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FEJER-RIESZ INEQUALITIES FOR LOWER
DIMENSIONAL SUBSPACES
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Introduction. The purpose of this note is to obtain inequalities of
the Fejér-Riesz type for subspaces of the unit ball and the generalized half-
plane in C*, n = 2. Let B'={z¢eC"||2|<1} denote the unit ball in C"*, where
|2{* = 2,2, + +++ + 2,2,. We write L,,,, for the space RXC*x{0}x--- X
{0}cC™ and L, for C*x {0} x ---x {0}, where R means the real line in C.
We denote by B,, the unit ball in R™ Surface measures on 9B and 4B,,
respectively, will be denoted by do and dg,.. For fe H?(B), 0 < p < + oo,
we define

£l = sup {10 Pdo@) -

In the following, (1) is known for £k =n — 1 ([1]), and (2) is also known
for k =n — 1 ([6, 7.2.4, (b)]). A similar inequality is given in [5], where
the subspace is RX R in C®. Moreover, analogous inequalities are known
for harmonic functions on the unit ball in R™ ([4]).

The author wishes to thank M. Kaneko for useful conversations.

THEOREM 1. There is a constant C, depending on n, k, such that
the following holds for every fe H?(B), 0 < p < + oo:

(v Sm L @PQA — ey de < CIFI, 0sk<=mn—1.
2k+1

There 1s a constant C such that

(2) |, @ -y S OISl 1skSa—1,

n —k —1 is the smallest exponent in each case. The best possible con-
stant Cyn; 2k + 1) for (1) satisfies

I'n/2)I'(n — k) . I'n —k)
2I(n/2 + 1/2)gm "+ = Gin; 2k +1) = 2kt

For (2), Cym; 2k) = @r"*)"'I'(n — k) s the best possible constant.
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Let D = {(2,2')eCxC"'|Imz, — |2/]> > 0} and let

17l =sup | 1fte + iy, + et 2)pdude’
¥1>0 cn—1

RXx

for feH?(D), 0 <p < +oo. In the following, C,(n; j) denote the con-
stants in Theorem 1. (3) is known for k = n — 1 ([2]). Again, analogous
inequalities for harmonic functions on R"x (0, + «) are given in [3].

THEOREM 2. For every z, € R, every feH?D), 0 <p < +o0, and
0=k<n—1, we have

(3) | "dw |\t i+ e 2 S Cns 26+ DI
The following holds for fe H?(D), 0 <p < 4+, and 1 <k <n—1:
() T | Ve i+, Pudeds’ S 26,0 20]1713 -
The exponent n — k — 1 is unique in each case.

1. Proof of Theorem 1. We write f,(z) = f(rz), 0 < r < 1. To prove
(1), we may suppose that 0 <k < n — 2, since the case k=n —1 is
included in [1]. Let fe H*?(B). Then for an arbitrarily fixed point
(2,, 2') € By, where z, € R and 2’ = (2, * -, 2,4,), the function |f,.(z, 2/,
1 — a2 — |2'|)"%2")|* of the variable z"”" = (2,4, ***, 2,) is plurisubharmonic
in a neighborhood of B,,_,,_, hence

ol 2, OO0 S B ™ | f0 2, (L= st = 2P

Bon—2k—2
By Fubini’s theorem we can see that

I:= [frly, 2/, 0)|P(1 — @} — [/ 'dw,de’

S32k+1

= B | 11l 7, 2NPd0dd”
Bap—1

[1, Theorem 1, (8)] shows that the right side does not exceed 27'I'(n —

k=" || f|l3. From

L=ron| |fw, 2, 0000 - ot — R dede
(z1,2") I<r

we obtain (1) by letting » —1. Next, for N=1, 8> —1, p > 0, note

that

(5) (0* — |al)’dw = A(N, B)o"***,

Slz|<P,aeRN
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where A(N, 8) = I''(N/2 + 8 + 1)I'(B + 1)n™*. Let a > —1, ¢ <n. Then,
for 1 <k <n — 1, by Fubini’s theorem and (5),

Izk+1 = S ll - zl[_°(1 - Izlz)adz

BNLok+y

— Ak, a) S (1 + &)1 — 2,)"*da, .

