DUALITY OF PROJECTIVE LIMIT SPACES AND INDUCTIVE LIMIT SPACES OVER A NONSPHERICALLY COMPLETE NONARCHIMEDEAN FIELD

WIM H. SCHIKHOF AND YASUO MORITA

(Received October 14, 1985)

Abstract. A duality theorem of projective and inductive limit spaces over a nonspherically complete valued field is obtained under a certain condition, and topologies of spaces of locally analytic functions are studied.

Introduction. Morita obtained in [5] a duality theorem of projective limit spaces and inductive limit spaces over a spherically complete nonarchimedean valued field, and Schikhof studied in [8] locally convex spaces over a nonspherically complete nonarchimedean valued field. In this paper, we use the results of [8] and study the duality of such spaces over a nonspherically complete nonarchimedean valued field.

The duality theorem of [5] was obtained as a generalization of the results of Komatsu [3] by Morita using the theory of van Tiel [10] about locally convex spaces over a spherically complete nonarchimedean valued field. There the following two facts are used essentially: (i) The Mackey topology is the topology of uniform convergence on weakly c-compact sets; (ii) Any absolutely convex weakly c-compact set is strongly closed. Though we can generalize the notion of c-compactness to our case, it is difficult to obtain good analogues of these two facts over a nonspherically complete valued field. Hence we restrict our attention to a more restricted class than in [5], and prove a duality theorem by making use of van der Put's duality theorem of sequence spaces $c_0 = \{(a_1, a_2, a_3, \cdots) \in K^n; |a_m| \to 0 \pmod{m \to \infty}\}$ and $l^\infty = \{(b_1, b_2, b_3, \cdots) \in K^n; \sup |b_m| < \infty\}$ over a nonspherically complete valued field K.

We prove a general duality theorem over such a field in Section 1, and apply the theorem to some examples in Section 2. In particular, we generalize the results of Morita [6] to any complete non-archimedean valued field, and give a positive answer to a question of P. Robba.

We use the notation and terminology of Schikhof [8] throughout this paper.

1. Duality theorem.

1.1. Let K be a complete field with a nontrivial nonarchimedean valuation $| \cdot |$. We assume in Section 1 that K is not spherically complete. For each positive integer m, let $(X_m, | \cdot |_m)$ and $(Y_m, | \cdot |_m)$ be Banach spaces over K. We assume that X_m is of countable type. Hence X_m is reflexive (cf. e.g. van Rooij [7, Corollary 4.18]). Let

$$(,)_m: X_m \times Y_m \to K$$

be a nondegenerate bicontinuous K-bilinear form such that X_m and Y_m become mutually dual locally convex spaces with respect to $(\ ,\)_m$. Let $\{u_{m,n}\colon X_n\to X_m\ (m< n)\}$ be a projective system, and $\{v_{n,m}\colon Y_m\to Y_n\ (m< n)\}$ be an inductive system such that (i) the $u_{m,n}$'s are K-linear continuous maps, (ii) the $v_{n,m}$'s are K-linear continuous injective maps, and (iii) the equality $(u_{m,n}(x_n),\ y_m)_m=(x_n,\ v_{n,m}(y_m))_n$ holds for any $x_n\in X_n$ and $y_m\in Y_m$. Let $(X,\ u_m)$ be the locally convex projective limit of $\{X_m,\ u_{m,n}\}$ and let $(Y,\ v_m)$ be the locally convex inductive limit of $\{Y_m,\ v_{n,m}\}$. We assume further that (iv) the projection map $u_m\colon X\to X_m$ has a dense image for each m.

By definition, any element x of the projective limit X can be written as $x=(x_m)$ with $x_m \in X_m$ satisfying $u_{m,n}(x_n)=x_m$ for any m and n with m < n, and any element y of the inductive limit space Y can be written as $y=v_m(y_m)$ with some $y_m \in Y_m$. By our assumption (iii), the equality $(u_{m,n}(x_n), y_m)_m = (x_n, v_{n,m}(y_m))_n$ holds for any m < n. Hence $(u_m(x), y_m)_m$ does not depend on a special choice of m with $y=v_m(y_m) \in v_m(Y_m)$, and we can define a pairing

$$(,): X \times Y \rightarrow K$$

by $(x, y) = (u_m(x), y_m)_m$ with such a $y_m \in Y_m$. It is easy to see that this pairing (,) is K-bilinear. Since the projection map $u_m: X \to X_m$ is continuous, our pairing (,) is bicontinuous on $X \times Y_m$ for each m. Hence, by the universal mapping property of the inductive limit topology, (,) is bicontinuous on $X \times Y$.

