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0. In this paper we give necessary conditions for quasiradial functions
mop to be Fourier multipliers in M}(Rn). Here m is defined in (0, <»);
p is an At-homogeneous distance function; that is, p(x) > 0, x Φ 0, and p
is homogeneous with respect to the dilations At = tp, t > 0: p{Atx) = tp(x).
P is a real n x w-matrix whose eigenvalues have positive real parts. The
trace of P is denoted by v.

Our results extend and inprove those of Gasper and Trebels [9] for
radial multipliers. They can be used to produce counterexamples in many
concrete cases without explicitly computing asymptotic expansions.

Professor W. Trebels has suggested to me to work on these problems.
I would like to thank him for valuable advice. I am also indebted to the
referee for correcting some inaccuracies in the original manuscript.

1. Let us first introduce some notation. On S, the space of rapidly
decreasing C°°-functions the Fourier transform is defined by

(where the integration is extended over all of Rn); by F~ι we denote its
inverse. Let Lp be the standard Lebesgue spaces over Rn with norm
|| ||p. A tempered distribution μ e S' is called a Fourier multiplier of type
to Q) if

P

is finite. We set Mp = Mξ. For standard properties of the M^-spaces
see Hormander [10]. In particular, if q <̂  2, ΛfJ contains only locally
integrable functions.

In order to formulate our results we need the notion of Besov spaces
Bp

q(R). Let X be a nonnegative C°°-function with support in (1/2, 2) and
Σfcez X(2~H) = 1, t > 0. Let ^A = F " 1 ^ - * | |)], k ^ 1; η0 = F-*[l - Σ ^ i % ] .
Then B ĝ is the space of all Lp-functions with finite norm
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For embedding properties and identification as smoothness spaces we refer
to Bergh and Lbfstrδm ([2, ch. 6]).

We throughout work with functions g compactly supported in R+ —
(0, oo). In this case we extend g to an even function g in R and define

We set ΛJ = Λn\{0}. S71'1 denotes the sphere {xeRn; \x\ = 1} with
surface measure dθ. φ will always be a C°°-bump-function in R+. By c
we denote positive constants which may vary in different occurences.
Our main result is the following:

THEOREM 1. Let ρeC°°(R%) be an At-homogeneous distance function.
If mop is a Fourier multiplier in Mp(Rn), 1 ^ p ^ 2; then for a =
(n - l)(l/p - 1/2) it holds that

; ; ^ c\\mop\\Mp .

2. Before proving this theorem we briefly discuss the function spaces
occur ing in its statement. Define the localized Besov space T(p, a, q) as
the space of all L1

loc(iί+)-functions m, whose norms

IMIiw.ff) = sup||9>m(ί )|U;ff(n+)

are finite. These spaces are related to localized spaces and WBV-spaces
considered in Connett and Schwartz [7], Gasper and Trebels [8], Carbery,
Gasper and Trebels [5]. The following lemmas provide some properties;
the proofs are easy modifications of those for similar results in the cited
papers; hence we omit them.

LEMMA 1. (a) The definition of T(p, α, q) does not depend on any
specific choice of φ.

(b) Let Ύ = k + δ, keNU {0}, 0 < δ < 2. Then

LEMMA 2. (a) Let ψeC(R). Then we have forO <Ί <L

(b) Suppose that X is a strictly monotone CN-function in a compact
subinterval I of (0, oo), the image J containing supp<?> in its interior.
Then for 0 < 7 ^N



QUASIRADIAL FOURIER MULTIPLIERS 251

c(X) remains bounded if X and X~λ are chosen from a bounded subset of
CN(I) and CN(J) respectively.

3. Proof of Theorem 1. Σ ? = {?; p(ξ) = 1} is a closed manifold,
hence there is a point XQ^ΣP with nonzero Gaussian curvature K(x0).
Define Φ as a C°°-function with support in a small Σι°-neighbourhood of
x0 (how small will be specified later); then extend Φ to Rl via Φ{Atx) —
Φ{x), x e Σ P , t > 0. Choose φeC"(R) with support in (1 - <5, 1 + 3), d
sufficiently small. Then φ o pφ is a Schwartz-function and, by uniqueness
of Fourier transforms, l l ^ 7 " 1 ^ 0 ^ ] ! ^ > 0.

Now assume mopeMp. Let gt(s) = <p(s)m(ts). Then

( 1 ) sup WF-'fa o pΦ]\\p ^ sup \\motp\\Mp \\F~\φo pΦ]\\p
ί>0 ί>0 P

)\\M = c \ \ m o p \ \ M .

We introduce polar coordinates via the map

Rn 3 x h-> (ί, »') 6 Λ+ x Σ with jθ(a?) = ί , xf = A1/ί)(β)aj .

