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STRONG AND CLASSICAL SOLUTIONS OF THE HOPF EQUATION

—AN EXAMPLE OF FUNCTIONAL DERIVATIVE EQUATION

OF SECOND ORDER
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Abstract. In this note, we construct, strong and classical solutions of
the Hopf equation, a statistical version of the Navier-Stokes equation on a
compact Riemannian manifold with or without boundary. Our points are
to regard the Hopf equation as a given Functional Derivative Equation
(F.D.E. for short) of second order, to derive the Navier-Stokes equation as
the characteristic equation of it and to give an exact meaning to the 'trace*
of the second order functional derivatives which appear in the Hopf equation.
To construct a solution of the Hopf-Foias equation with the energy in-
equality of strong form, we apply Foia§'s argument with slight modifica-
tions instead of using Prokhorov's compactness argument.

1. Introduction. Let (M, g) be a compact Riemannian manifold of
o

dimension d with or without boundary dM. We denote by Xσ(M) and
o

ΛJ(ikf), the space of all solenoidal vector fields on M which vanish near the

boundary and that of all divergence free 1-forms on M which vanish near

the boundary, respectively. H (resp. H) stands for the completion of the
O O r^j

space Λi(M) (resp. Xσ{M)) with respect to ZΛnorm (resp. ZΛ norm).

The aim of this paper is to solve the following problem.

(I) Find a real functional W(t, η) on [0, oo)χ£Γ, satisfying

(Li) JLwa, V) = \ \-i

ό7]j{X)

(1.2) 1 ^
vg{x) dx

for Ύ] = Ύ)(x) = Ύ]j(x)dx°' e k\{M) and t e (0, <*>), and

(1.3) W(tf 0) = 1 ,

(1.4) W(0, η) = W0{η) .

Here f(x, t) = fj(x, t)d/dxj e Xσ(M) for each t and W0(rj) is a given positive

definite functional on H satisfying
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(1.5) TΓO(O) = 1 and
Vg{x) dx3 I δηs(x) >

Here and in what follows, we use Einstein's covention for contracting
indices as well as the terminology and symbols in Riemannian geometry
and functional analysis which will be explained in §2. There one
also finds the definition of functional derivatives δW(t, tj)l8i)s(x) and

In order to construct a solution of Problem (I), we consider the
following problem.

(II) Find a family {μ(t9 )}o<ί<oo of Borel measures on H satisfying

Γ-f dΦ(t, u) d ( t > u ) d t _ f.

}O}H}M

, u)dt

for suitable test functional Φ{t, u) which will be introduced in § 2. Here,
the given data are a measure μ0 and an exterior body force /(ί).

Our results are as follows, although we restate Theorem A more
precisely as Theorem A' later in §5:

THEOREM A. For any Borel measure μ0 on H satisfying

\u\2)dμ0(u)< oo ,

and any /(•) eL2(0, oo; F"1), there exists a solution {μ(t, )}o<ί<oo of Problem

(Π).
Moreover, it satisfies the following energy inequality of strong form.

(EIS)

for 0

2 J

<t < o

-Ί.
o and

2)d

J JET

ψ

'μ(t, n) +

f(\u\*)dμ

e Cι[0, oc

υ i ![L*' ( | u

) satisfying

2)\\u\\2dμ(τf u) \dτ

%'(\M\*)(f(τ)9 u)dμ(τ,u) \dτ

0 ^ ψ'(t) ^ sup ψ'(s) < oo .
se[0,oo)

THEOREM B. Suppose a positive definite functional Wo( ) on H satisfy

trace2-.n[-WoOT(O)]< oo .

For any /(•) eL2(0, oo; V1), there exists a strong solution W(t,rj) of
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Problem (I).

THEOREM C. Let dM — 0 and let I be the largest integer not exceeding
(d/2) + 1. Suppose a positive definite functional Wo( ) on H is of V~ι-
exponential type and satisfies

es-n[— WQηη(0)] < °° and trace?ur*[- W0ηη(0)] < °o .

For any /(•) given in L}oc(0, °°; V1), there exists a classical solution
W(t, yj) of Problem (I) on [0, T*) where T* < oo is determined by Wo and
f independently of v.

BRIEF HISTORY. The Hopf equation itself was introduced by Hopf
[10], but he solved it only for a special case. (See, Hopf and Titt [11].)

Foias [5], [6] solved it in the form of Theorem A above on Mx(09 T)
when M is a bounded domain in Rd, d ^ 4, and T is an arbitrary but
fixed number; It is remarkable that Gelfand [7] at I.CM. in 1954 stressed
the importance of F.D.E., in another word, analysis on functional spaces.

Since the work of Foias, there have appeared many papers statisti-
cally studying certain non-linear differential equations. For example, a
statistical study of the non-linear Klein-Gordon equation was done by
Vishik and Komech [22]. Especially, Ladyzhenskaya and Vershik [18]
considered the following partial differential equation of infinitely many
independent variables:

J t) = -vΣλA-^-m ί) - i Σ α^0m—ξ-F(0, t)
dt ™=i dθm i,k,m=i dθjdθk

+ i Σ LθmF(β, t) .
m—l

It corresponds to Problem (II) for a bounded domain M in RB. Their
construction is based on the existence of weak solutions of the Navier-
Stokes equation, and is different from that of Foias [5]. It seems desirable,
however, to solve Problem (I) or (II) without the knowledge of the
Navier-Stokes equation though the equations in Problems (I) and (II) are
actually derived from it.

Vishik, Komech and Fursikov [23] considered also Problem (II), using
Prokhorov's compactness argument.

On the other hand, Arsen'ev [1], [2] constructed another type of
solution for Problem (II), called a turbulence measure for the Navier-Stokes
equation, which seems to be a candidate for a weak solution.

In any case, there exists few papers dealing with the existence of
the solution of F.D.E., except Donskar and Lions [3], Inoue, [12], [14],
Levy [19], etc.
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REMARKS. (1) The equation (I.I) is called the Hopf equation and
that of (II) will be called the Hopf-Foias equation.

(2) Our main object is to solve a given F.D.E. like (I), and is not
to repeat a statistical study of the Navier-Stokes equation, although we
can extend a part of the results in Foias [5], [6] to the case where T— oo
and M is an arbitrary compact Riemannian manifold with or without
boundary. Especially there is no restriction on the dimension d of M.
In Theorems A and B, M is rather arbitrary, but in Theorem C, we must
restrict our attention to the case where dM = 0 .

