$ of $G(R)$ is normal, and it contains the mixed commutator subgroup $[E(R), G(J)]$.

When $G=S L_{n}, S p_{2 n}$, or $S O_{2 n}$, this statement was proved: by Klingenberg [14, 15, 16] for local rings R; by Bass [4] and Bak [3] under stable range or similar dimensional conditions on R, by Suslin [22], Kopeiko [18], and Suslin-Kopeiko [23] for any commutative R.

[^0]The approach of [22], [18], [23] is based on [27, proof of Lemma 6.1 and Remark after Lemma 9.6]. A different approach, namely, localization and patching, was used in [27, Lemma 3.4] for a partial solution of Serre's problem on projective modules over polynomial rings and then by Suslin and Quillen for a complete solution of the problem, then in [22], [18], [23] for a similar stabilization problem at K_{1}-level, then in [25] for a description of normal subgroups of $G L_{n} R$, then by Taddei [24] to prove our statement in the case $J=R$ (i.e. that $E(R)$ is normal in $G(R)$). We use Taddei's result to obtain Theorem 1 for any J (see Section 2 below).

Theorem 2. For any ideal J of R, the group $E(R, J)$ is generated by elements of the form $x_{\varphi}(r) x_{-\varphi}(u) x_{\varphi}(-r)$ with φ in Φ, r in R, and u in J.

Theorem 3. When G is of type B_{2} or G_{2}, we assume that R has no factor rings of two elements. Then

$$
E(R, J)=[E(R), E(J)]=[E(R), G(R, J)]
$$

for any ideal J of R. In particular, every subgroup of $G(R, J)$ containing $E(R, J)$ is normalized by $E(R)$.

Note that when R has a factor ring of two elements and G is of type $B_{2}=C_{2}$ or G_{2}, then $E(R) \neq[E(R), E(R)]$ (see, for example, [7] or [21]).

Let now $e(\Phi)$ denote the ratio of the scalar squares of long and short roots in Φ. So $e(\Phi)=1$ when $\Phi=A_{n}, D_{n}$, or E_{n}; $e(\Phi)=2$ when $\Phi=B_{n}$, C_{n}, or $F_{4} ; e(\Phi)=3$ when $\Phi=G_{2}$.

Theorem 4. Under the condition of Theorem 3, assume additionally that for every z in R there are r, s in R such that $z=e(\Phi) r z+s z^{e(\Phi)}$ (for example, $e(\Phi) R=R$). Then:
(a) for every z in R and φ in Φ, the normal subgroup of $E(R)$ generated by $x_{\varphi}(z)$ coincides with $E(R, R z)$;
(b) for any subgroup H of $G(R)$ which is normalized by $E(R)$ there is an ideal J of R such that $E(R, J) \subset H \subset G(R, J)$.

When $G=S L_{n}, S p_{2 n}$, or $S O_{2 n}$, this statement was proved: in [11], [12] for fields R; in [14, 15, 16] for local rings R; in [4] and [3] under stable range and similar conditions. The case $G=S L_{n}$ with any commutative R was done by Golubchik (see [25] for reference and another proof). Partial results for any Chevalley group G were obtained in [1], [2].

Note that when the additional condition of Theorem 3 does not hold, there are subgroups of $G(R)$ which are normalized by $E(R)$, but do not satisfy the ladder condition $E(R, J) \subset H \subset G(R, J)$ for any ideal J of R. Still it is possible to obtain a description of those H 's using subgroups
of $G(R)$ involving "special submodules associated with (G, J) " in the sense of [1]. This was done in [1], [2] under restrictions on R which, I believe, can be removed.

Any information on normal subgroup structure of groups $G(R)$ can be useful to describe automorphisms and homomorphisms of these groups. In this connection, we prove in Section 7 below the following theorem.

Theorem 5. Under the conditions of Theorem 3, $E(R)$ is a perfect characteristic subgroup of any larger subgroup of $G(R)$.

2. Proof of Theorem 1.

Case 1. $J=R$. Then our statement was proved by Taddei [24].
General case. Let h be in $G(R)$ and g in $E(R, J)$. We consider the ring $\left.R^{\prime}:=\{(r, s) \in R \times R: r-s \in J)\right\}$, its ideal $J^{\prime}:=(J, O), h^{\prime}:=(h, h) \in$ $G\left(R^{\prime}\right) \subset G(R) \times G(R)$, and $g^{\prime}:=(g, 1) \in E\left(R^{\prime}\right) \cap G\left(J^{\prime}\right)=E\left(R^{\prime}, J^{\prime}\right)$. The last equality holds, because R^{\prime} is the semidirect product of its subring $\{(r, r)$: $r \in R\}$ (which is isomorphic to R) and its ideal J^{\prime} (which is isomorphic to $J)$. Namely, let

$$
g=\prod_{i=1}^{n} x_{\varphi_{i}}\left(t_{i}\right) \in E\left(R^{\prime}\right) \cap G\left(J^{\prime}\right)
$$

with all t_{i} in R^{\prime}. We express $t_{i}=s_{i}+u_{i}$ with $s_{i}=\left(r_{i}, r_{i}\right)$ in R^{\prime} and u_{i} in J^{\prime}. Set

