DEFORMATIONS OF THREE DIMENSIONAL CUSP SINGULARITIES

Dedicated to Professor Tadashi Kuroda on his sixtieth birthday

Hiroyasu Tsuchihashi

(Received September 9, 1985)

Introduction. Freitag and Kiehl [1] showed that Hilbert modular cusp singularities of dimensions greater than two are rigid. On the other hand, we saw in [7] that there are many other 3-dimensional cusp singularities. Ogata [2] recently showed that those 3 -dimensional cusp singularities are not rigid. The purpose of this paper is to obtain more precise information on deformations of 3-dimensional cusp singularities.

Let (V, p) be a 3-dimensional cusp singularity which is not of the Hilbert modular type. In Section 1, we calculate certain cohomology groups, which are related to deformations of the singularity (V, p). In Section 2, we first construct a family $(\mathscr{U}, \mathscr{X}) \rightarrow D$, over a polydisk D, of deformations of a resolution (U, X) of the singularity (V, p). Next, contracting \mathscr{X} simultaneously, we obtain a family $\mathscr{V} \rightarrow D$ of deformations of the singularity (V, p). Finally, we see that the family $\mathscr{V} \rightarrow D$ is a versal family. Hence the cusp singularity (V, p) is neither taut nor smoothable.

1. Calculations of cohomology groups. We fix a 3-dimensional pair (C, Γ) in \mathscr{S} (see [7]), throughout this paper. Recall that C is an open convex cone in N_{R}, that Γ is a subgroup in $\operatorname{Aut}(N)$ preserving C and that $S:=\left(C / \boldsymbol{R}_{>0}\right) / \Gamma$ is a compact topological surface, where $N=\boldsymbol{Z}^{3}$. Also recall that we obtain from (C, Γ), a 3-dimensional cusp singularity (V, p) with $V \backslash\{p\} \simeq\left(\boldsymbol{R}^{3}+\sqrt{-1} C\right) / N \cdot \Gamma$, where $N \cdot \Gamma$ is the semi-direct product of N and Γ.

Assume first that $\chi(S)<0$ and that S is orientable. Let $T=N \otimes C^{\times}$ and let $C T=N \otimes U(1)$, where $U(1)=\left\{z \in C^{\times}| | z \mid=1\right\}$. Then we have two Γ-equivariant exact sequences:

$$
\begin{aligned}
& 0 \rightarrow N \rightarrow N_{C} \rightarrow T \rightarrow 1 \\
& 0 \rightarrow N \rightarrow N_{R} \rightarrow C T \rightarrow 1
\end{aligned}
$$

where the third arrows are the maps induced by $\exp \left(2 \pi \sqrt{-1}\right.$?): $\boldsymbol{C} \rightarrow \boldsymbol{C}^{\times}$. From these short exact sequences, we have the following long exact
sequences of the cohomology groups with respect to the Γ-actions:

$$
\begin{aligned}
& H^{0}(\Gamma, T) \rightarrow H^{1}(\Gamma, N) \rightarrow H^{1}\left(\Gamma, N_{C}\right) \rightarrow H^{1}(\Gamma, T) \rightarrow H^{2}(\Gamma, N), \\
& H^{0}(\Gamma, C T) \rightarrow H^{1}(\Gamma, N) \rightarrow H^{1}\left(\Gamma, N_{R}\right) \rightarrow H^{1}(\Gamma, C T) \rightarrow H^{2}(\Gamma, N)
\end{aligned}
$$

The first purpose of this section is to calculate $H^{1}(\Gamma, L)$ for $L=N, N_{R}$ and N_{c}. Let

$$
\begin{aligned}
Z^{1}(\Gamma, L) & =\left\{\varphi: \Gamma \rightarrow L \mid \varphi\left(\gamma \gamma^{\prime}\right)=\varphi(\gamma)+\gamma \varphi\left(\gamma^{\prime}\right) \text { for } \gamma, \gamma^{\prime} \in \Gamma\right\} \\
B^{1}(\Gamma, L) & =\{\delta l: \Gamma \rightarrow L \mid l \in L\}
\end{aligned}
$$

where δl is the map sending γ to $\gamma l-l$. Then $Z^{1}(\Gamma, L)$ and $B^{1}(\Gamma, L)$ are K-modules and $H^{1}(\Gamma, L)=Z^{1}(\Gamma, L) / B^{1}(\Gamma, L)$, where $K=\boldsymbol{Z}$ (resp. \boldsymbol{R}, resp. C) if $L=N\left(\right.$ resp. $N_{\boldsymbol{R}}$, resp. $\left.N_{\boldsymbol{C}}\right)$.

