Tôhoku Math. Journ. 38 (1986), 365-370.

OUTRADII OF THE TEICHMÜLLER SPACES OF FUCHSIAN GROUPS OF THE SECOND KIND

Dedicated to Professor Tadashi Kuroda on his sixtieth birthday

HISAO SEKIGAWA AND HIRO-O YAMAMOTO

(Received July 3, 1985)

1. Introduction. Let $o(\Gamma)$ be the outradius of the Teichmüller space $T(\Gamma)$ of a Fuchsian group Γ . Then $o(\Gamma)$ is strictly greater than 2 (Earle [5]) and not greater than 6 (Nehari [7]). A Fuchsian group is said to be of the first kind (resp. second kind) if its region of discontinuity is not connected (resp. connected). If Γ is a finitely generated Fuchsian group of the first kind, then $o(\Gamma)$ is strictly less than 6 ([9]). Recently the authors proved, by using a basic result on the stability of finitely generated Fuchsian groups (Bers [3]), that $o(\Gamma)$ is equal to 6 for a finitely generated Fuchsian group Γ of the second kind ([10]). In this paper we give an alternative proof of it, which works also for an *infinitely generated* Fuchsian group of the second kind.

THEOREM. If Γ is a Fuchsian group of the second kind, then $o(\Gamma)$ is equal to 6.

The authors would like to thank the referee for pointing out some errors in the original manuscript.

2. Definitions. Let Δ be the open unit disc and Δ^* be the exterior of Δ in the Riemann sphere \hat{C} . For each function f which is conformal in Δ^* let $\{f, z\}$ be the Schwarzian derivative of f, that is, $\{f, z\} = (f''/f')' - (1/2)(f''/f')^2$. Let Γ be a Fuchsian group keeping Δ invariant. A quasiconformal automorphism w of \hat{C} is said to be compatible with Γ if $w \circ \gamma \circ w^{-1}$ is a Möbius transformation for each $\gamma \in \Gamma$. Let w be a quasiconformal automorphism of \hat{C} which is compatible with Γ and which is conformal in Δ^* . The Teichmüller space $T(\Gamma)$ of Γ is the set of the Schwarzian derivatives $\{w \mid \Delta^*, z\}$ of such w's restricted to Δ^* . Let $\lambda(z) =$ $(|z|^2 - 1)^{-1}$ be a Poincaré density of Δ^* . For a function ϕ defined in Δ^* let $||\phi|| = \sup_{z \in \Delta^*} \lambda(z)^{-2} |\phi(z)|$. The outradius $o(\Gamma)$ of $T(\Gamma)$ is defined to be sup $||\phi||$, where the supremum is taken over all ϕ in $T(\Gamma)$.

3. Lemmas. In this section we state two lemmas without proof.

Lemma 1 is due to Chu [4]. Lemma 2 is proved in §§5-6. Let $k(z) = z + z^{-1}$. Then k maps Δ^* conformally onto \hat{C} with the closed real segment [-2, 2] removed. Let S_r be the circle of radius r (>1) around the origin. Then the image of S_r under k is the ellipse

$$E_r: \xi^2/(r+r^{-1})^2 + \eta^2/(r-r^{-1})^2 = 1$$
 ,

where $\zeta = k(z)$ and $\zeta = \xi + \eta \sqrt{-1}$.

For two Jordan loops J_1 and J_2 in the finite complex plane C we define the Fréchet distance $\delta(J_1, J_2)$ as $\inf \max_{0 \le t \le 1} |z_1(t) - z_2(t)|$, where the infimum is taken over all possible parametrizations $z_i(t)$ of J_i (i = 1, 2).

LEMMA 1 (Chu [4]). For each positive ε there exist constants $r_1 > 1$ and $d_1 > 0$ so that if $E_{r_1} = k(S_{r_1})$ and if J is a Jordan loop in C with $\delta(J, E_{r_1}) \leq d_1$, then a conformal mapping f of Δ^* onto the exterior of J satisfies $||\{f, z\}|| > 6 - \varepsilon$.