$$
h_{k}=\prod_{i=1}^{k} x_{\varphi_{i}}\left(s_{i}\right) \in E\left(R^{\prime}\right)
$$

for $0 \leqq k \leqq n$. Then $h_{0}=1$ (by the definition), $h_{n}=1$ (because $g \in G\left(J^{\prime}\right)$), and

$$
g=\prod_{i=1}^{n} x_{\varphi_{i}}\left(s_{i}\right) x_{\varphi_{i}}\left(u_{i}\right)=\prod_{i=1}^{n} h_{i-1}^{-1} h_{i} x_{\varphi_{i}}\left(u_{i}\right)=\prod_{i=1}^{n} h_{i} x_{\varphi_{i}}\left(u_{i}\right) h_{i}^{-1} \in E\left(R^{\prime}, J^{\prime}\right)
$$

By Case 1 (applied to R^{\prime} instead of R), $h^{\prime} g^{\prime} h^{\prime-1} \in E\left(R^{\prime}\right)$. On the other hand, evidently, $h^{\prime} g^{\prime} h^{\prime-1}=\left(h g h^{-1}, 1\right) \in G\left(J^{\prime}\right)$. So $h^{\prime} g^{\prime} h^{\prime-1} \in G\left(J^{\prime}\right) \cap E\left(R^{\prime}\right)=$ $E\left(R^{\prime}, J^{\prime}\right)$, hence $h g h^{-1} \in E(R, J)$.

Thus, $E(R, J)$ is normal in $G(R)$.
Take now any h in $E(R)$ and g in $G(J)$. Define, as before, $h^{\prime}=$ $(h, h) \in E\left(R^{\prime}\right)$ and $g^{\prime}=(g, 1) \in G\left(J^{\prime}\right)$. Then $\left[h^{\prime}, g^{\prime}\right] \in E\left(R^{\prime}\right) \cap G\left(J^{\prime}\right)=E\left(R^{\prime}, J^{\prime}\right)$ by Case 1 , hence $[h, g] \in E(R, J)$.

Thus, $E(R, J) \supset[E(R), G(J)]$.
3. Proof of Theorem 2. Let H be the subgroup of $E(R, J)$ generated by all $x_{\varphi}(r) x_{-\varphi}(u) x_{\varphi}(-r)$ with φ in Φ, r in R, and u in J. We want to prove that $H=E(R, J)$, i.e. that H is normalized by $E(R)$, i.e. that

$$
g=x_{r}(s) x_{\varphi}(r) x_{-\varphi}(u) x_{\varphi}(-r) x_{r}(-s) \in H
$$

for all φ, γ in Φ, r and s in R, and u in J. The case when $\gamma=\varphi$ is trivial, so we assume that $\gamma \neq \varphi$.

By [13], we can assume that $\gamma=-\varphi$. Indeed, if $\gamma \neq-\varphi$, then we have the commutator formula

$$
\left[x_{\varphi}(-r), x_{r}(s)\right]=\Pi x_{i \varphi+j r}\left(c_{i, j} r^{i} s^{j}\right),
$$

where the product is taken over all natural numbers $i, j \geqq 1$ such that $i \varphi+j \gamma \in \Phi$ and $c_{i, j}$ are integers (which depend on φ, γ and the order in the product; and the signs of $c_{i, j}$ depend also on our choice of parametrizations x_{α} of root subgroups). Since no convex combination of $-\varphi, \gamma$ and the roots $i \varphi+j \gamma$ is 0 , we have

$$
g^{\prime}:=x_{\varphi}(-r) x_{r}(s) x_{\varphi}(r) x_{-\varphi}(u) x_{\varphi}(-r) x_{r}(-s) x_{\varphi}(r) \in E(J),
$$

hence $g=x_{\varphi}(r) g^{\prime} x_{\varphi}(-r) \in H$.
So let now $\gamma=-\varphi$, hence

$$
g=x_{-\varphi}(s) x_{\varphi}(r) x_{-\varphi}(u) x_{\varphi}(-r) x_{-\varphi}(-s) .
$$

We pick a connected subsystem $\Phi^{\prime} \subset \Phi$ of rank 2 containing φ.
Case 1. $\Phi^{\prime}=A_{2}$. Then $\psi-\varphi \in \Phi^{\prime}$ for some ψ in Φ^{\prime}, hence $x_{-\varphi}(u)=$ $\left[x_{-\psi}(u), x_{\psi-\varphi}(\pm 1)\right]$ and

$$
\begin{aligned}
g & =x_{-\varphi}(s)\left[x_{\varphi-\psi}(\pm r u) x_{-\psi}(u), x_{\psi \psi}(\pm r) x_{\psi-\varphi}(\pm 1)\right] x_{-\varphi}(-s) \\
& =\left[x_{-\psi}(\pm r s u+u) x_{\varphi-\psi}(\pm r u), x_{\psi-\varphi}(\pm 1 \pm r s) x_{\psi}(\pm r)\right] \in E(A, J)
\end{aligned}
$$

(using, for example, the case $\gamma \neq-\varphi$ above).
For the remaining cases (namely, B_{2} and G_{2}) we give a general argument (which works also for A_{2}) due to the referee rather than the original case by case computations which are almost as complicated for G_{2} as in the general case.