Lemma 1.1. $\quad B^{1}(\Gamma, L) \simeq K^{3}$.
Proof. It is sufficient to show that the linear map $L \ni l \mapsto \delta l \in B^{1}(\Gamma, L)$ is injective, because $L=N \otimes K$ and $N \simeq Z^{3}$. Suppose not. Then there exists a nonzero element n in L such that $\gamma n=n$ for all γ in Γ. Hence for any point x_{0} in C^{*}, the orbit $\Gamma x_{o}:=\left\{\gamma x_{0} \mid \gamma \in \Gamma\right\}$ under Γ must be contained in the plane $\left\{x \in N_{R}^{*} \mid\langle x, n\rangle=\left\langle x_{o}, n\right\rangle\right\}$, where $C^{*}:=\left\{x \in N_{R}^{*} \mid\langle x, y\rangle>0\right.$ for all $y \in \bar{C} \backslash\{0\}\}$ is the dual cone of C. However, $\left(C^{*}, \Gamma\right)$ is in \mathscr{S} by [7, Lemma 1.6], a contradiction (see the proof of [7, Lemma 1.1]). q.e.d.

Let χ be the Euler number of the compact orientable surface $S=$ $\left(C / \boldsymbol{R}_{>0}\right) / \Gamma$ and let $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{s}$ be generators of Γ with the relation $\gamma_{1} \gamma_{2} \gamma_{1}^{-1} \gamma_{2}^{-1} \cdots \gamma_{s-1}^{-1} \gamma_{s}^{-1}=1$, where $s=-\chi+2$.

Lemma 1.2. $Z^{1}(\Gamma, L) \simeq K^{38-3}$.
Proof. Let φ be an element in $Z^{1}(\Gamma, L)$. Then by the cocycle condition, we have

$$
\begin{aligned}
0 & =\varphi\left(\gamma_{1} \gamma_{2} \gamma_{1}^{-1} \gamma_{2}^{-1} \cdots \gamma_{s-1}^{-1} \gamma_{s}^{-1}\right) \\
& =g_{1} \varphi\left(\gamma_{1}\right)+g_{2} \varphi\left(\gamma_{2}\right)+\cdots+g_{s} \varphi\left(\gamma_{s}\right)
\end{aligned}
$$

where

$$
\begin{array}{lll}
g_{2 k+1}:=h_{2 k+1} \alpha_{k} & \text { with } & h_{2 k+1}:=\left(1-\alpha_{k+1} \gamma_{2 k+2} \alpha_{k}^{-1}\right), \\
g_{2 k+2}:=h_{2 k+2} \alpha_{k} \gamma_{2 k+1} & \text { with } & h_{2 k+2}:=\left(1-\alpha_{k+1} \gamma_{2 k+1}^{-1} \alpha_{k}^{-1}\right)
\end{array}
$$

for $k=0$ through $s / 2-1$ and $\alpha_{k}:=\gamma_{1} \gamma_{2} \gamma_{1}^{-1} \gamma_{2}^{-1} \cdots \gamma_{2 k-1} \gamma_{2 k} \gamma_{2 k-1}^{-1} \gamma_{2 k}^{-1} \in \Gamma$ for $k>0$ and $\alpha_{0}=1$. Hence we have the exact sequence:

$$
0 \rightarrow Z^{1}(\Gamma, L) \rightarrow L^{s} \xrightarrow{G} L
$$

where the second arrow sends φ to ($\varphi\left(\gamma_{1}\right), \varphi\left(\gamma_{2}\right), \cdots, \varphi\left(\gamma_{s}\right)$) and the third arrow G sends $\left(l_{1}, l_{2}, \cdots, l_{s}\right)$ to $g_{1} l_{1}+g_{2} l_{2}+\cdots+g_{s} l_{s}$. Therefore, it is
sufficient to show that the rank of the image of G is equal to 3 . Suppose not. Then $h_{1} L+h_{2} L+\cdots+h_{s} L$ must be contained in a submodule M of rank 2. On the other hand $\beta_{2 k+1}:=\alpha_{k+1} \gamma_{2 k+2} \alpha_{k}^{-1}=\left(1-h_{2 k+1}\right)$ and $\beta_{2 k+2}:=\alpha_{k+1} \gamma_{2 k+1}^{-1} \alpha_{k}^{-1}=\left(1-h_{2 k+2}\right)$ with k running from 0 through $s / 2-1$ are generators of Γ, because $\beta_{2 k+1}^{-1} \beta_{2 k+2}^{-1} \beta_{2 k+1}=\alpha_{k} \gamma_{2 k+1} \alpha_{k}^{-1}$ and $\beta_{2 k+1}^{-1} \beta_{2 k+2}$ $\beta_{2 k+1} \beta_{2 k+2}^{-1} \beta_{2 k+1}=\alpha_{k} \gamma_{2 k+2} \alpha_{k}^{-1}$. Hence the orbit Γy under Γ of any point y in $C \subset N_{R}$ must be contained in the plane $y+M^{\prime}$, where $M^{\prime}=M \otimes \boldsymbol{R}, M$ or $M \cap N_{\boldsymbol{R}}\left(\varsubsetneqq N_{\boldsymbol{R}}\right)$ according as $L=\boldsymbol{Z}, \boldsymbol{R}$ or \boldsymbol{C}. Thus we have the same contradiction as in the proof of Lemma 1.1. q.e.d.

By Lemmas 1.1 and 1.2, we have:
Proposition 1.3. $\quad H^{1}(\Gamma, N) \simeq \boldsymbol{Z}^{-3 X} \oplus$ torsion, $H^{1}\left(\Gamma, N_{R}\right) \simeq \boldsymbol{R}^{-3 X}$ and $H^{1}\left(\Gamma, N_{c}\right) \simeq C^{-3 x}$.

Proposition 1.4. The connected components of the unit elements in $H^{1}(\Gamma, T)$ and $H^{1}(\Gamma, C T)$ are an algebraic torus $\left(\boldsymbol{C}^{\times}\right)^{-3 x}$ and a compact real torus $U(1)^{-3 x}$, respectively, of dimensions -3χ.

Proof. The map $H^{1}(\Gamma, N) \rightarrow H^{1}(\Gamma, L)$ is induced by the injective $\operatorname{map} Z^{1}(\Gamma, N) \rightarrow Z^{1}(\Gamma, L)$ and $Z^{1}(\Gamma, N) \otimes K=Z^{1}(\Gamma, L)$, where $K=\boldsymbol{R}$ or \boldsymbol{C} and $L=N \otimes K$. Hence $\operatorname{coker}\left(H^{1}(\Gamma, N) \rightarrow H^{1}(\Gamma, L)\right) \simeq(K / Z)^{-3 x} \quad$ q.e.d.

Now we consider the case where $S=\left(C / \boldsymbol{R}_{>0}\right) / \Gamma$ is not orientable with the Euler number χ. Also in this case, Lemma 1.1 continues to hold, $\operatorname{dim}_{z} Z^{1}(\Gamma, N)=\operatorname{dim}_{R} Z^{1}\left(\Gamma, N_{R}\right)=\operatorname{dim}_{c} Z^{1}\left(\Gamma, N_{c}\right)$, by the proof of Lemma 1.2 and hence $\operatorname{dim}_{z} H^{1}(\Gamma, N)=\operatorname{dim}_{R} H^{1}\left(\Gamma, N_{R}\right)=\operatorname{dim}_{c} H^{1}\left(\Gamma, N_{c}\right)$. Therefore, we see as in the proof of the above proposition that the connected components of the unit elements in $H^{1}(\Gamma, T)$ and $H^{1}(\Gamma, C T)$ are an algebraic torus and a compact real torus, respectively. Moreover, the dimensions of the tori are not smaller than -3χ, by [2, Theorems 1 and 3]. Thus we conclude that 3 -dimensional cusp singularities are not taut, by [8, Proposition 3.2], if they are not Hilbert modular cusp singularities, because then $\chi<0$, by [7, Theorem 3.1 and Corollary 3.2].
2. Versal families of deformations of 3-dimensional cusp singularities. We keep the notations in the previous section. Recall that we have a resolution $(U, X) \rightarrow(V, p)$ of the cusp singularity (V, p) such that the exceptional set X is a toric divisor (see [7] and [8]). Here U and X are the quotient spaces under Γ of an open set \tilde{U} of a nonsingular torus embedding $T \mathrm{emb}(\Sigma)$ of T and the union of its 2-dimensional orbits \tilde{X}, respectively, such that $\widetilde{U} \backslash \tilde{X}=\operatorname{ord}^{-1}(C)$ is the inverse image of the cone C under the map ord: $T \rightarrow N_{\boldsymbol{R}}$ induced by $-\log | |: \boldsymbol{C}^{\times} \rightarrow \boldsymbol{R}$.

