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1. Introduction. Let M be a symplectic manifold with a symplectic
form @ on which a compact connected Lie group K acts as symplectic
diffeomorphisms. Let k* be the dual of the Lie algebra k of K. A
moment map for the action of K is a map p: M — k* satisfying

1.1) di¢, X) =i(X)w for all Xek,
and
(1.2) too = Ad(e™)*p¢ for all ceK.

It is convenient to put g, = (¢, X) which is a smooth function on M.
Then (1.1) and (1.2) are equivalent to dy¢y = i(X)w and o™ty = aae—1x-
Obviously from (1.2), £~*(0) is K-invariant. When 0 is a regular value
of ¢ and K acts on p'(0) freely (which we assume throughout this
paper), My = 1 (0)/K becomes a smooth manifold. Let ¢ ££7*(0) > M be
the inclusion and z: p*(0) > My the projection. It is well known that
there exists a unique symplectic form w; on M, such that n*w; = t*w.
The symplectic manifold (Mg, wx) is called a symplectic quotient or a
Marsden-Weinstein reduction [9] of (M, w).

Assume further that M is a Kahler manifold with a Kahler form o
on which K acts as holomorphic isometries. Then it is also well known
that M; admits an integrable complex structure with respect to which
wg is a Kahler form (see §2). The purpose of this paper is to compute
the Ricci curvature of My in this situation. A formula we get is (3.12)
in §3.

The most interesting case would be the case where M is a compact
complex manifold of positive first Chern class, or simply a Fano manifold
in algebraic geometers’ terminology. Let w be a Kahler form chosen in
¢,(M) and 7, the Ricei form of w. Since both @ and 7, represent ¢,(M),
there exists, uniquely up to a constant, a real valued smooth function
F such that v, — @ = (4/27)0dF. In this situation we have a natural
moment map (see (4.2)) and obtain a simpler formula for the Riecei curva-
ture of (Mg, wgz). To write down the formula, first note that, since w
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and v, are K-invariant, so is F. Therefore F' descends to a smooth
function F on M;. Let ¢={X, -+, X,;} be a basis of £k and ¢ =
(X, — vV =1JX,)/2. Let |£]| be the pointwise norm of & A --- A & con-
sidered as a section of A? T“°M|,-1, and measured by the metric induced
from the Kahler metric of M; thus ||¢|| is a smooth nowhere zero function
on 2#7%0). Furthermore, ||&|| turns out to be K-invariant and thus projects

to a function Hsvil on M.

THEOREM 1. In the above situation the Ricci form Y., of (Mg, wg)
18 expressed as

Tog = 0x + 5—00(F + log [ -

By the above theorem, 7,, and wx are cohomologous. Since 7,, re-
presents c¢,(My) and w, is a positive form, we have:

COROLLARY 2. If M is a Fano manifold, the symplectic quotient My
18 a Fano manifold again.

The following corollary is also obvious.

COROLLARY 3. Let M be a compact Kdahler-Einstein manifold of
positive Ricci curvature. Then the symplectic quotient (Mg, wg) 18 @
Kahler-Einstein manifold if and only if ||&]| is constant on p*(0).

This work was motivated by the problem of finding Kahler-Einstein
manifolds of positive Ricei curvature. Corollary 3 suggests that one may
find new examples of Kahler-Einstein manifolds out of well-known ones.
The simplest manifolds, on which it is unknown whether a Kahler-Einstein
metric of positive Ricei curvature exists, are three and four point blow-
ups of P*C), see [1]. In §5 we give examples where these two manifolds
appear as symplectic quotients of (P*C))* and (PYC))°. Unfortunately
however, ||£|| is not constant in these examples and the problem remains
open. We remark that the only known non-homogeneous examples of
Kahler-Einstein manifolds of positive Riceci curvature are Sakane’s ex-
amples [10].

This work was also motivated by Kobayashi’s work [6] in which he
computed the holomorphic sectional curvature of M, in terms of the
holomorphic sectional curvature of M and the second fundamental form
of #7(0) in M. His set-up is in a situation where M and K may be
infinite dimensional, so that his computation applies to the moduli spaces
of Hermitian-Einstein vector bundles, which have been studied by Itoh
[3] (see also [7]). Our formula does not apply to this infinite dimensional
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situation, since ||¢|| does not make sense.