We want to prove that the element g above belongs to the subgroup H of $E(R, J)$ defined above.

Let β in Φ^{\prime} be such that (φ, β) is a base (fundamental system) of Φ^{\prime}. Let Φ_{+}^{\prime} be the set of positive roots of Φ^{\prime} with respect to the base, $\Phi_{-}^{\prime}=\Phi_{+}^{\prime}, \Phi_{+}^{\prime \prime}=\left\{i \varphi+j \beta \in \Phi_{+}^{\prime}: j>0\right\}, \Phi_{-}^{\prime \prime}=-\Phi_{+}^{\prime \prime}, U_{+}^{\prime \prime}(J)$ (resp. $U_{-}^{\prime \prime}(J)$) the subgroup of $E(R)$ generated by $x_{\varphi}(J)$ with φ in $\Phi_{+}^{\prime \prime}$ (resp. in $\Phi_{-}^{\prime \prime}$). Then $U_{+}^{\prime \prime}(J)$ and $U_{-}^{\prime \prime}(J)$ are subgroups of H.

Every element h of $U_{-}^{\prime \prime}(J)$ can be expressed uniquely as

$$
h=x_{-a_{1}}\left(u_{1}\right) x_{-a_{2}}\left(u_{2}\right) \cdots x_{-a_{n}}\left(u_{n}\right)
$$

with a_{i} in $\Phi_{+}^{\prime \prime}$ and u_{i} in J. By induction on n, we can see that $\left[U_{-}^{\prime \prime}(J)\right.$, $\left.U_{+}^{\prime \prime}(R)\right] \in H$. On the other hand, we have

$$
\begin{aligned}
& x_{-\varphi}(u)=\left[x_{-(\varphi+\beta)}(u), x_{\beta}(\pm 1)\right] h^{\prime} \text { with } h^{\prime} \text { in } U_{-}^{\prime \prime}(J), \\
& g_{1}:=x_{-\varphi}(s) x_{\varphi}(r) x_{-(\varphi+\beta)}(u) x_{\varphi}(-r) x_{-\varphi}(-s) \in U_{-}^{\prime \prime}(J), \\
& g_{2}:=x_{-\varphi}(s) x_{\varphi}(r) x_{\beta}(\pm 1) x_{\varphi}(-r) x_{-\varphi}(-s) \in U_{+}^{\prime \prime}(R), \\
& g_{3}:=x_{-\varphi}(s) x_{\varphi}(r) h^{\prime} x_{\varphi}(-r) x_{-\varphi}(-s) \in U_{-}^{\prime \prime}(J) .
\end{aligned}
$$

Therefore we conclude that $g=\left[g_{1}, g_{2}\right] g_{3} \in H$.
4. Proof of Theorem 3. Let $\varphi \in \Phi$ and $u \in J$. We want to prove that $x_{\varphi}(u) \in[E(R), E(J)]=: H$. We include φ to a connected subsystem $\Phi^{\prime} \subset \Phi$ of rank 2.

Case 1. $\quad \Phi^{\prime}=A_{2}$. Then we pick a root ψ in Φ^{\prime} such that $\varphi+\psi \in \Phi^{\prime}$ (i.e. φ and ψ make angle 120°; there are two such ψ). We have

$$
x_{\varphi}(\pm u)=\left[x_{\varphi+\psi}(1), x_{-\psi}(u)\right] \in H,
$$

hence $x_{\varphi}(u) \in H$.
Case 2. $\Phi^{\prime}=B_{2}=\Phi$ and φ is long. Let ψ be a short root which makes angle 45° with φ (there are two of them). Then $y(r, s):=\left[x_{\psi}(r)\right.$, $\left.x_{\varphi-2 \psi}(s u)\right]=x_{\varphi-\psi}(\pm r s u) x_{\varphi}\left(\pm r^{2} s u\right) \in H$ for all r, s in R, hence

$$
y(r, s) y(1, r s)^{-1}=x_{\varphi}\left(\pm\left(r^{2}-r\right) s u\right) \in H
$$

By the condition of Theorem 3 in the case $\Phi=B_{2}, 1$ is the sum of elements of the form $\left(r^{2}-r\right) s$ with r, s in R. So $x_{\varphi}(u) \in H$.

Case 3. $\Phi^{\prime}=B_{2}$ and $H \supset x_{\psi}(J)$ for some ψ in Φ^{\prime}. If φ and ψ make angle 45°, then we have

$$
x_{\varphi}(\pm u) x_{\psi}(\pm u)=\left\{\begin{array}{lll}
{\left[x_{\psi-\varphi}(1), x_{2 \varphi-\psi}(u)\right]} & \text { if } & \psi \text { is long }, \\
{\left[x_{\varphi-\psi}(1), x_{2 \psi-\varphi}(u)\right]} & \text { if } & \psi \text { is short },
\end{array}\right.
$$

hence $x_{\varphi}(u) \in H$.
In general, the angle between φ and ψ is $45^{\circ} m$ with $m=0,1,2,3$, or 4. The case $m=0$ is trivial, and the case $m=1$ has been dealt with. When $m=2,3$, or 4 , we find roots $\alpha(1), \cdots, \alpha(m)$ in Φ^{\prime} such that $\alpha(1)=\psi, \alpha(m)=\varphi$, and $\alpha(i), \alpha(i+1)$ make angle 45° for $i=1, \cdots, m-1$. Then, as above, $x_{\alpha(i)}(J) \subset H$ for $i=1, \cdots, m$.