Let $x=(x_m)$ be a nonzero element of X. Then $x_m\neq 0$ for some m. Since $(\ ,\)_m$ is nondegenerate, $(x_m,y_m)_m\neq 0$ for some $y_m\in Y_m$. Hence $(x,y)=(x_m,y_m)_m\neq 0$ for some $y=v_m(y_m)\in v_m(Y_m)\subset Y$. Let $y=v_m(y_m)$ $(y_m\in Y_m)$ be a nonzero element of Y. Then $\{x_m\in X_m; (x_m,y_m)_m\neq 0\}$ is a non-empty open subset of X_m . Since the image of the projection map $u_m\colon X\to X_m$ is dense, there is an element $x=(x_m)\in X$ such that $(x,y)=(x_m,y_m)_m\neq 0$. Therefore our pairing $(\ ,\)$ is nondegenerate. Hence we have proved the following:

PROPOSITION 1. Let $X = \text{proj lim } X_m$ and $Y = \text{ind lim } Y_m$ be as before. Then we have a nondegenerate bicontinuous K-bilinear form

$$(.): X \times Y \to K$$
.

1.2.

LEMMA 1. Let E and F be locally convex K-vector spaces, and let $(\ ,\): E\times F\to K$ be a nondegenerate bicontinuous K-bilinear form. Let $\sigma(E,F)$ be the weakest locally convex topology on E such that $E\ni e\mapsto (e,f)\in K$ is continuous for each $f\in F$. Then for any continuous K-linear form $L:E\to K$ with respect to $\sigma(E,F)$, there exists an element $f\in F$ such that

$$L(e) = (e, f)$$

holds for any $e \in E$. In particular, $(E, \sigma(E, F))' = F$.

PROOF. Let $L: E \to K$ be as in the lemma. Since L is continuous, there are a finite number of elements f_1, \dots, f_n in F such that for all $e \in E$

$$|L(e)| \leq \sup_{1 \leq i \leq n} |(e, f_i)|$$
 .

Let $E^* = \{e \in E; (e, f_i) = 0 \text{ for any } i = 1, \dots, n\}$. Then E^* is contained in the kernel of L, and L factors through E/E^* . Since (,) induces a nondegenerate K-bilinear form on $(E/E^*) \times (Kf_1 + \dots + Kf_n)$, the algebraic dual of E/E^* can be identified with $Kf_1 + \dots + Kf_n$. Hence there are $a_1, \dots, a_n \in K$ such that

$$L(e) = \left(e, \sum\limits_{i=1}^n a_i f_i
ight)$$

holds for any $e \in E$. Then $f = \sum a_i f_i$ satisfies the condition of the lemma.

We apply this lemma to our case. Let E=X and F=Y. Then our bilinear form (,) satisfies the condition of the lemma. Let $\sigma(X,Y)$ (resp. $\sigma(Y,X)$) be the weakest locally convex topology on X (resp. on Y) such that $X\ni x\mapsto (x,y)\in K$ is continuous for each $y\in Y$ (resp. $Y\ni y\mapsto (x,y)\in K$ is continuous for each $x\in X$). Then it follows from Lemma 1 that $(X,\sigma(X,Y))'=Y$ and $(Y,\sigma(Y,X))'=X$.

Let $\tau(X)$ be the projective limit topology on X, and let $\tau(Y)$ be the inductive limit topology of Y. Since our pairing is bicontinuous, $\sigma(X, Y) \leq \tau(X)$ and $\sigma(Y, X) \leq \tau(Y)$. Hence we have

$$Y = (X, \sigma(X, Y))' \subset (X, \tau(X))'$$
 and $X = (Y, \sigma(Y, X))' \subset (Y, \tau(Y))'$.