This work was done while the author was a visitor at the University
of California, Berkeley, with the support of the Japan Society for the
Promotion of Science. He is grateful to JSPS and to his host Professor
Kobayashi. ‘

2. Symplectic Quotients of Kidhler Manifolds. Let M be a Kahler
manifold, ¢ its Kahler metric, and J its complex structure. The Kahler
form w is defined by

oX, Y) = %g(Jx, Y)

for any real or complex vector fields X and Y of M. By the Kahler
condition w is closed, and since g is positive definite, w is nondegenerate;
thus @ is considered as a symplectic form. Let K be a compact con-
nected Lie group which acts on M as holomorphic isometries and g
M — k* a moment map for the action of K. Any element X of k defines
a vector field of M, which we denote by the same letter X. For each
point p of M, k, denotes the vector subspace of the tangent space T,M
spanned by X,, Xek. If pep?(0) and Ye T, (0), then ¢g(JX, Y) =
oX, Y)= Yu, =0. It follows from this and codim ¢'(0) = dim K we
have an orthogonal decomposition

2.1) T,M = T,p(0) ® Jk,

at any pep'(0). Letting E, be the orthogonal complement of %k, in
T, '(0), we have from (2.1) an orthogonal decomposition

(2.2) TM=E®k®Jk, .

Clearly E, is J-invariant and the distribution E = {E,},..—1, is K-in-
variant. Since E is J-invariant we have a decomposition E® C =
E°@ E*' into =+ eigenspaces. It is obvious that

(2.3) EY = TY"M|u-1 N (T(0) ® C) .

It follows from (2.3) that E*° is integrable (but E may not be).

Let m: p#(0) » My = 17*(0)/K be the projection. Then dz| £, induces
an isomorphism from E, onto T,,M;. We define an almost complex
structure J; of M, so that drlzod = Jxodn|s.

LEMMA 2.4. J. 13 integrable.

ProOF. Let s, and s, be sections of T"°M, and s and s, the unique
K-invariant sections of E'° such that dz(s)) = s;,, 1 =1,2. Since E° is
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integrable, [s;, s;] is a K-invariant section of E*°. Thus dx[s], s;] = [s,, s.]
is a section of T'°M; . q.e.d.

Finally we define a Riemannian metric g, of My so that
(2'5) g(in Yp) = gK(dﬂ:(Xp)’ dﬂ( Yp))
forall X,, Y,e E,. Then gx is Hermitian with respect to Jg, namely gz
is Jg-invariant. Moreover, we have:

LEMMA 2.6. g s @ Kahler metric and the Kahler form wg for gx
satisfies T*wx = ¢*w where ¢ p(0) — M is the inclusion.

ProOF. We first prove the last equality. Then we have z*dw, =
¢*dw = 0, since w is closed. Since & is surjective, dwz = 0. This proves
that g, is a Kahler metric.

The Kahler form w; for g, is by definition

0x(Z, W) = %gK(JKz, W)

for any vector fields Z and W. If Z’ and W’ are the unique K-invariant
section of E such that dn(Z’) = Z and dz(W’) = W, then

*ox(Z', W') = —21;gK<JKdn<Z'>, da(W")ox
= L g (dnZ"), dn(W")) o
2r
=L gz, w) = crez, .
2

If Z'e T,(Kp), then n*wx(Z',W') = 0 for any W’'. On the other hand, for
the same Z' we have ¢*w(Z',W') = (1/2r)9(JZ’, W') = 0 since JZ' is per-
pendicular to £7*(0) by (2.1). Thus we have proved n*w; = ¢*w. q.e.d.

REMARK 2.7. Let V and V; be the Levi-Civita connections of (M, g)
and (Mg, gx). Let p,:¢*TM — E be the orthogonal projection. Then we
have

(2.8) (Ve)x Y =drop(Ve YY),

where X and Y are arbitrary local vector fields of My and X’ and Y’
are the unique K-invariant sections of E such that dz(X’) = X and
dn(Y’) = Y. We can see (2.8) by proving that, defining V. by (2.8), it
is compatible with g, and is torsion-free.

REMARK 2.9. If dim¢M =n and dimg K =d, then dim; My =
dim¢ B = n — d. ’
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3. The Ricci girvature of My. Let X, ..., X; be a basis of k.
Then ¢ = (X, —V —1JX,))/2, 1<i1=<d, are holomorphic vector fields
and the real parts X, are Killing vector fields.