Case 4. $\Phi^{\prime}=B_{2}=\Phi$. When φ is long, we are done by Case 2. When φ is short we done by Cases 2 and 3.

Case 5. $\Phi^{\prime}=B_{2} \neq \Phi$. Then there is a sequence $\alpha(1), \cdots, \alpha(m)$ of roots in Φ such that $\alpha(1)$ belong to a subsystem of type $A_{2}, \alpha(m)=\varphi$, and $\alpha(i), \alpha(i+1)$ belong to a subsystem of type A_{2} or B_{2} for $i=1, \cdots$, $m-1$. By Case 1 and Case 3, $x_{\alpha(i)}(J) \subset H$ for $i=1, \cdots, m$.

Case 6. $\Phi^{\prime}=G_{2}$ and φ is long. Then φ belongs to a subsystem of type A_{2}, so we are done by Case 1.

Case 7. $\Phi^{\prime}=G_{2}$ and φ is short. Pick a root ψ in Φ^{\prime} which makes angle 60° with φ. Then

$$
H \ni\left[x_{\varphi-2 \psi}(s u), x_{\psi}(r)\right]=x_{\varphi-\psi}(\pm s u r) x_{\varphi}\left(\pm s u r^{2}\right) x_{\varphi+\psi}\left(\pm s u r^{3}\right) x_{2 \varphi-\psi}\left(\pm s^{2} u^{2} r^{2}\right)
$$

hence (using Case 6) $H \ni y(r, s):=x_{\varphi-\psi}(\pm s u r) x_{\varphi}\left(\pm s u r^{2}\right)$. So

$$
H \ni y(1, r s)^{-1} y(r, s)=x\left(\pm u s\left(r^{2}-r\right)\right) .
$$

By the assumption of Theorem 3 in the case $\Phi=G_{2}$, we conclude that $x_{\varphi}(u) \in H$.

Thus, $H=[E(R), E(J)] \supset E(R, J)$ in all cases.
Using Theorem 1, we conclude that
$E(R, J)=[E(R), E(J)]=[E(R), G(J)]=[G(R), E(R, J)]=[G(R), E(J)]$.
Therefore only the inclusion $E(R, J) \supset[E(R), G(R, J)]$ is left to prove. We fix an arbitrary g in $G(R, J)$. For each h in $E(R)$ we set

$$
F(h):=[h, g] E(R, J) \in(E(R) \cap G(J)) / E(R, J) .
$$

Then $h \mapsto F(h)$ is a homomorphism from the perfect group $E(R)$ to a commutative group. So F is trivial, i.e. $[h, g] \in E(R, J)$ for all h in $E(R)$. Thus, $E(R, J) \supset[E(R), G(R, J)]$.
5. Proof of Theorem $4(\mathbf{a})$. Let H be the normal subgroup of $E(R)$ generated by $x_{\varphi}(z)$. We have to prove that $H \supset x_{\psi}(R z)$ for every ψ in Φ. We include φ and ψ to a connected subsystem $\Phi^{\prime} \subset \Phi$ of rank 2.

Case 1. $\Phi^{\prime}=A_{2}$ and the angle between φ and ψ is 60°. Then $H \ni\left[x_{\varphi}(z), x_{\psi-\varphi}(r)\right]=x_{\psi}(\pm z r)$ for all r in R, so $H \supset x_{\psi}(R z)$.

Case 2. $\quad \Phi^{\prime}=A_{2}$. We find a sequence $\alpha(1), \cdots, \alpha(m)$ in Φ^{\prime} such that $2 \leqq m \leqq 6, \alpha(1)=\varphi, \alpha(m)=\psi$, and $\alpha(i), \alpha(i+1)$ make angle 60° for $i=1, \cdots, m-1$. Then, by Case $1, x_{\alpha(i)}(R z) \subset H$ for $i=2, \cdots, m$.

Case 3. $\Phi^{\prime}=\Phi=B_{2}, \varphi$ is short, and ψ makes 45° angle with φ. Then $H \ni\left[x_{\varphi}(z), x_{\psi-2 \varphi}(r)\right]=x_{\psi}(\pm 2 r z)$ for all r in R, hence $H \supset x_{\psi}(2 R z)$. Moreover,

$$
H \ni\left[x_{\varphi}(z), x_{\psi-2 \varphi}(s)\right]=x_{\psi-\varphi}(\pm z s) x_{\psi}\left(\pm z^{2} s\right)=: y(s)
$$

and

$$
H \ni\left[y(s), x_{2 \varphi-\psi}(r)\right]=x_{\varphi}(\pm z s r) x_{\psi}\left(\pm x^{2} s^{2} r\right)=y^{\prime}(r, s)
$$

for all r, s in R.
Therefore

$$
H \ni y^{\prime}(r, s) y^{\prime}(s r, 1)^{-1}=x_{\psi}\left(\pm z^{2} s\left(r^{2}-r\right)\right)
$$

Using the condition of Theorem 3, we conclude that $H \supset x_{\psi}\left(R z^{2}\right)$.

