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Introduction. Let Sn(c) be an ^-dimensional sphere of constant cur-
vature c in an (n + l)-dimensional Euclidean space Rn+1. A hypersurface
in S4 = S4(l) defined by the equation

2x1 + 3(aS + xϊ)xδ - 6(xi + xt)xδ + 3x31/2(cc2 - xt)x, + 6x3 1 / 2 ^ 2 x 3 = 2

was investigated by E. Cartan [1], who proved that this space is a
homogeneous Riemannian manifold SO(3)/(Z2 x Z2) and that the principal
curvatures of the hypersurface are equal to 31/2, 0 and — 31/2 everywhere.
This is called the Cartan hypersurface in S4, which is one of isoparametric
hypersurfaces in a sphere. The classification of isoparametric hyper sur-
faces in a real space form has been studied by Munzner [8], Ozeki and
Takeuchi [9], Takagi and Takahashi [15] and so on.

For the Cartan hypersurface in a sphere S\ there seem to be two
studies from different points of view: ^-dimensional homogeneous hyper-
surfaces in a real space form were investigated by Kobayashi [5] and
Takahashi [16], who gave the classification except when n = 3 and type
number 2, or when n = 2. Takagi [14] noted that the exceptional case
actually characterizes the Cartan hypersurface, i.e., the 3-dimensional
Cartan hypersurface is the only connected homogeneous hypersurface in S4

whose type number is equal to 2 at some point. The other is due to Peng
and Terng [10], who investigated closed minimal hypersurfaces in a sphere
the square length of whose second fundamental form is constant, thereby
characterized the Cartan hypersurface in S4.

The purpose of this paper is to give another characterization of the
Cartan hypersurface in a sphere from the standpoint of Ricci tensor. In
§ 1, we recall briefly the theory of hypersurfaces in a real space form
and in § 2 we outline some properties of isoparametric hypersurfaces, one
of which is called a Cartan hypersurface. The Ricci tensor S with com-
ponents Rid is said to be cyclic-parallel, if the cyclic sum of the covariant
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derivatives vanishes identically, i.e., if it satisfies

Rijk + RJH + Rut — 0 f

where Rijk denote the components of the covariant derivatives of S. In
§ 3, we treat a hypersurface in a real space form whose Ricci tensor is
cyclic-parallel, and in the last section it is proved that the Cartan hyper-
surface is the only closed hypersurface in Sn+\c) with constant mean
curvature whose Ricci tensor is cyclic-parallel but not parallel (see Theo-
rem 4.1).

1. Preliminaries. In order to fix notation, we briefly recall the
theory of hyper surf aces in a Riemannian manifold of constant curvature.
Let M = Mn+1(c) denote an (n + l)-dimensional connected Riemannian
manifold of constant curvature c and let M denote an w(*> 2)-dimensional
connected Riemannian manifold. We denote by φ a fixed isometric immer-
sion of M into M. When the argument is local, M need not be distinguished
from φ(M). Thus, for simplicity, a point x in M may be identified with
the point φ{x) and a tangent vector X at x may also be identified with
the tangent vector dφ{X) at φ(x) via the differential dφ of φ. We choose
a local field {e19 , en, en+1} of orthonormal frames in M in such a way
that, restricted to M, the vectors e19 •••, en are tangent to M and hence
the other en+1 is normal to M. Let {ώ19 , ώn, ώn+1} be the field of dual
frames associated with the above frame field. Throughout the present
paper the following convention on the range of indices are used, unless

otherwise stated:
A, B, ••• = 1, 2, •••, n, n + 1 ,

i, j, "- = 1, 2, •• , n .

Then, the structure equations of M are given by

(1.1) dώA + Σ ώAB/\ώB = 0 , ώΛB + ώBA = 0 ,
B

(1.2) dώAB + Σ <oΛcAώCB = cώAΛώB ,
c

where ώAB denote the connection forms on M. The restriction of these
forms ώA and ώAB to M are simply denoted by ωA and ωAB without bar,
respectively. Hence we have ωn+1 = 0. The metric on M induced from
the Riemannian metric g in the ambient space M by the immersion φ is
given by g = 2 Σ i #>* •<*>*• Then {elf , en} becomes a field of orthonormal
frames on M with respect to this metric and ω19 , ωn are the canonical
forms on M. It is clear from ωn+1 = 0 and the Cartan lemma that

