OUTRADII OF THE TEICHMÜLLER SPACES OF FUCHSIAN GROUPS OF THE SECOND KIND

Dedicated to Professor Tadashi Kuroda on his sixtieth birthday

Hisao Sekigawa and Hiro-o Yamamoto

(Received July 3, 1985)

1. Introduction. Let $o(\Gamma)$ be the outradius of the Teichmüller space $T(\Gamma)$ of a Fuchsian group Γ. Then $o(\Gamma)$ is strictly greater than 2 (Earle [5]) and not greater than 6 (Nehari [7]). A Fuchsian group is said to be of the first kind (resp. second kind) if its region of discontinuity is not connected (resp. connected). If Γ is a finitely generated Fuchsian group of the first kind, then $o(\Gamma)$ is strictly less than 6 ([9]). Recently the authors proved, by using a basic result on the stability of finitely generated Fuchsian groups (Bers [3]), that $o(\Gamma)$ is equal to 6 for a finitely generated Fuchsian group Γ of the second kind ([10]). In this paper we give an alternative proof of it, which works also for an infinitely generated Fuchsian group of the second kind.

Theorem. If Γ is a Fuchsian group of the second kind, then $o(\Gamma)$ is equal to 6.

The authors would like to thank the referee for pointing out some errors in the original manuscript.
2. Definitions. Let Δ be the open unit disc and Δ^{*} be the exterior of Δ in the Riemann sphere $\hat{\boldsymbol{C}}$. For each function f which is conformal in Δ^{*} let $\{f, z\}$ be the Schwarzian derivative of f, that is, $\{f, z\}=$ $\left(f^{\prime \prime} / f^{\prime}\right)^{\prime}-(1 / 2)\left(f^{\prime \prime} / f^{\prime}\right)^{2}$. Let Γ be a Fuchsian group keeping Δ invariant. A quasiconformal automorphism w of \hat{C} is said to be compatible with Γ if $w \circ \gamma \circ w^{-1}$ is a Möbius transformation for each $\gamma \in \Gamma$. Let w be a quasiconformal automorphism of $\hat{\boldsymbol{C}}$ which is compatible with Γ and which is conformal in Δ^{*}. The Teichmüller space $T(\Gamma)$ of Γ is the set of the Schwarzian derivatives $\left\{w \mid \Delta^{*}, z\right\}$ of such w 's restricted to Δ^{*}. Let $\lambda(z)=$ $\left(|z|^{2}-1\right)^{-1}$ be a Poincaré density of Δ^{*}. For a function ϕ defined in Δ^{*} let $\|\phi\|=\sup _{z \in \Delta^{*}} \lambda(z)^{-2}|\phi(z)|$. The outradius $o(\Gamma)$ of $T(\Gamma)$ is defined to be $\sup \|\phi\|$, where the supremum is taken over all ϕ in $T(\Gamma)$.
3. Lemmas. In this section we state two lemmas without proof.

Lemma 1 is due to Chu [4]. Lemma 2 is proved in §§5-6. Let $k(z)=$ $z+z^{-1}$. Then k maps Δ^{*} conformally onto $\hat{\boldsymbol{C}}$ with the closed real segment [-2,2] removed. Let S_{r} be the circle of radius $r(>1)$ around the origin. Then the image of S_{r} under k is the ellipse

$$
E_{r}: \xi^{2} /\left(r+r^{-1}\right)^{2}+\eta^{2} /\left(r-r^{-1}\right)^{2}=1,
$$

where $\zeta=k(z)$ and $\zeta=\xi+\eta \sqrt{-1}$.
For two Jordan loops J_{1} and J_{2} in the finite complex plane C we define the Fréchet distance $\delta\left(J_{1}, J_{2}\right)$ as $\inf \max _{0 \leq t \leq 1}\left|z_{1}(t)-z_{2}(t)\right|$, where the infimum is taken over all possible parametrizations $z_{i}(t)$ of $J_{i}(i=1,2)$.