Thus, $H \supset x_{\psi}\left(2 R z+R z^{2}\right)$. By the condition of Theorem 4 (with $e(\Phi)=$ 2), $H \supset x_{\psi}(R z)$.

Case 4. $\Phi^{\prime}=\Phi=B_{2}, \varphi$ is long, and ψ makes angle 45° with φ. Then

$$
H \ni y(r):=\left[x_{\varphi}(z), x_{\psi-\varphi}(r)\right]=x_{\psi}(\pm z r) x_{2 \psi-\varphi}\left(\pm r^{2} z\right)
$$

and

$$
H \ni y^{\prime}(r, s):=\left[y(r), x_{\varphi-\psi}(s)\right]=x_{\psi}\left(\pm r^{2} s z\right) x_{\varphi}\left(\pm s^{2} r^{2} z \pm 2 r s z\right)
$$

for all r, s in R, hence

$$
H \ni y^{\prime}(r, s) y^{\prime}(1, r s)^{-1}=x_{\psi}\left(\pm\left(r^{2}-r\right) s z\right) .
$$

It follows from the condition of Theorem 3 that $H \supset x_{\psi}(R z)$.
Case 5. $\quad \Phi^{\prime}=\Phi=B_{2}$. We find a sequence $\alpha(1), \cdots, \alpha(m)$ in Φ^{\prime} such that $\alpha(1)=\varphi, \alpha(m)=\psi$, and $\alpha(i), \alpha(i+1)$ make angle 45° for $i=1, \cdots$, $m-1$. Then, by Cases 3 and $4, H \supset x_{\alpha(i)}(R z)$ for $i=2, \cdots, m$.

Case 6. φ is long and Φ is of type $B_{n}, n \geqq 3$, or F_{4}. Then the long roots in Φ form a connected subsystem, so $H \supset x_{r}(R z)$ for every long root γ by Case 1. If ψ is short, it makes angle 45° with a long γ in Φ^{\prime}, hence

$$
x_{\psi}(u)=\left[x_{r}(u), x_{\psi-r}(\pm 1)\right] x_{2 \psi-r}(\pm u) \in H
$$

for all u in $R z$.
Case 7. φ is short and Φ is of type $C_{n}, n \geqq 3$, or F_{4}. Then, by Case 1, $H \supset x_{\tau}(R z)$ for every short root γ in Φ. If ψ is long, it makes angle 45° with a short root γ in Φ^{\prime}, hence

$$
x_{\psi \gamma}(u)=\left[x_{r}(u), x_{\psi-r}(\pm 1)\right] x_{\psi+r}\left(\pm u^{2}\right) \in H
$$

for all u in $R z$.
Case 8. φ is long and $\Phi=C_{n}$ with $n \geqq 3$. Let $\alpha \in \Phi^{\prime}$ make angle 45° with φ and $\beta \in \Phi$ make angle 120° with α. Then $H \ni g:=\left[x_{\varphi}(z)\right.$, $\left.x_{\alpha-\varphi}(1)\right]=x_{\alpha}(\pm z) x_{2 \alpha-\varphi}\left(\pm r^{2} z\right)$ and

$$
H \ni\left[g, x_{\beta}(1)\right]=x_{\alpha+\beta}(z) .
$$

By Case 1, $H \supset x_{r}(R z)$ for all short roots γ in Φ. If ψ is long, we conclude that $H \supset x_{\psi}(R z)$ as in Case 7.

Case 9. φ is short and $\Phi=B_{n}$ with $n \geqq 3$. Let $\alpha \in \Phi^{\prime}$ make angle 45° with φ and $\beta \in \Phi$ make angle 120° with α. Then

$$
H \ni\left[x_{\varphi}(z), z_{\alpha-\varphi}(r)\right]=x_{\alpha}(\pm 2 r z)
$$

and

$$
H \ni y(s):=\left[x_{\varphi}(z), x_{\alpha-2 \varphi}(s)\right]=x_{\alpha-\varphi}(\pm z s) x_{\alpha}\left(\pm z^{2} s\right),
$$

hence

$$
H \ni\left[y(s), x_{\beta}(1)\right]=x_{\alpha+\beta}\left(\pm z^{2} s\right)
$$

for all r, s in R.
By Case 1, $H \supset x_{r}\left(2 R z+R z^{2}\right)$ for all long roots γ in Φ. By the condition of Theorem 4 (with $e(\Phi)=2$), $H \supset x_{r}(R z)$ for all long γ. If ψ is short, we find a long γ in Φ^{\prime} which makes angle 45° with ψ and obtain, as in Case 6, that $H \supset x_{\psi}(R z)$.

Case 10. $\Phi^{\prime}=G_{2}$ and φ is long. By Case 1, $H \supset x_{\alpha}(R z)$ for all long roots α in $\Phi^{\prime}=\Phi$. If ψ is short, let α make angle 150° with ψ. Then

$$
H \ni\left[x_{\alpha+2 \psi}(r), x_{-2 \alpha-3 \psi}(s z)\right]=x_{-\alpha-\psi}(\pm r s z) x_{\psi}\left(\pm r^{2} s z\right) x_{\alpha+3 \psi}\left(\pm r^{3} s z\right) x_{-\alpha}\left(\pm r^{3} s^{2} z^{2}\right)
$$

for all r, s in R, hence

$$
H \ni y(r, s):=x_{-\alpha-\psi}(\pm r s z) x_{\psi}\left(\pm r^{2} s z\right)
$$

Therefore $H \ni y(r, s) y(1, r s)^{-1}=x_{\psi}\left(\pm\left(r^{2}-r\right) s z\right)$. By the condition of Theorem 3, it follows that $H \supset x_{\psi r}(R z)$.