Terminologies used without definitions, for example, the definitions
of strong and classical solutions, will be explained in §2. In §3, we
derive Problem (II) from Problem (I) formally, that is, we show that the
Navier-Stokes equation appears as the characteristic equation of the Hopf
equation, by assuming some Ansatz's. Some functional spaces and Foias's
compactness argument for a certain family of Borel measures are given
in §4. We restate Theorem A and prove it in §5. In §6, we give a
strict meaning to the 'trace* of the second order functional derivatives
in Problem (I). That is,

Sxj dxk

makes sense as a distributional element of ST2(M) in fairly general
situations. This is a merit in considering the Navier-Stokes equation on
a Riemannian manifold, and one of the motivations of writing this paper.
There seem to exist no papers giving the meaning to the trace of higher
order functional derivatives appearing formally in F.D.E. In § 7, we
give the proof of Theorem B. Foias [5] called a solution of (II) a sta-
tistical solution of the Navier-Stokes equation. We give the proof of
Theorem C in §8. In §9, we mention some open problems.

A part of our results was announced in Inoue [13].

2. Preliminaries. (A) For later use, we recall some notation and
symbols in Riemannian geometry.

Let (gij(x)) be a positive definite, symmetric matrix on M such that
each element giά{x) is smooth in x. The Riemannian metric on M is
formally denoted by dg2 — giάdxιdx\ gk\x) stands for the (fc, Z)-entry of
the inverse of the matrix (giS(x)). We put g(x) = άet(gtj(x)) and dgx —
V/g(x)dx1 Λ Λ dxd represents a volume element on M. (We abbreviate
the argument x if there occurs no confusion.)

Let us introduce some function spaces on M.



HOPF EQUATION 119

C°°(M) (resp. Ct(M)) denotes the space of smooth functions (resp.
those with compact support, i.e., vanishing near the boundary) on M.

X(M) (resp. X(M), resp. Xa(M)) denotes the space of smooth (resp.
with compact support, resp. with compact support and solenoidal) vector
fields on M. We define X(M) and Xσ(M) analogously. Here M =
MUdM.

A\M) denotes the space of smooth i-forms on M.
The space of symmetric tensor fields with k contravariant (resp.

covariant) indices is denoted by SΎk(M) (resp. STΛ(M)). For example,
w e ST2(M) means that it is expressed locally as

w = wi3'-^— (x) JL.
dx% dx3

with some functions wίj = wί3\x) on M, symmetric in i, j . Analogously,
ζ 6 ST2(M") stands for

ζ = ζ.jdx* (g) dx3

with some functions ζid = ζi5(x) locally on M, symmetric in i, j .
Now, we put

Γ ι L ik) d \ ^ 8 )

2 I dx% dx3 dxk )

•L"ijk ~~Z TΓ ij "~̂  Y"-*- ik "T" ί ijl mfc ί ik-l mj J
OX OX3

Riά = RTJm and R) = gikRkj .

For a 1-form η = ^cίίc5', we define

and
V g ox

Hereafter, we identify a 1-form 07 with a vector field v by

vι = gί3'ηά and ^ = giάv
3' ,

which we also express, with abuse of notation, as

v* = {ψ and 7], - {v\ .

On the other hand, for a vector field u — u3d/dx3, we put
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= gίk(ykUy = W

δu = -JL — j v 7 ^ } and (Au)j = V*V4̂  - Λ&* .
V g dx% ί >

We also put

<%, 77) = I UirfdgX for % 6 X(M) and 97 G Λ^iίϊ) .
J M

For M, v G X(M), we put

(%, v) = \ g^u^dgX = (u, v) = (u, v) and (u, u) = \ u |2 .

F o r -η, ζ G Λ^ikf), w e p u t

07, ί ) = ( 9ijViξjdgx = (η, | > = <ft ί> a n d to 77) = \η\2 .
J M

Moreover, we define

((M, 1;)) = (Vku, Vkv) = [ g^kU'V^'dgX a n d {{u, u)) = \\u\\2 .
JMThe completion of X{M) with respect to the norm | | is denoted by

ZΛ The closure of Xa{M) in U is denoted by H.
Let s be a non-negative integer. In X(M), we introduce the norm

|| ||8 defined by the Hubert space structure

((u, υ)\ = Σ (V(α)u, Ψa)v) and ((u, u))8 = \\u\\l ,

where w = uίd/dxί e X(M),

with α = («!, α2, , ad) and | α | = Σι̂ =i «t-
H8 (or fl?) denotes the completion of X(M) (or X(M)) with respect

to the above norm || ||8. Clearly, we have

{{u, v)\ = (u, v) , ((%, v))! = (%, v) + ((%, v)) and H° = L2 .
o

The closure of Xσ(M) in Z/8 is denoted by V8 and F 1 is simply denoted
by V. By Poincare's inequality, || || is equivalent to || - j^ in our case.
The dual space of m is denoted by H1 and that of V8 by V~8.

W denotes the closure of Xσ{M) in H1 ΓΊ Ld equipped with the norm
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where Ld stands for the space of vector fields whose components are d-
summable on M with respect to dgx. In general, W is a subspace of V
different from V, although W = V for d — 2, 3, 4. This seems to be the
main reason why Foias restricts himself to the case d ^ 4.

Analogously, we denote by Z2, H, H8, V, W and V8, the completion
o

of A\M) or Al(M) or Al(M) with respect to the corresponding norms
which are represented by the same symbols.

So, the dual space of H with respect to < , > or ( , ) is Jϊ or H,
respectively. Analogously, the dual space of V8 with respect to < , •)
or ( , •) is F~8 or V~8, respectively.

(B) We next recall the definition of Frechet derivatives.

DEFINITION 2.1. (1) A real functional Φ(u) defined in a neighbour-
hood of a point u0 of a Banach space X with norm | | is said to be Frechet
differentiate in u at u09 if there exists an element Φu(u0) e X' such that

^-\Φ(u0 + v) - Φ(u0) - (ΦM, v)\-*0
\v\

as \v\—»0, where < , > denotes the duality pairing between X and X'.
(2) If the above holds for all v belonging to a subspace 7 c l , we

shall call Φ Frechet Z-differentiable at u0 in the direction of Y. In both
cases, Φu(u0) is called the Frechet differential of Φ in u at u0.

( 3 ) For X= YxZy we write

ΦyΛVo, So) = (Φ,(Vo, Zo), Φ.(»o» So)) f

where the components constitute the partial Frechet differentials.

DEFINITION 2.2. A Frechet differentiable functional Φ is twice Frechet
differentiate at u0 if ΦU:X—>X' is differ entiable. That is, there exists
an element Φuu(u0) e (X (x) X)' such that

1
sup \(Φu(u0 + v), w) - (Φu(u0), w) - (Φuu(uQ), v(g)w)\->0

as |v| ->0.

(C) Now, we define functional derivatives.

Let E be a function space on M containing (C™(M))m whose dual
space, denoted by E\ is contained in («£ '̂(ikf))m: We assume implicitly
that E has at least a structure of a locally convex topological vector
space. Here C™{M) denotes the space of infinitely differ entiable functions
with compact support and £&'(M) denotes the space of distributions on
M. < , > stands for the duality pairing between E and Έf. (It represents
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also other duality pairings which will be explained for each instance, if
necessary.)