Lemma 1 (Chu [4]). For each positive ε there exist constants $r_{1}>1$ and $d_{1}>0$ so that if $E_{r_{1}}=k\left(S_{r_{1}}\right)$ and if J is a Jordan loop in C with $\delta\left(J, E_{r_{1}}\right) \leqq d_{1}$, then a conformal mapping f of Δ^{*} onto the exterior of J satisfies $\|\{f, z\}\|>6-\varepsilon$.

Denote by $\mu[w]$ the complex dilatation of a quasiconformal mapping w.

Lemma 2. Let Γ be a Fuchsian group of the second kind keeping Δ invariant. Then for each $r>1$ and $d>0$ there exist a sequence $\left\{\sigma_{n}\right\}_{n=1}^{\infty}$ of Möbius transformations and a sequence $\left\{F_{n}\right\}_{n=1}^{\infty}$ of quasiconformal automorphisms of $\hat{\boldsymbol{C}}$ which satisfy the following.

$$
\begin{equation*}
F_{n} \circ \gamma=\gamma \circ F_{n} \quad \text { for all } \quad \gamma \in \Gamma \tag{3.1}
\end{equation*}
$$

$$
\begin{gather*}
F_{n} \circ \sigma_{n}(\infty) \in \Delta^{*} \tag{3.2}\\
\lim _{n \rightarrow \infty}\left\|\mu\left[F_{n}^{-1} \mid \Delta^{*}\right]\right\|_{\infty}=0 . \tag{3.3}\\
\delta\left(\sigma_{n}^{-1} \circ F_{n}^{-1}(\partial \Delta), E_{r}\right) \leqq d . \tag{3.4}
\end{gather*}
$$

4. Proof of Theorem. For each $\varepsilon>0$ let r_{1} and d_{1} be the constants in Lemma 1. Let $\left\{\sigma_{n}\right\}_{n=1}^{\infty}$ and $\left\{F_{n}\right\}_{n=1}^{\infty}$ be sequences of Möbius transformations and quasiconformal automorphisms, respectively, obtained from Lemma 2 for $r=r_{1}$ and $d=d_{1} / 2$.

Set $\nu_{n}(z)=\mu\left[F_{n}^{-1} \mid \Delta\right](z)$ for $z \in \Delta$ and $=0$ for $z \in \Delta^{*}$. Let w_{n} be the ν_{n}-conformal automorphism of $\hat{\boldsymbol{C}}$ which sends $F_{n} \circ \sigma_{n}(0), F_{n} \circ \sigma_{n}(1)$ and $F_{n} \circ \sigma_{n}(\infty)$ to 0,1 and ∞, respectively (Ahlfors [1, p. 98]). Then w_{n} is compatible with Γ by (3.1) and the quasiconformal automorphism $W_{n}=$ $w_{n} \circ F_{n} \circ \sigma_{n}$ of $\widehat{\boldsymbol{C}}$ keeps 0,1 , and ∞ fixed. Since $W_{n}(\infty)=\infty$, (3.2) implies $w_{n}^{-1}(\infty)=F_{n} \circ \sigma_{n} \circ W_{n}^{-1}(\infty)=F_{n} \circ \sigma_{n}(\infty) \in \Delta^{*}$. Hence w_{n} maps Δ^{*} conformally onto the exterior of $w_{n}(\partial \Delta)$. Since both $\mu\left[w_{n} \mid \Delta\right]$ and $\mu\left[\sigma_{n}^{-1} \circ F_{n}^{-1} \mid \Delta\right]$ are equal to $\nu_{n} \mid \Delta, \mu\left[W_{n} \mid \sigma_{n}^{-1} \circ F_{n}^{-1}(\Delta)\right]$ vanishes ($[1, \mathrm{p} .9]$). Hence

$$
\left\|\mu\left[W_{n}\right]\right\|_{\infty}=\left\|\mu\left[W_{n} \mid \sigma_{n}^{-1} \circ F_{n}^{-1}\left(\Delta^{*}\right)\right]\right\|_{\infty}=\left\|\mu\left[F_{n} \mid F_{n}^{-1}\left(\Delta^{*}\right)\right]\right\|_{\infty}=\left\|\mu\left[F_{n}^{-1} \mid \Delta^{*}\right]\right\|_{\infty} .
$$

