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0. In this paper we give necessary conditions for quasiradial functions
mop to be Fourier multipliers in Mg(R"). Here m is defined in (0, «);
e is an A,-homogeneous distance function; that is, o(x) > 0, x # 0, and p
is homogeneous with respect to the dilations A, = t*, ¢ > 0: p(4.x) = tp(x).
Pis a real nxmn-matrix whose eigenvalues have positive real parts. The
trace of P is denoted by v.

Our results extend and inprove those of Gasper and Trebels [9] for
radial multipliers. They can be used to produce counterexamples in many
concrete cases without explicitly computing asymptotic expansions.

Professor W. Trebels has suggested to me to work on these problems.
I would like to thank him for valuable advice. I am also indebted to the
referee for correcting some inaccuracies in the original manuseript.

1. Let us first introduce some notation. On S, the space of rapidly
decreasing C*-functions the Fourier transform is defined by

FIAK) = £@) = | faee=da

(where the integration is extended over all of R"); by F~* we denote its
inverse. Let L* be the standard Lebesgue spaces over R" with norm
II+ll,- A tempered distribution € S’ is called a Fourier multiplier of type

(v, @ if
elleg = sup{llF"[ef " 1Mlo/I.f N5 0 = fe S}

is finite. We set M, = M?. For standard properties of the Mg-spaces
see Hormander [10]. In particular, if q <2, M? contains only locally
integrable functions.

In order to formulate our results we need the notion of Besov spaces
B:(R). Let X be a nonnegative C~-function with support in (1/2, 2) and
ez X@7") =1,t>0. Let = FXC*|-)], k21; 9= F[1 — 3z 7).
Then B%, is the space of all L*-functions with finite norm

1z, = G527 g
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For embedding properties and identification as smoothness spaces we refer
to Bergh and Lofstrom ([2, ch. 6]).

We throughout work with functions g compactly supported in R, =
(0, ). In this case we extend g to an even function § in R and define

IlgHng<R+) = ”guaﬂq(m .
We set R; = R"\{0}. S denotes the sphere {xeR"; |x| =1} with
surface measure df. ¢ will always be a C>-bump-function in R,. By ¢

we denote positive constants which may vary in different occurences.
Our main result is the following:

THEOREM 1. Let o€ C~(R}) be an A,-homogeneous distance function.
If mop is a Fourter multiplier in M, (R"), 1 < p =< 2; then for a =
(m — 1)A/p — 1/2) 1t holds that

lmlle + sup [l@m(t-)lzz, = clmepll, -

2. Before proving this theorem we briefly discuss the function spaces
occuring in its statement. Define the localized Besov space T(p, @, q) as
the space of all Li,.(R,)-functions m, whose norms

lmlzpra = StE(’qu’m(t')Hngmw

are finite. These spaces are related to localized spaces and WBV-spaces
considered in Connett and Schwartz [7], Gasper and Trebels [8], Carbery,
Gasper and Trebels [5]. The following lemmas provide some properties;
the proofs are easy modifications of those for similar results in the cited
papers; hence we omit them.

LEMMA 1. (a) The definition of T(p, a, q) does not depend on any
specific choice of @.
(b) Let vy=k+0, ke NU{0}, 0<d6<2. Then

Il ~ supi( PS4 (] oimecor$ [75250)7)

v sl+5q

LEMMA 2. (a) Let 4+€C"(R). Then we have for 0 <Y = N

Iollsg, = ¢ 3% 19 s, -

(b) Suppose that X is a strictly monotone CY-function in a compact

subinterval I of (0, «), the image J containing supp @ in its interior.
Then for 0 <Y =< N

(@) o Xlisz, = ) lIpglls2, ;
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c(X) remains bounded if X and X are chosen from a bounded subset of
CY(I) and C¥(J) respectively.

