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1. Introduction. In this paper we shall study the diophantine nature
of the problem of the convergence of all formal solutions. Concerning
the convergence of all formal solutions, Kashiwara-Kawai-Sjδstrand [1]
studied the equation Pu = Σuri=ι*ιs» aaβ(x)xa(d/dx)βu = / and gave a sufficient
condition for the convergence of all formal solutions. Unfortunately this
condition is merely sufficient and not necessary.

As for the necessity few results are known. This is mainly because
we must treat rather delicate problems of diophantine nature. Concerning
this, the first work which clearly showed the diophantine nature of the
problem of the convergence of formal solutions was perhaps that of SiegeΓs
in [4]. On the other hand in 1974, Leray [2] studied the diophantine nature
of the Goursat problem by using a new diophantine function p. Though
the problems they studied seem to be quite different, their basic ideas are
closely connected. More precisely, their methods to treat the diophantine-
type difficulty are the same.

In this paper we shall introduce two diophantine functions σξ and p
which are generalizations of SiegeΓs condition in [4] and Leray's auxiliary
function in [2], respectively. By using these functions we shall give
necessary and sufficient conditions for the convergence of formal solutions.
We remark that this yields the solvability of the same equation by the
usual method. We also give examples showing that we cannot drop any
of the assumptions of the main theorem in general. Finally, we point
out that the method here is also applicable to the study of C°° (or Cω)-
hypoellipticity of operators on the torus by slight modification.

The author would like to give sincere thanks to the referee and the
editor who kindly gave the author many usefull suggestions in preparing
this paper.

2. Notation and results. Let x = (xlf x2) be the variable in C2. For
η 6 R2 and a multi-index a = (alf a2) eN2, N = {0,1, 2, •}, we set ηa =
ηpηp and (x-d)° = (xAYι(xAY2, where 3 = (3lf 32) and dj = d/toj (j = 1, 2).
Let m ^ 1 be an integer and let co eCV Then we are concerned with the
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convergence of all formal solutions of the form u(x) = xωyΣiηeN*uηx
v/ηl of

the equation

(2.1) P(x; d)u s Σ aa(x)dau(x) = f(x)xω ,

where aa(x) is analytic at the origin and f(x) is a given analytic function.
We say that a formal solution u = a^Σ^ccV^! converges if the sum
Σ ^ V 2 ? ! converges and represents an analytic function in x. Let us
expand aa(x) into Taylor series, aa(x) = Σrαα,r#r/'7! Then we define the
set MP by

MP = {7 — α; αα>r ^ 0 for some a and 7} .

We assume the following:

(A.I) The set MP is contained in the half-space {η e R2; ft + ft ̂  0}
and the set ΛfP Π [r] e Λ2; ft + ft = 0} is contained either in {η e R2; ηγ + η2 =
0, ft ^ 0} or in tyeΛ2; ft + ft = 0, ft ̂  0}.

Roughly speaking, this condition means that the equation (2.1) is not
irregular singular. We denote by ΓP the smallest closed convex cone
with apex at the origin which contains MP.

Now let us define

(2.2) p(η)= Σ α

and denote the ra-th homogeneous part of p{η) by vjrf). We introduce
two diophantine functions.

For ξ eR\ \ξ\ = 1 and ε > 0, we set Γ(ξ; e) = {ηeR2; \ηl\η\ - ς\ < ε}.
Then we define the quantity σξtε by

(2.3) σξtS = sup{c 6 R; lim inf \v\~e\P(V)\ > 0} ,
|J?|-*oo,^6Γ(f,e)nω+Z2

where if lim inf \η\~c\p(η)\ = 0 for every ceR, we put σξ>ε = — ©o. Note
that <7e,β ^ m, since p(ή) is of degree m. Since σf,e increases as s tends
to zero, we set σξ = limei0(7e,e. We remark that the function σξ is closely
connected with SiegeΓs condition (cf. [4, (13)]).

Next we define the function p following Leray [2];

(2.4) ρ= lim inf \p(v)\1/lη] .

Note that 0 ̂  p ^ 1, because p(η) is a polynomial. We shall give funda-
mental properties of σξ and p in Section 3.

We define a, differential operator Q(x; 9) Ξ=

= P(x; 9) - Σ αα,αίc
α9α/α! ,
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where m0 ^ m. We assume the following "quasi-ellipticity condition"
on P:

(A.2) For every ξeΓP such that \ξ\ = 1, either pm(ζ) Φ 0 or σξ > mQ

holds.

Our main result is the following.

THEOREM 2.1. Suppose that the conditions (A.I) and (A.2) are satisfied.
Then for every f which is holomorphic in a neighborhood of the origin
all formal solutions of the equation (2.1) converge if and only if p > 0.

REMARK 2.1. In Theorem 2.1 we cannot drop any of the assumptions
(A.I) and (A.2) in general. We shall give such examples in Section 5.

REMARKS 2.2. (a) In the proof of Theorem 2.1 we can also show the
following fact: For an analytic function /, let MS, = {η e N2; 3*/(0) Φ 0}.
Let C<zN2 be a finite set and suppose that the conditions (A.I) and (A.2)
are satisfied. Then, for every f(x) analytic at the origin such that MS/C
C + ΓP, all formal solutions of (2.1) converge if and only if p(iη + ω) Φ 0
for all ηeN2 except a finite number of η'a. For example, we may take
f(x) to be a polynomial in x.