Therefore $\lim _{n \rightarrow \infty}\left\|\mu\left[W_{n}\right]\right\|_{\infty}=0$ by (3.3). By a result on quasiconformal mappings (Ahlfors-Bers [2, Lemma 17]), we see the existence of a positive integer n_{1} so that

$$
\left|W_{n_{1}}(z)-z\right| \leqq d_{1} / 2
$$

for all z with $\operatorname{dist}\left(z, E_{r_{1}}\right) \leqq d_{1} / 2$. This shows

$$
\delta\left(w_{n_{1}}(\partial \Delta), \sigma_{n_{1}}^{-1} \circ F_{n_{1}}^{-1}(\partial \Delta)\right) \leqq d_{1} / 2
$$

Hence this together with (3.4) implies that $\delta\left(w_{n_{1}}(\partial \Delta), E_{r_{1}}\right) \leqq d_{1}$. Now Lemma 1 shows $\left\|\left\{w_{n_{1}} \mid \Delta^{*}, z\right\}\right\|>6-\varepsilon$. Recall that $\left\{w_{n_{1}} \mid \Delta^{*}, z\right\}$ is in $T(\Gamma)$. Then we see $o(\Gamma)>6-\varepsilon$. Since $\varepsilon>0$ is arbitrary, $o(\Gamma) \geqq 6$. On the other hand $o(\Gamma) \leqq 6$ (Nehari [7]). Therefore $o(\Gamma)=6$. This completes the proof of Theorem.
5. A sequence of quasiconformal mappings. Let $\left\{\delta_{n}\right\}_{n=1}^{\infty}(\subset(0,1))$ be a decreasing sequence with $\lim _{n \rightarrow \infty} \delta_{n}=0$. Let $V_{n}=\left\{z \in \boldsymbol{C} ;|z|<\delta_{n}\right\}$. Let j_{n} be a smooth closed Jordan arc in $\mathrm{Cl} V_{n}$ which joins $-\delta_{n}$ to δ_{n}. Set $l_{n}=\left[-1,-\delta_{n}\right) \cup j_{n} \cup\left(\delta_{n}, 1\right]$. Let U and L be the upper and lower halfplanes, respectively. Let $B=\{z \in C ;|\operatorname{Re} z|<1,0<\operatorname{Im} z<1\}$. Then both $\alpha_{n}=l_{n} \cup(L \cap \partial \Delta)$ and $\beta_{n}=l_{n} \cup(U \cap \partial B)$ are Jordan loops. Denote by A_{n} and B_{n} the interiors of α_{n} and β_{n}, respectively. Let $A=\{z \in L ;|z|<1\}$ and $C=\{z \in L ; 1<|z|<2\}$. Let Ω be the interior of $\operatorname{Cl}(\mathrm{A} \cup B \cup C)$. The purpose of this section is to prove the following lemma.

Lemma 3. There exists a sequence of quasiconformal automorphisms $\left\{G_{n}\right\}_{n=1}^{\infty}$ of Ω with $G_{n}(z)=z$ for all $z \in \partial \Omega$ which satisfy the following.
(i) $G_{n}\left(l_{n}\right)=\partial U \cap \mathrm{Cl} A$ and $G_{n}\left(A_{n}\right)=A$.
(ii) $\lim _{n \rightarrow \infty}\left\|\mu\left[G_{n}^{-1} \mid \Omega \cap L\right]\right\|_{\infty}=0$.