First of all, we consider the case m = 1.

DEFINITION 2.3. Let Φ = Φ(f) be a functional on E. If at feE,
there exists DΦ(f) e E' such that

(2.1) -fφ(f + eh)
dε

= (DΦ(f), h) ,

then Φ is said to be differentiable (or more precisely, Geteaux-differentiable)
at / (in the direction of h). We represent formally the right hand side
of (2.1) as

<DΦ(f),h> = \ ^fi-h{x)dgx for he

δΦ(f)/δf(x), being a distribution on M, is sometimes called the functional
derivative of Φ by / at x or of Φ at f{x).

In physics literature, we find the following abbreviation for the above
definition, even though S( ) is not contained in E.

DEFINITION 2.4. Let Φ be a differentiate functional on E. If
(DΦ(f)y h^ is differentiate as a functional of / for each hx e E, then Φ
is called twice differentiable at / and its second derivative D2Φ(f) is
given by

(2.2) 4~
dε

Here, < , > appearing on the right-hand side of (2.2) stands for the duality
pairing between E = E(MxM) and E' = E'(MxM) and (hλ (x) h2)(x, y) =
Λi(a?)Λ2(l/)» hv h2 6 C™(M) and x, y eM. Moreover, by the kernel theorem
of Schwartz [9], we may express the right-hand side of (2.2) as

<D*Φ(f), K <g> K) = \
8f(x)δf(y)

Jtfx* δf{y)δf(x)

Analogously, we define

(DnΦ(f), h1<g) <g)hn) = \ KJ' ,fei(a?i) Kixjd^ dgxπ .
<-χM δf(xd δf(xn)
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If a functional Φ depends on many variables (f19 f2 fm), then we
may define partial functional derivative δΦ(fv f2 fm)lδf5(x) analogously.
Higher order derivatives as well as higher order partial derivatives of a
functional with many variables are defined analogously, (cf. Volterra
[24].)

REMARK 2.5. Since δ2Φ(f)/δf(x)δf(y) is a distribution on MxM, it
generally does not make sense to put x = y. But if it is possible to
regard something like (δ2Φ(f)/δf(x)δf(y))\x=y as a distribution on M, we
denote it by δ2Φ(f)/δf(x)\ and call it the trace of δ2Φ(f)/δf(x)δf(y). Analo-
gously, we define δnΦ(f)/δf(x)n etc.

(D) Now, we proceed to define the notion of solutions of (I).
We introduce:

DEFINITION 2.6. A real functional Φ( , •) on [0, °°)xH is called an
elementary test functional if it satisfies the following conditions.

(1) Φ( , ) satisfies

Φ(ί, u) = Φ(t, Pmu) for (ί, u) 6 [0, oo) x H

for a certain meN depending on Φ.
(2) Φ( , •) is continuously Frechet differentiate from [0, °°)xH to

R and there exist constants Cy, j = 1, 2, 3, depending on Φ such that for
all (t, w)e[0, oo)χ£Γ, we have

(2.3) IΦM(ί, w)I ̂  d a n d |Φ t (t , u)\ ^ c2 + c,\u\ .

Here, Φw(ί, •) is regarded as an element in H.

DEFINITION 2.7. A real functional Φ( , •) defined on [0, oo) x γ is called
a test functional if it satisfies the following.

(1) Φ( , •) is continuous on [0, oo)χ γ and verifies (2.3).
( 2 ) Φ( , ) is Frechet JEΓ-differentiable in the direction F.

(3) Φu( , •) is continuous from [0, o o ) χ f to V8 and is bounded.
That is, there exists a constant c4 depending on Φ such that

(2.4) || Φu(t, n)\\8 ̂  c4 for all (t, u) e [0, oo) x γ .

The set of all test functionals (resp. elementary test functionals) is
denoted by TF (resp. ETF).

Now, we give:

DEFINITION 2.8. A family of Borel measures on £Πs called a solution
fo Problem (II) on (0, oo) if it satisfies (II) and the following conditions:

(H.I) \ (l + \u\2)du( ,u)eL~(0, oo)
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(H.2) ( \\u\γdμ{.,u)eL\<d, o o ) .

(H.3) 1 Φ(u)dμ(t, u) is measurable in t for any non-negative, weakly
Jff

continuous functional Φ( ) on H.

DEFINITION 2.9. A functional defined on [0, T)xH, (T ^ oo) will be
called a strong solution of Problem (I) on (0, T) if there exists a set D,

^ o

dense in V8, for some s, containing ΛJ(Λf) such that:
(1) For each η e D, Wit, η) belongs to L\oc[0, T) is continuous in t

at t = 0 and is twice differentiate at rj e D for a.e.t.

( 2 ) g ' ^ ^ y ) 3 ft 3
δηs(x)δηk(x) dxj dxk

exists for almost every t on (0, T) as a distributional element in ST2(M)
for ηeD.

(3) TΓ(ί, 27) satisfies (I.l)-(1.4) as distributions for each ηeD.

DEFINITION 2.10. A functional defined on [0, T)xHy ( Γ ^ 00) will be

called a classical solution of Problem (I) on (0, T) if there exists a dense

set 5 in Fβ, for some s, containing ΛJ(Λf) such that:
(1) W(t, 7j) is absolutely continuous on [0, T) for each η e D and is

twice differentiate; moreover, δW(f, 7j)/δrjs (x) belongs to L\o0(M) for each

i
(2) δ2W(t, η)/8yj(x)δηk(%) exists for each j, k and almost every t on

[0, 31) as an element of L\OC(M) for rj eD. Moreover,

δ2W(t,y) d a d

belongs to ST2(ikί) as an element in L\OC(M).
(3) W(t, r]) satisfies (I.l)-(1.4) for almost every t as functions for

each 7]eD.

REMARK 2.11. There may be many other possibilities of the notion
of solutions, for example, those which will be defined by respecting the
uniqueness or the regularity of solutions.

Finally, we introduce:

DEFINITION 2.12. A positive definite functional W on H is said to
be of V~8 exponential type for any η e H, if the function s —> W(sη)
defined on R can be extended analytically to an entire function W(ζ; η)
on the complex plane C satisfying

\W(ζ;η)\ ^c5.e
ca |ImζM1*"-* for all ζ e C
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where c5 and cQ are constants depending on W.

3. The derivation of Problem (II) from Problem (I). Multiplying
both sides of (I.I) by a function /0(ί)eC~[O, oo) and integrating with
respect to t, we get

(3.1) - J" p\t) W(t, η)dt - p(0) W(0, η)

, t)W(t, ηi\dgxdt .
-I

ANSATZ 1. There exists a family {jtί(ί, )}o<ί<oo of Borel measures on
the set &(L2) of Borel sets in L2 such that

(3.2) W(t, V) - ( e^dμit, v) .