Case 11. $\Phi^{\prime}=G_{2}$ and φ is short. Let α make angle 30° with φ. Then

$$
H \ni\left[x_{\varphi}(z), x_{\alpha-\varphi}(r)\right]=x_{\alpha}(\pm 3 z r)
$$

for all r in R, hence $x_{\alpha}(3 R z) \subset H$. By Case 10, it follows that $x_{r}(3 R z) \subset H$ for all roots γ in $\Phi^{\prime}=\Phi$.

Using this with $\gamma=\alpha$ and $\gamma=2 \alpha-3 \varphi$, it follows from

$$
H \ni\left[x_{\varphi}(z), x_{\alpha-2 \varphi}(r)\right]=x_{\alpha-\varphi}(\pm 2 r z) x_{\alpha}\left(\pm 3 z^{2} r\right) x_{2 \alpha-3 \varphi}\left(\pm 3 r^{2} z\right)
$$

that $H \ni x_{\alpha-\varphi}(\pm 2 r z)$ for all r in R. So $H \supset x_{\alpha-\varphi}(2 R z)$. Rotating this by 30°, we obtain that $H \supset x_{\alpha-2 \varphi}(4 R z)$.

Using these inclusions and that

$$
\left.H \ni\left[x_{\varphi}(z), x_{\alpha-3 \varphi}(4 r)\right]=x_{\alpha-2 \varphi}(\pm 4 r z) x_{\alpha-\varphi}\left(\pm 4 r z^{2}\right) x_{\alpha}\left(\pm 4 r z^{3}\right) x_{2 \alpha-3 \varphi}\right)\left(\pm 16 r^{2} z^{3}\right)
$$

we conclude that

$$
H \ni x_{\alpha}\left(\pm 4 r z^{3}\right) x_{2 \alpha-3 \varphi}\left(\pm 16 r^{2} z^{3}\right)=: g
$$

for all r in R. Therefore

$$
H \ni\left[g, x_{\alpha-3 \varphi}(1)\right]=x_{2 \alpha-3 \varphi}\left(\pm 4 r z^{3}\right),
$$

hence $H \supset x_{2 \alpha-3 \varphi}\left(4 R z^{3}\right)$. By Case $10, H \supset x_{r}\left(4 R z^{3}\right)$ for all roots γ in Φ.
Thus, $H \supset x_{r}\left(3 R z+4 R z^{3}\right)$ for all γ. By the condition of Theorem 4 (with $e(\Phi)=3$), $3 R z+4 R z^{3}=3 R z+R z^{3}=R z$.
6. Proof of Theorem $4(b)$.

Lemma 6. Under the condition of Theorem 3, assume that H is a
non-central subgroup of $G(R)$ normalized by $E(R)$. Then $H \ni x_{\varphi}(z)$ for some φ in Φ and a non-zero z in R.

Proof. We pick a non-central element h in H. There is a finitely generated subring R^{\prime} of R such that $1 \in R^{\prime}$ and $h \in G\left(R^{\prime}\right)$. Let p_{1}, \cdots, p_{m} be the minimal prime ideals of R^{\prime} (where $m \geqq 1$). Consider the images H_{i} in $G\left(R^{\prime} / p_{i}\right)$ of $H \cap G\left(R^{\prime}\right)$. The subgroup H_{i} of $G\left(R^{\prime} / p_{i}\right)$ is normalized by $E\left(R^{\prime} / p_{i}\right)$. By [26, Theorem 10.1 with $A=B=R^{\prime} / p_{i}$], either H_{i} is central or $H \supset E\left(J_{i}\right)$ for a non-zero ideal J_{i} of R^{\prime} / p_{i}.

Suppose first that H_{i} is not central for some i, say, for $i=1$. Then we pick: a subsystem Φ^{\prime} of Φ of type A_{2} or B_{2}; a long root φ in Φ^{\prime}; a root ψ in Φ^{\prime} which makes angle 60° or 45° with φ; a non-zero u_{1} in J_{1}; some u in R^{\prime} with $u_{1}=u+p_{1} ; g$ in $H \cap G\left(R^{\prime}\right)$ with image $x_{\varphi}\left(u_{1}\right)$ in H_{1}; an element t in R^{\prime} outside p_{1} which belongs to all p_{i} with $i=2, \cdots, m$; an ordering on Φ such that φ and, when $\Phi^{\prime}=B_{2}, 2 \psi-\varphi$ are positive. Then $g x_{\varphi}(-u) \in G\left(p_{1}\right)$.

