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Introduction. The purpose of this note is to obtain inequalities of
the Fejer-Riesz type for subspaces of the unit ball and the generalized half-
plane in Cn, n ̂  2. Let B\= {z e Cn \ \z\<l} denote the unit ball in Cn, where
\z\2 = Z& + + znzn. We write L2k+1 for the space R x Ck x {0} x x
{0}cCn and L2k for Cfex{0}x x{0}, where R means the real line in C.
We denote by Bm the unit ball in Rm. Surface measures on dB and dBm,
respectively, will be denoted by dσ and dσm. For / e HP(B), 0 < p < + oo,
we define

II? = sup \f(rζ)\"dσ(ζ) .
0<r<lJdB

In the following, (1) is known for k = n — 1 ([1]), and (2) is also known
for k = w — 1 ([6, 7.2.4, (b)]). A similar inequality is given in [5], where
the subspace is RxR in C2. Moreover, analogous inequalities are known
for harmonic functions on the unit ball in Rn ([4]).

The author wishes to thank M. Kaneko for useful conversations.

THEOREM 1. There is a constant C, depending on n, k, such that
the following holds for every f eHp(B), 0 < p < +oo:

( 1 ) j l/(z)lp(l - \z\2)n-k~ιdz ^ Cll/ll; , 0 ̂  k ̂  n - 1 .

There is a constant C such that

( 2 ) \\Ami-\z\r-^z^c\\mUP * 1 =s k ̂

n — k — 1 is the smallest exponent in each case. The best possible con-
stant C0(w; 2k + 1) for (1) satisfies

Γ(n/2)Γ(n - k) < C( 2 , -. < Γ(n - k)
2Γ(n/2 + l/2)π»-*-^ " U{n' 2 & + 1 } ̂  2 π — *

For (2), C0(n; 2k) = (2ττn"fc)~1Γ(n — fc) is ίfce 6esί possible constant.
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Let D = {(zu z') eCxCn~ι\Imz, - \z'\* > 0} and let

11? = sup ( \f(Xί + iy, + i\z'\\ z'W

for feHp(D), 0 < p < + 00. In the following, C0(n; 3) denote the con-
stants in Theorem 1. (3) is known for k = n — 1 ([2]). Again, analogous
inequalities for harmonic functions on jβπx(θ, +00) are given in [3].

T H E O R E M 2. For every x.eR, every feHp(D), 0 < p < + 0 0 , and

0 ^ k ^ n — 1, we have

3
O JL

i\z' dz' ^ C0(n; 2k
JO JL2k

The following holds for f e HP(D), 0 < p < +00, and 1 <: k ^ n - 1:

|/fe + i t f l + ί\z' ')\*ifi-k-1dxidz' ̂  2CQ(n; 2k)\\f\\* .

The exponent n — k — 1 is unique in each case.

1. Proof of Theorem 1. We write fr(z) = /(rz), 0 < r < 1. To prove
(1), we may suppose that 0 <; k ^ n — 2, since the case fc = n — 1 is
included in [1]. Let feHp(B). Then for an arbitrarily fixed point
(x19 zf) 6 B 2 k + 1 , w h e r e xxeR a n d z'= (z2, ---,zk+1), t h e f u n c t i o n \fr(xlfz'f
(1 — ί»ϊ — |z ' | 2 ) 1 / 2 z")l p of t h e v a r i a b l e z " = (z f c + 2, •••,«„) is p l u r i s u b h a r m o n i c

in a n e i g h b o r h o o d of B2n_2k_2J h e n c e

By Fubini's theorem we can see that

L := ( IΛfe, «', 0")lpd - aί -

^ IB^-a-,1-1 S IΛ(*lf 2', Wdx&dz" .

[1, Theorem 1, (3)] shows that the right side does not exceed 2~1Γ(n —
?. From

J r = r~2n+1 \ \f(xlf z'f 0") | p(r 2 - x\ - l ^ l 2 ) - * - 1 ^ ^ '
J l ( » l , z ' ) l < r

we obtain (1) by letting r—>1. Next, for ΛΓ^ 1, /3 > —1, /O > 0, note
that

( 5 ) \ (p> - \x\ydx = A(N,
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where A(N, β) = Γ~\N/2 + β + l)Γ(β + l)πN'\ Let a > - 1 , c<n. Then,
for 1 ̂  k ̂  n — 1, by Fubini's theorem and (5),