(1.3) ωn+li = Σ hiάωs , hiS = hH .
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The quadratic form Σ*,y h^oOiCύj is called the second fundamental form
on M. The (1, 1) tensor field A on M defined by

g(AX, Y) = Σ>hijωi(X)ωj(Y)

for any vector fields X and Y is called the shape operator of M. The
eigenvalues λ1? , λn of the shape operator Ax at each point x in M are
called the principal curvatures at # for the immersion. Furthermore,
Tr A/n = Σ* λ</τ& is called the mean curvature of Λf at x. In terms of
the canonical forms ωt and the connection forms ωijf the structure equ-
ations on the hyper surf ace M are given as follows:

(1.4) dωt + Σ (DijΛcΰj = 0 , ω< y + α>y< = 0 ,

(1.5) dωi3 + Σ

(1.6) Λ<y
<y Σ (

where β^ (resp. i2iiA;i) denotes the curvature form (resp. the curvature
tensor) on M. By means of the above structure equations of M and M,
the Gauss equation of the hypersurface is obtained as

(1 7) Rijki = c(dudjk — δikδji) + huhjk — hikhάι ,

and the Ricci tensor S with components Rid and the scalar curvature R
can be respectively expressed as follows:

(1.8) Rid = (n- l)cdid + hhtJ - Σ hirhri,
r

(1.9) R = n(n- ΐ)c + h2 - Σ KK >

where h is a function defined by h = Σ i Λ« s o that it satisfies A =
for the mean curvature H of the hypersurface.

Now, the components hijk and Rijk of the covariant derivatives of the
second fundamental form and S are respectively defined by

(1.10) Σ K'k(θk = dhiό - Σ hkjωki - Σ htkωkS,
A; k k

(1.11) Σ Λiy*β)t = dRtl - Σ β*ία)*« - Σ Ra(okj.
k k k

Since the ambient space M is of constant curvature, we get the Codazzi
equation

(1.12) hijk - hikJ = 0 .

Moreover, the Ricci tensor satisfies the following equation
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(1.13) Σ RijkCOk = Σ {hhiίk + hkhiS - Σ (hirkhrj + hίrhrjk)}ωk ,
k k r

where dh = Σfc hkωk.
The Ricci tensor S of a Riemannian manifold is said to be cyclic-

parallel if

(1.14) Rijh + RJH + Run = 0 .

From the last equation and the second Bianchi identity it is easily seen
that the scalar curvature R of M is constant everywhere (cf. [3]). It
follows from (1.12) and (1.13) that the Ricci tensor S of the hyper surface
M is cyclic-parallel if and only if

(1.15) hkhiS + h3hik + hjιkj + Shhijk - 2 Σ (hirhrJk + hjrhrkί + hkrhrίj) = 0 .
r

REMARK 1. Riemannian manifolds with volume-preserving or, equiva-
lently, divergence-preserving geodesic symmetries were studied by D'Atri
and Nickerson [3], [4], Vanhecke [18] and so on. Such a manifold is called
a D'Atri space. An analytic Riemannian manifold is known to be a
D'Atri space if and only if it satisfies an infinite sequence of equations
for the curvature tensor and its covariant derivatives. The cyclic-parallel
condition is the first equation in the infinite sequence. The class of
D'Atri spaces includes Riemannian locally symmetric spaces and harmonic
spaces. For D'Atri spaces we refer the reader to [17], for instance.

REMARK 2. By [6] and [13] there exist Riemannian manifolds whose
Ricci tensors are cyclic-parallel but not parallel. Gray [6] and Simon [12]
independently obtained a sufficient condition for a Riemannian manifold
with cyclic-parallel Ricci tensor to become an Einstein manifold or to
have a parallel Ricci tensor.