It is known that every quasiconformal mapping between Jordan domains can be extended to a homeomorphism between their closures (Lehto-Virtanen [6, p. 42]). Therefore from now on a quasiconformal mapping of a Jordan domain D onto another means a homeomorphism of Cl D which is quasiconformal in D.

Let f_{n} be the conformal mapping which maps A_{n} onto A and which keeps $1,-1$ and $-\sqrt{-1}$ invariant. Let R_{n} be the annulus $\left\{z \in C ; \delta_{n}<\right.$ $\left.|z|<\delta_{n}^{-1}\right\}$. Then by the reflection principle $f_{n} \mid A_{n} \cap R_{n}$ can be continued analytically to R_{n} beyond the unit circle and beyond the real line. Thus f_{n} has a conformal extension to $A_{n} \cup R_{n}$, for which by abuse of language we use the same letter f_{n}. Before proving Lemma 3, we prove Lemmas 4-6 which play essential roles in the proof of Lemma 3.

Lemma 4. The sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to the identity transformation uniformly in R_{1}.

Proof. Each f_{n} fixes 1, -1 and $-\sqrt{-1}$. Hence $\left\{f_{n}\right\}_{n=m}^{\infty}$ is a normal family in R_{m} (Lehto-Virtanen [6, p. 73]). By a diagonal argument we obtain a subsequence $\left\{f_{n_{i}}\right\}_{i=1}^{\infty}$ of $\left\{f_{n}\right\}_{n=1}^{\infty}$ which converges uniformly in $R_{n_{1}}$, in particular, in R_{1} to a conformal mapping f_{∞} of $\cup_{i=1}^{\infty} R_{n_{i}}=C-\{0\}$ ([6, p. 74]). Since f_{∞} can be extended to a conformal automorphism of \hat{C} and since f_{∞} fixes $1,-1$ and $-\sqrt{-1}, f_{\infty}$ is the identity transformation. By the same reasoning as above any other convergent subsequence of $\left\{f_{n}\right\}_{n=1}^{\infty}$ than $\left\{f_{n_{i}}\right\}_{i=1}^{\infty}$ also converges to the identity transformation uniformly in R_{1}, and so does the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ itself.
q.e.d.

Lemma 5. There exists a quasiconformal mapping g_{n} of B_{n} onto B so that $g_{n}(z)=f_{n}(z)$ for all $z \in l_{n}$ and $g_{n}(z)=z$ for all $z \in \beta_{n}-l_{n}$.

Proof. Put $q_{n}(z)=f_{n}(z)$ if $z \in l_{n}$ and $=z$ if $z \in \beta_{n}-l_{n}$. Then q_{n} is a homeomorphism of a Jordan loop β_{n} onto another ∂B. For each point p of β_{n} we shall show the existence of an open subarc J_{p} of β_{n} containing p such that $q_{n} \mid J_{p}$ has a quasiconformal extension to $\hat{\boldsymbol{C}}$. Then by a theorem of Rickman ([8, Theorem 4]) q_{n} has a quasiconformal extension g_{n} to $\hat{\boldsymbol{C}}$. Since g_{n} is sense-preserving, g_{n} maps B_{n} onto B.