Let $f\colon X\to K$ be a K-linear continuous map with respect to $\tau(X)$. Then $f^{-1}(\{x\in X; |f(x)|<1\})$ is open in X. It follows from the definition of the projective limit topology that there exist a positive integer m and a positive number ε such that $f^{-1}(\{x\in X; |f(x)|<1\})\supset \{x\in X; |u_m(x)|_m<\varepsilon\}$. This shows that $u_m(X)\ni u_m(x)\mapsto f(x)\in K$ is continuous. Since $u_m(X)$ is dense in X_m , this map can be extended to a continuous K-linear map $f_m\colon X_m\to K$. Since X_m and Y_m are mutually dual with respect to $(\ ,\)_m$, there is an element $y_m\in Y_m$ such that $f_m(x_m)=(x_m,y_m)_m$ holds for any $x_m\in X_m$. Then $f(x)=f_m(x_m)=(x_m,y_m)_m=(x,y)$ holds for any $x=(x_m)\in X$ with $y=v_m(y_m)\in v_m(Y_m)\subset Y$. Therefore $(X,\tau(X))'=Y$.

Let $g\colon Y\to K$ be a continuous K-linear map with respect to $\tau(Y)$. Since the natural injection $v_m\colon Y_m\to Y$ is continuous, g induces a continuous map $g_m\colon Y_m\to K$ for each m. Since X_m is the dual of Y_m , there is a unique element $x_m\in X_m$ such that $g_m(y_m)=(x_m,y_m)$ holds for any $y_m\in Y_m$. If n>m, then $(x_m,y_m)_m=g_m(y_m)=g(v_m(y_m))=g_n(v_{n,m}(y_m))=(x_n,v_{n,m}(y_m))_n=(u_{m,n}(x_n),y_m)_m$ holds for any $y_m\in Y_m$. Since the pairing (,)m is nondegenerate, $u_{m,n}(x_n)=x_m$ holds for n>m. Hence $x=(x_m)$ is an element of proj $\lim_{m\to\infty} X_m=X$ such that g(y)=(x,y) holds for any $y\in I$ ind I im I in I is I in I i

PROPOSITION 2. We have $(X, \tau(X))' = Y$ and $(Y, \tau(Y))' = X$ as sets.

1.3. Since each X_m is a Banach space of countable type, it follows from Schikhof [8, 4.12] that $X = \operatorname{projlim} X_m$ is a Fréchet space of countable type. Since K is not spherically complete, it follows from [8, Corollary 9.8] that X is reflexive. Hence we have the following:

PROPOSITION 3. X is a Fréchet space of countable type. In particular, X is reflexive.

Let y be a nonzero element of Y. Since the pairing $(,): X \times Y \to K$ is nondegenerate, there is an element x of X such that $(x, y) \neq 0$. Then $|(x, y)| \neq 0$. Since $p_x(y) = |(x, y)|$ is a continuous seminorm for $\sigma(Y, X)$, it follows that $(Y, \sigma(Y, X))$ is Hausdorff. Since $\tau(Y)$ is stronger than $\sigma(Y, X)$, $(Y, \tau(Y))$ is also Hausdorff. Hence we have proved the following:

PROPOSITION 4. $(Y, \tau(Y))$ is a Hausdorff space.

REMARK. If the maps $u_{m,n}$'s are compact maps, then we can show that $X = \text{proj lim } X_m$ is a nuclear Montel space. In general, since each Y_m is barreled, $Y = \text{ind lim } Y_m$ is also barreled.

Now we can prove the following key lemma:

PROPOSITION 5. The strong topology b(Y, X) on $(X, \tau(X))' = Y$ and the inductive limit topology $\tau(Y)$ of Y coincide.

PROOF. Since any bounded set of $(X,\tau(X))$ is contained in a bounded set of the form $B=\{x=(x_m)\in X; |x_m|\leq M_n\}$ with a sequence (M_n) of positive numbers, the subsets of Y of the form $U_B=\{y\in Y; |(x,y)|\leq 1$ for all $x\in B\}$ make a fundamental system of neighbourhoods of $0\in Y$ with respect to b(Y,X). Since the pairing $(\ ,\)_m\colon X_m\times Y_m\to K$ makes X_m and Y_m into mutually dual Banach spaces, for any positive number M_m , there is a positive number N_m such that, if $y_m\in Y_m$ satisfies $|y_m|\leq N_m$, then the condition $|(x_m,y_m)_m|\leq 1$ is satisfied for any $x_m\in X_m$ with $|x_m|\leq M_m$. Then $y=v_m(y_m)\in v_m(Y_m)$ is contained in U_B if $|y_m|\leq N_m$. Hence U_B contains