Then, (1.3) and (1.4) yield that

(3.3) ( dμ(t, v) = l for 0 < K ~

and

(3.4)

Moreover, by (1.2), measures μ(t, •) must be supported on H. That is,

(3.5) 1 _ ^-jv^δi;^)} = 0
( ) d3 I )

for r( ) = ^( )3/3ίci e supp μ(fi, ) c L2.
Analogously, if Wo(̂ ) satisfies the condition (1.5), then

(3.6) suppμoc=# and I 2dμ0(u) = 1 .

Substitute (3.2) into (3.1) and assume that functionals Φ(t, v; η) =
p(t)ei<VtV> belong to the space of test functionals. Then by the definition
of functional derivatives and (3.5), we get

t, v; v)dμ(t, v)

ΓUx)v\x)v\x)\ Sφ(t,v;V) d x d μ ( t ι v) .
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Calculating analogously other terms on the right hand side of (3.1), we get
(II.1) for Φ(t, v η). Here, we assume implicitly that δ2W(t, y])jδηό{x)8Ύ]k{x)
exists for W(t, η) expressed by (3.2) and also that the change of the order
of the integration with respect to dgx and d/t(t, u) is permissible.

Let us introduce another:

ANSATZ 2. A family {μ(t, )}o<ί<oo of Borel measures in (3.2) is induced
from an operator Tt in U for 0 < t < °°, that is,

(3.7) μ(t, ω) = μ,(Trιω) for 0 < t < oo and ω

In other words,

(3.8) W(t, V) = \ e^

Combining this with (3.4) and (3.6), we get

(3.9) Tou = u in H.

By (3.7), (1.2) and the definition of the functional deriative, we get

(3.10) 4~Wtt> V + edφ) = \ (Ttu,

for any φ e CS°(M) and for any η e ZΛ So, it seems natural to assume

(Ttu, dφ) = 0 for any 9) e C~(M) .

That is, by (3.5) and (3.9),

(3.11) TtueH for ueH.

Substituting (3.8) and (3.11) into (I.I), we have

ijL 2 <(Ttu)' - vATtu + VTt%-Ttu - /, )7>e i<Γίtt'^o(^) = 0 .

Combining the above results, we have finally:

ANSATZ. There exists a family {Tt} of operators in H and a Borel
measure μ0 such that a solution of (I) is expressed as

(3.12) W(fi,yy= \
J

Then, by the Hodge decomposition, we get that Ttu ( = t6( , t)) is a
solution of the following initial boundary value problem for the Navier-
Stokes equation.
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(3.13) 4r

(3.14)

(3.15) %(α, ί)|3jf = O and

(3.16) u(x, 0) = uo(x) .

REMARK. (1) Above Ansatz asserts that the Hopf equation has the
Navier-Stokes equation as the characteristic equation. Note, however,
that the uniqueness of the weak solution of the Navier-Stokes equation
is not known. Hence the above operator Tf1 does not necessarily exist.

(2) The condition (1.2), which follows from the gauge condition
(3.14), has a counterpart in Quantum Field Theory, called the Ward-
Takahashi identity.

( 3 ) Hopf [10] and Foias [5], derived (I) or (II) from the Navier-Stokes
equation by an argument converse to ours above. It seems meaningful,
however, to start with a given F.D.E. just as we treat the Schrbdinger
equation independently of the fact that it is derived from the classical
mechanics. Unfortunately, there does not exist any mathematical foun-
dation for treating F.D.E. directly, though it was possible to regard the
Schrδdinger equation as an example of P.D.E., when it appeared.

4. Some functional spaces and Foias's compactness argument for a
certain family of Borel measures. Concerning the criterion for the weak
compactness of measures, Prokhorov's theorem is now well-known. (See,
Theorem 1, § 1, Chap. VI in Gihman and Skorohod [9].) But we follow
essentially the argument of Foias [5] and present here Foias's result in
somewhat more abstract form. The detailed proof will not be presented
here, because we can get them slightly modifying the arguments in [5].

Let X, Y be Banach spaces such that YaX where the injection is
dense, continuous and compact. We denote the norms of X and Y by
| | and || ||, respectively. Moreover, we assume that there exists a family
of operators Pm in X for m = 1, 2, with the following properties.

(P.I) Pm->I as m->oo in X and PmueD for all ueX.
(P.2) For each m, if u converges to v weakly in X, then Pmu con-

verges to Pmv in Y.
(P.3) \\Pku\\ ^ ||P*+1tt|| £\\u\\ for ueX.

Here, D is a dense subset in Y.
As functional spaces, we introduce the following:

DEFINITION 4.1. (i) Ca ΐor a ^ 0 denotes the space of all real con-
tinuous functionals Φ( ) on X such that
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< oo .

(ii) Clfl denotes the space of all real continuous functional Φ( ) on Y
such that

< oo .

\u\

We further introduce the following:

DEFINITION 4.2. For Ca and Clfl, we put

Li = 2/(0, oo; ca) and LJfl = L2(0, oo; CM) .

Moreover, we put, for any T > 0,

Ll>J = {Φ( , )eL2(0, °o;CM); φ(ί, .) = 0 for ί ^ T} and

h\τ = {Φ( , -JeL^O, oo Q ; Φ(t, •) - 0 for t ^ T} .

DEFINITION 4.3. A family {μ(£, )}o<ί<oo of positive Borel measures on
X will be called basic if it satisfies the conditions (H.I), (H.2) and (H.3)
in Definition 2.8, with H replaced by X.

The following lemma corresponds to Lemma 1 in Foias [5, p. 246].

LEMMA 4.4. Let {μ(t, )}o<*<oo be a basic family of Borel measures on
X. Then, for each T > 0,

F{Φ) = Γ ί Φ(ί, u)dμ(t, u)dt
Jo Jx

makes sense for any ΦeLlULϊJ. Moreover, we have the following esti-
mates.

and
L°°{0,oo)

1/2

(1 + \\u\\2)dμ(.,u)

A slight modification of Lemmas 3 and 4 in Foias [5, p. 254 and p. 264]
gives:

THEOREM 4.5. Let {μ{m)(t, )}o<ί<oo be a sequence of basic families of
Borel measures on X such that

(a) sup u\*)dμ™(;u)

(b) sup \ \\u\\*dμ™dμ(;u)
L1(0,oo)

— CΊ

= C8 < oo .

(c) sup \\μlm)( , X)IUi(0>r) = e,(T) < oo for each T<
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Let F{m) be a functional defined by

(IRm) F{m)(Φ) = Π Φ(t, u)dμ{m)(t, u)dt .
JO JX

Then, we have:
(1) There exists a functional F, a w*-cluster point of {F{m)} in I/2\
(2) F is also a w*-cluster point of {F{m)} in L2J* for any T > 0.
(3) There exists a basic family {μ(t, )}o<t<co such that

(IR) F{Φ) = Π Φ(t, u)dμ(t, u)dt
Jo Jx

for all Φ e LJ.
In addition to the conditions (a)-(c), we assume:
(d) The functional | |2 is uniformly integrable with respect to almost

all μ{m)(t, •) (0 < t < co, m = 1, 2, •)» that is, for any ε > 0, £/*,ere e#ίs£s

cm 0 < rε < oo such that

\ \u\2dμ{m\t, u)Se
J{ueX;\u\^rε}

for all m and almost all t.
Then, the formula (IR) is valid also for every Φ e L\.