First, we construct a finite open covering of X. We note that (N, Σ) is a Γ-invariant non-singular r.p.p. decomposition of N_{R} with $|\Sigma|$ $\left(:=\cup_{\sigma \epsilon \Sigma} \sigma\right)=C \cup\{0\}$. For each 3-dimensional cone $\sigma=\boldsymbol{R}_{\geq 0} l^{1}+\boldsymbol{R}_{\geq 0} 0^{2}+\boldsymbol{R}_{\geq 0} l^{3}$ in Σ, let

$$
\sigma(\eta, \delta)=\left\{x^{1} l^{1}+x^{2} l^{2}+x^{3} l^{3} \mid x^{1}+x^{2}+x^{3}>\eta, x^{1}, x^{2}, x^{3}>-\delta\right\}
$$

and let $\widetilde{U}_{\sigma}(\eta, \delta)$ be the interior of the closure of $\operatorname{ord}^{-1}(\sigma(\eta, \delta))$ in $T \mathrm{emb}(\Sigma)$. Let $\sigma_{1}, \sigma_{2}, \cdots, \sigma_{\mathrm{I}}$ be representatives of 3 -dimensional cones in Σ modulo Γ, i.e., $\cup_{1 \leq j \leq 1, ~}^{1} \boldsymbol{\tau e} \Gamma\left(\sigma_{j}=C \cup\{0\}\right.$ and $\sigma_{i} \neq \gamma \sigma_{j}$ for any γ in Γ, if $i \neq j$. Let

$$
U_{j}=q\left(\widetilde{U}_{\sigma_{j}}(\eta, \delta)\right), \quad U_{j}^{\prime}=q\left(\widetilde{U}_{\sigma_{j}}\left(\eta^{\prime}, \delta^{\prime}\right)\right),
$$

for large enough $\eta>\eta^{\prime}>0$ and for small enough $\delta^{\prime}>\delta>0$, where $q: \widetilde{U} \rightarrow U$ is the quotient map under Γ. Then $\bar{U}_{j} \subset U_{j}^{\prime}$ and $\left\{U_{j}\right\}$ is an open covering of X. Moreover, we may impose the following assumption, replacing Σ by a non-singular subdivision of it, if necessary.

Assumption 1. For each pair (i, j), the set $\left\{\gamma \in \Gamma \mid \sigma_{i} \cap \gamma \sigma_{j} \neq\{0\}\right\}$ is not empty if and only if $U_{i}^{\prime} \cap U_{j}^{\prime} \neq \varnothing$ and then it consists of only one element, which we denote by $\gamma_{i j}$. Then clearly $\gamma_{i i}=1$ and $\gamma_{j i}=\gamma_{i j}^{-1}$. Moreover, $\gamma_{k i}=\gamma_{k j} \gamma_{j i}$, if $U_{k}^{\prime} \cap U_{j}^{\prime} \cap U_{i}^{\prime} \neq \varnothing$, because then $\sigma_{k} \cap \gamma_{k j} \sigma_{j} \cap \gamma_{k i} \sigma_{i} \neq$ $\{0\}$ and $\sigma_{j} \cap \gamma_{j i} \sigma_{i} \neq\{0\}$.

By this assumption, the restriction $q_{i}: \widetilde{U}_{\sigma_{i}}\left(\eta^{\prime}, \delta^{\prime}\right) \rightarrow U_{i}^{\prime}$ to $\widetilde{U}_{\sigma_{i}}\left(\eta^{\prime}, \delta^{\prime}\right)$ of the quotient map $q: \widetilde{U} \rightarrow U$ is a biholomorphic map and $U_{i}^{\prime} \cap U_{j}^{\prime}$ is connected or empty.