LEMMA 38.1. & A - A & and its norm are K-invariant.

ProoF. The tangent vector X, at p corresponding to Xek is
defined by X, = (d/dt)|,-, exp(tX)p. Thus if ¢ € K then X,, = 0, (Ad(c7)X),
and

(51 VANERRIVAN Ed)ap = det(Ad(a‘l)[k)a*(El VANRERIVAN Ed)p = 0'*(51 VANRERIVAN Ed)p ’

since det(Ad(c™")|,) = 1 by the compactness of K. Since ¢ is an isometry -
we have [|¢]l,, = [I&ll5- q.e.d.

Let F be the distribution {k, @ Jk,},c». Then we have decompositions
FRC=F"@F* and *T°M=E"@ F°, the latter being an
orthogonal decomposition. Let V* and V® be the connections of E“°
and F*° induced from ¢*V of ¢*T*°M. The connections ¢*V, V* and V*
induce connections of det¢*T"°M, det E*°, and det F“°, which we shall
denote by the same letters. Let Z, ---, Z; be a local orthonormal K-
invariant frame of E“°. Let 6, 6* and 6° be the connection forms of
¢*V, V* and V’ with respect to the frames Z, A -+ AZ; A& A -+ A &,
Z A+ ANZyand & A +++ A &, respectively. Then we have 6 = 6* + 6°;
this is a merit of having taken wedge product. We further define 6%,
6., 65 and 6, by

oNZ) =64Z), (X)=0,
3.2) 64(Z2) =0, 03(X) = X)) ,

6i(2) = 6"(2) , 0i(X) =0,

0xZ) =0, 6:(X) = 6°(X)

for any Ze E and Xek, pep'(0). Then naturally, we have 6 = g} +
0" + 6y + 6.. Let 6 be the connection form of det T"°M; with respect
to the local frame dmn(Z) A <+ A dn(Z,_;). Then by Remark 2.7 we
have 7*0, = 6. This is proved as follows:

O(X)dr(Z) N -+ N dn(Z,_)
= zf ATZI A o A daVeZ) A -+ A dr(Z._)

=da(VxlZ N\ +++ N Z,.4))
= X"dn(Z,) - -+ \ dn(Z,_) ,

where X and X’ are as in Remark 2.7. Thus we get
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(3.3) T, = dnte, = L dg}
2r

‘K or
= L (dg — d6* — doy — de)
2n
= *y, — L (d6* + doy + de?) .
2r

LEMMA 3.4. d6} = dz*(3 log ||IP) = *(3 log ||£]®).
Proor. If Ye E"° then since ¢ are holomorphie,

Ve =10
and
Ve = <—VH§|—§>—5 = (Ylog [l¢])z -
|
Thus 63(¥) = 0 and 6;(Y) = Ylog|l¢|*. This implies 6; = 7*(@ log [|£][".

q.e.d.

Let V' be the Levi-Civita connection of Ty *(0). For any vector field
X on p17%(0), we denote by X* the (ker dr)-component of the decomposition
Tr(0) = E@kerdr. We define C: EXE— F by

(3.5) CY, W)= (VzW)".

Then C is a skew-symmetric bilinear form and satisfies
(3.6) 2C(Y, W) =1Y, W]

(see [6]).

LEMMA 3.7. Let Y be a section of E"° and let 2ReY =u and
2Re Z, = v,. Then

aoY, ) = 2’5 (Y, T, C(Z, 2
— -1 % e, ), Cw, o))

PrRoOF. This follows from the next three equalities (3.8)-(3.10).
(3.8) dony, Y)= -6y, Y],
(3.9) Virgw(Zo A oo A Z,_y)
=3Z N o ANVugZy Z)Zi N\ o+ N Zyy .

If [Y, Y] = 34, f.X,, where {X} is the basis of % and f, are complex
valued functions, then, since Z; are K-invariant and [X,, Z;] =0, we
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have
B10)  (VumeZ, 20 = (V1Y TT, Z) - (5 (260X, Z.)

= (VLY. TV, Z) = —Y, Y1, Vo 2

= _‘2<C(Ys Y); C(Zi; Zz» . Q-e-d-
LemMMA 3.11. Let Y and w be as in Lemma 3.7. Then

oY, ¥) = —%(ch, Ju)log ||2]* .

Proor. Clearly one has
doyy, ¥)= —6:Y, Y] .