The transformation of the Euclidean measure is given by dx =
V~ιdtdσ(x')l\Vp(x')\f dσ being surface measure on Σ*» If Σ ^ is parametriz-
ed near x0 by

Rnl 9 2/κ a;(i/) e Σ with x(0) = x0
p

and if G(y) = [det(dx/dyif dx/dy^]1'2 then we can write

( 2 ) {2π)*F-ι[gt o ̂ ] ( i ) = (°° ^(s)s^ 1 ( Φ{x')eiU°*'>ζψp(x')\-ιdσ{x')ds
Jo J Σ ^

= \~9tisy-1 \ Φ(x(y)Wp(x(y))\~1G(y)eίix{y)'A^dyds .

It is well known that the method of stationary phase can be used to
obtain an asymptotic expansion for the inner integral in (2) (see [11, ch.
7]). To apply this we examine the occuring phase functions. Let

ΛV, 8, £') = <x(y), A*£'> , where |f'l = 1 .

For fixed (s, ξ'), f has a nondegenerate critical point if ξ'8 = ATg/\Aϊξ'\
is a unit normal vector to Σ ? i n %(y)f provided the Gaussian curvature
does not vanish there. This is the case in a Σ^-neighborhood Vo of x0,
where the normal map n is a diffeomorphism onto a neighbourhood Wo

of n(x0) e Sn~\ By continuity there is a neighbourhood Wcz Wo of n(x0)
and δ > 0 so that £ e Wo for all ς' e W and s e Iδ = (1 - δ, 1 + δ). In view
of Euler's homogeneity relation (Fp(x)9 Px) = p(x) we may assume that
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(Px, ζ') ^ d0 > 0 for all α e F = n~\W), ζ' e WQ. Now let y(s, f') implicitly
be defined by Vyf(y, s, ξ') = 0 and let

u(8, ζ') - (n-\a A?ξ') = f{y{s, f), s, ζ') ,

near y = 0. Then u8(s, f') = O r 1 ^ ) , P*A8*£'/s>, and we have wβ(s, f') ^
di > 0, (s, f') e/δx W. Hence w( , f') can be inverted in Iδ; that is s =
σ(u(s, ξ'), f'), where the inverse σ depends smoothly on (u, ζ'). Further
u8(s, ζ') is bounded away from zero for (s, ξ') e Iδ x W.

Now assume that s u p p Φ | Σ p c F and suppφc/ 3 . We consider the
asymptotic expansion of the inner integral of (2) in the truncated cone
Cb = {ωf; ζ' 6 W, ω ^ 6}. It is given by (cf. [11, ch. 7])

\[φ{x{y))\V p{x{y))\-1G{y) Σ

The precise form of ^ eCM, i ^ 1, is not important here, Ψj( ,ζ') lies
in a bounded subset of CN(Iδ), whenever ξ' e W. ΨQ is given by

We introduce spherical polar coordinates and obtain

( 4 ) (2πT WF-ΊgspΦlW, 2; (2π)"( j l ^ " 1 ^

where

^ i0 - Σ

'ω^dωdθ^J

and

S oo
l/p 1/P

Let us first estimate the main term /„. It is useful to substitute u =
<«~1(ίί)» Aΐξ'y , this was seen to be correct for (s, ξ')elsx W. Abbreviate

, 50, ίO

Let α = (n - l)(l/p - 1/2), 2m+2 ^ 6 < 2m+3, and %, ηk as in the definition
of the Besov spaces.

We apply the one-dimensional Hausdorff-Young inequality to obtain
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hence

\\gt°σ( , ζ')Ψ0(-, ζ'mp dθiζ'

\\gtoσ( , ξ'

The derivatives of fo( , ξ') and [Ψo(-> ζ')]"1 remain bounded if ξ' e W, as
an inspection of (3), (5) shows. Our previous discussion allows to apply
Lemma 2 to deduce

( 6 ) i.^c'||flr«IU«;;-e"6"||flrX'.

We are left with the remainder terms. If 1 £Ξ j sί N, it follows by
Holder's inequality and the Plancherel identity

\[gt°σ(-, 5θ

Here Lemma 2 was applied; further we have used the fact that the
Besov space B2

Tt2 coincide with the potential space Uγ.
Choosing in (4) N sufficiently large we may achieve β > n(l/p — 1/2) +

1/2; hence

( 8 ) Πύeb^'^^^\\gt\\9t^cr\\gt\\9f.

Collecting the estimates (6), (7), (8) we get

( 9 ) ^ c\\gt\\Bζ
>p - cjf

t\\,.

gt = <pm(t ) .

The constants are independent of t > 0. Observe that

T{p\ a, p)cΓ(2, α, p)cΓ(2, a - l/p'f 2) .

The first inclusion follows via Holder's inequality and Lemma l(b), the
second inclusion by an embedding property of Besov spaces. Now choose
6 in (9) sufficiently large. Since supp gt is compact, \\gt\\p> is dominated
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by c||ra||oo. Since MpaM2 = L°°, by (1) and (9) the assertion of the
Theorem follows. •

4. The proof of Theorem 1 suggests to give criteria also for ilfj-
multipliers; especially for p = 1, q > 1 (recall that in this case Ml = [L9]*).

THEOREM 2. Let p be as in Theorem 1 and mopeM}, 1 ̂  p ^ q ̂  2,

a = (n - l)(l/g - 1/2) .