We have

$$
H \ni\left[g, x_{\psi-\varphi}(t)\right]=\left\{\begin{array}{l}
x_{\psi}(\pm u t) g_{0} \quad \text { when } \quad \Phi^{\prime}=A_{2}, \\
x_{\psi(}(\pm u t) x_{2 \psi-\varphi}\left(\pm u t^{2}\right) g_{0} \quad \text { when } \quad \Phi^{\prime}=B_{2},
\end{array}\right.
$$

with $g_{0} \in G\left(R^{\prime} u t\right) \subset G\left(\operatorname{rad}\left(R^{\prime}\right)\right) \subset G(\operatorname{rad}(R))$, where rad means the Jacobson radical. By [1], [2], $G(\operatorname{rad}(R))=U(\operatorname{rad}(R)) T(\operatorname{rad}(R)) V(\operatorname{rad}(R))$, where U is the subgroup of G generated by positive roots, V is the subgroup of G generated by negative roots, and T is the torus.

Thus, H contains a non-central element (namely, $\left[g, x_{\psi-\varphi}(t)\right]$) of $U(R) T(R) V(\operatorname{rad}(R))$, assuming that H_{i} is not central for some i. If H_{i} is central for all i, then $g \in G\left(\operatorname{rad}\left(R^{\prime}\right)\right) \subset G(\operatorname{rad}(R))$ is a non-central element of $U(R) T(R) V(\operatorname{rad}(R))$. Now the conclusion of Lemma 6 follows from [2].

Now we can conclude our proof of Theorem 4(b). By Theorem 4(a), there is an ideal J of R such that $H \cap x_{\alpha}(R)=x_{\alpha}(J)$ for every root α in Φ. Applying Lemma 6 to the ring R / J and the image H^{\prime} of H in $G(R / J)$, we conclude that either H^{\prime} is central (i.e. $H \subset G(R, J)$ and we are done) or $H^{\prime} \ni x_{\varphi}\left(z^{\prime}\right)$ for some non-zero z^{\prime} in R / J.

In the latter case we are going to obtain a contradiction with our choice of J. Applying Theorem 4(a), we have $H^{\prime} \ni x_{\varphi}\left(z^{\prime}\right)$ for all φ in Φ. We pick z in R such that $z+J=z^{\prime}$.

If Φ contains a subsystem Φ^{\prime} of type A_{2}, we pick roots φ, ψ in Φ^{\prime} such that $\varphi-\psi \in \Phi^{\prime}$, and we pick g in H such that $g x_{\varphi}(-z) \in G(J)$. Then $H \ni\left[g, x_{\psi-\varphi}(1)\right]=x_{\psi}(\pm z) g_{0}$ with $g_{0} \in E(R, J) \subset H$, using Theorem 1. Therefore $x_{\psi}(z) \in H$ which contradicts our choice of J.

If Φ does not contain a subsystem of type A_{2}, then $\Phi=B_{2}$. We pick
a long root φ and a short root ψ such that $\varphi-\psi \in \Phi$. For every r in R we pick $g(r)$ in H such that $g(r) x_{\varphi}(-z r) \in G(J)$. Then, for every s in R,

$$
H \ni\left[g(r), x_{\psi-\varphi}(s)\right]=x_{\psi}(\pm u r s) x_{2 \psi-\varphi}\left(\pm u r s^{2}\right) g_{0}
$$

with $g_{0} \in E(R, J) \subset H$, hence

$$
H \ni y(r, s):=x_{\psi}(\pm u r s) x_{2 \psi-\varphi}\left(\pm u r s^{2}\right) .
$$

Therefore $H \ni y(r, s) y(r s, 1)^{-1}=x_{2 \psi-\varphi}\left(u r\left(s^{2}-s\right)\right)$ for all r, s in R. In view of the condition of Theorem 3, this contradicts our choice of J.
7. Proof of Theorem 5. The group $E(R)$ is perfect by Theorem 3 with $J=R$.

Let H be a subgroup $G(R)$ containing $E(R)$ and $f: H \rightarrow H$ an automorphism. By Theorem 1, $E(R)$ is normal in H, so $f(E(R))$ is normal in $f(H)=H$. By Theorem $4(\mathrm{~b}), E(R, J) \subset f(E(R)) \subset G(R, J)$ for an ideal J of R.

The main step in our proof is to show that $J=R$. We assume that $J \neq R$ and will obtain a contradiction.

When G is not of type B_{2} or G_{2}, let R^{\prime} denote the subring of R generated by 1 . When G is of type B_{2} or G_{2}, we use the condition of Theorem 3 to write $1=\sum s_{i}\left(r_{i}^{2}-r_{i}\right)$, and we denote by R^{\prime} the subring of R generated by these s_{i} and r_{i}. Then R^{\prime} is a finitely generated ring with 1. By Theorem 3, $E\left(R^{\prime}\right)$ is perfect; from the proof of the theorem it is easy to see that the group $E\left(R^{\prime}\right)$ is finitely generated.

Therefore there is a finitely generated ideal J^{\prime} of R^{\prime} such that $f\left(E\left(R^{\prime}\right)\right) \subset G\left(J^{\prime}\right), J^{\prime} \subset J$, and $J^{\prime} J^{\prime}=J^{\prime}$, where $J^{\prime} J^{\prime}$ is the additive subgroup of J^{\prime} generated by all $r s$ with r, s in J^{\prime}. By the Nakayama lemma, $s J^{\prime}=0$ for some $s \in R^{\prime} \backslash J^{\prime}$.