(b) We can generalize Theorem 2.1 and the preceeding remark for
the Leray-Volevich systems of d (^2) independent variables. We shall
briefly sketch necessary modification for a single equation. Further exten-
sion to systems is not difficult.

For the sake of simplicity, we assume that pjrj) & 0. First we note
that we can easily extend the definition of the sets MPf ΓP and the func-
tions σξ and p to the case of d independent variables. We also note that
the condition (A.I) is clearly extended to the case of d independent vari-
ables. Instead of the condition (A.2) we assume: For every θeΓP and
ξ'eR+ such that \ξ\ = 1, pm(ζ) = 0 and σξ ^ m0, we have Lξ(θ) Φ 0. Here
Lξ(θ) is the localization of pm(rj) at η = ξ defined by, for ξ, θ e Rd,

(2.5) pm(ζ + sθ) = Lξ(θ)* + O(s?+1) ,

where q = q(ξ) is a nonnegative integer and Lξ(θ) & 0. We note that in
case d = 2 the condition is exactly equivalent to (A.2). Furthermore in
case d ^ 3, we assume the regularity on the roots of p(τφ. We set
S(η,t) = tmp{t~^) and take a vector 8 such that pjS) Φ 0 and write
η = ζβ + ζ'. We factor S(ζjϊ + ζ', t) as a polynomial of ζt:

(2.6) S&d + C, t) = c Π (Ci - λ,(C, t))m3 .

Then we assume that the roots λ^ζ', t) (j = 1, , jQ) are smooth with
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respect to ζ' and ί. Under these assumptions Theorem 2.1 is valid.
In Theorem 2.1 we assumed the diophantine conditions σξ > m0 and

p > 0. However it is difficult to verify them. The following theorem
gives a criterion which does not contain diophantine conditions for σξ.

COROLLARY 2.2. Under the condition (A.I) and suppose that pm(ξ) Φ 0
for all ζ e ΓP. Then, for every f which is holomorphic in a neighborhood
of the origin all formal solutions of (2.1) converge if and only if p > 0.

We remark that we do not assume K-K-S type condition (i.e., pm(ξ) Φ 0
for all ξ eR2+, cf. [1]) nor SiegeΓs type diophantine condition (cf. [4, (13)]).
Hence Corollary 2.2 is nontrivial and may be a new type of theorem.

Next we shall introduce the notion of the "diophantine-type ellipticity"
and show that the situation is rather simple in this case.

COROLLARY 2.3. Suppose that (A.I) and the following condition are
satisfied.

(A.2)' Either pm(ξ) Φ 0 or σξ > m0 holds for any ς e R\
Then all formal solutions of (2.1) converge for any holomorphic f.

REMARK 2.3. By the proof of Theorem 2.1 we can also prove the
following holomorphic prolongation of solutions, if we assume (A.I) and
(A.2)': There exists Ro > 0 with the following property. For any R,
0 < R < Ro, a formal power series u satisfying that Pu is holomorphic
in DB = {xe C2; \xλ\ + \x2\ < R} is holomorphic in DR.

REMARK 2.4. We set φ(x) = \xj\ + \x2\ and assume that ra0 ^ m — 1
and that pm(ξ) = 0 for some ξ. Then we easily see that the surface
φ(x) = R (R > 0) is characteristic with respect to P at the point x such
that |a?i| = £i, \x2\ = &» that is, pm(x (dφ/dx))| \xj\=ξj = 0. Hence, for this
type of operators, general theory says nothing about the validity of the
above holomorphic prolongation. Nevertheless, this is the case if m0 is
sufficiently small so that (A.2)' is satisfied.

3. Fundamental properties of σξ and p. In this section we use the
same notations as in Section 2. For the sake of simplicity we do not
give the proof, unless it is used in the proof of Theorem 2.1.

PROPOSITION.3.1. The followings are equivalent: (i) — oo <ς (χf ^
m — 1, (ii) pm(ξ) = 0. Especially σξ = m if and only if pm(ξ) Φ 0.

For the sake of simplicity we assume that pm((l, 0)) Φ 0. Then we
have the factorization

, t) = fpCr1?) = c Π 0λ - λjφt, t)) ' , mi £ 1 .
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Let ς == (£lf ξ2) e jβ+, \ς\ = 1, and let ω = (α>lf α>2) be the number given in
(2.1). Then we assume the following:

(C.I) For every j such that 7)x + ω1 — λy(% + ω2, 0) = 0 there exist
a conical neighborhood Γ(ζ) ot ζ, C > 0 and ry, — °° < τβ ^ 1, such that,
for all 3?eΓ(f)niV2,

1% + a)! - λyty, + α>2, 1)| ^ C(l + M)Γ ' .

(C.2) All the functions λ/^2, t) with £ = λy(£2, 0) are smooth in some
neighborhood of t = 0 and ξ2.

PROPOSITION 3.2. Assume £Λα£ £Λe conditions (C.I) αwc? (C.2) are
satisfied. Then we have σξ = m — Σ ' ŷ> where the summation is taken
over all j such that & — λy(f2, 0) = 0.