3. Proof of Theorem 1. >, ={g p(¢) =1} is a closed manifold,
hence there is a point z,€>,, with nonzero Gaussian curvature K(x,).
Define @ as a C*-function with support in a small >),-neighbourhood of
x, (how small will be specified later); then extend @ to R} via &®(4.x) =
o(x), x€>, t>0. Choose @€ Cy(R) with support in 1 — 4,1 +9), 6
sufficiently small. Then @op® is a Schwartz-function and, by uniqueness
of Fourier transforms, ||F~'[@o ]|, > 0.

Now assume mope M,. Let g,(s) = o(s)m(ts). Then

(1) sup||F"[g, o 00|, = sup [lm o toll., | (2 < 021,
=c Stg%) Hmop(At')HMp =cl|mo IOHMp .

We introduce polar coordinates via the map

R'sxr(t, 2)e R, x>, with p@) =t, o' = A ux.
o

The transformation of the Euclidean measure is given by dx =
t'dtdo(x")/|F o(x")|, do being surface measure on >,,. If >, is parametriz-
ed near x, by

R 'sy—x(y)ed, with z(0) = «,
p
and if G(y) = [det(ox/0y;, ox/0y,;)]"* then we can write
(2)  @arFlg.ep01@) = | gs | o@)e w0 o) do@)ds
0 0

= " 0909 | 0@ P Gy 40 dyas

It is well known that the method of stationary phase can be used to
obtain an asymptotic expansion for the inner integral in (2) (see [11, ch.
7). To apply this we examine the occuring phase functions. Let

S, s, &) = {x(y), A¥e’), where [¢'|=1.

For fixed (s, &), f has a nondegenerate critical point if & = AFe'/|A¥e)
is a unit normal vector to >}, in 2(y), provided the Gaussian curvature
does not vanish there. This is the case in a >),-neighborhood V, of =z,
where the normal map = is a diffeomorphism onto a neighbourhood W,
of n(x,) € S**. By continuity there is a neighbourhood Wc W, of n(x,)
and 6 > 0 so that g,e W, forall e Wandsel,=(1 —4§,1 +9). In view
of Euler’s homogeneity relation (Vo(x), Px) = po(x) we may assume that
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(Pr, &) =zd, >0 forallze V=n"(W),&eW, Nowlet (s, &) implicitly
be defined by 7,f(y, s, &) = 0 and let

u(s, &) = (n7&), Ae) = fU(s, &), 8, &),
near ¥y = 0. Then u,(s, &) = (n7'(&), P*Ar¢/s), and we have u,(s, &') =
d, >0, (s,8)e,x W. Hence u(-, &) can be inverted in I;; that is s =
o(u(s, &), &), where the inverse ¢ depends smoothly on (u, &). Further
u,(s, &) is bounded away from zero for (s, &)e I, x W.

Now assume that supp @|;,CV and supppCl,. We consider the
asymptotic expansion of the inner integral of (2) in the truncated cone
C,={w&;eW,w=b}. It is given by (ef. [11, ch. 7])

|| 2w IPo@) G-y — et sion S s, ¢ypmoas
i=o
é cw—(n—l)/z—p , B é N + 1 .

The precise form of ¥;eC~, j =1, is not important here, ¥,(-, &) lies
in a bounded subset of C¥(I;), whenever e W. ¥, is given by

( 3 ) [@IVPI_I|KI_1/2](’)’L—1(§;)) |A:‘E’|—(n—1)/2 .

We introduce spherical polar coordinates and obtain
1/p N
(4) @ lIF-lgep0ll, = @ (| IF-lg.00010Pds) " 2 L - L - 1.

where

I, = <§W S‘:.Sj 9.(s)s" W (s, E:)ei<n—1(e;),A;e'mw—(n—mz—jds‘pwn—ldwda(sr)>

1/p

and

1/p

11 = [lgowas( | do)) (] @ 10 do)

Let us first estimate the main term I,, It is useful to substitute « =
{n7Y(g), AXe'y; this was seen to be correct for (s, &) e I, x W. Abbreviate

(5) Fiu, &) = 0w, )92, W0, &), €) -
Let a = (n — 1)(1/p — 1/2), 2" < b < 2*, and X, 7, as in the definition
of the Besov spaces.