If we put X= (Y, YI"—4J[Y, Y]")/2, then, since [Y, Y]’ is purely
imaginary, we get [Y, Y]’= X — X. Thus

O:LY, YV A o+ AN &= Ve A <o+ A &)
= VvX-i(fl/\ /\§d) = Vx(&/\ /\Ed)
= (Xlog |l&][»z

= —5 (LY, T log g% -
The last equality holds, since |/¢|| is K-invariant. We get the lemma
from [Y, Y]’ = iC(u, Ju). q.e.d.
Combining (8.3), (3.4), (8.7) and (3.11), we obtain:

PROPOSITION 3.12. Let Ric,, and Ric, be the curvature of My and
M, respectively. Let Y be a vector in E* and 2ReY = u. Then

Ricy (dn(Y), dx(¥)) = Rieu(¥, ¥) + (x93 log [|€[)( Y, T)
n %g (Clu, Ju), C(v,, Jv,))

i %JC(u, Ju)log [ £ .

where {v,, <+, v,_g JV, + -, Jv,_g} 18 an orthonormal basis of E.

4. Fano Manifolds. In this section we assume that M is a Fano
manifold, i.e., a compact complex manifold of positive first Chern class.
We choose a Kahler form w in ¢,(M). Since both @ and the Ricei form
Y. of w represent ¢,(M) there exists a real smooth function F' such that

Yo — @ = (i/27) 60F. We define a second order elliptic differential opera-
tor Ay by
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Asu = Au + uF,, uF, = g# o OF
0zF 02"

Then A, is self-adjoint with respect to the volume form e“w™ and its
eigenvalues are nonnegative, i.e., if Ayu + »u = 0 for some % # 0, then
A =0. We let 4; be the eigenspace belonging to an eigenvalue A. Let
(M) (resp. h(M)) be the real (resp. complex) Lie algebra of all Killing
(resp. holomorphic) vector fields of M. Then 4(M) is imbedded in A(M)
by iM)s X — &y = (X — iJX)2e h(M). We identify (M) with its image
by this imbedding. The following is a generalization of Matsushima-
Lichnerowicz’s theorem and can be proved quite analogously if we replace
the canonical volume form w™ by efw™; for this reason we shall omit
the proof (see [8]).

PROPOSITION 4.1. Let the situation be as above.

(1) The first non-zero eigenvalue N, of Ay satisfies \, = 1.

(2) =11 and only if h(M) # 0. When this is the case, A, 1s
isomorphic to (M) through the correspondence u — ou?:= g**(ou/0z?)(0/62%)
and out is a Killing vector field if and only if w is purely imaginary.

Let K be a connected closed subgroup of the group of isometries
and k its Lie algebra. By Proposition 4.1 for any X €k there exists a
unique uy € 4, such that &, = duk. We put ¢y = (¢/27)uy, which is a real
function by Proposition 4.1, and define p: M — k* by {(p), X) = ux(p).

LEMMA 4.2, p: M — k™ is a moment map for the action of K.
PrOOF. Since w = (i/27)g,5d2* N\ dz? we have
(Ex)w = i@Quk)w = Itz
and
i(X)w = (g + Exo = iE)o + EN0 = dptx -

This proves (1.1).
If ¢ is an isometry, then ¢* commutes with A, ¢*F = F, and thus

o* commutes with Ap. Therefore if uye 4,, then c*uy€4,. For any
vector field Y of type (0, 1),
w(@c*uk, Y) = Yo*uy = (0, )tz = w@uk, 0,Y)
= 0075 Y) = 0(sapoyx Y) = 00ulae-1x Y) .
This shows o*uy = %sa,-1,x and thus ¢*tty = taae-1x, proving (1.2).
q.e.d.

Assuming that 0 is a regular value of # and that K acts on £ (0)
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freely, we have a quotient Kahler manifold (M, wx) by Lemmas (2.8)
and (2.10). By (3.3), (3.4), (2.10) and 7, = w + (i/27)3dF, we have

(4.3) T*uy = O, + ——7*00 log ||Z]F — ——d(6} + 63)
2 2r
ok 1 A= =2 T xamg b h vy
=z (wK + 50 log ] ) + o 00F — =d(0} + )

We now compute the last two terms of the right-hand side of (4.3).

LEMMA 4.4. Let s be any section of det T*°M and Lxs the Lie
derivative of s with respect to X€k. Then

Lys = Vs + 2miAfey)s .