Denote by $\mu[w]$ the complex dilatation of a quasiconformal mapping w.

LEMMA 2. Let Γ be a Fuchsian group of the second kind keeping \varDelta invariant. Then for each r > 1 and d > 0 there exist a sequence $\{\sigma_n\}_{n=1}^{\infty}$ of Möbius transformations and a sequence $\{F_n\}_{n=1}^{\infty}$ of quasiconformal automorphisms of \hat{C} which satisfy the following.

(3.1) $F_n \circ \gamma = \gamma \circ F_n \quad for \ all \quad \gamma \in \Gamma .$

$$(3.2) F_n \circ \sigma_n(\infty) \in \varDelta^*$$

(3.3)
$$\lim_{n \to \infty} \|\mu[F_n^{-1}| \Delta^*]\|_{\infty} = 0.$$

(3.4)
$$\delta(\sigma_n^{-1} \circ F_n^{-1}(\partial \Delta), E_r) \leq d.$$

4. **Proof of Theorem.** For each $\varepsilon > 0$ let r_1 and d_1 be the constants in Lemma 1. Let $\{\sigma_n\}_{n=1}^{\infty}$ and $\{F_n\}_{n=1}^{\infty}$ be sequences of Möbius transformations and quasiconformal automorphisms, respectively, obtained from Lemma 2 for $r = r_1$ and $d = d_1/2$.

Set $\nu_n(z) = \mu[F_n^{-1}|\Delta](z)$ for $z \in \Delta$ and =0 for $z \in \Delta^*$. Let w_n be the ν_n -conformal automorphism of \hat{C} which sends $F_n \circ \sigma_n(0)$, $F_n \circ \sigma_n(1)$ and $F_n \circ \sigma_n(\infty)$ to 0, 1 and ∞ , respectively (Ahlfors [1, p. 98]). Then w_n is compatible with Γ by (3.1) and the quasiconformal automorphism $W_n = w_n \circ F_n \circ \sigma_n$ of \hat{C} keeps 0, 1, and ∞ fixed. Since $W_n(\infty) = \infty$, (3.2) implies $w_n^{-1}(\infty) = F_n \circ \sigma_n \circ W_n^{-1}(\infty) = F_n \circ \sigma_n(\infty) \in \Delta^*$. Hence w_n maps Δ^* conformally onto the exterior of $w_n(\partial \Delta)$. Since both $\mu[w_n|\Delta]$ and $\mu[\sigma_n^{-1} \circ F_n^{-1}|\Delta]$ are equal to $\nu_n|\Delta$, $\mu[W_n|\sigma_n^{-1} \circ F_n^{-1}(\Delta)]$ vanishes ([1, p. 9]). Hence

 $\|\mu[W_n]\|_{\infty} = \|\mu[W_n | \sigma_n^{-1} \circ F_n^{-1}(\varDelta^*)]\|_{\infty} = \|\mu[F_n | F_n^{-1}(\varDelta^*)]\|_{\infty} = \|\mu[F_n^{-1} | \varDelta^*]\|_{\infty}.$

Therefore $\lim_{n\to\infty} \|\mu[W_n]\|_{\infty} = 0$ by (3.3). By a result on quasiconformal mappings (Ahlfors-Bers [2, Lemma 17]), we see the existence of a positive integer n_1 so that

$$|W_{n_1}(z) - z| \leq d_1/2$$

for all z with dist $(z, E_{r_1}) \leq d_1/2$. This shows

$$\delta(w_{n_1}(\partial \Delta), \sigma_{n_1}^{-1} \circ F_{n_1}^{-1}(\partial \Delta)) \leq d_1/2$$
.