- \z\rdz

= A(2k, a) ^

This is valid for Λ; = 0 with A(0, α) = 1. Now suppose that — 1 < a <
n — k — 1. Then, for c = a + k + 1, the function (1 — z^)~~e belongs to
H\B) and we have I2k+1 = + oo. Thus ^ — k — 1 is the smallest exponent
that guarantees (1). Finally, take c < n and put a — n — k — 1, 0 ^
k ^ w — 1. Then, by using Legendre's duplication formula, we have

I - A(2k n - fc - i^g"—'An - c)Γ(n) ^ Γ(n - c)Γ(n -i2fc+1 - AlZfc, n A: 1) Γ ( g Λ _̂  β ) Γ ( Λ _

On the other hand, we know from [6, p. 54] that

Jn:=\ |1 - C

hence

- k)
( 6 ) 2Γ(n - c/2

Letting c -> n, we obtain the desired estimate. Now we shall prove (2)
using a formula which will be treated in the next section. Write z in
the form (z\ z") with z9 = (z19 , zh), z" = (zk+19 , zn). The plurisub-
harmonicity of \fr(z\ (1 - |zT)1/2z")|p as a function of z" implies that

\fr(z', 0")lp ^ l a ^ ^ r 1 ί |/ r(z', (1 - \z7)1/2C)\pdσ2n_2k(n ,
J352Λ-2A;

hence by the formula (7) we have

( \UQUσ{Q .( I Λ ( , ) i d | T ) ^ 1 ^ ^ r
jB2k JdB

Equality holds for / = 1, so the constant is best possible. Next suppose
that -l<a<n-k-l and let c = a + k + 1. Then, by (5),

S |1 - wj-^l - \w\2)adw = C(k, a)\ |1 - ^ |
JB0L2k J^2

1 ^k^n-1.

Letting ŵ  = (^ + ί)~\z1 — i), where zx = xt + ii/i with ^ 6 /ί, ^ > 0, we
can see that
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= C'(k, a) \+°°dy1 \
+°° (xl + (y, + l)t)-^t+1)/tvrk-ιdxί = + oo .

JO J-oo

REMARK. If, formally, we let n = 1, k = 0 in (6), then C0(l, 1) be-
comes 1/2. It may be worth mentioning that this is actually so. Indeed,
letting eiθ = (t + i)-\t - ΐ), - oo < t < + oo, in

J ι = \ | i - eiβ\"dθ , e < l ,
Jo

we see from dθ = 2{t + l)-ιdt that J, = 21-eΓ~ia - c/2)Γ((l - c)/2)π1/2 and,
together with I, = 2x"e(l - c)~\ we get (6).

2. An integral formula. Let n^2, l<Lk^n — 1. For / 6 L^dl?,
dσ) we shall show that

( 7 ) \

\ (1 - \z'\r-"-'dz' \ f{z', (1 - \z'\ψVr)dσ2n_>k(ζ") ,

where «' = (zlf , «fc), ζ" = (ζfc+1, , ζn). Note that, if we employ nor-
malized measures, this yields 1.4.4 and 1.4.7, (2) of [6]. In the rest of
this section, Lebesgue measure on R5 will be denoted by dvά.

LEMMA. Let m ^ 3, 1 ^ k ^ m - 2. Let f e L\dBm, dσj. Then

f(x)dσm(x)

m

= ( (1 - \x'\*ym-k-2)/2dvk(x') \ f(x', (1 - \x'\ψ*x")dσm^{x") ,

where xr = (x19 , xk), x" = fe+1, , a?m).

PROOF. Let Ψ be the usual parametrization for dBm defined by
Ψifl) = y(ί l f , en_,) = (x19 , a?J, where

Xx — COS ^i ,

Xj = sin ^ sin 0 y - 1 cos θό , 2 ^ j ^ m — 1 ,

xm = sin *! sin θm_2 sin θm_λ ,

0 < θlf , ^m_2 < π, 0 ^ ^m_, < 2ττ. Then dσm = ΠΓ="i2 (sin θ^^dθ,
d^m_1 = : J(ί)(W. Put Ψk{θ') = fe, , a?4), ^' = (^, , θh). Then the map-
ping Ψk: (0, TΓ)* -> J5Λ gives a parametrization for the ball Bk, and dvA =
Π?=i (sin θjY-^dθ, --- dθk =:J'(θ')dθ'. Finally define the mapping <f by