2. Cartan hyper surf aces. In this section some properties of iso-
parametric hyper surf aces will be outlined. From now on we assume M =
Mn+1(c) in Section 1 to be complete and simply connected. Accordingly,
it is a sphere Sn+1(c), a Euclidean space Rn+1 or a hyperbolic space Hn+1(c).
A smooth real valued function / defined on an open set U in M is said
to be isoparametric, if ||cί/||2 and Δ / are functions of /, where Δ denotes
the Laplacian operator of M. A hypersurface M of M is said to be iso-
parametric, if for each point p of M, there exist an open neighborhood
U of p in M and an isoparametric function / defined on U such that
Uf]M is a level hypersurface of /. On the other hand, for a connected
hypersurface M with a smooth unit normal ξ and for a given ε > 0, a
family of parallel hypersurfaces φt\M—>M is defined by φt{x) —
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for any t in (—ε, ε), where exp denotes the exponential map on M. As
[1] showed, φo(M) = M has constant principal curvatures if and only if
each Mt = φt(M) has constant mean curvature. Furthermore, the above
property is equivalent to the fact that each Mt has constant principal
curvatures. Since a family of level hyper surf aces of an isoparametric
function is parallel and each level hypersurface has constant mean cur-
vature, the hypersurface M is isoparametric if and only if M has constant
principal curvatures. For an isoparametric hypersurface M in M, let
A*i> *' f P k with μ1 > > μk be distinct principal curvatures with
multiplicities nlf -- ,nk, respectively. Then E. Cartan [1] obtained the
following identities: for each α, 1 ^ a 5̂  fc,

Σ nb(l + μbμa)/(μb - μa) = 0 .
bφa

These basic identities impose some restrictions on the range of the number
of distinct principal curvatures and their multiplicities. In fact, if c ^ 0,
then k ^ 2. In particular, if k — 2, then c + μγμ2 = 0. Furthermore,
an n(^ 2)-dimensional complete isoparametric hypersurface M with two
distinct principal curvatures in M is completely classified in [1], [9] and
so on, and it is isometric to one of the following spaces: SpxSn~p, Spx
Rn~p or SpxHn~p. Notice that the Ricci tensor of each of these hyper-
surfaces is parallel. The following theorem is due to E. Cartan [1], [2]
and Mϋnzner [8].

THEOREM 2.1. Let M be a compact isoparametric hypersurface in
Sn+1(c) and let μlf * ,μk with μx > > μk be the distinct constant
principal curvatures with multiplicities n19 — ,nk. Then the following
properties are valid:

(1) k is either 1, 2, 3, 4 or 6.
(2) // k = 3, then nλ = n2 = nz = 2r (r = 0, 1, 2, 3).
(3 ) There exists an angle θ e (0, π/k) such that

μa = c

1/2 cot{(α - ΐ)π/k + θ] , a = 1, , k .

The calculation of the mean curvature of each Mt in an isoparametric
family {Mt} of hypersurfaces in Sn+1(c) implies that there exists a unique
minimal hypersurface in this family. In [1] and [2], E. Cartan determined
all isoparametric hypersurfaces in Sn + 1 with three distinct principal
curvatures. In this case, each compact isoparametric hypersurface was
shown to be homogeneous. In particular, the Cartan hypersurface in S4

defined in the introduction is the only complete minimal hypersurface in
S4 with three distinct constant principal curvatures up to congruence in
S4, and others are all rigid, because each type number is greater than 4
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at any point (cf. Ryan [11]). A compact hypersurface in Sn+1(c) having
principal curvatures (3c)1/2, 0 and — (3c)1/2 with the same multiplicity m
( = nβ) is called a Cartan hypersurface.

For later use, we now derive a property of the Ricci tensors of
Cartan hyper surf aces.

PROPOSITION 2.2. Let M be a Cartan hypersurface in Sn+1(l). Then
the Ricci tensor is cyclic-parallel but not parallel.

PROOF. Since the second fundamental form hi3 on M is diagonalizable,
a local field {βj of orthonormal frames on M can be chosen in such a way
that hί3 = Xiδij, namely,

hab = 31/2<5α6 , α, 6, = 1, , m ,

hr8 = 0 , r, s, = m + 1, , 2m ,

hxy = -Sί/2δxy , x, y, = 2m + 1, , n ,

fe<y = 0 for other i and j ,

because the principal curvatures are constant. Then the covariant deri-
vatives hijk of hiQ satisfy

(2.1) habk = hrsk = hxyk = 0 for a n y k ,

^ 8 f c ω , = - 3 1 / 2 ω α 8 ,

(2.2) = - 2 x 3 1 / 2 α > o

k

It follows from (2.2) that there are indices a, s and y such that haay Φ 0,
which means that the second fundamental form on M is not parallel.
Since, by [7], the Ricci tensor of a hypersurface in Sn+1 is parallel if and
only if the second fundamental form is parallel, the Ricci tensor of the
Cartan hypersurface is not parallel. On the other hand, (2.1) yields

(λt + λy + Xk)hijk — 0 for any i, j and k ,

because M has three distinct principal curvatures 31/2, 0 and — 31/2 with
the same multiplicity m. This is equivalent to