Next, we define a local coordinate on each U_{i}^{\prime}. Fix a basis (n^{1}, n^{2}, n^{3}) of N. Let $\sigma_{i}=\boldsymbol{R}_{\geq 0} l_{i}^{1}+\boldsymbol{R}_{\geq 0} l_{i}^{2}+\boldsymbol{R}_{\geq} 0_{i}^{3}$, let $\left(l_{i}^{1}, l_{i}^{2}, l_{i}^{3}\right)=\left(n^{1}, n^{2}, n^{3}\right) A_{i}\left(A_{i} \in G L(N)\right)$ and let (m_{1}, m_{2}, m_{3}) be the basis of $\operatorname{Hom}(N, \boldsymbol{Z})$ dual to ($\left(l_{i}^{2}, l_{i}^{2}, l_{i}^{3}\right)$. Then we have the holomorphic immersion:

$$
\psi_{i}^{\prime}: U_{i}^{\prime} \hookrightarrow T \mathrm{emb}\left(\left\{\text { faces of } \sigma_{i}\right\}\right) \simeq C^{3}
$$

sending z to $\left(e\left(m_{1}\right)\left(q_{i}^{-1}(z)\right), e\left(m_{2}\right)\left(q_{i}^{-1}(z)\right), e\left(m_{3}\right)\left(q_{i}^{-1}(z)\right)\right)$, where $e(m)$: $T \mathrm{emb}($ ffaces of $\left.\left.\sigma_{i}\right\}\right) \rightarrow \boldsymbol{C}$ is the natural extension of the character $m \otimes \boldsymbol{C}^{\times}: T \rightarrow \boldsymbol{C}^{\times}$of $m \in \operatorname{Hom}(N, \boldsymbol{Z})$. For each pair (i, j) with $U_{i}^{\prime} \cap U_{i}^{\prime} \neq \varnothing$, let $f_{j i}: \psi_{i}\left(U_{i}^{\prime} \cap U_{j}^{\prime}\right) \rightarrow$ $\psi_{j}\left(U_{i}^{\prime} \cap U_{j}^{\prime}\right)$ be the composite of the restriction of ψ_{i}^{-1} to $\psi_{i}\left(U_{i}^{\prime} \cap U_{j}^{\prime}\right)$ and ψ_{j}. Then $f_{j i}$ is written in terms of monomials, i.e.,

$$
f_{j_{i}}\left(w^{1}, w^{2}, w^{3}\right)=\left(\prod_{\alpha=1}^{3}\left(w^{\alpha}\right)^{\alpha_{\alpha 1}}, \prod_{\alpha=1}^{3}\left(w^{\alpha}\right)^{\alpha_{\alpha 2}}, \prod_{\alpha=1}^{3}\left(w^{\alpha}\right)^{\alpha_{\alpha 3}}\right),
$$

where $\left(a_{\alpha \beta}\right)={ }^{t}\left(A_{j}^{-1} \gamma_{j i} A_{i}\right)$. Hence we have the maximal set $W_{j i}$ among open sets in \boldsymbol{C}^{8} on which the analytic continuations of $f_{j i}$ are holomorphic. Clearly $W_{j t}$ is defined by $w^{\alpha} \neq 0$ or $w^{\alpha} w^{\beta} \neq 0$ according as $\sigma_{i} \cap \gamma_{i j} \sigma_{j}$ is a

2-dimensional cone or a 1-dimensional cone and $W_{i i}=\boldsymbol{C}^{3}$. We denote by $\bar{f}_{j i}$, the analytic continuation of $f_{j i}$ to $W_{j i}$. Then we easily see that $\bar{f}_{j i}\left(W_{j i}\right)=W_{i j}$ and that $\left\{w \in \psi_{i}\left(U_{i}\right) \cap W_{j i} \mid \bar{f}_{j i}(w) \in \psi_{j}\left(U_{j}\right)\right\}=\psi_{i}\left(U_{i} \cap U_{j}\right)$.

Let H be a complementary subspace of $B^{1}\left(\Gamma, N_{c}\right)$ in $Z^{1}\left(\Gamma, N_{c}\right)$ and let D be a polydisc in H. In the following, we construct a family over D of deformations of the pair (U, X) by patching up $\left\{\psi_{i}\left(U_{i}\right) \times D\right\}_{1 \leq i \leq 1}$. For each pair (i, j) with $U_{i}^{\prime} \cap U_{j}^{\prime} \neq \varnothing$, let

$$
F_{j i}(w, \varphi)=\left(\bar{\varphi} \bar{f}_{j i}(w), \varphi\right) \quad(w, \varphi) \in W_{j i} \times D
$$