This is valid for £ =0 with A0, @) = 1. Now suppose that —1 < a <
n —k—1. Then, for ¢ =a + k + 1, the function (1 — 2,)~° belongs to
H'(B) and we have I,,,, = +o. Thus#n — k — 1 is the smallest exponent
that guarantees (1). Finally, take ¢ <% and put a=n—k—1, 0
k <n —1. Then, by using Legendre’s duplication formula, we have

_ _ 2" r(n —e)'(m) _  I'(m — )l (n — k)x*+~
L = Aty m =k — 1) I'2n — ¢) I'(n —¢/2)['(n — ¢/2 +1/2)

On the other hand, we know from [6, p.54] that

Jo=| 1L —Clde@ = H

hence

I'n — ¢/2)['(n — k) . I'(n — k)
) SFm o+ e = G 2 D= e

Letting ¢ — n, we obtain the desired estimate. Now we shall prove (2)
using a formula which will be treated in the next section. Write z in
the form (2’, 2"") with 2’ = (2, --+, 24), 2" = (Z441» ***, 2,). The plurisub-
harmonicity of |f,(z/, 1 — |2’[)*%2")|* as a function of 2" implies that

|fo(2', 0")]” < |0B, ™ Sa |f+(&, (L — [P dosn-uC)

Bon—2k

hence by the formula (7) we have

|, 15, 0P — 12’ < (3Bl | 1£:©1Pd0(©) -

Equality holds for f =1, so the constant is best possible. Next suppose
that —1<a<n—k—1and let ¢c=a+ k+ 1. Then, by (5),

1= w1 = [w)dw = Cle, @) |11 = w0, — foo ),

1<ksn-—-1.

Letting w, = (2, + ©)"%(2, — ©), where z, = x, + 7y, with z, e R, y, > 0, we
can see that

SBﬂLgk
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[, 1= o — )i,
2
=l o | "an | @+ @+ 1 ryids, = oo

0

REMARK. If, formally, we let » =1, k=0 in (6), then C(l, 1) be-
comes 1/2. It may be worth mentioning that this is actually so. Indeed,
letting e = (t + ©)7'(t — 1), —o0 <t < +o0, in

J, = S"|1 — e ds, c<1,
0

we see from d@ = 2(t* + 1)7'd¢ that J, = 2'°I" (1 — ¢/2)"'((1 — ¢)/2)x** and,
together with I, = 2'°1 — ¢)™*, we get (6).

2. An integral formula. lLet n=>2,1<k<n—1. For fe LB,
do) we shall show that

(1) | f0do©

={, a-wprar | - e )

2n—2k
where 2' = (2, +++, 2), &' = Css» *++, C,). Note that, if we employ nor-
malized measures, this yields 1.4.4 and 1.4.7, (2) of [6]. In the rest of
this section, Lebesgue measure on R’ will be denoted by dv;.

LEMMA. Let m=38,1<k<m—2. Let felLB,, do,). Then
|,, f@do.@)
3By

= |, a—lwperrane) | el 0 - o)

where g = (xlr ) xk)’ &' = (xk+1r ] xm)'
PROOF. Let ¥ be the usual parametrization for 0B, defined by
w(o) = w(eu Tty 01;;-1) = (xv ey xm)’ where
x, = cosé, ,
z; =sinf, ---sinh,;_;co86;, 2=<j7=m-—1,
%, =sinf, ---siné,_,sinb,_, ,
0<8y+++0p,<m 0=56,,<2r. Then do, = [17"*(sing,)"7'dg, -
db,_, =:J(@)d6. Put T (') = (2, =+, x,), 8’ = (61, *+++, 6,). Then the map-

ping ¥,.: (0, 7)* — B, gives a parametrization for the ball B,, and dy, =
5., (sin 6,)*~9*'dg, « - - d6, =: J'(6')d6’. Finally define the mapping + by

'\l"(e") = (yk+1y ct ym) ’ 0" = (0k+17 ct 0m—l) S (Or n.)m—k——2x [07 27[) ’
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where y,,, =080, ***, Yp =8inb,, +++sind,_,. Then 4 gives a pa-
rametrization for 0B,_,, and do,_, = JI7"*(sin G, )™ * 7' db)y, «++
Oy =2 " (Opsry * 5 Om_s)d0"”. Note that [J%, sing; = (1 — |T.(6")]»)", so
o) = @6), A — [T 0))"p@")). On the other hand, we can write

L2 3 mk=2 ' n! "
JO) = (Lsing,)" " IO " Gus -, 0n)
= (1 = @O 2R (O " Grrss -+ Ons) -
It follows that

|, fEdon@) = | F@@)I©)do

0,m)™—2x[0,27)