Σ (hirhίkr + hjrhkir + hkrhijr) = 0 . q.e.d.
r

3. Case without simple roots. Let M be an ^-dimensional hyper-
surface in Mn+1(c) with cyclic-parallel Ricci tensor and let H be the mean
curvature of M. In this section, we assume that

(3.1) A grad H = 0 , namely , Σ hi3hά = 0 .
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For the sake of brevity, a tensor {hi3)
m and a function am on M for any

integer m are introduced as follows:

(3.2)
(hij)m — Σ htil hhi2 him_l3 ,

Σ
where αx = h = wff. Since the scalar curvature i2 of M" is constant, so
is the function h2 — α2, which implies

(3.3) da2 = 2λdfc .

The generalization of this fact is desirable. A formula we give below
might be useful for this purpose. Obviously, we have

dam = Σ m(hi3)
m-1dhί5 ,

which together with (1.10) gives

(3.4) dam = m ί Σ hijkQn3)
m~ι^k >

because (ha)™ is symmetric with respect to the indices i and j , and the
connection form ωiS is skew-symmetric with respect to i and j . First
of all, we have the following equation:

LEMMA 3.1. Let M be an n-dimensional hypersurface in Mn+1(c) with
cyclic-parallel Ricci tensor. If A grad H — 0, then we have

(3.5) dam+1 = (m + 1) Σ (Sh/4)kam_kdh/4<
fc=0

/or a%2/ integer m ^ 1.

PROOF. We show (3.5) by induction on m. (3.3) shows that the case
where m = 1 in (3.5) is valid, because of a0 = 4. Suppose that (3.5) holds
when m is replaced by m — 1. Multiplying {hi3)

m~ι to (1.15) and summing
up the result for j and i, we find

/*Λ + 3fe Σ hUK)™-1 = 4 Σ &*/*fo,r + 2 Σ A*A/AW" 1

with the aid of (3.1) and (3.2), which together with (3.4) implies

αmd/& + Shdajm = Adam+1/(m + 1) + 2 Σ hί5ω3 dam{e^lm .

By (3.1) and the induction assumption, the last term on the right hand
side vanishes identically and m is replaced by m + 1 in (3.5), hence

1 = (m + l){α, + 3A
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which yields (3.5). q.e.d.

We define a function Hm for any integer m (^2) by

(3.6) Hm = Σ,(-l)k( )hkam.k.

LEMMA 3.2. Let M be a hypersurface in Mn+1(c) with cyclic-parallel
Ricci tensor. If A grad H = 0, έλew £Γm is constant on M for any integer
m :> 2

PROOF. A straightforward calculation by means of (3.5) gives

dHm = 1

where a function / on Z+ is given by

ri r s<-
which can be shown to vanish by induction on k. Therefore Hm is con-
stant on M. q.e.d.

The equation (3.6) is rewritten as

a. = (-

which enables us to obtain

(3.7) am+1 - ham = g
where Gfc denotes a polynomial in Λ, with constant coefficients such that
deg Gk ^ k. Since the second fundamental form hi3 is diagonalizable, an
orthonormal basis {ej at a point x on M can be chosen in such a way
that ha = Xβij, namely, X19 •• ,λn are the principal curvatures at the
point x. A principal curvature λ* is called a simple root at a? if the
multiplicity at x is equal to one. We then prove:

LEMMA 3.3. Let M be a hypersurface in Mn+1(c) with cyclic-parallel
Ricci tensor. If the shape operator A of M has no simple roots on M,
then A grad H = 0.

PROOF. For the shape operator A and for a point x of M, we denote
by EA(x) the number of distinct eigenvalues of A9. Let MA be the set



CARTAN HYPERSURFACE IN A SPHERE 35

of points x such that EA is constant in a neighborhood of %. Then MA

is clearly an open and dense subset in M. In each connected component
of MΛ, the eigenvalues of A are well-defined and are distinct smooth
functions everywhere so that the distribution of the spaces of eigenvec-
tors corresponding to each eigenvalue can be defined. They are mutually
orthogonal smooth distributions in each connected component of MA.
Because of the assumption that the second fundamental form hiS has no
simple roots, there is an index s Φ r in [r] = {s: Xr = λ j at each point x
in MA. In this case we have hrr = hss in a neighborhood U of x in MA

and hence

(3.8) hrrk = hS8k in U

for any index k.
On the other hand, when k — i — j = r in (1.15), we have

(3.9) hrXr + (h - 2xr)hrrr - 0 in U .