where $\bar{\varphi}=\exp \left(2 \pi \sqrt{-1}{ }^{t}\left\{A_{j}^{-1} \varphi\left(\gamma_{j i}\right)\right\}\right)$ and $\left(\varphi^{1}, \varphi^{2}, \varphi^{3}\right)\left(z^{1}, z^{2}, z^{3}\right)=\left(\varphi^{1} z^{1}, \varphi^{2} z^{2}, \varphi^{3} z^{3}\right)$. Then $F_{j i}$ is a biholomorphic map from $W_{j i} \times D$ to $W_{i j} \times D$. If $U_{i}^{\prime} \cap U_{j}^{\prime} \cap U_{k}^{\prime} \neq$ \varnothing, then $F_{k i}=F_{k j} \circ F_{j i}$ on $\left(W_{k i} \cap W_{j i}\right) \times D \neq \varnothing$, because $\gamma_{k i}=\gamma_{k j} \gamma_{j i}$. If D is small enough, then we may assume the following:

Assumption 2. The closures of $\left\{(w, \varphi) \in\left(\psi_{i}\left(U_{i}\right) \cap W_{j i}\right) \times D \mid F_{j i}(w, \varphi) \in\right.$ $\left.\psi_{j}\left(U_{j}\right) \times D\right\}$ and $F_{j_{i}}\left(\left(\psi_{i}\left(U_{i}\right) \cap W_{j i}\right) \times D\right) \cap \psi_{j}\left(U_{j}\right) \times D$ are contained in $\psi_{i}\left(U_{i}^{\prime} \cap\right.$ $\left.U_{j}^{\prime}\right) \times D$ and $\psi_{j}\left(U_{i}^{\prime} \cap U_{j}^{\prime}\right) \times D$, respectively, for each pair (i, j) with $U_{i}^{\prime} \cap$ $U_{j}^{\prime} \neq \varnothing$.

Definition 2.1. $p \sim q$ for two points p and q in $\psi_{i}\left(U_{i}\right) \times D$ and $\psi_{j}\left(U_{j}\right) \times D$, respectively, if $U_{i}^{\prime} \cap U_{j}^{\prime} \neq \varnothing$, if $p \in W_{j i} \times D$ and if $F_{j i}(p)=q$.

Lemma 2.2. The relation in Definition 2.1 is an equivalence relation in the disjoint union of $\left\{\psi_{i}\left(U_{i}\right) \times D\right\}_{1 \leq i \leq 1}$.

Proof. Since the reflexive law and the symmetric law are trivial, we only prove the transitive law. Let p, q and r be points in $\psi_{i}\left(U_{i}\right) \times D$, $\psi_{j}\left(U_{j}\right) \times D$ and $\psi_{k}\left(U_{k}\right) \times D$, respectively, and assume that $p \sim q$ and that $q \sim r$. Then by Assumption 2, q is contained in both $\psi_{j}\left(U_{i}^{\prime} \cap U_{j}^{\prime}\right) \times D$ and $\psi_{j}\left(U_{j}^{\prime} \cap U_{k}^{\prime}\right) \times D$. Hence $U_{i}^{\prime} \cap U_{j}^{\prime} \cap U_{k}^{\prime} \neq \varnothing$ and $F_{k i}(p)=F_{k j}\left(F_{j i}(p)\right)=F_{k j}(q)=r$. Thus we have $p \sim r$.
q.e.d.

Let $\mathscr{U}=\left(\coprod_{i=1}^{\mathrm{I}} \psi_{i}\left(U_{i}\right) \times D\right) / \sim$ be the quotient space of $\coprod_{i=1}^{\mathrm{I}} \psi_{i}\left(U_{i}\right) \times D$ by the above equivalence relation.

Lemma 2.3. \mathscr{U} is a Hausdorff space.
Proof. Let p and q be points in $\psi_{i}\left(U_{i}\right) \times D$ and $\psi_{j}\left(U_{j}\right) \times D$, respectively, and suppose that $U_{p} \cap U_{q} \neq \varnothing$ for any neighborhoods U_{p} and U_{q} of p and q, respectively. Then there exist sequences $\left\{p_{a}\right\}$ and $\left\{q_{a}\right\}$ of points in $\left(\psi_{i}\left(U_{i}\right) \cap W_{j i}\right) \times D$ and $\left(\psi_{j}\left(U_{j}\right) \cap W_{i j}\right) \times D$ converging to p and q, respectively, with $F_{j i}\left(p_{a}\right)=q_{a}$. By Assumption 2, $p \in \psi_{i}\left(U_{i}^{\prime} \cap U_{j}^{\prime}\right) \times D \subset$ $W_{j i} \times D$ and $F_{j i}(p)=q$. Hence $p \sim q$. q.e.d.