COROLLARY 4.6. Under the assumptions (a) and (b) in Theorem 4.5,
if all measures μ{m\t, •) for 0<t<°° are probability measures, then the
measures constructed above are also probability measures for almost all
te(0,oo).

See Remark in Foias [5, p. 263].

REMARK 4.7. To prove Theorem 4.5, we use the property (P.3) of
Pm which is important to define a desired measure by DanielΓs integral.

5. Proof of Theorem A. In order to restate Theorem A more
precisely, we need some notation.

We consider the initial boundary value problem of the Navier-Stokes
equation, although it is not necessary to solve it.

We define the forms a and b by

and

a(u, v) = ((u, v)) = \
J3f

b(u, v, w) = (yuv, w) = \ 9iAuk—-v* + ΓiιUkvι\w3'dgx
JM K dx >dχk

for u, v, weX(M). Then, we have:
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LEMMA 5.1. (1) The from b can be regarded as a trilίnear con-
tinuous form on Vx Vx W or Hx Vx V8 satisfying

(5.1) \b(u, v, w)\ ^ | |u | | Hi;|| ||w||ir or \b(u, v, w)\ <; clo\u\ \\v\\ \\w\\.

for some s ^ d/2, where c10 is a constant related to the Sobolev imbedding.
( 2 ) For u e V and v, w e W, we have

b(u, v, w) = — b(u, w, v) .

For the proof, see, for example, Lemmas 1.1-1.3 in Chap. II and
Lemma 4.1 in Chap. Ill of Temam [21].

REMARK 5.2. (a) For u, veV, we denote by B(u, v) the linear
continuous form on W defined by

(B(u, v), w) = b(u, v, w) for w e W .

Clearly, B(u, v) = Vu-v for u, veX(M). By (5.1), we have

(5.2) \ \ B ( u , v ) \ \ w > ^ \ \ u \ \ \ \ v \ \ o r \\B(u, v)\\_8 ^ clo\u\ \\v\\ .

(b) We also define a linear operator A from V onto F" 1 by

(Au, v) = a{u, v) for u, v e V .

Here, we use ( , •) on the left-hand side also as the duality pairing
between V and F" 1 .

Now, we remark that as a corollary to Definition 2.7 in § 2, we have:

LEMMA 5.3. (1) Any test functional Φ( , •) can be extended to
[0, oo)χ V~° so that

(5.3) IΦ(t, u) - Φ(t9 v)\^cn\\n-v||_s

for all ί e [ 0 , ©o) and u,ve V~8, where cn — suptβΛf1(βF||Φ*(ί> ^)IL More-
over, this extension is continuous from [0, °o)χlfweak to R.

( 2 ) Any ΦeΎF may be extended as a functional on [0, °o) x H and
we have

(5.4) I Φ(t, u) I ^ c12 + c181 u I for all (ί, u)

with some constants c12 and c13 depending on Φ.
(3) If a test functional Φ( , ) satisfies Φ(t, u) = 0 for a certain

te[O, oo) and for all u with \\u\\ large enough, then actually Φ{t, •) = 0.

PROOF. See, Foias [5, p. 253].

After these preliminaries, we are in a position to restate Theorem A
as follows:
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THEOREM A'. Let /( )eL2(0, oo; γ~ι) he given and suppose a Borel
measure μ0 on H satisfies

(5.5) j^( l + \u\2)dμ0(u)< oo .

Then, there exists a basic family {μ(t, )}o<ί<oo of Borel measures on H
such that

(5.6) Π φt(t, u)dμ(tf u)dt + \ Φ(0, u)dμo(u)

u> ^ *0)

for any ΦeTF with compact support in t, i.e., there exists a constant T
depending on Φ such that Φ(t, •) = 0 for t ^ T.

Moreover, it satisfies the following energy inequality of strong form.

(EIS) ^Bψ(\u\2)dμ(tf u) + ^ H

^M ψ(\u\2)dμ0(u) + \t\\ f\\u\*){f{τ\ u)dμ(τ, u)]dτ

for 0 < t < oo and ψ e C^O, oo) satisfying

0 ^ ψ'(t) ^ sup ψ\s) < oo .
βe[o,oo)

The proof of Theorem A' consists of several steps.
Step 1. Using the Galerkin approximation of the Navier-Stokes

equation, we may construct a basic family {μ{m\t, )}o<t<oo for each m.
Moreover, {μ{m\t, )}o<ί<oo satisfies the conditions (a)-(d) in Theorem 4.5.

So, we have a basic family {μ(t, )}o<ί<oo of measures as a candidate
for the solution of Problem (II).

Step 2. We show that {μ(t, )}o<«oo constructed above satisfies the
properties in Theorem A'.

SKETCH OF THE PROOF OF THEOREM A'. By standard argument, we
can show that there exists an orthonormal basis {w(j)} of H, orthogonal
in V, such that

(EVP) a(w(j), v) = Xj(w(j), v) for any v e V,

where λ, ^ 0 . By a suitable choice of the indices, we may suppose that

0 < \χ ^ λ2 ^ ^ Xn ^ > OO .

Obviously, λi satisfies
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( 5 7 ) Ϊ7Γ = ̂ ?-

For each m, we define the orthogonal projection Pm in H by

(5.8) Pmu = Σ (u, w(j))w{ί) .

By regarding the scalar product ( , •) in (5.8) as a suitable duality pairing,
we can extend the operator Pm as an operator from V~8 or W to PmH.
Moreover, Pm satisfies the properties (P.1)-(P.3) in §4 with X = H, Y= V
and D = V8+\

From each m, putting u(m)(t) as

W(w,(ί) = ΣΛy«(ί)^(Λ ,

we seek functions {/̂  w(£)} satisfying

(5.9) (w'(m)(ί), w ( Λ ) + va(u{m)(t), w(j)) + b(u{m)(t), u{m)(t), w{j)) = (/(ί), w ( i ))

for t e (0, oo) and j = 1, 2, , m, and

(5.10) u(m)(0) = uom = Pmu0 .

LEMMA 5.4. There exists a unique solution u{m)(t) eC\[0, °°); PmH)
of the equation

[m){t\ u(m)(t)) = PJit) in PmH( 5 - 1 1 ) +

at
satisfying (5.10). Moreover,

(5.12) i A | t t ( m , ( ί ) p + v\\uUt)\\2 = (/(ί), w,

(5.13) |M(w)(ί)l2 +

REMARK 5.5. The sequence {u{m)(t)} constructed above is called the
Galerkin approximation of the Navier-Stokes equation. In fact, from
them, we may extract a subsequence converging to a weak solution of
the Navier-Stokes equation. As we mentioned before, this fact is not
necessary to construct {μ(t9 )}o<ί<<χ>.