Next we show the diophantine property of σξ in case p(^) has the
form p(irj) = pw(ίy) + i?w0?), where n < m and where pm(^) is a homogeneous
polynomial of degree m and Rn(η) is a polynomial of degree fg w. For
ί > 0 we define the multi-valued function Fθ as follows: For teC,

(3.1) jF^(t) is the set of all cluster values of the sequence {μθ(v/μ — t)}^μ

when v, μ e N and v, μ—> oo.

The fundamental properties of Fθ(t) are studied in [7]. (cf. Remark 3.1).

PROPOSITION 3.3. Under the assumptions as above we have:
(a) The case ξ = (1, 0) or (0, 1). Either σξ = m or σξ ^ n holds.
(b) T%e case ξ Φ (1, 0) aticί (0, 1). Let n < σ < m. Then σξ = σ if

and only if pm(ζ) = 0 and the set F{m_τ)/no(ξjξ2) contains 0 for all τ, τ > σ
and does not contain 0 for all τ, n < τ < σ. Here ξ = (ξlf ξ2) and the
integer n0 is the multiplicity of the root t—ξjξ2 of the equation pm((t, l ) )=0.

REMARK 3.1. Using the results of [7] we can say when the set Fθ(t)
contains 0: If t > 0 is a rational number or 0 < θ < 2, then Fθ(t) contains
0. If θ ^ 2 and t is irrational, we expand t in a continued fraction t =
[α0, alf α2, •••], where

(3.2) α0 = [t] , aQ = t - α0 , a, = l/α0 > «i = [«i]» , αn = [αn] ,

= αn - αn; .

Here [s] denotes the largest integer which does not exceed s. Let us
define the integers μt (i — 1, 2, •) by μ ί+2 = afli+1 + ft, ft = 1, ft = 0.
Then in case θ > 2, the set Fθ{t) contains 0 if and only if lim inf^oo μθΓ2ldi-i =
0. We also remark that there exists a set ί7c[0, oo) with the Lebesgue
measure zero such that 0$Fθ(t) for all t&E and θ > 2.
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LEMMA 3.4. Let σeR. Then the set {ξ e R2; σξ ^ σ} is closed.

PROOF. Suppose that £,-•£ and that σξi ^σ (ί = 1, 2, •••)• Then,
for every τ > a and i there exists a sequence rji>k eN2 (fe = 1, 2, •) such
that y]itkl\Vi,k\-^ζi (fc-*°°) for each i and that limfc |ft,fcΓ

r|p(ft,Λ + o))\ = 0.
Hence, for every ί, i = 1, 2, , we can choose & = k(i) in such a way
that

(3.3) 7i,k(i) _
ξi \ViMi)\~T\P(ViMi) + α>)| <

\ViMi)\

We set ζ ί = ft,fc(i). Then it follows from (3.3) that C,/|£|-+£ and that
\ζi\~τ\p(ζi + α>)|—>0 This implies that σξ ^ σ. q.e.d.

LEMMA 3.5. Suppose p{η) = ft — τft. TΛen σ> > — ©o, f = (r, 1) if
only if τ is positive, irrational and not a Liouville number.

Next we consider the function p. We easily see that 0 ^ p <̂  1. If
cy = 0 and p(^) is homogeneous, then the function p coincides with that
studied by Leray and Pisot [3]. In case p(τj) is not homogeneous, we
assume that pm(ξ) Φ 0 for ς = (1, 0) and (0, 1) for the sake of simplicity.
Let p(rj) = c Π J (ft — \(f t)) m i be the factorization of p(η). Then, by using
the Puiseaux expansion of λ, , we see that if p = 0 then λ/ft) is real for
real ft. Moreover, the study of p is reduced to that of lim inf |ft —
λ5 (ft)l1/r?2 This is, in fact, a diophantine problem. Finally, we give the
relation between σξ and p.

PROPOSITION 3.6. If σξ> — °o for all ξeR2, then p = 1.

4. Proof of the main theorem.

4.1. Preliminary lemmas. Let ΓP be as in Section 2. Then we have

the following:

LEMMA 4.1. Let Σ be a closed set on the unit sphere \ξ\ = 1 such
that ΣΓ\±ΓP = 0 . Then there exists c0 > 0 depending only on Σ and ΓP

such that we have \θ\/\ζ\ ^ lβc^ε for every ζeΣ, every small ε > 0 and
every ζ (Φ 0) and ζ + θ (θ e ± Γ P ) m £Λe ε-conical neighborhood of ξ.

PROOF. Let η (Φ 0) be in the ε-conical neighborhood of ξ and let
ε < 1/2. Then we have \(η/\V\, ξ) - 1| = |(^/|^|, f) - (ft ζ)\ ^ \(V/\V\ - ft f)l <
ε. This implies that (7j/\η\f ξ) > 1 — ε. Hence

(4.1) |̂ 7 - (ft ί)f|/(ft ί) = \η/\7}\ - ( 7 M δ)fl/(9/l7l» f)

S α . - eΓMvl -fl + IO?/M> f) - HI
<2(ε + ε) = 4ε.
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By assumption there exists c0 > 0 depending only on Σ and ΓP such
that for all ξeΣ and ± 0 e Γ P

(4.2) \θ - (0, ξ)ξ\ = |0| |0/|0| - (0/|0|, ξ)ξ\ ^ co\θ\ .