By this lemma, \mathscr{U} is a complex manifold. Let $\pi: \mathscr{U} \rightarrow D$ be the
natural projection and let $\mathscr{X}=\cup_{i=1}^{\mathrm{I}}\left\{\left(w^{1}, w^{2}, w^{3}, \varphi\right) \in \psi_{i}\left(U_{i}\right) \times D \mid w^{1} w^{2} w^{3}=0\right\}$. Then π is a smooth holomorphic map and $X_{\varphi}:=\mathscr{X} \cap \pi^{-1}(\varphi)$ are compact divisors in $U_{\varphi}:=\pi^{-1}(\phi)$ for all φ in D, if D is small enough. Clearly, there is an immersion $U_{0} \hookrightarrow U$ mapping X_{0} onto X. Hence X_{0} is contractible to a point.

Proposition 2.4. $X_{\varphi} \simeq X_{[\theta]}(:=\tilde{X} /\{\theta(\gamma) \gamma \mid \gamma \in \Gamma\})$ for any ρ in D, where θ is the image of φ under the map $Z^{1}\left(\Gamma, N_{c}\right) \rightarrow Z^{1}(\Gamma, T)$ induced by $\exp (2 \pi \sqrt{-1}$? $): N_{c} \rightarrow T$. Hence X_{φ} is a toric divisor. (See [8, §3].)

Proof. Let $X_{i}:=\left\{\psi_{i}\left(U_{i}\right) \times D\right\} \cap X_{\varphi}$ and let r_{i} be the restriction to X_{i} of the composite $q_{i}^{-1} \circ \psi_{i}^{-1} \circ p_{i}$ of the maps $p_{i}: \psi_{i}\left(U_{i}\right) \times D \rightarrow \psi_{i}\left(U_{i}\right), \psi_{i}^{-1}: \psi_{i}\left(U_{i}\right) \xrightarrow{\sim} U_{i}$ and $q_{i}^{-1}: U_{i}^{\prime} \xrightarrow{\sim} \widetilde{U}_{\sigma_{i}}\left(\eta^{\prime}, \delta^{\prime}\right) \subset \tilde{U}$, where p_{i} is the natural projection. Then $\cup_{i=1}^{\mathrm{I}} X_{i}=X_{\varphi}$ and the image $r_{i}\left(X_{i}\right)$ under r_{i} is contained in \tilde{X}. Let s_{i} be the composite of r_{i} and the quotient $\operatorname{map} \widetilde{X} \rightarrow X_{[\theta]}$ under $\{\theta(\gamma) \gamma \mid \gamma \in \Gamma\}$. Then $s_{i}: X_{i} \hookrightarrow X_{[\theta]}$ is a holomorphic immersion. Moreover, we see by an easy calculation that $s_{i}\left(p_{i}\right)=s_{j}\left(p_{j}\right)$ for any points p_{i} and p_{j} in X_{i} and X_{j}, respectively, if and only if $F_{j i}\left(p_{i}\right)=p_{j}$. Hence we have a holomorphic immersion $s: X_{\varphi} \rightarrow X_{[\theta]}$. Since X_{φ} is compact, s is an isomorphism. q.e.d.

Lemma 2.5. For each positive integer $i, \operatorname{dim} H^{i}\left(U_{\varphi}, \mathcal{O}_{U_{\varphi}}\right)$ are constant for 9 small enough.

Proof. Consiser the exact sequences:

$$
0 \rightarrow \mathscr{O}_{U_{\varphi}}\left(-X_{\varphi}\right) \rightarrow \mathscr{O}_{U_{\varphi}} \rightarrow \mathscr{O}_{X_{\varphi}} \rightarrow 0
$$