First let $p \in \beta_{n} \cap U$. Then $\beta_{n} \cap U$ is an open subarc of β_{n} containing p and $q_{n} \mid \beta_{n} \cap U$ has a quasiconformal extension to $\hat{\boldsymbol{C}}$, which is the identity mapping. Secondly, let $p \in l_{n}-\{ \pm 1\}$. Then $l_{n}-\{ \pm 1\}$ is an open subare of β_{n}. Since both α_{n} and ∂A consist of finitely many smooth arcs which meet pairwise at non-zero angles, they are quasicircles (Lehto-Virtanen [6, p. 104]). Hence f_{n} can be extended to a quasiconformal automorphism \widetilde{f}_{n} of \hat{C} (Ahlfors [1, p. 75]). In particular $q_{n} \mid l_{n}-\{ \pm 1\}$ has a quasiconformal extension \tilde{f}_{n} to \hat{C}. Finally, let $p= \pm 1$. Let $b_{n} \in\left(\delta_{n}, 1\right)$ and let $N_{n}=\left\{z \in \boldsymbol{C} ; \quad b_{n}<p \cdot \operatorname{Re} z<b_{n}^{-1}, \quad|\operatorname{Im} z|<1 / 2\right\}$. Then $\beta_{n} \cap N_{n}$ is an open subarc of β_{n} containing p. Set $u_{n}(z)=f_{n}(\operatorname{Re} z)+\sqrt{-1} \operatorname{Im} z$ if $b_{n}<p$. $\operatorname{Re} z<b_{n}^{-1},=z-p b_{n}+f_{n}\left(p b_{n}\right)$ if $p \cdot \operatorname{Re} z \leqq b_{n}$, and $=z-p b_{n}^{-1}+f_{n}\left(p b_{n}^{-1}\right)$ if $p \cdot \operatorname{Re} z \geqq b_{n}^{-1}$. Then u_{n} is a quasiconformal extension of $q_{n} \mid \beta_{n} \cap N_{n}$ to $\hat{\boldsymbol{C}}$. q.e.d.

Lemma 6. There exists a quasiconformal automorphism h_{n} of C so that $h_{n}(z)=f_{n}(z)$ for $z \in \partial C \cap \partial \Delta$ and $=z$ for $z \in \partial C \cap \Delta^{*}$ and that $\lim _{n \rightarrow \infty}\left\|\mu\left[h_{n}\right]\right\|_{\infty}=0$.

Proof. For $\theta \in[-\pi, 0]$ define $\psi_{n}(\theta) \in[-\pi, 0]$ as $f_{n}(\exp (\sqrt{-1} \theta))=$ $\exp \left(\sqrt{-1} \psi_{n}(\theta)\right)$. Set $h_{n}(\rho \exp (\sqrt{-1} \theta))=\rho \exp \left[\sqrt{-1}\left\{(\rho-1) \theta+(2-\rho) \psi_{n}(\theta)\right\}\right]$,
where $\rho \in[1,2]$ and $\theta \in[-\pi, 0]$. Then h_{n} is a homeomorphism of $\mathrm{Cl} C$ onto itself with $h_{n}(z)=f_{n}(z)$ for $z \in \partial C \cap \partial \Delta$ and $h_{n}(z)=z$ for $z \in \partial C \cap \Delta^{*}$. For $z=\rho \exp (\sqrt{-1} \theta) \in C$ it holds that

$$
\begin{aligned}
\left|\mu\left[h_{n}\right](z)\right|= & \left|\left[\rho\left(h_{n}\right)_{\rho}(z)+\sqrt{-1}\left(h_{n}\right)_{\theta}(z)\right] /\left[\rho\left(h_{n}\right)_{\rho}(z)-\sqrt{-1}\left(h_{n}\right)_{\theta}(z)\right]\right| \\
= & \mid\left[(2-\rho)\left\{1-\psi_{n}^{\prime}(\theta)\right\}+\sqrt{-1} \rho\left\{\theta-\psi_{n}(\theta)\right\}\right] \\
& \times\left[\rho+(2-\rho) \psi_{n}^{\prime}(\theta)+\sqrt{-1} \rho\left\{\theta-\psi_{n}(\theta)\right\}\right]^{-1} \mid .
\end{aligned}
$$

By Lemma $4 \lim _{n \rightarrow \infty} \psi_{n}(\theta)=\theta$ and $\lim _{n \rightarrow \infty} \psi_{n}^{\prime}(\theta)=1$ uniformly on $(-\pi, 0)$. Hence we see $\lim _{n \rightarrow \infty}\left\|\mu\left[h_{n}\right]\right\|_{\infty}=0$.
q.e.d.