PrOOF. Since L, — V; is C°(M) ® C-linear, it is sufficient to prove
it for an appropriate s. Let Z, --+, Z, be an orthonormal frame of
T°M and take s to be Z, A -+ AN Z,. Then

Lx8=iZ1/\ o AN(VRZ, =V, X)ON - N2,
= sz - ’g{ g(VZ,;Xf Z,;)s .

Thus it is sufficient to show 3, 9(V, X, Z,) = —2riAp;. Note that
(X)w = dpy implies

50X, V) = Yiox
fia
and thus if Y is of type (0, 1) then

90X, Y)=—ig(JX, Y) = —2mi Yz .
From this we have

S 0(9.,X, Z) = 3, Z9(X, Z) — (X, V2,2
= —2mi 3, Z(Z ptx) — (N2, Z )t

= —2m1 ;:} (004x)(Z,y Z,)

= —2miApty . q.e.d.

Now we restrict our attention to x*(0). Since Z, A -+ A Z,_, and
& A +++ A g are K-invariant by our choice of Z, and Lemma 3.1, if we
put s=Z A  NZ,_sN&EN +++ N &, we have along £ *(0) = {uy =0
for all Xek},
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Vis = Lys — 2miAty)s = (Aug)s = —(ugF)s = —(&xF)s

If we put 6, = 6 + 6;, this shows 6,(X) = —&;F. Since 6,(Z) =0 for
any Z€ FE, we have

0, = —c*oF + n*oF
d, = *03F — n*33F .
Putting this into (4.3) we get
ry, = *<(o 55 log |IE|I Laéﬁ').
T og = T Ox + 45— g &l + 5
Since 7 is surjective, we get Theorem 1.

5. Examples. Compact complex surfaces of positive first Chern class
are classically known as del Pezzo surfaces which are either P(C) x PXC),
P*C) or a surface obtained by blowing up P*C) at k <8 points in
general position (see, e.g., [11]). We shall denote by P; the surface
obtained by blowing up at % points. Note that if k¥ < 4 the complex
structure of P{ does not depend on the points where the blowing up is
carried out, but that if ¥ = 5 it does. Note also that the second Betti
number b,(P;) of Pj is equal to k + 1.

k
ExAMPLE 5.1. Let M be (PYC))® = PY(C)xPYC)xPYC) and K be
St = {e*?f e R}. S*' acts on PYC) by [z : 2] [z :€*?%2] and on (P(C))’
by the diagonal action. The moment map p: (PY(C))®—k = R for this
action is

I‘Z |2

. . — Iz0|2 — |21’2 |’wo!2 _ ‘w1 Iuol2 — |u1
(2o 2], [wo: w.], [wo: u]) = PACE P e P P vy

>

This can be interpreted as follows: (PYC))® can be regarded as the set
of ordered three points of P'C)= S*CR’= {(x, y,2)} and then p is
nothing more than the sum of z-coordinates of the three points. It is

easy to see that 0 is a regular value of ¢ and S*® acts on 7 (0) freely.

EXAMPLE 5.2. Let M be (PYC))® and K be SO(3). K is the identity
component of the group of isometries of PYC) = S* and acts on (P*C))
diagonally. The moment map p: (PYC)) — k is interpreted as follows.
Identifying P'(C) with the unit sphere S®in k = R® and regarding (P'(C))°
as the set of ordered five points in S?, ¢ is nothing but the sum of the
position vectors of the five points. In this case again, 0 is a regular
value of ¢ and K acts on p7*(0) freely.

In both Examples 5.1 and 5.2 it is not an easy task to see what
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the symplectic quotient M, looks like. But we can invoke a result of
Kirwan [4], who derived a formula for the Poincaré series P,(My) of M
in terms of the Poincaré series of M and the classifying spaces of K
and certain stabilizer groups. In fact, Example 5.2 is nothing but her
Example 5.18 in [4]. Applying her formula we can easily get P,(My) =
1 + 4¢ + t* for Example 5.1 and P, (M) = 1 + 5¢* + t* for Example 5.2.
Since (PYC))® and (PYC))° are Fano manifolds so are the symplectic
quotients My by Corollary 2. But b,(Mx) =4 and 5 for 5.1 and 5.2,
respectively. By the classification of the first paragraph of this section,
M, must be biholomorphic to P; and P} respectively.
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