$$\bigcup_{m>1} v_m(\{y_m \in Y_m; |y_m| \leq N_m\}).$$

Since the subsets of Y of this form make a fundamental system of neighbourhoods of $0 \in Y$ with respect to $\tau(Y)$, we have $b(Y, X) \leq \tau(Y)$. Since we can prove the opposite inequality $\tau(Y) \leq b(Y, X)$ in the same way, the strong topology b(Y, X) and the inductive limit topology $\tau(Y)$ of Y coincide.

Since $(X, \tau(X))$ is reflexive, the following corollary follows from Proposition 5.

COROLLARY. $(Y, \tau(Y))$ is reflexive, and the strong dual space of $(Y, \tau(Y))$ is isomorphic to $(X, \tau(X))$.

Since X is a Fréchet space, X is bornologic (cf. proofs of van Tiel [10, Théorèmes 3.17 and 4.30]). It follows from Schikhof [8, Proposition 6.8] that $(Y, \tau(Y)) \simeq ((X, \tau(X))', b(Y, X))$ is complete. Therefore we have proved the following theorem:

THEOREM 1. Let $X = \text{proj lim } X_m$, $Y = \text{ind lim } Y_m$ and $(,): X \times Y \to K$ be as in 1.1. Then X is a Fréchet space of countable type, Y is Hausdorff and complete and the pairing (,) makes X and Y into mutually dual locally convex spaces over K.

2. Examples.

2.1. Let k be an algebraically closed field with a nontrivial non-archimedean complete valuation $|\cdot|$. Let $P^1(k) = k \cup \{\infty\}$ be the one-dimensional projective space over k, let K be a complete subfield of k, and let C be a compact subset of K. Put $V = P^1(k)$. Let $\{r_n\}_{n=1}^\infty$ be a

strictly decreasing sequence in $|K^*|$ such that $r_n \to 0$ $(n \to \infty)$. Then, for each n, C is covered by a finite number of open balls of the form

$$C_{n,i} = \{z \in k; |z - c_{n,i}| < r_n\} \quad (c_{n,i} \in C)$$
.

We assume that (i) C is covered by $C_{n,i}$ ($i=1, \dots, l_n$) and (ii) the $C_{n,i}$'s are mutually disjoint. Put

$$C_n = \coprod_{i=1}^{l_n} C_{n,i} .$$

Then $C = \cap C_n$.

Let f be a k-valued function on $V-C=\{z\in V;z\notin C\}$. Then f is called a K-analytic function on V-C if and only if the restriction of f to each $V-C_n$ is given by a convergent series of the form

$$f_n(z) = a_\infty + \sum_{i=1}^{l_n} \sum_{m=-1}^{-\infty} a_m^{(i)} (z - c_{n,i})^m$$

with a_{∞} , $a_m^{(i)} \in K$ and $|a_m^{(i)}| r_n^m \to 0$ $(m \to -\infty)$ (cf. Morita [4], Gerritzen-van der Put [1], etc.). Let $\mathcal{O}_K(V - C_n)$ be the space of all functions f_n : $V - C_n \to k$ of this form. Then the equality

$$\max\left(|a_{\infty}|, \max_{i,m}|a_{m}^{(i)}|r_{n}^{m}\right) = \max_{z \in V-C_{n}}|f_{n}(z)|$$

holds. If we define a norm $|f_n|_n$ by this formula, then the K-vector space $\mathcal{O}_K(V-C_n)$ becomes a complete Banach space with this norm. Further, we can identify the quotient space $\mathcal{O}_K(V-C_n)/K$ $(K=\{f_n(z)=a_\infty;a_\infty\in K\})$ with the subspace $\{\sum_{i=1}^{l_n}\sum_{m=-1}^{-\infty}a_m^{(i)}(z-c_{n,i})^m;a_m^{(i)}\in K,|a_m^{(i)}|r_n^m\to 0\ (m\to-\infty)\}$ of $\mathcal{O}_K(V-C_n)$. Since the set of all finite sums of this form is dense in $\mathcal{O}_K(V-C_n)/K$, $\mathcal{O}_K(V-C_n)/K$ is a Banach space of countable type.