Proof of Lemma 3. Define $G_{n}(z)=f_{n}(z)$ if $z \in \operatorname{Cl} A_{n},=g_{n}(z)$ if $z \in$ $\mathrm{Cl} B_{n}$ and $=h_{n}(z)$ if $z \in \mathrm{Cl} C$. Then Lemma 3 follows from Lemmas 5 and 6.
q.e.d.
6. Proof of Lemma 2. Let r and s be real numbers with $r>1$ and $0<s<r+r^{-1}$. Let T be the vertical line in $\hat{\boldsymbol{C}}$ passing through s. Then E_{r} and T intersect at exactly two points $\zeta \in U$ and $\bar{\zeta} \in L$. Let I be the bounded closed subarc of T joining ζ to $\bar{\zeta}$. Let P be the component of $\hat{\boldsymbol{C}}-T$ containing the origin. Denote by J the Jordan loop $\left(E_{r} \cap P\right) \cup I$. Let Q be the interior of the circle with the diameter I. Note that both T and P depend on s, and ζ, I, J and Q all depend on both r and s.

Proof of Lemma 2. Fix an $s \in\left(0, r+r^{-1}\right)$ sufficiently near to $r+r^{-1}$ so that

$$
\begin{equation*}
\operatorname{diam} Q \leqq d / 2 \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta\left(J, E_{r}\right) \leqq d / 2 \tag{6.2}
\end{equation*}
$$

where $\operatorname{diam} Q$ denotes the Euclidean diameter of Q.
First we construct $\left\{\sigma_{n}\right\}_{n=1}^{\infty}$ and $\left\{F_{n}\right\}_{n=1}^{\infty}$. Let τ_{n} be a Möbius transformation such that $\tau_{n}(P)=U$ and $\tau_{n}(Q)=\widehat{\boldsymbol{C}}-\mathrm{Cl} V_{n}$, where V_{n} is the open ball $\left\{z \in \boldsymbol{C} ;|z|<\delta_{n}\right\}$ defined at the beginning of $\S 5$. Then $j_{n}=\tau_{n}\left(E_{r} \cap \mathrm{Cl} P\right)$ is a smooth closed Jordan arc in $\mathrm{Cl} V_{n}$ joining $-\delta_{n}$ to δ_{n}. Let $\left\{G_{n}\right\}_{n=1}^{\infty}$ be the sequence of quasiconformal automorphisms of Ω in Lemma 3. Let D_{0} be a Dirichlet fundamental region for Γ in Δ. Since Γ is of the second kind, D_{0} has free sides. Let D be the union of D_{0}, the region obtained from D_{0} by reflection in $\partial \Delta$ and the free sides of D_{0}. Let σ be a Möbius transformation such that $\sigma(U)=\Delta$ and $\sigma(\mathrm{Cl} \Omega) \subset D$. Define

$$
F_{n}=\left\{\begin{array}{l}
\gamma \circ \sigma \circ G_{n} \circ \sigma^{-1} \circ \gamma^{-1} \text { in } \gamma \circ \sigma(\Omega) \text { for all } \gamma \in \Gamma \tag{6.3}\\
\text { the identity mapping in } \hat{C}-\underset{\gamma \in \Gamma}{\bigcup} \gamma \circ \sigma(\Omega)
\end{array}\right.
$$

and $\sigma_{n}=\sigma \circ \tau_{n}$. Then F_{n} is a homeomorphism of $\hat{\boldsymbol{C}}$ onto itself which is quasiconformal off $\partial \Delta$. Hence F_{n} is a quasiconformal automorphism of $\widehat{\boldsymbol{C}}$ (Lehto-Virtanen [6, p. 45]).