Hence, by (4.1) with η = ζ and (4.2), we obtain

(4.3) |ζ + 0 - (ζ + θ, ξ)ξ\ ^ co\θ\ - 4e|CI .

By (4.1) with η = ζ + θ, the left-hand side of (4.3) is bounded by 4e(|ζ| +
|0|). Hence we have (c0 — 4ε)|0| ^ 8ε|ζ|. Therefore if we take ε so small
that c0 - 4ε ^ co/2, we obtain |0|/|ζ| ^ lβc^e. q.e.d.

Now in (2.1) we assume

(4.4) αα,α ^ 0 for some α, |α| = m .

We set S(η, t) = tm/p{t~ιη). If pm((l, 0)) ^ 0, then we have a factorization

(4.5) v(y) = c0 Π (7i - λ/%))-'

for some c0 Φ 0 and my 6 N, j 0 6 iV. By using (4.5) we have

(4.6) Sty, t) = Co Π tyi ~ t\(t-%))m*

If Pm((l> 0)) = 0, we take a vector e0 such that |βo| = 1 and that
Pm(e0) ^ 0. Then we make the rotation which maps e0 to (1, 0). This
reduces the general case to the above case. Therefore we have a factori-
zation

(4.7)

where flfyty, ί) is a continuous function in 7] and t. Moreover, we have
the following:

LEMMA 4.2. Assume (4.4) and let ξ0eR2, \ξo\ — 1, satisfy pm(ξ0) = 0
and σξQ ^ ra0, where m0 is as given in (A.2). Then there exists a complex
neighborhood Vξo of ξ0 and t0 > 0 such that for 1 ^ j ^ j 0 , f G VξQf θ 6 Γ P ,
|0| = 1 and t with \t\ < ί0, the limit

(4.8) Cjiζ, θ, t) = lim β-ty/f + βfl, ί) - gfa t)}
• 0

uniformly with respect to (ξ, θ, t) in VξoxΓPΠ{\θ\ = l}x{t; \t\ < tQ}.

PROOF. We shall prove only the case pm((l, 0)) Φ 0 since the other
case can be proved in a similar manner. It follows that ξ0 Φ (1, 0) and
that £2 Φ 0 for ξ = (ξίf f2) 6 VξQ if VξQ is sufficiently small. Hence we have
£2 + sθ2 Φ 0 for θ = (θlf θ2), \θ\ = 1, if s is small. I t follows that t~\ς2 +
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sθ2)->oo as t^O. Now we expand tXj(t~% + st~%) into Puiseaux series

(4.9) tXj(t-% + rιsθ2) = (ζ2 + sθ2)xjf0 + t Σ ck(t-% + r

where q ^ 1 is an integer and λi>0 and cfc are constants. Here we have
used the fact that tx^t'% + t~1sθ2)-^(ζ2 + sθ2)Xj>0 as t->0. By Taylor's
formula we have

9j(ξ + sθ, t) - gά{ζ, t)

= siθ, + XJ,0Θ2) + t Σ ck{(t-\ζ2 + 8βjy-*» - (r 1^) 1-^}

where 0 < σ* < 1. Applying Taylor's formula to the last term of the
right-hand side again, we see that the second term is O(s2). Hence we
get (4.8). The remaining part is clear. q.e.d.

Using the same notation as in Lemma 4.2 we have:

LEMMA 4.3. Assume (A.I), (A.2) and (4.4). Suppose gfa, 0) = 0.
Then there exist Ko > 0 and 0 < ίj < t0 such that

(4.10) |Cy(ff θ, t)\ ^ Ko

for all (f, 0, t)eVξQxΓPΓ){θ; \θ\ = l}x{t; \t\ < tj}.

REMARK. Though it is not necessary in this paper, we can also prove
that under (A.I) and (4.4) the condition (A.2) is equivalent to (4.10).

PROOF OF LEMMA 4.3. By Lemma 4.2, Cs(ξ, θ, t) is continuous. Hence,
in order to prove (4.10) it is sufficient to show that C/fo, θ, 0) Φ 0. In
view of the expression for C5 in the proof of Lemma 4.2, this is equivalent
t o Bx + XJί0θ2 Φ 0.

By (A.2) and the definition of ξ0 in Lemma 4.2, we have ζ0 0 ΓP. On
the other hand, since ffy(£0» 0) = 0, it follows that ξl + Xj)Oξl = 0, where
ξo = (& £2o) This implies that θγ + Xj>0θ2 Φ 0 by (A.I). q.e.d.

4.2. Proof of the necessity of Theorem 2.1. Suppose that all formal
solutions of the equation (2.1) converge and that p = 0. First we shall
show that p{Ύ) + ω) does not vanish except for a finite number of ^'s in
N2. Suppose that this is not the case. Then we shall show that (2.1)
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with / = 0 has infinitely many linearly independent formal solutions. By
substituting the expansions

(4.11) ^ 4 ζ

into (2.1) and by comparing the coefficients of xη+ω, we get

(4.12) /, = p(? + α>K+ Σ
+v=r-a+δ,a,δ (δ + ω — a)I 7 ! S!