Defining an operator S{m)(t) by Sim\t)Pmu0 = um)(t), we put

(5.14) μ{m\t, ω) = μ{

o

m\(S{m)(t))-\ω Π PmH))

for te(0, oo) and every Borel set ωaH, where

μίm\ω) = μo(Pn\ω n PmH)) for m = 1, 2, . . .
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Then, we may verify that {μ{m\t, )}o<ί<oo is a basic family of measures
on H, and that the sequence {{μ[m\t, )}o<ί<oo}m=i satisfies the conditions
(a), (b), (c) and (d) in Theorem 4.5.

To proceed further, we need the following which corresponds to
Lemma 2, in Foias [5, p. 249].

LEMMA 5.6. Let {μ{t, )}o<ί<oo be a basic family on H. Assume that
/(•)eL2(0, oo; F"1) and Φ( , )<ΞTF. Then

(5.15) <p(Φ) = ( " [ J J - ^ f o n) + »a(u> *•(*» u)) + b(u> u> *•(*» u))

makes sense. Moreover, defining Φm as

φm(t, u) = Φ(t, Pmu) , for all (ί, w) e[0, oo)χH,

we get Φm( , ) e E T F and

ψiΦJ -* ψ{Φ) for m -> oo .

Corollary in Foias [5, p. 266] corresponds to:

LEMMA 5.7. Let {μ(t, )}o<t<oo be a basic family of measures constructed
from {μ{m\t, )}o<t<oo satisfying the assumptions (a)-(d) in Theorem 4.5.
Then, the formula (IR) is valid for all functionals ΨΦ( , •) defined by

(5.16) y#(t, u) = -Φit, u) + va(u, Φu(t, u)) + b(u, u, Φv(t, u))

- (fit), ΦΛt, u)> ,

for Φ e ETF with compact support in t.

Combining these, we get the first half of Theorem A'. The energy
inequality of strong form is proved in the same way as Proposition 1 in
Foias [5, p. 291].

REMARK 5.8. Let FeLl* be the functional attached to {μ(tf )}o<ί<oo.
Using the above notation, we see that {μ(t, )}o<ί<oo is a solution of Problem
(II) if and only if

(5.17) F(ΨΦ) = \ Φ(0, u)dμo(u)

holds for any Φ( ) e E T F with compact support in t. Indeed, Ψφ for such
Φ belongs to L2J f]Ll'τ which is dense in L\Ί\

6. Fourier-Stieltjes transformations of measures and the meaning
of the second order functional derivatives.

DEFINITION 6.1. By a Fourier-Stieltjes transform of a bounded Borel
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measure μ on H, we mean the functional β defined on H by the formula

β(η)= \ ei<u^dμ(u) for ηeH.

REMARK 6.2. (1) If μ is a probability measure on H, then β will

be called the characteristic functional of μ. In this case, β is continuous

on H and is positive definite, that is, for any complex numbers ζy and any

elements ηs eH, j = 1,2, , m, we have

j,k=l

(2 ) The correspondence of μ to β is one-to-one and onto from {Borel

probability measures on H} to {continuous positive definite functionals on H

with value 1 at 0}. (See, Theorem 1 in Gelfand and Vilenkin [8, p. 348]).

LEMMA 6.3. (cf. Foias [6, Lemma 1, p. 110]) (1) If μ is any Borel
probability measure on H satisfying

(6.1) ( \u\2dμ(u) < oo ,

then //(•) is positive definite and differentiate in H and its Frechet
differential βv(-) satisfies

(6.2) <βv(y),ξ> = i\ <u, ξ)e^dμ{u) for ξeH.

Moreover, μm exists as an operator from H to H satisfying

(6.3) trace;i_fl[-/<TO(0)] = ( \u\2dμ(u) .
J H

(2 ) In addition to (6.1), if we suppose that

(6.4) \ | |tt| |2^(it)< oo ,
J H

then μη{rj) e V and

(6.5) ((μv(η), ξ)) = i\ ((u, ~ξ))e^dμ{u) for ξef.

Moreover, μηη can be regarded as an operator from V to V satisfying

(6.6) t r a c e d - £„(())] = \ \\u\\^(u) .

(3) Conversely, if W is a positive definite functional on H such
that W(§) — 1, Wvη exists and

d - Wηv(0)] < oo ,
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then W = μ for a uniquely determined Borel probability measure μ on
H satisfying (6.1).

Extending the statement appearing at the end of Foias [6], we get:

PROPOSITION 6.4. Let μ be a probability measure on H such that

(6.7) ( \\u\\ldμ(u)< oo

with s > d/2. Then, for any j , k and for any x, y eM, we have,

(6.8) -ΦvfoW* Sye
k) = \ u'frWiyW^dμiu) ,

J H

where dxe
j denotes the functional on V8 defined by δxe

j(u) = u*(x). More-
over, the left-hand side of (6.8) is continuous in (x, y)eMxM.

PROOF. The equality (9.14) in Foias [5, p. I l l ] is restated as

(6.9) μjyj)ξ = - \ (u, ξyue^dμiu) 6 H
JH

for all Ύ], ζeH. Combining (6.9) with (6.7), we have

(6.10) \<βvv(v)t\ ξω>\ ^ \ l l^
JH

so that the bilinear functional

(6.11) ί(1),ί(2)-><

extends by continuity to a bilinear continuous functional on the whole V~8.
On the other hand, as s > d/2, V8 is continuously imbedded in the set
X\M) of continuous vector fields on M by Sobolev's imbedding theorem.
So the Dirac functional δxe

5, which sends u to uj(x), is well-defined and
continuous on V8 for all xeM and j = 1, 2, , d. By (6.9), we have

(6.12) ΦJ&W, δye
k) = -\ (u, δxe>')(u, δye

k)ei<u»»dμ(u)

J H

J H

This implies (6.8) and the last assertion follows immediately q.e.d.
On the other hand, if a measure μ satisfies

(6.13) ί ||
J

where | μ \ denotes the modulus of μ, then for any v e V8, the functional
b(u, u, v) in u belongs to L\μ). This implies that the integral



136 A. INOUE

\ b(u, u, v)eί<υ"η>dμ(u)
JH

makes sense for all η e H; and is a continuous linear functional in v on
V8. Therefore it defines an element —i(Lμ)(η) of V~°. That is, we have:

DEFINITION 6.5. For any measure μ on if satisfying (6.13), we define
an operator L by

(6.14) ((Lβ)(η), v) = i\ b(u, u, v)ei<u^dμ(u)

for all v e V8 and η e H.