We apply the one-dimensional Hausdorff-Young inequality to obtain

Lze| | oot OFC O @erdodse)”
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(], =\ I

zo| = 2w imetao ot OF, OMzdo))”

W kzm

v

(%>2k“[-"t 20(, (-, (@) rdwdﬁ(é')y/p

hence
L= "'GW lgeoa(-, &N, 5’>||§g,;da(5'))””
— clb“<sw llg,oa(-, 5’)iro(-, E')||£«d0(§’)>1/p .

The derivatives of ¥ (-, &) and [¥(-, &)] remain bounded if ¢&e W, as
an inspection of (8), (5) shows. Our previous discussion allows to apply
Lemma 2 to deduce

(6) I =z ¢ |lgelisz, — b llgill, -

We are left with the remainder terms. If 1 < 5 £ N, it follows by
Holder’s inequality and the Plancherel identity

(1) L] {Tllg.oot, OF 0 N (—0)orpdwds@))”

= c(SW(S?w‘”‘ﬁ—"’dw)l_w(Sjlw"“""[gt oa(+, ENF4(-, 5')]A(w)|2dw)p/2do(5'))
= ([ llgeeoC, OF Nt 40

= b7 |g.lls2

a—1/p',2

Here Lemma 2 was applied; further we have used the fact that the
Besov space B;, coincide with the potential space L;.

Choosing in (4) N sufficiently large we may achieve B8 > n(1/p — 1/2) +
1/2; hence

(8) II < ebrre=mn=tllg |l < ¢llgill -
Collecting the estimates (6), (7), (8) we get
(9) 1F~[g.0 001ll, = cligullsz; — eb®llgellyr — b7 Igillas_, 0, »
9. = pm(t-) .
The constants are independent of ¢ > 0. Observe that
T, a, p)C T2, a, p) T2, a — 1/p", 2) .

The first inclusion follows via Holder’s inequality and Lemma 1(b), the
second inclusion by an embedding property of Besov spaces. Now choose
b in (9) sufficiently large. Since supp g, is compact, ||g,||,, is dominated

1/p
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by c¢|lm|l.. Since M,cM,= L>, by (1) and (9) the assertion of the
Theorem follows. O

4, The proof of Theorem 1 suggests to give criteria also for M;}-
multipliers; especially for p = 1, ¢ > 1 (recall that in this case M7 = [L]").

THEOREM 2. Let p be as in Theorem 1 and mopeMj, 1< p<q=2,
a=mn-—1>1/q —1/2).
Then

(a) sup *7?lpm(t-)|5y, < cllmopllyg .
t>0 agq »
(b) If p=1, 1< q=2, the following sharper inequality is valid:

(), e iome g FLE) " < el -me pll,

ProOOF. (a) We use the same notations as in the proof of Theorem 1.
For every ¢t > 0 we have
Imo pllug = &7 motollug Z ot 42| F g, o0, -

The proof of Theorem 1 leads us to the inequality (9), with p replaced
by q; from this it follows

“gz”BZ; < ¢||[F7[g. 0@l awm + [l 20y -
We introduce polar coordinates (with respect to p). An application of
the Hausdorff-Young-inequality (in R") gives
19200 = €llgeo 0P|l 10 mny = ]| F7[g, © 0P]|| za(m
This is enough to deduce the assertion in (a).
(b) Choose a C=-function « with compact support in (0, =), (t) =1,
if tesuppp. By (a),

t“/"'||§0m(t')”zzg'q < ctV/q'||F—1[,.l,opmotP]Hq = cHF—il:wlro%mop]

q

We integrate and use Minkowski’s inequality and Littlewood-Paley-theory
(see Madych [12]) to obtain