Hence this together with (3.4) implies that $\delta(w_{n_1}(\partial \Delta), E_{r_1}) \leq d_1$. Now Lemma 1 shows $\|\{w_{n_1} | \Delta^*, z\}\| > 6 - \varepsilon$. Recall that $\{w_{n_1} | \Delta^*, z\}$ is in $T(\Gamma)$. Then we see $o(\Gamma) > 6 - \varepsilon$. Since $\varepsilon > 0$ is arbitrary, $o(\Gamma) \geq 6$. On the other hand $o(\Gamma) \leq 6$ (Nehari [7]). Therefore $o(\Gamma) = 6$. This completes the proof of Theorem.

5. A sequence of quasiconformal mappings. Let $\{\delta_n\}_{n=1}^{\infty}(\subset(0,1))$ be a decreasing sequence with $\lim_{n\to\infty} \delta_n = 0$. Let $V_n = \{z \in C; |z| < \delta_n\}$. Let j_n be a smooth closed Jordan arc in $\operatorname{Cl} V_n$ which joins $-\delta_n$ to δ_n . Set $l_n = [-1, -\delta_n) \cup j_n \cup (\delta_n, 1]$. Let U and L be the upper and lower halfplanes, respectively. Let $B = \{z \in C; |\operatorname{Re} z| < 1, 0 < \operatorname{Im} z < 1\}$. Then both $\alpha_n = l_n \cup (L \cap \partial \Delta)$ and $\beta_n = l_n \cup (U \cap \partial B)$ are Jordan loops. Denote by A_n and B_n the interiors of α_n and β_n , respectively. Let $A = \{z \in L; |z| < 1\}$ and $C = \{z \in L; 1 < |z| < 2\}$. Let Ω be the interior of $\operatorname{Cl}(A \cup B \cup C)$. The purpose of this section is to prove the following lemma.

LEMMA 3. There exists a sequence of quasiconformal automorphisms $\{G_n\}_{n=1}^{\infty}$ of Ω with $G_n(z) = z$ for all $z \in \partial \Omega$ which satisfy the following.

(i)
$$G_n(l_n) = \partial U \cap \operatorname{Cl} A \text{ and } G_n(A_n) = A$$

(ii) $\lim_{n\to\infty} \|\mu[G_n^{-1}|\Omega\cap L]\|_{\infty} = 0.$

It is known that every quasiconformal mapping between Jordan domains can be extended to a homeomorphism between their closures (Lehto-Virtanen [6, p. 42]). Therefore from now on a quasiconformal mapping of a Jordan domain D onto another means a homeomorphism of Cl D which is quasiconformal in D.

Let f_n be the conformal mapping which maps A_n onto A and which keeps 1, -1 and $-\sqrt{-1}$ invariant. Let R_n be the annulus $\{z \in C; \delta_n < |z| < \delta_n^{-1}\}$. Then by the reflection principle $f_n |A_n \cap R_n$ can be continued analytically to R_n beyond the unit circle and beyond the real line. Thus f_n has a conformal extension to $A_n \cup R_n$, for which by abuse of language we use the same letter f_n . Before proving Lemma 3, we prove Lemmas 4-6 which play essential roles in the proof of Lemma 3. **LEMMA 4.** The sequence $\{f_n\}_{n=1}^{\infty}$ converges to the identity transformation uniformly in R_1 .

PROOF. Each f_n fixes 1, -1 and $-\sqrt{-1}$. Hence $\{f_n\}_{n=m}^{\infty}$ is a normal family in R_m (Lehto-Virtanen [6, p. 73]). By a diagonal argument we obtain a subsequence $\{f_{n_i}\}_{i=1}^{\infty}$ of $\{f_n\}_{n=1}^{\infty}$ which converges uniformly in R_{n_i} , in particular, in R_1 to a conformal mapping f_{∞} of $\bigcup_{i=1}^{\infty} R_{n_i} = C - \{0\}$ ([6, p. 74]). Since f_{∞} can be extended to a conformal automorphism of \hat{C} and since f_{∞} fixes 1, -1 and $-\sqrt{-1}$, f_{∞} is the identity transformation. By the same reasoning as above any other convergent subsequence of $\{f_n\}_{n=1}^{\infty}$ than $\{f_{n_i}\}_{i=1}^{\infty}$ also converges to the identity transformation uniformly in R_1 , and so does the sequence $\{f_n\}_{n=1}^{\infty}$ itself.