Let $\mathcal{O}_K(V-C)$ be the set of all K-analytic functions on V-C, and put $\mathscr{B}_K(C) = \mathscr{O}_K(V-C)/K$. Then $\mathscr{B}_K(C)$ can be identified with the locally convex projective limit of the $\mathscr{O}_K(V-C_n)/K$ with respect to the restriction maps. Obviously the restriction maps $u_{n,l}\colon \mathscr{O}_K(V-C_l)/K \to \mathscr{O}_K(V-C_n)/K$ (n < l) are K-linear and continuous. Since any finite sum of the form $\sum_i \sum_m a_m^{(i)} (z-c_{n,i})^m \ (a_m^{(i)} \in K)$ is in $\mathscr{O}_K(V-C)/K = \mathscr{B}_K(C)$, the image of the projection map $\mathscr{B}_K(C) \to \mathscr{O}_K(V-C_n)/K$ is dense for each n.

Put

$$\mathscr{O}_{b,K}(C_n) = \left\{ g(z) = \sum_{i=1}^{l_n} \sum_{m=0}^{+\infty} b_m^{(i)} (z - c_{n,i})^m; b_m^{(i)} \in K, \sup_{0 \le m < \infty} |b_m^{(i)}| \, r_n^m < + \infty \right\}.$$

Then $\mathcal{O}_{b,K}(C_n)$ becomes a Banach space with

$$|g(z)|_n = \sup_{1 \le i \le l_n} \sup_{0 \le m < +\infty} |b_m^{(i)}| r_n^m.$$

If n < l and $|c_{n,i} - c_{l,j}| < r_n$, then $\sum_{0 \le m < +\infty} b_m^{(i)} (z - c_{n,i})^m$ can be written in the form $\sum_{0 \le m < +\infty} b_m^{(j)} (z - c_{l,j})^m$ with $b_m^{(j)} \in K$, and we have $\sup_{0 \le m < +\infty} |b_m^{(i)}| r_n^m = \sup_{0 \le m < +\infty} |b_m^{(j)}| r_n^m$. Hence we have an injective K-linear continuous map $u_{l,n} \colon \mathscr{O}_{b,K}(C_n) \to \mathscr{O}_{b,K}(C_l)$ (n < l). Let $\mathscr{A}_K(C)$ be the locally convex inductive limit space of the Banach spaces $\mathscr{O}_K(C_n)$.

For any

$$f(z) = \sum_{i=1}^{l_n} \sum_{m=-1}^{-\infty} a_m^{(i)} (z - c_{n,i})^m \in \mathscr{O}_K(V - C_n)/K$$
 and $g(z) = \sum_{i=1}^{l_n} \sum_{m=0}^{+\infty} b_m^{(i)} (z - c_{n,i})^m \in \mathscr{O}_{b,K}(C_n)$,

we define

$$(f(z), g(z))_n = \sum_{i=1}^{l_n} \sum_{s+t=-1} a_s^{(i)} b_t^{(i)}$$
.

Since $|a_m^{(i)}| r_n^m \to 0 \ (m \to \infty)$, and since the $|b_m^{(i)}| r_n^m$'s are bounded, this pairing $(\ ,\)_n$ is a well defined bicontinuous K-bilinear nondegenerate pairing. If n < l and $f(z) \in \mathcal{O}_K(V-C_l)/K$, then $u_{n,l}f(z) \in \mathcal{O}_K(V-C_n)/K$ and f(z)g(z) is a K-analytic function on C_n-C_l . Since $(u_{n,l}f(z),g(z))_n$ can be regarded as the sum of residues of f(z)g(z) in C_l , it is equal to $(f(z),v_{l,n}g(z))_l$.

For any $f(z) \in \mathscr{B}(C)$ and $g(z) \in \mathscr{N}_{K}(C)$, we choose a positive integer n and a unique element $g_{n}(z)$ of $\mathscr{O}_{b,K}(C_{n})$ such that $g(z) = v_{n}(g_{n}(z))$, and we define

$$(f(z), g(z)) = (u_n(f(z)), g_n(z))_n$$
.

Then it follows from the arguments in 1.1 that this pairing (,) is well defined, bicontinuous, K-bilinear and nondegenerate.

