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1. Introduction. Let X(t) = X(t9 ω), teJR+ = [0, oo) be a dyadic
stationary (DS) process with EX(t) = 0, t e R+ (cf. [2]). Suppose that
X(t) is T7-harmonizable, namely it is expressible as

(1.1) X(t)= [° ψt(X)dζ(x) (teR+),
Jo

where ^(λ) is the (generalized) Walsh function [4] and ζ(λ), xeR+ is a
second order process with orthogonal increments. The covariance func-
tion of X(t) is expressed by

(1.2) r(ί, s) = EX{t)Ύ(s) = Γ ψt(X)ψ8(X)dF(x) ,
Jo

where F(x) is the spectral distribution function with

(1.3) dF(x) = E\dζ(X)\2 .

A necessary and sufficient condition for the PP-harmonizability of a DS
process was given by the present author [2].

We shall now define the Walsh series of X(t). Since the integral

X(t)dt exists for any aeR+ in quadratic mean, we define the Walsh

coefficients of X(t) over (0, 2P) as

(1.4) Cn = Cn(p) = 2-' Γ X(t)ψn(2-Π)dt ,
Jo

where p is a positive integer. The Walsh series of X(t) is written as

(1.5)

Here we introduce the known properties of the Walsh functions,
which are frequently used afterwards (cf. [1], [3], [4], [9]).

LEMMA 1.1.

(1.6) ( i ) ψt(x) = ψUt)Ψιdx).

(1.7) (ii) ψr-pt(x) = ψt(2rpx) for t, x in R+.
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(1.8) (iii) fx(t)f,(ί) = ψxΘs(t) if μ(x) +μ(y)e<S.

ζ : Γ
0 , (otherwise) .

(1.10) ( v) Dn(t) = D2m(t) + ψAt)Dn,{t) , where n = 2m + n' , n' < 2m .

As for the notations μ and S see [4]. We remark that (i) implies the
symmetry; ψt{x) = fx(t).

LEMMA 1.2.

( i) ECn = 0.

(ii) ECmCn = δm>n(F(2-*(n + 1)) -

where δm>n is the Kronecker delta.

PROOF. By (1.2),

ECmCn = 2->* Γ dF(x) Γ ψt(x)ψm(2~Π)dt
Jo Jo

which is equal by Lemma 1.1, (1.6)-(1.8) to

dF(x) \ ψt(x φ 2~pm)dt \ ψ8(x φ 2~pn)ds .

o Jo Jo

Since i t is easily verified by L e m m a 1.1, (i) t h a t

Jo (0 , otherwise

we obtain

ECmCn = 2~2p Γ D2P(x φ 2~pm)D2P(x φ 2~*n)dF(x) = \ dF(x) .
JO J{[2Pαj]=m}Π([2Pa;]=n}

This completes the proof.

The following theorem is an immediate consequence of Lemma 1.2.

THEOREM 1.1. Let Cn — Cn(p) be the Walsh coefficient of a DS process
over [0, 2P). Then

(1.11) ( i ) Σ E\CJ = F(oo) - F(2~pN).

(ϋ) If

(1.12) (°VdF(a;) < oo (Q ̂  a) ,
Jo
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(1.13) Σ E\CS = o(N-a) .

PROOF. It is clear by (i) above that

Σ E\Cn\
2 ^ (2-pN)-« Γ xadF(x) .

Hence the proof is completed by (1.12).

2. The mean convergence and the absolute convergence of the
Walsh series. Let Sn(ί) be the partial sum of the Walsh series of X(t);

Sn(t) = Σ Ckψn(2-H) .
fe=0

THEOREM 2.1. The Walsh series of X(t) converges in the mean to
the original process at every t in the interval [0, 2P);

(2.1) lim Sn(t) = X(t) for t e [0, 2P) .

Before proving the theorem we show the following:

LEMMA 2.1.

(2.2) lim [ (ψt(x) - l)Dn{t)dt = 0 .
n-*oo Jo

PROOF. First consider the case n = 2m. By (1.9) and ψt(x) = ψ[β](t)
(0 ^ t < 2~m), which is verified by (1.6),

(2.3) [ (ψt(x) - l )A (t)ctt = 2- Γ m tyω(ί) - l)dt .
Jo Jo

For fixed x there is an N > 0 such that [x] < 2N. Then for m^N,
τh ](*) = 1 (ί < 2~m). Hence for sufficiently large m the right hand side
of (2.3) is equal to zero.