LEMMA 5. There exists a quasiconformal mapping g_n of B_n onto B so that $g_n(z) = f_n(z)$ for all $z \in l_n$ and $g_n(z) = z$ for all $z \in \beta_n - l_n$.

PROOF. Put $q_n(z) = f_n(z)$ if $z \in l_n$ and =z if $z \in \beta_n - l_n$. Then q_n is a homeomorphism of a Jordan loop β_n onto another ∂B . For each point p of β_n we shall show the existence of an open subarc J_p of β_n containing p such that $q_n | J_p$ has a quasiconformal extension to \hat{C} . Then by a theorem of Rickman ([8, Theorem 4]) q_n has a quasiconformal extension g_n to \hat{C} . Since g_n is sense-preserving, g_n maps B_n onto B.

First let $p \in \beta_n \cap U$. Then $\beta_n \cap U$ is an open subarc of β_n containing p and $q_n | \beta_n \cap U$ has a quasiconformal extension to \hat{C} , which is the identity mapping. Secondly, let $p \in l_n - \{\pm 1\}$. Then $l_n - \{\pm 1\}$ is an open subarc of β_n . Since both α_n and ∂A consist of finitely many smooth arcs which meet pairwise at non-zero angles, they are quasicircles (Lehto-Virtanen [6, p. 104]). Hence f_n can be extended to a quasiconformal automorphism \tilde{f}_n of \hat{C} (Ahlfors [1, p. 75]). In particular $q_n | l_n - \{\pm 1\}$ has a quasiconformal extension \tilde{f}_n to \hat{C} . Finally, let $p = \pm 1$. Let $b_n \in (\delta_n, 1)$ and let $N_n = \{z \in C; b_n . Then <math>\beta_n \cap N_n$ is an open subarc of β_n containing p. Set $u_n(z) = f_n(\operatorname{Re} z) + \sqrt{-1}$ Im z if $b_n , <math>z = pb_n + f_n(pb_n)$ if $p \cdot \operatorname{Re} z \leq b_n$, and $z = pb_n^{-1} + f_n(pb_n^{-1})$ if $p \cdot \operatorname{Re} z \geq b_n^{-1}$. Then u_n is a quasiconformal extension of $q_n | \beta_n \cap N_n$ to \hat{C} .

LEMMA 6. There exists a quasiconformal automorphism h_n of C so that $h_n(z) = f_n(z)$ for $z \in \partial C \cap \partial \Delta$ and = z for $z \in \partial C \cap \Delta^*$ and that $\lim_{n\to\infty} ||\mu[h_n]||_{\infty} = 0.$

PROOF. For $\theta \in [-\pi, 0]$ define $\psi_n(\theta) \in [-\pi, 0]$ as $f_n(\exp(\sqrt{-1}\theta)) = \exp(\sqrt{-1}\psi_n(\theta))$. Set $h_n(\rho \exp(\sqrt{-1}\theta)) = \rho \exp[\sqrt{-1}\{(\rho-1)\theta + (2-\rho)\psi_n(\theta)\}]$,

where $\rho \in [1, 2]$ and $\theta \in [-\pi, 0]$. Then h_n is a homeomorphism of $\operatorname{Cl} C$ onto itself with $h_n(z) = f_n(z)$ for $z \in \partial C \cap \partial \Delta$ and $h_n(z) = z$ for $z \in \partial C \cap \Delta^*$. For $z = \rho \exp(\sqrt{-1}\theta) \in C$ it holds that