(a)

(b) // p — 1, 1 < q ̂  2, ίfee following sharper inequality is valid:

PROOF, (a) We use the same notations as in the proof of Theorem 1.
For every t > 0 we have

llmopH*! = t^-1/p)\\motp\\κ ^ ct^-^WF'^opφ]\\g.

The proof of Theorem 1 leads us to the inequality (9), with p replaced
by q; from this it follows

; ; ^ + \\gt\\L9ΊR)

We introduce polar coordinates (with respect to p). An application of
the Hausdorff-Young-inequality (in Rn) gives

llΛlU 'di) ̂  c\\gtopφ\\Lq,{Rn) ^ c l l-P-^o^φJII^^,

This is enough to deduce the assertion in (a).
(b) Choose a C°°-f unction ψ with compact support in (0, oo), ψ(t) = 1,

if t e supp <p. By (a),

tv/9'\\<pm(t )\\B9a'q ^ ct"/9'\\F-1[ψopmotp]\\q = c -mop

We integrate and use Minkowski's inequality and Littlewood-Paley-theory
(see Madych [12]) to obtain

r \ ψo-i—m°p \\
e\\F-*[mop]\\, .

There are also versions of our theorems for convolution operators
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acting on anisotropic iP-spaces. Here Hp is defined with respect to the
A?-dilations (see Calderόn and Torchinsky [3]). From the proofs of the
above theorems we obtain the following:

COROLLARY. Let p e C°°{Rl) be an At-homogeneous distance function

and meL\oc(0, °o).

(a) If for every feHp

\\F-\m o PΓ]\\m ^ A\\f\\m , 0 < p ^ q ^ 2 , q ^ l ,

then

lU;; £ cA a = (n - l)(l/g - 1/2) .

If 0 < p ^ q < 1, one has to replace Bq«q by B«q.
(b) If m°p is the Fourier transform of an H9-distribution (0 < q ^ 1),

then

ψf/2 ^ cWF-^mop]^ , a = (n - l)(i- - i-) .

5. Remarks, (a) The proof of Theorem 1 shows that the global
C°°-assumption can be weakened; it suffices to assume that p is smooth
near a point xQ e Σ^, where the Gaussian curvature does not vanish. This
is the case in most applications. The proof works if we require that
peCL near x0, L > (2n/p) — (n — 5)/2. Also the assumption p(x) > 0,
x Φ 0 is not really necessary; e.g. all results remain valid if p(x) =

Π?-i \ξt\at, α* > 0.
(b) Gasper and Trebels [9], [8] proved

^ V S 2 , a = (n - 1 ) ( ^ - -L) .

Theorem 1 is slightly sharper even for radial multipliers, because of the
embedding J5JicLJ', 1 < p ^ 2, ([2, p. 152]). An analogous remark applies
to more general Hankel multipliers, considered in [9].

(c) Theorem 1 can be used to accomplish some known results on
quasiradial multipliers ([4], [6], [14]): If p e C 0 0 ^ ) , Σ*P strictly convex,
then the following inequality holds, provided 1 < p <; 2(n + 1)1 (n + 3).

(10) \\mop\\Mp ̂  csup \\φm(t )\\L2 , 7 > n(l/p - 1/2) .

In dimension two, (10) is valid for 1 < p ^ 4/3 (p(ξ) = \ξ\). Well known
counterexamples show that (10) is false, if 7 < n(l/p — 1/2) = : 7C (see
e.g. [4]). What about 7 = 7C? Consider

m β > r > q ( t ) =
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where ψ is a C°°-bump function in (0, °°), ψ(Y) > 0.
Then mβJtq e L9

β\Bp

β

f

+a/p>_1/g)tP, if 1/q < 7 < 1/p, p < q ^ 2. Hence Theorem

1 shows that (10) is false for the critical index 7C.
(d) Theorem (2b) should be compared with the following inequality

which furnishes an [L9]"-criterion for quasiradial multipliers: Let 7 =
n(l/q - 1/2), p e C"(RS), N > 7, 1 ^ g ^ 2. Then

_ _.. /r°°_ _ 7̂f \vflf

If q = 2, this immediately follows by the Plancherel identity; if q = 1
the inequality is a dilation invariant version of Bernstein's theorem (see
Peetre [13]), specialized to quasiradial multipliers. The case 1 < q < 2
follows by a complex interpolation argument (cf. [7], [5]). The inequality
(11) and counterexamples (see (c)) show that the smoothness condition in
Theorem (2b) cannot be improved in the context of Besov spaces.

(e) The following criterion is a special case of an anisotropic version
of Baernstein's and Sawyer's sharp multiplier theorem ([1, p. 20]).

(12) \\F-ι[moPr]\\H, ^ csup l ^ m ^ l U * J | / | U ,
ί > 0 ΐPu

0 < p < 1, 7 = n(l/p - 1/2) (Hp, p as in Section 4).
The necessary conditions in the corollary provide new counterexamples

to the results of Baernstein and Sawyer. In particular it follows that
B% in (12) cannot be replaced by any larger S^-space.
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