(1, e iome) g 2)" < o[ e Lmep] [ 42)"
<o|( |7 welmep] L) sclp-tmepll,. O

There are also versions of our theorems for convolution operators
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acting on anisotropic H”-spaces. Here H? is defined with respect to the
Af-dilations (see Calderén and Torchinsky [3]). From the proofs of the
above theorems we obtain the following:

COROLLARY. Let p€C*(R}) be an A,-homogeneous distance function
and m € L}, (0, o).
(@) If for every fe H*

IFmeof Nue < Allfllme, 0<P=q¢=2 ¢21,
then

sup ¢*“* 7 lpm(t-)lsz, < cA; a=(n —1(1/g —1/2).
>0 a

If 0 < p=<q<1, one has to replace B, by Bg,.
(b) If mop is the Fourier transform of an H'-distribution (0<g=<1),
then
oo 1/2
(I e lom gt L) < clFtmeplle, a= o -D(2 - 3).
5. Remarks. (a) The proof of Theorem 1 shows that the global
C~-assumption can be weakened; it suffices to assume that p is smooth
near a point x, € 3>),, where the Gaussian curvature does not vanish. This
is the case in most applications. The proof works if we require that
o €C* near x,, L > (2n/p) — (n — 5)/2. Also the assumption p(z) > 0,
x # 0 is not really necessary; e.g. all results remain valid if p(x) =
II%- &%, a, > 0.
(b) Gasper and Trebels [9], [8] proved
supllpm(t-)|lz2 = cllm(|-Dly,, 1=P=2, a=(n— 1)(i - i) .
t>0 @ P 2
Theorem 1 is slightly sharper even for radial multipliers, because of the
embedding B2, CL?, 1< p =2, ([2, p. 152]). An analogous remark applies
to more general Hankel multipliers, considered in [9].
(¢) Theorem 1 can be used to accomplish some known results on
quasiradial multipliers ([4], [6], [14]): If o C>(R}), >, strictly convex,
then the following inequality holds, provided 1 < p < 2(n + 1)/(n + 3).

(10) lmoplly, < ¢sup lem@lzz, v >nl/p —1/2).
In dimension two, (10) is valid for 1 < p < 4/3 (o(&) = lg]). Well known

counterexamples show that (10) is false, if v < n(l/p —1/2) =:7, (see
e.g. [4]). What about v = v,? Consider

Mz q(t) = ()1 — 5 |log — O,
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where + is a C*-bump function in (0, o), 4(1) > 0.
Then m; s, € LIN B3 wpr—va 0 if 1/¢ <7¥ < 1/p, p < ¢ = 2. Hence Theorem
1 shows that (10) is false for the critical index 7..

(d) Theorem (2b) should be compared with the following inequality
which furnishes an [L‘]"-criterion for quasiradial multipliers: Let 7 =
n(l/g — 1/2), peC*(R}), N>7,1=<q=2. Then

(11) HF_l[m ° p]”q < C(S: [tv/q’”q)m(t-)”Bg"q]q—dti>1/q

If ¢ = 2, this immediately follows by the Plancherel identity; if ¢ =1
the inequality is a dilation invariant version of Bernstein’s theorem (see
Peetre [13]), specialized to quasiradial multipliers. The case 1 < g < 2
follows by a complex interpolation argument (cf. [7], [5]). The inequality
(11) and counterexamples (see (c¢)) show that the smoothness condition in
Theorem (2b) cannot be improved in the context of Besov spaces.

(e) The following criterion is a special case of an anisotropic version
of Baernstein’s and Sawyer’s sharp multiplier theorem ([1, p. 20]).

(12) 1F=me 0f Mlar < 059 i@l 11l
0<p<1l, v=mnl/p—1/2) (H?, p as in Section 4).

The necessary conditions in the corollary provide new counterexamples
to the results of Baernstein and Sawyer. In particular it follows that
B2, in (12) cannot be replaced by any larger Bj,-space.
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