= (»*+» •••,»•), ^ ' = (ί*+i, , ί - i ) e (0, πr-k->x [0,
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where yh+ι = cos θk+1, , ym — sin θk+1 sin θm_i Then ψ gives a pa-
rametrization for dBm_k, and dσ M_k = ΠΓ=~I*~2 ( s i n θk+j)

n~k~i~1dθk+1

<W«-i = : ^"(tf*+i, , θm^)dθ". Note that Π*-i sin 0, = (1 - | f k(θ')\ψ\ so
y(*) = (2^(0'), (1 - \Ψk{θ')\ψ*f{θ")). On the other hand, we can write

J(fl) = ( g a i n e , ) m ~ k ~ 2 J ' ( e ' ) J " ( d k + 1 , .--, θn_,)

= a - |
It follows that

Λx)dσm(x) = \ 2 RΨ{θ))J{θ)dθ

= \ (l- \wk(θ')\ym-k-i)/2JΨW \
J(0,π)k J(0,JΓ)w~fc~2x[0,2JΓ)

w h e r e (*) = flPJW), (1 - \Ψk(θf)\rzψ(θff))J^θk+lf ••., θ m _ 2 ) .

3. Proof of Theorem 2. The Cayley transform Ψ:D^>B is defined
by Ψ(zlf ' , zn) = (w19 , wn), where w1 = (zx + i)~\zx — i) and ws =
2ZJ(Z1 + i)~ι, 2 ^ j ^ n. For / e HP(D), 0 < p < + oo, there is a unique
g 6 HP(B) such that

( 8 ) f(z) = (go?F)(^)(2;1 + i)~2n/p , zeD ,

and this correspondence determines an isomorphism of HP(D) onto HP(B).
Moreover, ||flf||; = A(w)||/||5 for a constant A(w) ([7]). We note here that
A(w) = 22*"1, which is seen from a computation by letting g = 1. Now,
to see (3), it suffices to assume that x1 = 0. Take / e HP(D). Then by
(1) and (8)

I:=[ \g(w)\p(l - Iwfy-^dw ^ 22n-1C0(n; 2k J

Put w = Ψ(z), where « = (i^, zif , «fc+1> 0, , 0), y1 > |z'|2. Then Ψ maps
DnCi/JxC^xiOjx ••• x{0}) onto BΓ\L2k+1 and the Jacobian determinant is
seen to be 22k+\y1 + I)- 2*" 2 . Note that 1 - \Ψ(z)\2 = 4(»x - |2:'|2)(^ + I)" 2 .
Thus

/ = 2— 1 \ \f(iy19 z')\p{Vι - l / l 1 ) " - * - 1 ^ ^
J U ' l 2

\ \f(iyi= 2 ^ \

and this proves (3). To verify (4) it is enough to see that Ψ maps DΓιL2k

onto Bf)L2k and that the Jacobian determinant is 22*|ίί1 + i|"2*"2. Next
we shall show that n — k — 1 is the unique admissible exponent. First,
in (3), consider y" with a > n — k — 1, and let c = a + k + 1- Then
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(Zi + i)~e € H\D) as is seen from (8), and changing variables we can see
that, for 0 <: k <: n - 1,

( (Vi + I*T + l)-eVΐdzf = C
o Jc& Jo

In the case a<n-k-l, put c = α+fc+1. Then /(z): = zr'fe+i)"2 n + c e H\D)
by (8). If 1 <̂  fc <̂  n- — 1, we see that

°°dlfi ί IΛWi + i\A\ z'Mdz' >c[dyι \ fa + \z'\*r'y;dz'
O JL2k Jθ J lβ 'Kl

The case k = 0 is straightforward. In (4) consider yl with α > n — A; — 1
and put c — a + k + 1. Then

0 JL^k-i Jθ

Finally, let a < n — k — 1 and put c = α + fc + 1. We suppose that
2 ^ & ̂  w — 1, the case k = 1 being similar. For /(z) = ^Γc(^i + i)~2n+e

we have

> C S1 d^ \ dz' \ (x\ + fa + |zT)Tβ/

Jo Jlz'Ki JlxiKi

where

j 1 + (Vi + I^Ί 2 ) 2 )-"^! > CKVi + \z'\Ύ

\ i + IzTΓW >\
Jlβ'Kl

Thus 1 = +oo#
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