In case αα>α = 0 for all a in (2.1), we must have σξ = — °o by the
definition of σ€. Hence it follows from (A.2) that m0 = — °°, that is,
Q == 0. The assertion is trivial in this case. Therefore we may assume
that p(η) =£ 0.

Let us take ζeN2 such that p(ζ + α>) = 0. We shall show that
p(i) + ω) Φ 0 for all )?eζ + ΓPniV2 if \η\ is sufficiently large. Suppose
that there exist distinct ηn e ΓP ΠN2 (n = 1, 2, •) such that p(ζ+^n+α>) =
0 (w = 1, 2, •)• Replacing {^J by its subsequence, we may assume that
the sequence {ηj\y]n\} and {(ζ + )?J/|ζ + rjn\] converge to the same point
ξ eR2

+f III = 1, as n—> °o. Since ηj\ηn\ e Γ P and since the set ΓP is closed,
it follows that ξ e ΓP. On the other hand, by the definition of σξ and
ζ + Vn we have α e = — °o. This contradicts (A.2).

In what follows we assume that MPΓι{ηeR2; ηx + η2 = 0}c{^ =
(7i» %) e iί2; Vi ^ °1 ί n ( A l) f o r t h e s a k e o f simplicity. The proof is
similar in the other case. Let ηx = (ηl, η2y be the point in ζ + ΓPΠiV2

such that the length | ηγ \ and the first coordinate η\ are the largest among
ηeζ + ΓPf]N2 satisfying p(η + ω) = 0. Then we have p{η + ω) Φ 0 for
all ηe(r]1 + rP)r\N2\{^}. Indeed, let us assume that p(η' + ω) = 0 for
some if e (ηx + rp)f]N2\{^}. Since ^ — ζ e Γ P and since Γ P is a convex
cone, it follows that ηx + ΓP = ζ + ηx — ζ + Γ P c ζ + ΓP. In view of
(A.I) and the definition of ηγ this implies that \η'\ = | ^ | . On the other
hand, it follows from (A.I) that the first coordinate of if is larger than
η\, a contradiction to the choice of rjlm Repeating this arguement we can
choose rjk eN2 (& = 1, 2, •) in such a way that for k = 1, 2, ,

for all ηe(vk + ΓP) ΓΊ N2\{yk} .

We note that, in view of the definition of ΓP and MP we may take
the summation in (4.12) over δeη — Γ P . Let η0 be one of ηk's and let
^7o be a non-zero number. Since pOy + ώ) does not vanish for all IJGIJO +

Γp\{Vo} we can determine uη for ηeηo + ΓP\{η0} inductively by (4.12).
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We set uη = 0 for τj0τjo + ΓP. Then we easily see that the formal sum
u(x) = Σ v ' + β / ? ! i s t h e formal solution of (2.1) for / = 0. Since rjQ is
arbitrary, we get infinitely many formal solutions. A linear combination
of these formal solutions gives rise to a formal solution of (2.1) which
does not converge in any neighborhood of the origin. This contradicts
the assumption.

Next let us assume that p = 0. By definition there exist ηn e N2

(n = 1, 2, •) such that \p(ηn + ώ)| ^ w1**1 {n = 1, 2, •). Replacing {ηn}
by a subsequence, if necessary, we may assume that p(η + ω) Φ 0 for
Ve(Vn + ΓP)ΠN2 (n = 1, 2, •) and that the sequence {̂ J|̂ TO|} converges
to some ξeR+9 \ξ | = 1. In view of the definition of <τf and {ηn}, we have
^ = —oo. Hence ξ£ΓP by (A.2). We also note that ζi—ΓP in view
of (A.I). Since ΓP is closed, there exists ε > 0 such that Γ(ξ; ε) Π ± Γ P = 0
where Γ(ξ;e) denotes the ε-conical neighborhood of ξ. Now let n(l) be
an integer such that ηn € Γ(f e/2) for ^ ^ n(l). If we choose n(2)
sufficiently large, then we have, for n ^ n{2),

7n(l) __

\Vn-V;n(l) I

Vn \Vn

This implies that τηn — ηn{1) eΓ(ξ; ε). Hence we have ηn — ηn{1) ί ±ΓP for
all n ^ n(2). By repeating this argument, we can choose n(k) (k = 1, 2, •)
in such a way that

(4.13) )?„ - Ύ]Mk) 0 ±ΓP for all n^n(k + l) .

If w e s e t k=l a n d w = n(y) for I < p in (4.13), w e h a v e ^ n ( I ) S τjnM — Γ P

f o r ϊ < v. On t h e o t h e r h a n d , b y s e t t i n g k = v a n d n = n(l) (l^v + 1)

in (4.13), w e h a v e ηn{l) $7)nW — ΓP for I > v. H e n c e

(4.14) V n i D Ϊ V n i k ) - Γ P i f i Φ k .