Now we have the following theorem:

Theorem 2. Let
$$C$$
, $\mathscr{B}_{\mathsf{K}}(C)$, $\mathscr{A}_{\mathsf{K}}(C)$ and

$$(\ ,\)\colon \mathscr{B}_{\mathtt{K}}(C)\! imes\!\mathscr{A}_{\mathtt{K}}\!(C)\! o\!K$$

be as before. Then $\mathscr{B}_{\mathtt{K}}(C)$ is a Fréchet space of countable type, $\mathscr{A}_{\mathtt{K}}(C)$ is a complete Hausdorff space, (,) is a bicontinuous K-bilinear non-degenerate pairing, and $\mathscr{B}_{\mathtt{K}}(C)$ and $\mathscr{A}_{\mathtt{K}}(C)$ become mutually dual locally convex spaces with respect to (,).

PROOF. Let $r_n = |d|$ $(d \in K)$. Then the mapping

$$\mathcal{O}_{K}(V-C_{n})/K\ni \sum_{i=1}^{l_{n}}\sum_{m=-1}^{-\infty}a_{m}^{(i)}(z-c_{n,i})^{m}$$

$$\mapsto (a_{-1}^{(1)}d^{-1}, \ a_{-1}^{(2)}d^{-1}, \ \cdots, \ a_{-2}^{(1)}d^{-2}, \ a_{-2}^{(2)}d^{-2}, \ \cdots, \ a_{-m}^{(1)}d^{-m}, \ a_{-m}^{(2)}d^{-m}, \ \cdots) \in c_{0}$$

and

$$\mathcal{O}_{b,K}(C_n) \ni \sum_{i=1}^{l_n} \sum_{m=0}^{+\infty} b_m^{(i)} (z - c_{n,i})^m$$

$$\mapsto (b_0^{(1)}, b_0^{(2)}, \cdots, b_1^{(1)}d, b_1^{(2)}d, \cdots, b_m^{(1)}d^m, b_m^{(2)}d^m, \cdots) \in l^{\infty}$$

are K-linear isometries of Banach spaces, and compatible with the pairing (,), and the standard pairing \langle , \rangle of c_0 and l^{∞} up to a constant factor d^{-1} , where

$$egin{aligned} c_0 &= \{ (a_1,\, a_2,\, a_3,\, \cdots);\, a_1,\, a_2,\, a_3,\, \cdots \in K,\, |a_m|
ightarrow 0 \ (m
ightarrow \infty) \} \ , \ & |(a_1,\, a_2,\, a_3,\, \cdots)| = \sup_{1 \le m < \infty} |a_m| \ , \ & l^\infty &= \{ (b_1,\, b_2,\, b_3,\, \cdots);\, b_1,\, b_2,\, b_3,\, \cdots \in K,\, \sup_{1 \le m < \infty} |b_n| < \infty \} \ , \ & |(b_1,\, b_2,\, b_3,\, \cdots)| = \sup_{1 \le m < \infty} |b_m| \ , \ & \langle (a_1,\, a_2,\, a_3,\, \cdots),\, (b_1,\, b_2,\, b_3,\, \cdots)
angle = \sum_{m=1}^\infty a_m b_m \ . \end{aligned}$$

If K is not spherically complete, then, by a theorem of van der Put (cf. e.g. van Rooij [7, p. 111]), c_0 and l^{∞} are mutually dual Banach spaces with respect to $\langle \ , \ \rangle$. Hence $\mathcal{O}_K(V-C_n)/K$ and $\mathcal{O}_{b,K}(C_n)$ are also mutually dual Banach spaces with respect to $(\ ,\)_n$. Therefore we apply Theorem 1 to our case and obtain Theorem 2 in this case.

If K is spherically complete, then this duality of c_0 and l^{∞} does not hold. But we can use Lemma 3.5 and Theorems in Morita [5, 3-1] in this case. Since we can prove our theorem as in [5, 3-3 \sim 3-4], we omit the details.

REMARK. We can also show in the same way that the space $\mathscr{L}(U)$, $\operatorname{Ind}(P,G,\chi)$ and D_{χ} of Morita [6, III] are complete Hausdorff spaces over any complete nonarchimedean field k. Further, we can construct the holomorphic discrete series π_s of Morita [6, I] and prove the duality of π_s and T_{χ} (cf. Morita [6, II, Theorem 3]) over any complete nonarchimedean field.