For any positive integer n there is an integer m such that 2m <;
n < 2m+1. Putting n = 2m + n' (n' < 2m), and using (1.10), we obtain

- ϊ)Dn{t)dt = [ (irt(x) - l)D2m(t)dt + [ (ψt(x) -
Jo Jo Jo

= Ii + h ,

say. Then I19 as was shown above, will vanish for n sufficiently large.
We recall that fk(2~{m+1)) = 1 for k < 2m, so that Dn,(t&2-{m+1)) = J5n,(ί)
and f 2 «(ί02" ( m + 1 ) ) = —ψ2m(t). Hence, using the invariance of integration,
we may write

(2.4) J2 = [ (ψ.(t 0 2~{m+1)) - l)ψAt φ 2-{m+1))Dn,(t φ 2~{m+1))dt
Jo
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= - Γ
Jo
Jo

Adding the left and the right hand sides of (2.4), we obtain by (1.9)

272 =

JO

Therefore J2 will vanish for sufficiently large m (which may depend on
x)9 since ψJ2r{m+1)) = 1 for such a large m.

PROOF OF THEOREM 2.1. Since

Sn(t) - X{t) = 2-* Γ (X(u) - X(t))Dn(2~*(u 0 t))du ,
Jo

we write by (1.2)

E\Sn(t) -

by virtue of (1.8) and |^(aO| = 1. Since the inner Dirichlet integral on
the right hand side is bounded for all t and x, and converges to zero, as
n goes to infinity by Lemma 2.1, the desired result follows.

Next we show the absolute convergence of the Walsh series of X(t).

THEOREM 2.2. / /

(2.5) Γ xadF(x) < oo for a > 1 ,
Jo

then the Walsh series

(2.6) ±Cnψn(2-H) for te[0,2')
π=0

converges absolutely with probability one.

PROOF. Applying Holder's inequality, we have

ΣE\Cn\ = Σ Σ E\Cn\ ̂  Σ Γ( Σ E\Cn\>)(2™ - 2- 1 )T 1 .
n=2 m=l Λ = 2

m " ~ 1 + 1 m = 1 L \ n = 2 m ~ 1 + 1 / -I

Because of Theorem 1.1, (ii) the last expression above is of the order
Σn=i o(2~α(ίn-1)/2)O(2m/2) = 0(1). Hence Σn=0 \Cn\ converges with probability
one.
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COROLLARY 2.1. // (2.5) is satisfied for X(t), then it has a version
which is sample W-continuous*

This follows from Theorem 2.2 and the fact that the Walsh functions
are PP-continuous.

3. The almost everywhere convergence of the Walsh series.

THEOREM 3.1. / /

(3.1)

then the Walsh series of X(t) defined by (1.4) converges almost everywhere
on 0 ^ t < 2P with probability one.

Before proving the theorem we need a lemma due to Paley [8] (see
also [10]).

LEMMA 3.1. Let /eL2[0, 1) and its Walsh series be f(t) ~ Σcnψn(ί).

If

[dx[[f(x®t)-f(x)Y/tdt
Jo Jo

< °°,

then the Walsh series of f(t) converges almost everywhere on [0,1).

PROOF OP THEOREM 3.1. Because of Lemma 3.1 we shall only show
that

Γ2ί> C2P

(3.2) Γ dt Γ E\X(t 0 h) - X(t)\2/hdh < «> ,
Jo Jo

which implies that

(2P dt Γ \X(t © Λ) - X(t)\2/hdh < oo
Jo Jo

with probability one. Now

Γ dt \2P E\X(t φ λ) - X(t)\2/hdh = Γ dt [" 1/hdh [° (ψh(x) - l)2dF(x) ,
Jo Jo Jo Jo Jo

by virtue of (1.8) and \ψt(x)\ = 1. Put

Γ 1/hdh Γ (jrh(x) - l)2dF(x)
Jo Jo

= :/, + /,.
By \fh(x) - 1| ^ 2 ,
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^ 4 Γ
Jo

dh<

Since it is easy to see that

(3.3) ψt{x) = 1 if tx < 1/2 ,

we have

Ix = Γ dF(x) [ (ψh(x) - lY/hdh ^ 4 Γ log 2xdF(x) .
Jl/2 J1/2X Jl/2

4. The limit joint distribution of Walsh coefficients. It is known
[2] that if X(t) has a spectral density, then X(t) is expressed as

(4.1) X(t) = [
Jo

where Φ e L2(R+) and is real-valued, and η(t), teR+ is a stochastic process
with orthogonal increments with

(4.2) E\dη(t)\% = dt .

It is also shown that the covariance function is written as

(4.3) r(ί, s) = Γ \φ(x)\*ψt(x)ψ.(x)dx ,
Jo

where φ is the Walsh transform in L2 of Φ(x);

φ(x)= Γ Φ(t)ψx(t)dt .
Jo

We study the joint limit distribution of the random variables
(Co, Cί9 , Cn) as p —> oo, where Cfc = CA(p) is the fc-th Walsh coefficient
of X(t).