When k — r, i — j = s in (1.15), we also have, by the Codazzi equation
for the submanifold,

hrxs + S(h - 2xr)h8sr = 0 in U,

and consequently Λrλr + 3(A — 2λr)fessr = 0. Thus it follows from (3.8) and
(3.9) that hrXr = 0 and hence /^λ, = 0 for any index i in U. Accordingly,
Σ i Λij fey = 0 on MA and hence on ilf, because MA is dense. q.e.d.

Under the same assumption as that in Lemma 3.3, we are going to
prove that the mean curvature H of M is constant. The function am

can be written as

(3.10) aQ = 4 , a1 = h = Σi\t9 am = Σ λ f , m = 2, 3, .
1=1 i=l

Now, let /i(λ), •• ,fn(X) be elementary symmetric functions of λ =
(λ1; •••, λB), that is,

— JLi Xi 9
i

(3.11)

Then it is well known that /„ •••,/„ and «„ , αn, αn + 1 are related by
the Newton formulas:
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TO-l

(3.12) ΈifkCίm-k + w/m = 0 for any integer m ^ n + 1 ,
fc=o

where /0 = 1 and fm = 0 for m > n. When these formulas are regarded
as linear homogeneous simultaneous equations with respect to (1, flf * , /„),
the determinant of coefficients vanishes identically by elimination theory.
By means of (3.7) and the Laplace expansion of this determinant, we can
verify that a± is the root of an algebraic equation with constant coeffici-
ents, unless all Hm vanish. The mean curvature H is then constant on
M. But, if all Hm's are zero, then (3.7) says am = ham^ for all m ^ 2.
Since the shape operator A of M is assumed to have no simple roots, M
is totally geodesic by a simple algebraic calculation involving (3.11) and
(3.12).

Combining these facts with Lemmas 3.2 and 3.3, one finds the fol-
lowing:

PROPOSITION 3.4. Let M be a hypersurface in Mn+1(c) with cyclic-
parallel Ricci tensor. If the shape operator of M has no simple roots,
the mean curvature of M is constant.

The following property follows from (3.10), Lemma 3.1 and Proposi-
tion 3.4.

COROLLARY 3.5. Let M be a hypersurface in Mn+1(c) with cyclic-
parallel Ricci tensor. If the shape operator of M has no simple roots,
then the principal curvatures of M are constant.

REMARK. Let M be a hypersurface in Mn+1(c) with cyclic-parallel
Ricci tensor. If the number of distinct principal curvatures is equal to
two and if the multiplicity of one of them is equal to one, then they
are constant and hence M has a parallel Ricci tensor.

4. A characterization. We now characterize the Cartan hypersur-
faces in Sn+1. A hypersurface with parallel Ricci tensor in a real space
form Mn+1(c) (c Φ 0) is completely determined in [7], for example, and
the number of distinct principal curvatures of the hypersurface is at
most two. Accordingly, we may assume that the Ricci tensor is not
parallel. We know the following:

THEOREM 4.1. Let M be a closed hypersurface in Sn+\c) with constant
mean curvature. If the Ricci tensor S of M is cyclic-parallel but not
parallel, then M is congruent to one of the Cartan hyper surfaces.

We devote the rest of this paper to the proof of this theorem. We
first bound the number of distinct principal curvatures of M from above
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as follows, since we would like to conclude it to be at least three.

LEMMA 4.2. The number of distinct eigenvalues of the shape operator
A is at most four.

PROOF. The covariant derivative him of hijk is

Σ hmιωι = dhίjk — Σ hmωu — Σ Λ<H.α>w — Σ hί5ιωιk .

Then by (1.15) we have

3hhijkι — 2 Σ (hirhrjkι + hjrhrm + hrkhrin + hrUhrjk + hrjthrik + hrlkhrij) .
r

Taking the skew-symmetric part with respect to the indices i and I and
making use of the Ricci formula, we have

3Λ Σ (RlijXk + RukΛjr) = 2 Σ {ΛlrΛriW ~ KKόkl + Rlikr(hjr)
2 - Rlijr(hrk)