$$egin{aligned} |\mu[h_n](z)| &= |[
ho(h_n)_{
ho}(z)+\sqrt{-1}(h_n)_{ heta}(z)]/[
ho(h_n)_{
ho}(z)-\sqrt{-1}(h_n)_{ heta}(z)]| \ &= |[(2-
ho)\{1-\psi_n'(heta)\}+\sqrt{-1}
ho\{ heta-\psi_n(heta)\}] \ & imes [
ho+(2-
ho)\psi_n'(heta)+\sqrt{-1}
ho\{ heta-\psi_n(heta)\}]^{-1}| \;. \end{aligned}$$

By Lemma 4 $\lim_{n\to\infty} \psi_n(\theta) = \theta$ and $\lim_{n\to\infty} \psi'_n(\theta) = 1$ uniformly on $(-\pi, 0)$. Hence we see $\lim_{n\to\infty} ||\mu[h_n]||_{\infty} = 0$. q.e.d.

PROOF OF LEMMA 3. Define $G_n(z) = f_n(z)$ if $z \in \operatorname{Cl} A_n$, $=g_n(z)$ if $z \in \operatorname{Cl} B_n$ and $=h_n(z)$ if $z \in \operatorname{Cl} C$. Then Lemma 3 follows from Lemmas 5 and 6. q.e.d.

6. Proof of Lemma 2. Let r and s be real numbers with r > 1and $0 < s < r + r^{-1}$. Let T be the vertical line in \hat{C} passing through s. Then E_r and T intersect at exactly two points $\zeta \in U$ and $\bar{\zeta} \in L$. Let I be the bounded closed subarc of T joining ζ to $\bar{\zeta}$. Let P be the component of $\hat{C} - T$ containing the origin. Denote by J the Jordan loop $(E_r \cap P) \cup I$. Let Q be the interior of the circle with the diameter I. Note that both T and P depend on s, and ζ , I, J and Q all depend on both r and s.

PROOF OF LEMMA 2. Fix an $s \in (0, r + r^{-1})$ sufficiently near to $r + r^{-1}$ so that

(6.1)
$$\operatorname{diam} Q \leq d/2$$

and

$$\delta(J, E_r) \leq d/2 ,$$

where diam Q denotes the Euclidean diameter of Q.

First we construct $\{\sigma_n\}_{n=1}^{\infty}$ and $\{F_n\}_{n=1}^{\infty}$. Let τ_n be a Möbius transformation such that $\tau_n(P) = U$ and $\tau_n(Q) = \hat{C} - \operatorname{Cl} V_n$, where V_n is the open ball $\{z \in C; |z| < \delta_n\}$ defined at the beginning of §5. Then $j_n = \tau_n(E_r \cap \operatorname{Cl} P)$ is a smooth closed Jordan arc in $\operatorname{Cl} V_n$ joining $-\delta_n$ to δ_n . Let $\{G_n\}_{n=1}^{\infty}$ be the sequence of quasiconformal automorphisms of Ω in Lemma 3. Let D_0 be a Dirichlet fundamental region for Γ in Δ . Since Γ is of the second kind, D_0 has free sides. Let D be the union of D_0 , the region obtained from D_0 by reflection in $\partial \Delta$ and the free sides of D_0 . Let σ be a Möbius transformation such that $\sigma(U) = \Delta$ and $\sigma(\operatorname{Cl} \Omega) \subset D$. Define

(6.3)
$$F_n = \begin{cases} \gamma \circ \sigma \circ G_n \circ \sigma^{-1} \circ \gamma^{-1} & \text{in } \gamma \circ \sigma(\Omega) & \text{for all } \gamma \in I \\ \text{the identity mapping in } \hat{C} - \bigcup_{\gamma \in \Gamma} \gamma \circ \sigma(\Omega) \end{cases}$$

and $\sigma_n = \sigma \circ \tau_n$. Then F_n is a homeomorphism of \hat{C} onto itself which is quasiconformal off $\partial \Delta$. Hence F_n is a quasiconformal automorphism of \hat{C} (Lehto-Virtanen [6, p. 45]).