Now we can construct a divergent formal solution. We set fη = l
it 7] — ηn{k), k = 1, 2, , and fη = 0 otherwise and define a holomorphic
function f(x) by /(#) = Σ ? Λ I ^ | ! &*/??!• By solving (4.1) recurrently we
construct a formal solution u(x) = Σ.rjU^^/yjl of (2.1) for this / under
the condition that uη = 0 for all ^ g UΓ-i ((Vnw + Γ̂p) Γl N2). This is possible,
since p(η + ce>) does not vanish by the definition of rjn and since uη in
(4.12) is determined by /, Qδ\ ^ \η\) and ^ 3 (δeη - ΓP). Then it follows
from (4.14) that uη = p{η + ω)~x\η\\ for η = ^n(fc), fc = 1, 2, . Recalling
the definition of ηn, we have \uv\ ^ | ^ | ! tι(fe)1^1 for 17 = ^n ( 4 ) > fc = 1, 2,
Since n{k) —> oo as k —• oo, this implies that the formal solution does not
converge in any neighborhood of the origin, a contradiction.
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4.3. Sufficiency. We now assume p > 0 and show that all formal
solutions converge. We first show that we may assume (4.4) without
loss of generality. Indeed, if ΓP = {0}, then P = Σ«««,«(«!)"Vdα. In
this case, the theorem can be verified by simple computation. On the
other hand, if ΓP Φ {0} and pm(ξ) = 0 for some ξ e ΓP, we have σξ > m0

by (A.2). Let n be the maximum of \a\ for a satisfying αα>α Φ 0. Then
oξ ^ n, hence we have m0 < n. In view of the definition of m0, this
means that the order of P is n. Hence we may assume (4.4) from now
on.

By substituting the expansions of u, f and aa into (2.1) we get (4.12).
If p(ζ + ω) Φ 0 we set

(4.15) Aatζtδ = -
ω — a)\ (ζ — δ + α)!

By (A.I) we see that every δ in the summation (4.12) satisfies \τ}\-> \δ\
or ηx — δ1 ̂  0 (resp. <;0), where η — (τ)lf 7?2), δ = (δx, 32). We also note
that if aaJ Φ 0 and a Φ 7 in (4.11), we have | α | ̂  m0 by the definition
of m0.

On the other hand, we see from the condition p > 0 that p(ζ + α>)
does not vanish except for a finite number of ζ in iV2. Hence, by using
(4.12) repeatedly, we have

(4.16) uη = -p(? + ft))"1/, + Σ 1 Ξ(η9 δ\ , S"; rf, , αθp(δ + ft))"1/,

+ Σ2S()7, δ\ - - s ^ α1, -- , α v K ,

where

(4.17) Ξ = ff(iy, δ1, , δ", a\ , αv) = Aα,,,,3, . Aaitδ2tδi.

The summation Σ 1 i n (4.16) is taken over all the pairs (δ1, , δ"; α1, , αv)
of multi-indices satisfying

(4.18) \τj\ ̂  |δ v | ̂  .-. ̂  Iδ1! , δ A + 1 -δ^eM P \{0}, δ1 = δ ,

m 0 , p(δλ + ω)Φ0 (λ = 1, , v + 1)

The summation Σ 2 is taken over all the pairs of multi-indices satisfying
the conditions obtained from (4.18) with the condition ^(δ1 + ώ) Φ 0 re-
placed by p(δι + ft)) = 0.

We write the sum Σ 1 in (4.16) in the form

(4.19) Σ^ΣΣ Σ Σ1',
n=l ι*=l n=nU)<n(2X <n{p)<?

where q and n are integers such that g = |1?| + 1, w = |δ | + l. Here
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the summation Σnβn(1,<»(2)<.. .<n(y)<ff is taken over all the combinations and
Σ 1 ' denotes the summation over all the pairs of multi-indices (δ1, •• ,δ y ;
a1, , αv) satisfying (4.18) and the condition n(X) = \δλ\ + l (λ = 1, , v).

Let aaJ be given by (4.11) and assume that 7 Φ a. Then it follows
from (A.I) and Cauchy's formula that for any small R > 0 there exists
Ki > 0 such that

(4.20) \aa,r\^K1R
ι-w\Ί\\(l + \Ί\T* for all α, 7

In order to estimate Aatζ,δ in (4.15) we first note that |ζ — δ + α[ =
|ζ + α | - | δ | = | ζ | + | α | - | δ | , since ζ + a ^ δ ̂  0 by definition. On the
other hand, since we have | ζ | ^ \δ\ by (4.18), we get

(4.21)
( δ + . ω - f α ) ! ( ζ - δ + α)! δ

for some K2 > 0 independent of ζ and δ. Hence, by (4.20) and \a\ ^
in (4.18), we get

(4.22) IΛ l |Ci

Let B be given by (4.17). Then we shall show the estimate

(4.23) \B\g KJίrJRyrlBr- iq - 1)! ((n - 1)!Y ι rf (w(λ + 1) - n(λ) + I ) " 3 ,

where the constants iΓ3 > 0, rx > 0 and r 2 > 0 are independent of n, q, R
satisfying q = \η\ + 1, n = \δ\ + 1. In order to prove this let us first
assume that all δvs (1 ̂  λ ^ v + 1) in (4.18) are in some small conical
neighborhood of ξ0 satisfying |fo| = 1, pm(ξQ) = 0 and σξo ^ m0. Let gό(η, t)
be given by (4.7). Without loss of generality we may assume that

g.(ξ09 0) = 0 if 1 ^ j ^ j , and = 0̂ if jΓ > j \ for some 1 ^ j \ ̂  j 0 .
If 3 > 3i we get, by the definition of gj9 that

(4.24)

for some K± > 0 independent of j when ^ moves in a sufficiently small
conical neighborhood of ξ0 and J37I is large.