= | a—mem=ronr@ar | (de"

(0,7)yM—k—2x[0,21)
where (x) = f(T(0"), A — [T0)) /(0" NI " (Ors1y ** s Om—s)-

3. Proof of Theorem 2. The Cayley transform ¥: D — B is defined
by (2, +--, 2,) = (wy, *++, w,), where w, = (2, + 19)7(s;, — %) and w; =
22,2z, + 1) 2<j<n. For feH*D), 0 <p < + o, there is a unique
g € H?(B) such that

(8) fz) = (g ¥)2)(z + ©)™*, zeD,

and this correspondence determines an isomorphism of H?(D) onto H?(B).
Moreover, ||g|l52 = A(n)||f]|5 for a constant A(n) ([7]). We note here that
A(n) = 2™, which is seen from a computation by letting ¢ = 1. Now,
to see (8), it suffices to assume that x, = 0. Take fe H?(D). Then by
(1) and (8)

L= | g — wlyrdw < 2o 2k + DIl -
BN Log+1

Put w = ¥(2), where z = (1Y, 25, ***, 2441y 0, =+ +, 0), 4, > [2’'|>. Then ¥ maps
DNERXxC*x {0} x ++-x{0}) onto BN L,,,, and the Jacobian determinant is
seen to be 2%*(y, + 1)7%*~%, Note that 1 — [T(2)|* = 4(y, — [2'[O(y, + 1)
Thus

1=z fti, P — Py de
1. 2z

o0
=2 | Tay, | fii+ e v
0 Lok

and this proves (8). To verify (4) it is enough to see that ¥ maps DN L,,
onto BN L, and that the Jacobian determinant is 2%*|z, + ¢|"*%. Next
we shall show that n» — k — 1 is the unique admissible exponent. First,
in (8), consider % with a>n —k—1, and let c=a + k+ 1. Then
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(2, + ©)"°e H(D) as is seen from (8), and changing variables we can see
that, for 0 <k <n —1,

40 +oo
["aw |, @+ e+ Dmurae = €| @+ vreriydy, = 4o

In thecase a<n—k—1, put c=a+k+1. Then f(z):= z7°(z,+1)*"* e H(D)
by 8. If 1<k=<n-—1, we see that

+oo 1
|Taw | ftiv o+ e wde > o an| @ v
0 Lok 0 Iz’ <1

> CS::L/f‘oly1 = +oo.

The case k = 0 is straightforward. In (4) consider ¥ with a >n —k — 1
and put c=a + k+ 1. Then

+oo
|Tawl @+ o e vy rydndy

0 Log—1

+oo

Cc S (¥, + 1)"““yzdy,
0

= 4 o0,

Finally, let a <mn —k—1 and put e=a +k+ 1. We suppose that
2<k<mn-—1, the case k=1 being similar. For f(z) = z7°(z, + 7)™*"*°
we have

+oo
L= (T au 1S+ iy, + il ladede

Lag—1

>C Sldyls dz’S @ + (y, + 2P~ yrde, ,
0 l2’1<1 lz11<1
where
S_l (@} + (g, + [P dw, > Cly, + |2,
|+ 1eryde > oy
lz’1<1
Thus I = + o,

REFERENCES

[1] M. Hasumr AND N. MocHiZukI, Fejér-Riesz inequality for holomorphie functions of several
complex variables, Téhoku Math. J. 33 (1981), 493-501.

[2] N. Mocrizuki, The Fejér-Riesz inequality for Siegel domains, T6hoku Math. J. 36 (1984),
581-590.

[8] N. pu Puessis, Half-space analogues of the Fejér-Riesz theorem, J. London Math. Soc.
30 (1955), 296-301.

[4] N. pu PLEssis, Spherical Fejér-Riesz theorems, J. London Math. Soc. 31 (1956), 386-391.

[6] S.C. PoweR, Hérmander’s Carleson theorem for the ball, Glasgow Math. J. 26 (1985),
13-17.



FEJER-RIESZ INEQUALITIES 439

[6] W. RupiN, Function theory in the unit ball of C*, Springer-Verlag, New York, Heidel-
berg, Berlin, 1980.
[7] N.J. WEIss, An isometry of H” spaces, Proc. Amer. Math. Soc. 19 (1968), 1083-1086.

DEPARTMENT OF MATHEMATICS
COLLEGE OF GENERAL EDUCATION
TOHOKU UNIVERSITY

KAWAUCHI, SENDAI 980

JAPAN