Define the space FSM2 as the Fourier-Stieltjes image of the space of
Borel measures on H satisfying (6.13) with norm

II/ill = \ \\u\\*d\μ\(u).

Then the operator L is bounded from FSM2 to B(H, V'8). In fact,

(H.F-1) = SUP
ηeH,\η\=l

To state one of the main results in this section, we need the follow-
ing lemma which is proved in Ebin and Marsden [4]. We denote by
Ha,N(M) the closure of the space {u eXσ(M): u n\dM = 0} in L\M), and
by L\SΎ\M)) the closure of the space of sections from M to ST2(ikf) in
(L2(M))n{n~1)/2. Here, n stands for the unit exterior normal on dM.

LEMMA 6.6. Define an operator T by

(Tv)jk(x) = —(Vfcί /ίc) + Vdvk(x)) .

Then T is one-to-one and onto from Hi,N(M) to L\SΎ\M)).

THEOREM 6.7. Let μ be a Borel probability measure on H satisfying
(6.7). Then

( i ) ^μi^/δrj^δTjjix) exists and belongs to C(M) for each i, j .
(ii) For each v e F8,

(6.15)

(iϋ) -r-

belongs to ST2(Λf) as a continuous element.

PROOF. By the kernel theorem of Schwartz [8], (6.11) implies that
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there exist distribution kernels K(τη)ι'{x, y) on MxM such that for ξω,
£(2)eΛ

(6.16)

where the integral on the right-hand side must be symbolically interpreted.
Combining this with (6.8) and the definition of the functional derivative,
we have, as distributions,

(6.17) fffl = -( uWuW^dμiu) = φJflW, dye
k) .

δη^δη^y) J*
Since the above holds as continuous functions on MxM, we get (i).

Using the above definition of L and Proposition 6.4, we get

(6.18) ((L/ϊ)()7), v) = i[ b(u, u, v)ei<u^dμ(u) = - i ( b(u, u, v)ei

JH JH

where we have used (6.7) and Fubini's theorem. So, we have

(6.19) {{Lμ){η), v) = i\ ( V ^ / a O t / v O ? ) ^ δxe")]dgx
J M

for all η e H and v = vjd/dxj e V.
Because (6.19) holds with the term (yhv)s(x) replaced by (Tv)jk(x), we

have an element in ST2(M) for v e Vs by Lemma 6.6. This implies that

δ*β(7}) d Q d
dxi dxj

belongs to ST2(ikf) as a continuous element. This leads us to (ii) and
(iii). q.e.d.

Now, we extend the above theorem to the following:

COROLLARY 6.8. Let μ be a Borel probability measure on H. satisfy-
ing (6.13). Then, there exists a distribution KiηY^d/dx1 (g) d/dxj in ST2(Λf)
such that

(6.20) {{Lμ){η\ v) = i(K{rj)*\x)f (Tv)jk(x))

for v 6 Xσ{M).

PROOF. Using the third equality in (6.18), which is valid when μ
satisfies (6.13), we have
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(6.21) ((L/2)O7), v) = - ί J

This implies, by (5.1),

(6.22) \{{Lμ){η\v)\ S \\ TV\\.-{\B \U\ \\u\\d\μ\{u)) .

So there exists a distributional element in ST2(Λf) denoted by K{r])ί3\x)dldxi®
d/dx3' satisfying (6.20). q.e.d.

REMARK 6.9. By Theorem 6.7, it seems natural to put

J_^J_ = K(Vγi(x)J_ ̂  J_
dx* ^ dx3' KJ) K } dxk ^ d x ι '

Because a measure μ satisfying (6.13) on H may be approximated
weakly by a measure με satisfying (6.7) on H, we may have

(6.23) {{Lμ){7]\ v) = i(K{r)Y>\ {Tv)i5}

= lim - i\ \\ {Tv)jk(x)u3Xx)u\x)dgxλeί{u^dμlu)

= Km - i\ (Tv)jk(xί[ uj(x)u\x)ei<u^dμs(u)]dgx
e-»0 JM [_JH J

= lim i ( _ ί t o l _ f (TvUx)) = i( δ2β(V) , (TvUx)
o \dη(χ)δy(x) h A Ί \δy(χ)δη(x)

i m i ( f ( T v U x ) ) i (

We rather define

FfiiV) d @ d _ l i m δ%(η) d & 3
δΎ]lx)δηό{x) dx1 dx0' «-o δη^δη^x) dx1 dx3' '

where the limit is taken in ST2(Λί) in the sense of distribution.

Finally, we recall the following lemma in Foias [6, p. 115].

LEMMA 6.10. Let μ be a Borel probability measure on H. Then, μ

is of V~8 exponential type if and only if μ is with bounded support in
V8.

7. Proof of Theorem B. Theorem 1 in Foias [6, p. 106], is restated
as follows:

THEOREM 7.1. Let {μ(t, )}o<ί<oo be a solution of Problem (II) with
initial data μ0 satisfying (5.5). Let W(t, rj) denote the characteristic
functional of μ(t, •) and let W0(τj) be that of μ0. Then, we have:

( 1 ) W(t, 7j) is defined on [0, oo) x H and belongs to 1/(0, oo) with

respect to t for each Ύ] 6 H.

( 2 ) For any ηeV8 and any p( )eCl[0f oo), we have
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(7.1) -\™p'(t)W(t, η)dt + [° p(t)[va(Wη(t, η), rj) + {{LW{t, )){η), {η)]dt
JO JO

i \P(tKf(t), φW(f, η)dt .
Jo

Analogously, Theorem 2 in Foias [6, p. 109] is restated as follows:

THEOREM 7.2. Let Wo(-) be a positive definite functionl on H such
that W0(0) = 1 and that Wovv(η) exists with

(7.2) t r a c e d - Wm(0)] < oo .

Then} there exists a solution W(t, •) on (0, oo) of (7.1) with initial data
Wo(')> such that, for any te(Q, oo), W(t, •) is a positive definite func-
tional on H, W(t, 0) = 1, Wηη(t, •) exist and satisfies

(7.3) t r a c e d - Wvv( , 0)] eL\0, oo) and

(7.4) t r a c e ^ F [ - Ww( , 0)] 6 L°°(0, oo) .

The following lemma is elementary.

LEMMA 7.3. Let φQ be a real number. Let φ(t) belong to L°°(0, oo).
If there exists a function ψ(t) e L\oc[0, oo) such that

-\° P\t)φ{t)dt - pφ)φ, = Γ p(t)ψ(t)dt
Jo Jo

for any p(t)eCl[0, oo), then (a) φ' — ψ in D\0, oo), (b) we can make φ
continuous on [0, oo) after modifying the values on the set of measure 0
and (c) φ(t) converges to φ0 as t—>0.

PROOF OF THEOREM B. We can derive the following equation from
(7.1) by taking /o( )eCi(0, oo).