In case j ^ j l f let λy (1 ̂  j ^ v + 1) be such that

(4.25) \g,ψs + ω, 1)| = min \es(d*:+ω, 1)1 .

For the sake of simplicity we write δxs = δ° and determine the vector A1

by A' = δx - δ° for λ Φ Xά. Note that AΛ e ± Γ p and A ; ̂  0 by (4.18). We
set
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_ _ « L * = — Θ = J£ t=ψ(4.26) ί = _ _ « L , * , Θ J£\> t ψ \

if AxeΓP. In case — AxeΓP, we replace Ax and s in (4.26) by — Ax and
—s, respectively. By Lemmas 4.2 and 4.3 we have

(A OΊλ _
^ ' &H\ i ^o i ' i c>n i 7 i ĉ n i / & 3\ i Qsn i J t on t / I — 9 I £ ° I

if I A* I/I δ° I is sufficiently small and |3°| is large. We note that this con-
dition is really satisfied by Lemma 4.1 if we take a small enough conical
neighborhood of ζ0. Now in case Ax satisfies

(4.28) Ko I Ax |/4 ^ I g^δ0 + ω, 1) |

we get from (4.27) and the homogeneity g3 (cη, ct) = cgά(ηf t) of gjf that

(4.29) I gj(δ° + ω + A M ) | ^ Ko \ Ax |/4 .

This inequality is still true in case Ax does not satisfy (4.28), since we
have the following inequality by (4.25):

On the other hand, it follows from (A.I) that the set ΓP is a proper

cone. Hence we can take a vector e with positive integral components

and cλ > 0 such that

clι\a\ ^ e α ^ ct\a\ for all aeΓP.

Hence if λ > Xj we have

I A*| ^ cxe-Ax = Cle-(δx - δx<) = c, Σ e (δ fc+1 - δk) .

Since δk+1 - δkeMP\{0} by (4.18), we see that e (δk+1 - δk) is a positive
integer. This implies that \AX\ ^ cx\X — X3-\. We have the same estimate
in case x^Xj. Substituting this estimate into (4.29) and noting that
δx = Ax 4- <5°, we have

(4.30)

Now it follows from (4.17), (4.22) and the condition n(X) = \δx\ + 1
that

(4.31) 131 ^ (K^RYR^iq - 1)! ( ή (w(λ + 1) - n(X) + I)" 8 )

x ( ( Λ - : 1)! Π (Iδ;I + l)-woIp(# +

By (4.7), (4.24) and Σ mi = ^ ^ w0- we have
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(4.32)

^ πii nu = κι π (nu π r
for some K, > 0, where /,,, = | δ2 Γ110/(δ2 + <*>, 1)|.

On the other hand, in terms of (4.30) and |S2 | ^ \η\ <̂  q we have, for
some ίΓβ > 0,

(4.33) Π Π Π i έ Π Π ((*A/4)| a21"11 λ - λ, |)-i

^ κ;(jι n(\sι\/\χ - xA))'^ ^ K;(ji^q/\\ - x.i)""13'

^ κ;(τι τί qiμYmi ^ κ; π e-^ ^ κ;<r*™.
\ ά μ=ι / i

It follows from the assumtion p > 0 and (4.7) with t = 1 that

liminf IIλJ\
inδh > 0 for all j ^ j 0 .

This implies that the term Πi IT/j is bounded from below by K? for some
Kj > 0 independent of g and δ;. Therefore we get (4.23) from (4.31),
(4.32) and (4.33). We remark that the estimate (4.33) is valid for any
sequence {δx}, if it is in a small conical neighborhood of ξ0. Since the
set of ξ satisfying σξ ^ m0, pm(ξ) = 0 and | ζ | = 1 is compact (cf. Lemma
3.4) we can cover the set by a finite number of open sets in each of
which the estimate (4.33) is valid. Hence (4.33) is valid for any {δλ}
which is in a small neighborhood of the set {ζ σξ ^ ra0, pm(ξ) = 0}. On
the other hand, if {δλ} is contained in the set {ξ; σξ > m0, or pm(ξ) Φ o},
we can easily see that (| rj \ + l)"m° I p(j] + α>) I ̂  c2 > 0 for some c2 > 0
independent of η. Hence in view of (4.31) we get (4.23).

We shall show that the number of pairs (3\ aλ; λ = 1, , v) satisfying
(4.18) and n(X) = \δx\ + 1 is bounded by c%dl Πϊ=i (n(\ + 1) - n(λ) + 1)
for some c8 > 0 and d0 > 0 independent of n(x), δλ, aλ. In order to prove
this let us first count the possible number of δv's when η = δ"+1 is fixed.
We set T = 7) — δ\ Then we may count the number of Y's instead of
that of δv'$. Noting that |7*| = n(v + 1) — n(v) and that T is contained
in a proper cone ΓP, such number is bounded by cδ(n(v + 1) — n(v) + 1).
Then we fix δv and count the possible number of δ1""1 in a similar way.
Repeating this arguement v times, we see that the possible number of
pairs (δ\ , δu) is at most Π$=i (n(\ + 1) - n(λ) + 1). On the other hand,
the number of pairs (α\ , α") such that jα2 | ^ m is at most du

Q for
some dQ.