Secondly, we prove (3.1), (3.2) and (3.3). By (6.3) we see $F_n \circ \gamma = \gamma \circ F_n$ for all $\gamma \in \Gamma$. Since $j_n - \{-\delta_n, \delta_n\} = \tau_n(P \cap E_r) \subset \tau_n(P \cap (\widehat{C} - \operatorname{Cl} Q)) = U \cap V_n$ and since $\tau_n(\infty) \in \tau_n(T - I) \subset \tau_n(T \cap (\widehat{C} - \operatorname{Cl} Q)) = \partial U \cap V_n$, the point $\tau_n(\infty)$ belongs to A_n . Then by Lemma 3(i) and (6.3) we see $F_n \circ \sigma_n(\infty) = F_n \circ \sigma \circ \tau_n(\infty) \in$ $F_n \circ \sigma(A_n) = \sigma \circ G_n(A_n) \subset \sigma(L) = \Delta^*$. Since by (6.3) $\|\mu[F_n^{-1}|\Delta^*]\|_{\infty} = \|\mu[F_n^{-1}|\Delta^*]\|_{\infty} = 0$.

Finally, we prove (3.4). It follows from Lemma 3(i) and (6.3) that

$$\sigma_n^{-1} \circ F_n^{-1}(\partial {\it \Delta}) = au_n^{-1} \circ \sigma^{-1} \circ F_n^{-1}(\partial {\it \Delta}) {\it \subset} au_n^{-1}(l_n \cup ({\it C}-{\it \Omega})) \ {\it \subset} au_n^{-1}(j_n \cup (\hat{\it C}-\operatorname{Cl}\,V_n)) = (E_r \cap \operatorname{Cl}\,P) \cup Q {\it \subset} J \cup Q \;.$$

Hence by (6.1) $\delta(\sigma_n^{-1} \circ F_n^{-1}(\partial \Delta), J) \leq d/2$. This together with (6.2) yields that $\delta(\sigma_n^{-1} \circ F_n^{-1}(\partial \Delta), E_r) \leq d$. Now we complete the proof of Lemma 2 and hence that of Theorem.

References

- L. V. AHLFORS, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, N. J., 1966.
- [2] L. V. AHLFORS AND L. BERS, Riemann's mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385-404.
- [3] L. BERS, On boundaries of Teichmüller spaces and on kleinian groups. I, Ann. of Math.
 (2) 91 (1970), 570-600.
- [4] T. CHU, On the outradius of finite-dimensional Teichmüller spaces, Discontinuous Groups and Riemann Surfaces, Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N. J., 1974, pp. 75-79.
- [5] C. J. EARLE, On holomorphic cross-sections in Teichmüller spaces, Duke Math. J. 36 (1969), 409-415.
- [6] O. LEHTO AND K. I. VIRTANEN, Quasiconformal Mappings in the Plane, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- [7] Z. NEHARI, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.
- [8] S. RICKMAN, Quasiconformally equivalent curves, Duke Math. J. 36 (1969), 387-400.
- [9] H. SEKIGAWA, The outradius of the Teichmüller space, Tôhoku Math. J. (2) 30 (1978), 607-612.
- [10] H. SEKIGAWA AND H. YAMAMOTO, Outradii of Teichmüller spaces of finitely generated Fuchsian groups of the second kind, J. Math. Kyoto Univ. 26 (1986), 23-30.

HACHINOHE INSTITUTE OF TECHNOLOGY	AND	DEPARTMENT OF MATHEMATICS
HACHINOHE, 031		NATIONAL DEFENSE ACADEMY
Japan		Yokosuka, 239
		Japan

370