Therefore $E(s R)$ commutes with $f\left(E\left(R^{\prime}\right)\right)$, so the centralizer of $f\left(E\left(R^{\prime}\right)\right)$ in H is not commutative. On the other hand, the centralizer of $E\left(R^{\prime}\right)$ in $G(R)$ is commutative. This contradiction proves that $J=R$.

Thus, $f(E(R)) \supset E(R)$. Since f^{-1} is also an automorphism of H, we have $f^{-1}(E(R)) \supset E(R)$. So $f(E(R))=E(R)$. That is, $E(R)$ is a characteristic subgroup of H.

Acknowledgement. I thank the referee who corrected misprints. Also, the referee made the proof of Theorem 3 shorter and observed that the proofs of Theorems 3 and 4(a) could be simplified under the following assumption on the ring R in the case when G is of type B_{2} or G_{2} : there is a unit u of R such that $u-1$ is a unit too. This assumption is strictly stronger than the assumption of Theorem 3 that R has no factor rings
of two elements in the case when G is of type B_{2} or G_{2} (which in fact is a necessary and sufficient condition for the conclusions of Theorems 3 and 4 to be true). For the types other than B_{2} and G_{2} no assumptions on R are needed, and proofs can be simplified.

References

[1] E. Abe, Chevalley groups over local rings, Tôhoku Math. Journal 21 (1969), 274-294.
[2] E. Abe and K. Suzuki, On normal subgroups of Chevalley groups over commutative rings, Tôhoku Math. Journal 28 (1976), 185-198.
[3] A. Bak, On modules with quadratic forms, in Lecture Notes in Math. 108, SpringerVerlag, Berlin, Heidelberg, New York (1969), 55-66.
[4] H. Bass, K-theory and stable algebra, Publ. Math. IHES 22 (1964), 5-60.
[5] H. Bass, J. Milnor and J.-P. Serre, Solution of the congruence subgroup problem for $S L_{n}(n \geqq 3)$ and $S p_{2 n}(n \geqq 2)$, Publ. Math. IHES 33 (1967), 59-137.
[6] A. Bored, Properties and linear representations of Chevalley groups, in Lecture Notes in Math. 131, Springer-Verlag, Berlin, Heidelberg, New York (1970), 1-55.
[7] R. W. Carter, Simple groups of Lie type, Willey-Interscience London, New York 1972.
[8] C. Chevalley, Sur certains groupes simples, Tôhoku Math. Journal, 7 (1955), 14-66.
[9] P. Conn, On the structure of the $G L_{2}$ of a ring, Publ. Math. IHES 30 (1966), 5-53.
[10] M. Demazure, Schémas en groupes réductifs, Bull. Soc. Math. France 93 (1965), 369-413.
[11] L. E. Dickson, Theory of linear groups in an arbitrary field, Trans. Amer. Math. Soc. 2 (1901), 363-394.
[12] J. Dieudonné, La géometrie des groupes classiques, 3rd ed. Springer-Verlag, Berlin, Heidelberg, New York 1971.
[13] J. Hurley, Some normal subgroups of elementary subgroups of Chevalley groups over rings, Amer. J. Math. 93 (1971), 1059-68.
[14] W. Klingenberg, Lineare Gruppen uber lokalen Ringen, Amer. J. Math. 83 (1961), 137-153.
[15] W. Klingenberg, Symplectic groups over local rings, Amer. J. Math. 85 (1963), 232-240.
[16] W. Klingenberg, Orthogonale Gruppen über lokalen Ringen, Amer. J. Math. 83 (1961), 281-320.
[17] B. Kostant, Group over Z, AMS Proc. Symp. Pure Math. 9 (1966), 90-99.
[18] V.I. Koperko, The stabilization of symplectic groups over a polynomial ring, Math. USSR Sbornik 34 (1978), 655-669.
[19] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Scient. Ec. Norm. Sup. 2 (1969), 1-62.
[20] M. Stein, Generators, relations and coverings of Chevalley groups over commutative rings, Amer. J. Math. 93 (1971), 965-1004.
[21] R. Steinberg, Lectures on Chevalley groups, Yale University, 1967.
[22] A. A. Sushin, On the structure of the special linear group over polynomial rings, Izv. Akad. Nauk., ser. mat. 41 (1977), 503-516.
[23] A. A. Suslin and V.I. Kopeiko, Quadratic modules and orthogonal groups over polynomial rings, J. Sov. Math. 20:6 (1982).
[24] G. Taddéi, Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau, preprint.
[25] L. N. Vaserstein, On the normal subgroups of $G L_{n}$ over a ring, in Lecture Notes in Math. 854, Springer-Verlag, Berlin, Heidelberg, New York (1980), 454-465.
[26] L. N. Vaserstein, On full subgroups of Chevalley groups, Tôhoku Math. Journal 37 (1985), 423-454.
[27] L. N. Vaserstein and A. A. Suslin, Serre's problem on projective modules over polynomial rings and algebraic K-theory, Math. USSR Izv. 10 (1976), 937-1001.
Department of Mathematics
Pennsylvania State University
University Park, PA 16802
U.S.A.

[^0]: * Supported in part by NSF and Guggenheim Foundation.