THEOREM 4.1. Let X(t) be the DS process expressed by (4.1) with
Φ 6 L2(R+) and with Ύ](t) having independent increments and satisfying
(4.2) and

(4.4) E\dη(t)\* = O(dί) .

Moreover, if ΦeLxΓ\LS(R+), then the joint distribution of the set of the
Walsh coefficients of X(t) over 0 <; t < 2P,

(4.5) 2*/ 2(C 0,C 1, . . . , C J

converges to the (n + l)-ple direct product (ΐl*)n+1N(0, σ2) of the normal

distribution N(0, σ2) with mean 0 and variance σ2 = I Φ{t)dt .

PROOF. The characteristic function of (4.5) is written as
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(4.6) f(τ0, τu ", r.) = ±
Γ X(t) Σ Γ ^

=ϊ XP)} ,

where Xp = 2~*/2 [*" X(t)gπ(t, p)dt and gn(t, p) = Σ"=o τ^2r't). Now using
JO

(4.1) and changing the variables, we have

Xp = 2~p/2 \~dη(8) \2P gn(t, p)Φ(t 0 s)dt
Jo Jo

= 2P/2 Γ ^ ( 2 ^ ) Γ srn(2pu, p)Φ(2p(u φ v))dw ,
Jo Jo

where

i=

is independent of p. Hence

= gn{u) for 0 ^

, V) = [ gn(u)2»Φ(2*(u 0 v))du ,
J

where

and 57P(v) = ?](2pv). It follows from the assumptions (4.2) and (4.4) that
E\dΎ]p{v)\2 = 2pdv and E\dηp(v)\* = O(2pdv). Define

h(v) = S oo

Φ(w)dw , 0 ^ v
0

< 1 ,

lo, otherwise .

Then we see that h(v) e L3(R+), since it belongs to L2(R+) and is bounded.
Finally we show that

(4.7) lim Γ \h(v, p) - h(v)\*dv = 0 ,
p-+oo Jo

hence it follows from Lemma 4.1 below that the characteristic function

of Xp converges to the characteristic function of NyO, I h\v)dv); actually

(4.6) converges to

exp((-l/2 \~h\v)dv) = exp(-l/2 Φ(t)dt gl(v)dv)
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= exp(-l/2 σ2 Σ τj) = Π exp(-l/2Λ$) .

Now we write

gn@-pw 0 v)Φ{w)dw = \ gn(2-*w 0 v)Φ(w)dw ,

2Pv Jo

defining gn(v) = 0 outside 0 ̂  v < 1. Since gn(v) is a linear combination
of the Walsh functions, and hence is W-continuous and bounded,
Lebesgue's convergence theorem applies to show that

(4.9) lim h(y, p) = h(v) .
p—*oo

Moreover, the convergence in (4.9) is bounded because of (4.8), which
reveals that h(v, p) is uniformly bounded. Therefore in order to show
(4.7) it is sufficient to show that

lim Γ \h(v, p) - h(v)\2dv = 0
p->oo JA

for some A > 0. For an arbitrarily fixed A > 1

Γ \h(v, p) - h(v)\2dv - Γ \h(v, p)\2dv ̂  κ[° \h(v, p)\dv ,
JA JA Jo

for some constant K > 0, since h(v, p) is uniformly bounded. Hence

\h(v, p)\dv ^ 2p Γ \gn(u)\ \Φ(2p(u 0 v))\ du
JA

= [ \ffn(u)\du Γ 2'|Φ(2!>(tt φ v))\dv
Jo J^i

S I foo

\gn(u)\du \ \Φ(w)\dw ,
0 jA®2Pu

which converges to zero as p —> oo.
LEMMA 4.1 (Kawata [5]). Suppose that a real-valued function

Ίa{v) e L2(R+) satisfies

lim \ \ya(v) - 7(v)|2dv = 0
α-^oo Jo

for some Ύ(v) eL2Γ\Lz(R+). Let ξa(v) be a stochastic process with in-
dependent increments satisfying Edζa(v) = 0, E\dζa(v)\2 = adv, and
E\dξa(v)\* = O(adv). Then the characteristic function of

converges uniformly in every finite interval as a-+ °° to the characteristic
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function of N(Q, Γ T 2 W ^ |

5. An approximate Walsh series. We shall study the following
Walsh series,

(5.1) ί(ί) = ί , ( t ) = Σ C » + t ( 2 - ' n ) for teR+ ,
π=0

where

S 2-P(n+1)

dζ(x) .
2~Pn

It is obvious that

(5.3) Eζmζn = 0 if m Φ n .