Secondly, we prove (3.1), (3.2) and (3.3). By (6.3) we see $F_{n} \circ \gamma=\gamma \circ F_{n}$ for all $\gamma \in \Gamma$. Since $j_{n}-\left\{-\delta_{n}, \delta_{n}\right\}=\tau_{n}\left(P \cap E_{r}\right) \subset \tau_{n}(P \cap(\hat{\boldsymbol{C}}-\mathrm{Cl} Q))=U \cap V_{n}$ and since $\tau_{n}(\infty) \in \tau_{n}(T-I) \subset \tau_{n}(T \cap(\hat{C}-\mathrm{Cl} Q))=\partial U \cap V_{n}$, the point $\tau_{n}(\infty)$ belongs to A_{n}. Then by Lemma 3(i) and (6.3) we see $F_{n} \circ \sigma_{n}(\infty)=F_{n} \circ \sigma \circ \tau_{n}(\infty) \in$ $F_{n} \circ \sigma\left(A_{n}\right)=\sigma \circ G_{n}\left(A_{n}\right) \subset \sigma(L)=\Delta^{*}$. Since by (6.3) $\left\|\mu\left[F_{n}^{-1} \mid \Delta^{*}\right]\right\|_{\infty}=\| \mu\left[F_{n}^{-1} \mid \Delta^{*} \cap\right.$ $D]\left\|_{\infty}=\right\| \mu\left[G_{n}^{-1} \mid \Omega \cap L\right] \|_{\infty}$, Lemma 3(ii) shows $\lim _{n \rightarrow \infty}\left\|\mu\left[F_{n}^{-1} \mid \Delta^{*}\right]\right\|_{\infty}=0$.

Finally, we prove (3.4). It follows from Lemma 3(i) and (6.3) that

$$
\begin{aligned}
& \sigma_{n}^{-1} \circ F_{n}^{-1}(\partial \Delta)=\tau_{n}^{-1} \circ \sigma^{-1} \circ F_{n}^{-1}(\partial \Delta) \subset \tau_{n}^{-1}\left(l_{n} \cup(\widehat{\boldsymbol{C}}-\Omega)\right) \\
& \quad \subset \tau_{n}^{-1}\left(j_{n} \cup\left(\widehat{\boldsymbol{C}}-\mathrm{Cl} V_{n}\right)\right)=\left(E_{r} \cap \mathrm{Cl} P\right) \cup Q \subset J \cup Q .
\end{aligned}
$$

Hence by (6.1) $\delta\left(\sigma_{n}^{-1} \circ F_{n}^{-1}(\partial \Delta), J\right) \leqq d / 2$. This together with (6.2) yields that $\delta\left(\sigma_{n}^{-1} \circ F_{n}^{-1}(\partial \Delta), E_{r}\right) \leqq d$. Now we complete the proof of Lemma 2 and hence that of Theorem.

References

[1] L. V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, N. J., 1966.
[2] L. V. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385-404.
[3] L. Bers, On boundaries of Teichmüller spaces and on kleinian groups. I, Ann. of Math. (2) 91 (1970), 570-600.
[4] T. CHU, On the outradius of finite-dimensional Teichmüller spaces, Discontinuous Groups and Riemann Surfaces, Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N. J., 1974, pp. 75-79.
[5] C. J. Earle, On holomorphic cross-sections in Teichmüller spaces, Duke Math. J. 36 (1969), 409-415.
[6] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
[7] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.
[8] S. Rickman, Quasiconformally equivalent curves, Duke Math. J. 36 (1969), 387-400.
[9] H. Sekigawa, The outradius of the Teichmüller space, Tôhoku Math. J. (2) 30 (1978), 607-612.
[10] H. Sekigawa and H. Yamamoto, Outradii of Teichmüller spaces of finitely generated Fuchsian groups of the second kind, J. Math. Kyoto Univ. 26 (1986), 23-30.

[^0]
[^0]: Hachinohe Institute of Technology and Department of Mathematics

 HaChinOHE, 031
 Japan

 National Defense Academy
 Yokosuka, 239
 Japan