Now we can easily show that (cf. [6, p. 57])
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(4.34) Σ Π (n(λ + 1) - n(λ) + I)" 2 ̂  22"(? - n + I ) " 2 .
n=n(l)<n(2)< <π(i/)<} J=l

On the other hand, by the analyticity of / and p > 0 we have, for some
R>0,

(4.35) Ip(δ + ω)~ιft\£\i\\Rrw for all δeN* '

Hence it follows from (4.16), (4.19), (4.23), (4.34) and (4.35) that

(4.36) IΣ'SϊKδ + ωr/al^ΣΣ Σ ΣΊ^I
n=i v=l π=π{l)< <g

x 181! Λ"'J| ^ Σ Σ Σ (» - 1)! J P - X A *
n=l !;=! 7i=n(l)< <ί

x(r1i2)V!i2n-'(9 - 1)! ((n - l J l Γ Π (n(λ + 1) - n(λ) + I)" 2

- 1)! rfc8.

If we take R so small that 22Rr1d0 < 1, we see that the right-hand
side of (4.36) is 0{q\ rlR~q) as q-*oo. Since the term Σ 2 3 u 9 in (4.16)
has the same form as the first term, we can show that it has the same
estimate. Consequently, we have proved that the formal solution con-
verges. This proves the sufficiency.

5. Examples. In this section we shall give examples which shows
that we cannot omit the assumption (A.I) and (A.2) in Theorem 2.1 in
general.

EXAMPLE 1. Let a ^ 0 and consider the equation

(5.1) ((xA + I)2 + ax&A)* - dXίxA)2 + l)u = -x, .

We can easily see that MP Π {η 6 JB2; -ηx + η2 < 0} Φ 0. Moreover, since p(η)
does not vanish by definition (cf. §2), the equation (5.1) satisfies (A.2)
and p > 0. We shall show that (5.1) has a divergent formal solution.

We set ((x2d2)
2 + ΐ)u = v. Then we see that the formal power series

v converges if and only if u converges. On the other hand, by sub-
stituting the expansion v = ^n=oVn(x2)x7 of v into (5.1) and by comparing
the coefficients of x\ we have

(5.2) vn+ί(x2) = (n + l)vn(x2) + a(n - I)2 ̂ - ^ + δntl

for n• = 1, 2, , where δntl is Kronecker's delta.
Since a ^ 0, it follows from (5.2) that vΛ+1 ̂  (n + l)vn. We set

VQ = V l == 0. Then we have that vn+1 ^ (n + l)!/2. This implies that the
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formal solution v does not converge.

EXAMPLE 2. Next we shall give an example which shows that we
cannot drop the latter half of (A.I). The following example is due to
Leray [2], [5]. Let us consider

(5.3) (dl + εdA + δtXx&u) = f{x) ,

where ε (=^0) is a complex constant. We can easily see that MP —
{(1,-1), ( — 1,1), (0,0)}, p2(η) = εViVv Hence (5.3) satisfies the former
half of (A.I), (A.2) and the condition p > 0 but does not satisfy the
latter half of (A.I).

If we set v(x) = xιx2u{x)t then (5.3) is equivalent to the Goursat
problem for v{x) with the boundary conditions v(0, x2) = v(x19 0) = 0. Leray
showed that for an appropriate choice of ε and /, (5.3) has a formal
solution not convergent in any neighborhood of the origin.

EXAMPLE 3. We shall show that we cannot drop (A.2) in general.
For this purpose let us consider the equation

(5.4) Pu Ξ= (xA + x2d2 + ΐ)u + x^xA + x2d2 + lfu = f(x) .

We easily see that σξ = 1 for all ξ eR% and that p2(ξ) Ξ= 0, ΓP = {t(l, 0);
t ^ 0}. Hence (5.4) does not satisfy (A.2). Note that (5.4) satisfies (A.I)
and p > 0. On the other hand, by the method of indeterminate coefficients
we easily see that (5.4) has a divergent formal solution for an appropriate
choice of /.

EXAMPLE 4. In (5.4) the degree of the "top term" x^ + x2d2 + 1 is
less than that of the "perturbation term" x^x^ + x2d2 + I)2. We shall
show that we cannot drop (A.2), if we do not assume this.

Let seN and let m and n be positive integers such that m ^ in,
s ^ m. Take a positive irrational number τ such that (cf. [3])

(5.5) liminf (min \p — τq\1/q) = 1
g-*oo,geΛΓ peZ

and consider the equation

(5.6) {xA + x2d2)
m~2n(xA - τx2d2)

2nu = {xx + x2){xA + »A + l) β ^ + Ax)

This satisfies (A.I) and we easily see that σ{τΛ) ^ m — 4w, σξ = m if
ζ Φ (τ, 1), because there exist infinitely many positive integers p and q such
that \p/q—τ\ <q~2. This implies that (5.6) satisfies (A.I) and does not satisfy
(A.2) if s ^ m — in. By using the method of indeterminate coefficients,
we can easily prove that if s > m — 2n, (5.6) with / = 0 has a formal
solution not convergent in any neighborhood of the origin. On the other
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hand, a rather complicated estimate shows that if s ^ m — 4n, all formal
solutions of (5.6) converge for any holomorphic /.
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