2} .
r r

Summing up this equation with respect to I and k, we get

2 Σ ^r.Λrai = 2 Σ {Rr»s(K8f - 2 Rrjsr(h8ί)
2 + 2 Σ RlirsKjK

r,8 r,β f>s,Z

+ 3/& Σ (RrjsΛsi — RrjisKs) i
r,8

since the Ricci tensor ϋ ^ and the second fundamental form hiά commute
with each other. If we substitute (1.7) and (1.8) into this last equation,
then we get

(4.1) 2 Σ hrsίhrsj = c(2a2 - 2>h2)δi5 + {(3w + 2)ch + 2α3

+ (3h2 + 2α2 -

On the other hand, by (1.7) and (1.8) and the Ricci formula for h(j, we
easily have

(4.2) 2 Σ K,hijr, = 2(3h2 - 4aώδu + (βha2 - 4α3 - Snch)h{,-

By (1.15), the co variant derivative of (fe^ )2 is given by

(4.3) 2(Λ4/)i = ShhtJk - 2 Σ hkrhriί ,
r

which yields

(4.4) 2{hί3)l = 2 Σ (hirYK* + Σ (3Λfeίs, - 2 Σ hkrhrsi)h8j,
r β r

and hence

(λ*y)ϊ - (hik)) = 3
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The Ricci formula for (hi3)
z together with the above equation implies that

)3 = 3Λ(Σ AhίrK- + Σ K8ihr8j - Σ hijr8hr8)/2 - Σ Rridhr8γ
r r,β r,β r,s

The covariant derivative of (4.4) gives

Δ(/U8 = Σ (hir)lhr8j + Σ (Λ*r)8Δfcri + 3fc(Σ ΔΛirΛri + Σ K8ihr8J)/2
r,8 r r r,β

— Σ KaiKίtshtj + Ktihtj)

By (4.1) and (4.2), the last two equations are reduced to the following
relationship for the shape operator:

(4.5) AhA* + 2(2nc - W)AZ + 3(3Λ,3/4 + ha2 - α3 - 2nch)A2

A - α4 - 3c{α2 - (βn + 4)&2/4}]A

4 - α3}/ - 0 ,

where I denotes the identity map of the tangent space. q.e.d.

We are now ready to prove Theorem 4.1. By the rigidity of the
Car tan hyper surf aces, it suffices to show that M is minimal and has three
distinct principal curvatures. Since the number k of distinct principal
curvatures is at most four by Lemma 4.2, suppose first that k = 4. Then
(4.5) implies that h Φ 0. Let μa (α = 1, , 4) be the distinct principal
curvatures of M with multiplicities na. Then Theorem 2.1 implies

μa = c

1/2 cot{(α - l)τr/4 + θ} , 0 < 0 < πβ

for all α, which yield

Π μa = c2, Σ Λ A Λ = -c Σ μa.
α o<6<c α

Since jtββ (α = 1, , 4) are all distinct solutions of the algebraic equation
(4.5), a simple calculation for the relationship between the solutions and
the coefficients gives rise to

α3 h(Sa2 - 9Λ2/4 - 4c) = 0 ,

a 3Λα + 3(3/t2/4 + c)α2 - 3(3n - 4)cfc2/4 - Anc2 = 0 .

If the term α4 is eliminated from the second equation of (4.6) and the
trace of (4.5), then we have

(2h2 - a2 + nc)az + {a2 - 9Λ,2/4 - (n + 4 ) φ α 2 + (9n/4 - 2)cfe3 + 4^c2A = 0 ,

which is equivalent to

h Σik hiikhiik = 0 ,
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by virtue of (4.1) and the first equation of (4,6). This means that the
second fundamental form must be parallel, because h is non-zero, a con-
tradiction to the assumption. Hence k — 3. Let μa (a = 1, 2, 3) be distinct
principal curvatures with multiplicity m. For any indices ί, j and k such
that [i], [j] and [k] are mutually distinct, (1.15) implies

(3m - 2)hhijk = 0 .

Thus h must vanish, namely, the hypersurface M is minimal. Then, by
(1.15), the trace of (4.5) and the minimality of M, we have αs(α2 — nc) = 0,
hence a3 vanishes identically. Thus the equation (4.5) implies

μί = x > 0 , μ2 = 0 and μ3 = - λ ,

with λ2 = (α4 + 3cα2)/4we, and hence

λ2 = 3c ,

because they are all of the same multiplicity. Since the Cartan hyper-
surfaces are the only closed minimal hypersurfaces in Sn+1 with three
distinct principal curvatures up to congruence in Sn+1, the proof of
Theorem 4.1 is complete.
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