(7.5) Wt(t, V) = MWη(t, η), rj) + ((LTΓ(ί, ))W, V) ~ *</(«), V>W(t, η) ,

which holds as distributions on (0, oo) for each Ύ] e D.

As W(t, rj) = μ(t, η), we have readily

(7.6) (Wη(t, η), dφ) = 0 for φeC0°°(M) ,

and

(7.7) W(t, 0) - 1 .

To prove

(7.8) Km W(t, η) = W0(η)
t-*Q

we must check the conditions in Lemma 7.3.
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For each η e V*, putting φ(t) = W(t, η), we have already proved that
φ(t)eL°°(0, oo) and φ(t) satisfies the equation in Lemma 7.6 with

fit) = va(Wη(t, η), rj) + ((LW(t, •))(?), V) - *</(*), η>W(t, η) .

As ψ(t) belongs to L\0C[Q, oo) because of

we have (7.8). Lastly using (EIS), we have

I \\u\\2dμ(t, u) < oo for almost every t

so by Corollary 6.8, ((LW(ί, ))()?)» V) may be expressed as

(7.10) «LW(t, ))W, V) =

for η 6 F8. q.e.d.

REMARK 7.4. The above proof of Theorem B indicates that the
solution in §5 also gives a strong solution in our case. Moreover, it is
clear from the arguments in §3 and §6 that a strong solution yields a
solution of Problem (II). As the condition (7.2) seems necessary to
define a strong solution by our reasoning, it is natural to ask whether
there exists a family of measures satisfying (5.6) without the condition
(5.5). If we want to remove the condition trace^H[— TFOW(O)] < oo in
Theorem A, we must introduce new notion of solution of (I), which will
be named a weak solution. This point will be studied in the forthcomming
paper.

8. Proof of Theorem C. To prove Theorem C, we repeat the pro-
cedure in §5-6 with some modifications.

First of all, instead of (5.13), we use

(8.1) I u{m)(t) I2 + 2v^ || u{m){s) \\>ds 5S 2 | u01
2 + 3 [ [ | f(s) \dsj

which is given, for example, in Ladyzhenskaya [17, p. 147]. Then, defining

{μ{m)(t, )}o<ί<oo as in (5.14), we get

(8.2) ^ (1 + I u I W m U u) + 2v j o [ ^ || u \\2dμ{m)(t,

^ ( (1 + 2\u\2)dμ0(u) + cu-μ0(H) = 2a0 + cu μ0(H) = c15 .

Here, cu = ^
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Secondly, we want to have a constant independent of m and t e (0, T*)

such that

\ \\u\\]dμ
lu)
(t, u ) ^

JH

where I is the largest integer not exceeding (d/2) + 1.
To this end, we begin with the following:

LEMMA 8.1. For w{j) introduced in §5 we have:
(1) w{j) belongs to Hι+2.
( 2 ) Pm satisfies

(8.3) I I P ^ I I i ^ l|i°.+i%lli^ N i l * .

PROOF. (1) follows from the regularity theorem of a weak solution
of elliptic systems. (2) follows if we redefine the norm || ||, by

in view of the property of w{j) and \ό in (EVP). q.e.d.

LEMMA 8.2. As dM = 0 , we have Hι = V1 and

(8.4) l |B(^v) l l i^c 1 7 . | |w |U|v | | ι + 1

for ue V1, v e Vι+1. Moreover,

(8.5) \(B(u, v), v)t\ ^ Ciβ llwllillvllϊ+i

For t h e proof, see Kato [16].

LEMMA 8.3. Let uim)(t) eC^jΌ, oo); PmH) be a unique solution obtained
previously in §5. For any α > l , there exists T* depending on a, ||/(ί)llί
and \\uQ\\ι such that

(8.6) l|W( )( ί) l l i^αNoll i on [0, Γ*) .

PROOF. Using the arguments in Temam [20] and Kato [16], (here,
dM = 0 is used), we have

(8.7) 1 Λ-\\uUt)\\\ + vWuUDWUi ^ c19 K J | ? + c^\\Kt)\\i\\u{m)\\i.

Comparing the solution u(m)(t) of (5.11) with the solution y(t) of the
ordinary differential equation

at

with initial data y(0) — ||WO||Ϊ>
 w e have
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(8.8) \\ulm) ||,

on some interval [0, T*), where Γ* is defined by and depends on 2/(0),
/(•, ί) and arbitrarily given number α > l . For example, T* = a— l/ac2Oy(O)
when f(t) = 0. q.e.d.

As the functional W0(τj) is of V~ι exponential type, we may take the
above Γ* strictly positive because of the last remark of the above proof.
Moreover, from the conditions

t r a c e s ^ - Woηη] < oo and trace?uκi[- Wm] < oo ,

and remembering Lemma 6.3, we have a Borel probability measure μ0 on
H satisfying

(8.9) ( \u\2dμ0(u) < oo and ( \\n\\\dμo{u) < oo .

Therefore, applying the results in § 4 to the case where X = H, Y = V1

and D = Vι+2, we may define a Borel measure μ{m\t, •) satisfying the

desired inequality on [0, T*) with clβ = a2\ \\u\\\dμo(u) <oo. This implies

that {μ{m\t, )}o<ί<oo satisfies the properties (a)-(d) in Theorem 4.5. So we

may apply Proposition 6.4 and (6.19). Combining this with Theorem 7.1

and 7.2, and then with Lemma 7.3, we finished the proof of existence.

9. Concluding remarks. Our aim to write this paper was as follows:
(1) To understand clearly the procedure presented in Foias [5], [6]

from the point of view of solving F.D.E.
( 2) To give an exact meaning to

which is not given in the above works.
(3) To find another construction of weak, strong or classical solu-

tions of F.D.E. of second order. In the case of first order, we have
examples of solutions without classical correspondence. See, Inoue [12],
[14].

(4) In connection with (3), we want to find the change of variables
formula for F.D.E., which we find for the problem of quantization in
Inoue and Maeda [15].

To explain the point (4) above more precisely, let us consider an
example. Berger's equation is given by

(9.1) ut + uux - vuxa = 0 for (x, t)eRx(0, oo) .

It is well-known that this equation is linearized by the Hopf-Cole trans-



HOPF EQUATION 143

formation, given by u(xf t) = — 2vd/dx\ogv(x, t). That is, if u(x, t) satisfies
(8.1), then v(x9 t) satisfies

(9.2) vt - vvxx = 0

and vice versa.
Now, we consider the functor from the Navier-Stokes equation to the

Hopf equation in this case, that is, we consider the following F.D.E.'s.

dt Jdt JR L dx δη(xf dx2 δη{x)

and

0.4) -Lv(t, ξ) =
dt

If these functors commute with the Hopf-Cole transformation, then we
could construct a solution U of F.D.E. of second order from a solution V
of F.D.E. of first order.

Concerning the above problems, we have some affirmative answers to
(I) and (2). But most important ones (3) and (4) are left unanswered.
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