2.2. Let $C = \{0\}$ and let d be an element of K^* whose absolute value is smaller than 1. Then

$$\mathscr{B}_{K}(C)\simeq\{(a_{-1},\,a_{-2},\,a_{-3},\,\cdots)\in K^{N}; \text{ for any positive integer } n,\,|a_{m}d^{mn}|\to 0\}$$
, $\mathscr{A}_{K}(C)\simeq\{(b_{0},\,b_{1},\,b_{2},\,\cdots)\in K^{N}; \text{ for some positive integer } n,\,\sup_{\mathbf{m}}|b_{m}d^{mn}|<\infty\}$,

$$((a_{-1}, a_{-2}, a_{-3}, \cdots), (b_0, b_1, b_2, \cdots)) = a_{-1}b_0 + a_{-2}b_1 + a_{-3}b_2 + \cdots.$$

The duality of Theorem 2 in this case for a nonspherically complete field was first proved by Schikhof by means of the results of De Grande-De

Kimpe [2].

2.3. Let K be a field with a complete nontrivial nonarchimedean valuation $|\cdot|$. Let $\{r_n\}_{n=1}^{\infty}$ be a strictly increasing sequence in $|K^*|$ such that $r_n \to 1$ $(n \to \infty)$. Let W be the K-vector space consisting of all Laurent series $\sum_{m=-\infty}^{+\infty} a_m z^m$ $(a_m \in K)$ such that $|a_m| r^m \to 0$ $(m \to +\infty)$ for any r with 0 < r < 1, and $|a_m| r^m \to 0$ $(m \to -\infty)$ for some r with 0 < r < 1. Then W is the direct sum $W_1 \bigoplus W_2$ of two subspaces:

$$W_1 = \left\{\sum_{m=0}^{+\infty} a_m z^m; a_m \in K, |a_m| r^m \to 0 \ (m \to +\infty) \ ext{for any } r \ ext{with} \ 0 < r < 1
ight\}$$

$$W_2 = \left\{\sum\limits_{m=-1}^{-\infty} b_{m} z^{m};\, b_{m} \in K,\, |b_{m}|\, r^{m}
ightarrow 0 \,\,(m
ightarrow - \infty) \,\, ext{for some r with $0 < r < 1$}
ight\}$$
 .

Put

$$W_{\scriptscriptstyle 1,n} = \left\{ \sum_{\scriptscriptstyle m=0}^{\scriptscriptstyle +\infty} a_{\scriptscriptstyle m} z^{\scriptscriptstyle m}; \, a_{\scriptscriptstyle m} \in K, \, |a_{\scriptscriptstyle m}| \, r_{\scriptscriptstyle n}^{\scriptscriptstyle m}
ightarrow 0 \, \, (m
ightarrow + \infty)
ight\}$$

and

$$W_{2,n} = \left\{\sum_{m=-1}^{-\infty} b_m z^m; \, b_m \in \mathit{K}, \, \sup_m \left| b_m \right| r_n^m < \infty
ight\}$$
 .

Then they become Banach spaces with the following norms:

$$\left| \sum_{m=0}^{+\infty} a_m z_m \right|_{1,n} = \sup_m |a_m| r_n^m \quad \text{and}$$

$$\left| \sum_{m=-1}^{-\infty} b_m z^m \right|_{2,n} = \sup_m |b_m| r_n^m.$$

Put

$$\left(\sum\limits_{m=0}^{+\infty}a_{m}z^{m},\sum\limits_{m=-1}^{-\infty}b_{m}z^{m}
ight)=\sum\limits_{m+n=-1}a_{m}b_{n}$$
 .