The series (5.1) converges at every t in the L2 sense, since

E
N 2 JV f2~P(iV+l)

Σ Znψt(2-pn) = Σ E\ζn\> = dF(x) -> 0 ,
n=M n=M J2~PM

as Λf, N—> oo. The mean and the covariance functions are given by

(5.4) EX(t) = 0 ,

and
oo f2-P(n+l)

(5.5) f(t, β) = Σ ̂ (2-'n)ψ .(2-»w) dF(a?) ,
71 = 0 J2-P7I

respectively. Hence X{t) is a TΓ-harmonizable DS process with the spectral
distribution function,

(5.6) F(x) = Γ Pn dF(x) if 2~p(n - 1) ̂  x < 2~pn .
Jo

Now
^ 00 f2-P(n+O 00 Γ2-P(n+1)

EX(t)(X(t))- = Σ ψt(2-pn) \ ψt(x)dF(x) = Σ \ ^«(* φ 2r'n)dF(x)
n=0 J2~Pn n=Q J2~Pn

by virtue of (1.8), and so

E\X(t) - X(t)\2 =

f ( n + )

= 2 Σ \ (1 - *«(* θ 2-
n=0 J2-P71

By (3.3),

rt »(.+« _ 2-"w))(ίF(x) = (2 * (1 - ψt(x))dF(x φ
Jί-Pn Jo
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= 0 for p > log? ί + 1 .

Therefore we obtain the following:

THEOREM 5.1. Let Xp(t) be the Walsh series defined by (5.1) based
on X{t). Then

(5.7) Xp(t) = X(t) for p>\ogtt + l.

This implies, as expected easily, that Xp{t) converges almost surely
to X{t) as p —> oo.

THEOREM 5.2. Let F(x) be a spectral function of a DS process. If

(5.8) Σ (F(n + 1) - F(nψ2 < oo
n=0

holds, then the Walsh series Xp(t) defined by (5.1) absolutely converges
almost surely.

This is an analog of Lemma 2 in [7] of the weakly stationary case,
so the proof is omitted.

LEMMA 5.1 (Kubo [7]). If there exists a function g{x) defined on R+
which is non-negative, non-decreasing, and satisfies that

(5.9) Σ Vg(n) < oo
π = l

and

(5.10)

then (5.8) holds.

PROOF. This is clear, since

Σ (F(n + 1) - F(n)γ4 ^±g(n + ΐ)(F(n + 1) - F{n)) ± l/g(n + 1)
U = 0 / n=0 π=0

S Γ g(x)dF(x) Σ l/g(n).
JO n = l

By Theorem 5.2 and Lemma 5.1 we have the following:

COROLLARY 5.1. // there exists a function g{x) which satisfies the
conditions in Lemma 5.1, then the Walsh series Xp(t) absolutely converges
almost surely.

This is an analogous result obtained by Kawata in the weakly
stationary case [6].
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6. The sample TF-continuity. It is known that a TF-harmonizable
DS process is mean PF-continuous [2]. We shall give a sufficient condition
for the sample TF-continuity of the process.

LEMMA 6.1. Let Xp{t) be the Walsh series defined by (5.1). // (5.8)
holds, then Xp{t) converges uniformly over every finite interval almost
surely as p —> °°.

PROOF. Since by definition ζm>p = ζ2 m > p + 1 + ζ2m+i,ί)+i and ψ2m(2~ip+1)t) =
ψm(2~pt), we see that

which is majorized by

Σ (1 - fi(2-(i

m=0 -

Hence, in view of (3.3), for A > 1

max \Xp+1(t) - Xp{t)\ ^ C(A, p) ± | ζ 2 m + l i P + 1 | ,
t^A m=0

where C(A, p) — 0 if p > log2 A; = 2, otherwise. Take a sequence {εp} of
positive numbers decreasing to zero. By Tchebychev's inequality we have
that

Qp = Pr{max |^ + 1 (ί) - Xp{t)\ ^ e,} ^ (C(A, p ) ^ ) 2 ^ ] ( Σ IC
m = 0

ζ2m+ltP+1

In the same way as (2.5) in [7], we can prove that

Hence
lθg2-4 pcx,

^ 2 Σ 1/4 dF(x)
p = l JO

Therefore Borel-Cantelli's lemma implies that with probability one the
series Σ?=i ( Xp+i(ί) — XP(t)) converges uniformly in 0 ^ t <L A.

THEOREM 6.1. // the assumption (5.8) in Theorem 5.2 is satisfied,
then X{t) is equivalent to a W-harmonizable DS process which is sample
W-continuous.

The proof is clear by Theorem 5.1 and Lemma 6.1, since the limit
of a uniformly convergent sequence of W-continuous functions is W-
continuous.
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COROLLARY 6.1. If there exists a function g(x) defined on R+ which
is non-negative, non-decreasing, and satisfies (5.9) and (5.10), then X{t) is
equivalent to a W-harmonizable DS process which is sample W-continuous.

Finally we remark that Corollary 6.1 is a generalization of Corollary
2.1 since g(x) = xa (a > 1) satisfies the conditions (5.9) and (5.10).
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