Let $f:\left(U_{0}, X_{0}\right) \rightarrow\left(V_{0}, p_{0}\right)$ be the contraction map. If we choose an open set in \mathscr{U} so that $f\left(U_{0}\right)=V_{0}$ is a Stein space, then $H^{i}\left(U_{0}, \mathcal{O}_{U_{0}}\left(-X_{0}\right)\right)=$ $R^{i} f_{*} \mathcal{O}_{V_{0}}\left(-X_{0}\right)=0$ for $i>0$, by [7, Theorem 2.3]. Then by [5, Satz 1] and [4, Theorem 1.6], we have $H^{i}\left(U_{\varphi}, \mathcal{O}_{U_{\varphi}}\left(-X_{\varphi}\right)\right)=0$ for $i>0$ and for ρ small enough. Hence we have $H^{i}\left(U_{\varphi}, \mathcal{O}_{U_{\varphi}}\right) \simeq H^{i}\left(X_{\varphi}, \mathcal{O}_{X_{\varphi}}\right)$ for $i>0$. On the other hand, $\operatorname{dim} H^{i}\left(X_{\varphi}, \mathcal{O}_{X_{\varphi}}\right)=\operatorname{dim} H^{i}\left(X_{0}, \mathcal{O}_{X_{0}}\right)\left(=\operatorname{dim} H^{i}(S, C)\right)$ for $i>0$, because X_{φ} are toric divisors whose dual graphs are equal to that of X (see the proof of [7, Proposition 2.7]). Hence $\operatorname{dim} H^{i}\left(U_{\varphi}, \mathcal{O}_{U_{\varphi}}\right)=$ $\operatorname{dim} H^{i}\left(U_{0}, \mathcal{O}_{U_{0}}\right)$. q.e.d.

By this lemma and [3], for D small enough, \mathscr{X} can be simultaneously blown-down in $\mathscr{\mathscr { C }}$. Hence we obtain a family $\mathscr{V} \rightarrow D$ over D of deformations of the isolated 3-dimensional singularity (V_{0}, p_{0}), which is isomorphic to some open set of (V, p).

Theorem 2.6. The family $\mathscr{V} \rightarrow D$ is versal, i.e., the infinitesimal deformation map (the Kodaira-Spencer map) $\rho: T_{0}(D) \rightarrow T_{V_{0}}^{1}$ is bijective.

Proof. Since $\mathscr{U} \backslash \mathscr{O} \rightarrow D$ is a family of deformations of the complex manifold $U_{0} \backslash X_{0}$, we have the infinitesimal deformation map $\rho^{\prime}: T_{0}(D) \rightarrow$ $H^{1}\left(U_{0} \backslash X_{0}, \Theta\right)$, where Θ is the sheaf of germs of vector fields on U_{0}. Since D is a polydisc in $H^{1}\left(\Gamma, N_{c}\right)$ and since there is a canonical isomorphism $H^{1}\left(\Gamma, N_{c}\right) \simeq H^{1}\left(U_{0} \backslash X_{0}, \Theta\right)$ ([2, Theorem 1]), the map ρ^{\prime} is bijective, by the construction of \mathscr{U}. Hence the map ρ must be bijective, because a canonical injection $T_{V_{0}}^{1} \rightarrow H^{1}\left(U_{0} \backslash X_{0}, \Theta\right)$ is bijective, by [6] and [2, Theorem $1]$.
q.e.d.

Corollary 2.7. The cusp singularity (V, p) is not smoothable.
Remark. Also for any higher dimensional pair (C, Γ) in \mathscr{S}, we can construct a versal family, over a small polydise in $H^{1}\left(\Gamma, N_{c}\right)$, of deformations of the cusp singularity $(V, p)=\operatorname{Cusp}(C, \Gamma)$, in the same way.

References

[1] E. Freitag and R. Kiehl, Algebraische Eigenschaften der lokalen Ringe in den Spitzen der Hilbertschen Modulgruppen, Invent. Math. 24 (1974), 121-148.
[2] S. Ogata, Infinitesimal deformations of Tsuchihashi's cusp singularities, Tôhoku Math. J. 38 (1986), 269-279.
[3] O. RiEMENSCHNEIDER, Bemerkungen zur Deformationstheorie nichtrationale Singularitäten, Manuscripta Math. 14 (1976), 91-99.
[4] O. Riemenschneider, Halbstetigkeitssätze für 1-konvexe holomorphe Abbildungen, Math. Ann. 192 (1971), 216-226.
[5] O. Riemenschneider, Familien komplexer Räume mit streng pseudokomvexer spezieller Faser, Comment. Math. Helv. 51 (1976), 547-565.
[6] M. Schlessinger, Rigidity of quotient singularities, Invent. Math. 14 (1971), 17-26.
[7] H. Tsuchinashi, Higher dimensional analogues of periodic continued fractions and cusp singularities, Tôhoku Math. J. 35 (1983), 607-639.
[8] H. Tsuchinashi, Three-dimensional cusp singularities, to appear in Complex Analytic Singularities (T. Suwa and P. Wagreigh, eds.), Advanced Studies in Pure Math. 8, Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford.

Department of General Education
Tôhoku Gakuin University
Sendai, 980
Japan