Let d be an element of K with $|d| = r_n$. Then

$$\sum_{m=0}^{+\infty} a_m z^m \mapsto (a_0, a_1 d^1, a_2 d^2, \cdots) \quad \text{and} \quad$$

$$\sum_{m=-1}^{\infty} b_m z^m \mapsto (b_{-1} d^{-1}, b_{-2} d^{-2}, b_{-3} d^{-3}, \cdots)$$

induce isometries $W_{1,n} \xrightarrow{\sim} c_0$ and $W_{2,n} \xrightarrow{\sim} l^{\infty}$ preserving the pairings up to a constant factor. Hence $W_{1,n}$ is of countable type, and $W_{1,n}$ and $W_{2,n}$ become mutually dual Banach spaces with respect to $(\ ,\)_n$. Further W_1 and W_2 can be identified with proj $\lim W_{1,n}$ and $\lim W_{2,n}$ with respect to the natural maps $u_{n,l}: \sum a_m z^m \mapsto \sum a_m z^m \ (n < l)$ and $v_{l,n}: \sum b_m z^m \mapsto \sum b_m z^m \ (n < l)$. Let τ_1 and τ_2 be the projective limit topology of W_1 and the

inductive limit topology of W_2 . By Morita [5, Lemma 3.5], the $v_{l,n}$'s are c-compact maps and the projective system $\{W_{1,n}, u_{n,l}\}$ can be replaced by a cofinal system $\{W'_{1,n}, u'_{n,l}\}$ so that the resulting maps $u'_{n,l}$ are also c-compact if K is spherically complete (cf. the arguments in [5, 3-3 \sim 3-4]). Since W_1 contains all finite sums of the form $\sum_{m=0}^{+\infty} a_m z^m$, the image of the projection map $u_n: W_1 \to W_{1,n}$ is dense for each n. Hence it follows from Theorem 1 of this paper and theorems in Morita [5, 3-1] that (i) W_1 is a Fréchet space of countable type, (ii) W_2 is a complete Hausdorff space, and (iii) the pairing

$$\left(\sum_{m=0}^{+\infty} a_m z^m, \sum_{m=-1}^{-\infty} b_m z^m\right) = \sum_{m+n=-1} a_m b_m$$

makes W_1 and W_2 into mutually dual spaces. Hence the direct sum $W = W_1 \oplus W_2$ is a complete Hausdorff space, and the inner product

$$\left(\sum\limits_{m=-\infty}^{+\infty}a_{m}z^{m},\sum\limits_{m=-\infty}^{+\infty}b_{m}z^{m}
ight)=\sum\limits_{m+n=-1}a_{m}b_{n}$$

makes W into a self dual space. This selfduality of W was conjectured by P. Robba.

REFERENCES

- L. GERRITZEN AND M. VAN DER PUT, Schottky groups and Mumford curves, Lecture Notes in Math. 817, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1980.
- [2] N. DE GRANDE-DE KIMPE, Perfect locally K-convex sequence spaces, Indag. Math. 33 (1971), 471-482.
- [3] H. Komatsu, Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan 19 (1967), 366-383.
- [4] Y. Morita, Analytic functions on an open subsets of $P^1(k)$, J. Reine Angew. Math. 311/312 (1979), 361-383.
- [5] Y. Morita, A p-adic theory of hyperfunctions, I, Publ. Res. Inst. Math. Sci. 17 (1981), 1-24.
- [6] Y. Morita, Analytic representations of SL₂ over a p-adic number fields, I-III, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 28 (1982), 891-905 (with A. Murase); Progress in Math. 46 (1984), 282-297; Advanced Studies in Pure Math. 7 (1986), 185-222.
- [7] A. C. M. VAN ROOIJ, Nonarchimedean functional analysis, Monographs and Textbooks in Pure and Applied Math. 51, Marcel Dekker, Inc. New York, Basel, 1978.
- [8] W. H. Schikhof, Locally convex spaces over nonspherically complete valued fields, I-II, to appear in: Tijdschrift van het Belgisch Wiskundig Genootschap, Ser. B. Fasc. I, 28 (1986).
- [9] T. A. SPRINGER, Une notion de compacité dans la théorie des espaces vectoriels topologiques, Indag. Math. 68 (1965), 182-189.
- [10] J. VAN TIEL, Espaces localement K-convexes, I-III, Indag. Math. 27 (1965), 249-258; 259-272; 273-289.

[11] J. VAN TIEL, Ensembles pseudo-polaires dans les espaces localement K-convexes, Indag. Math. 28 (1966), 369-373.

DEPARTMENT OF MATHEMATICS AND MATHEMATICAL INSTITUTE

KATHOLIEKE UNIVERSITEIT

Tôhoku University

6525 ED NIJMEGEN

Sendai 980

THE NETHERLANDS

Japan