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1. Introduction. Let M be a symplectic manifold with a symplectic
form ω on which a compact connected Lie group K acts as symplectic
diffeomorphisms. Let k* be the dual of the Lie algebra k of K. A
moment map for the action of K is a map μ:M—>k* satisfying

(1.1) d(μ, X) = i(X)ω for all Xek ,

and

(1.2) μoσ = Ad(O*i" for all σeK.

It is convenient to put μx = (μ, X) which is a smooth function on M.
Then (1.1) and (1.2) are equivalent to dμx = i(X)ω and σ*μΣ = μ^<,-ι)X.
Obviously from (1.2), μ~\0) is iΓ-invariant. When 0 is a regular value
of μ and K acts on jtr^O) freely (which we assume throughout this
paper), Mκ — μ~\0)/K becomes a smooth manifold. Let c: μ~\0) —> M be
the inclusion and π: μ~\0) —> Mκ the projection. It is well known that
there exists a unique symplectic form ωκ on Mκ such that π*ωκ = c*ω.
The symplectic manifold (MKf ωκ) is called a symplectic quotient or a
Marsden-Weinstein reduction [9] of (M, α>).

Assume further that M i s a Kahler manifold with a Kahler form ω
on which K acts as holomorphic isometries. Then it is also well known
that Mκ admits an integrable complex structure with respect to which
ωκ is a Kahler form (see §2). The purpose of this paper is to compute
the Ricci curvature of Mκ in this situation. A formula we get is (3.12)
in §3.

The most interesting case would be the case where M is a compact
complex manifold of positive first Chern class, or simply a Fano manifold
in algebraic geometers' terminology. Let ω be a Kahler form chosen in
Ci(M) and Ύω the Ricci form of ω. Since both ω and τω represent cι{M)9

there exists, uniquely up to a constant, a real valued smooth function
F such that Ύω — ω = (i/2π)ddF. In this situation we have a natural
moment map (see (4.2)) and obtain a simpler formula for the Ricci curva-
ture of (MKf ωκ). To write down the formula, first note that, since ω
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and Ύω are iΓ-invariant, so is F. Therefore F descends to a smooth
function F on Mκ. Let ζ = {Xlf , Xd} be a basis of k and & =
(Xi — i / ^ / X J ^ . Let Hfll be the pointwise norm of & Λ ••• Λ £d con-
sidered as a section of Ad T1>0M\μ-i{0) and measured by the metric induced
from the Kahler metric of M; thus \\ζ\\ is a smooth nowhere zero function
on μ~\0). Furthermore, ||f|| turns out to be if-invariant and thus projects
to a function | | | | | on Mκ.

THEOREM 1. In the above situation the Ricci form Ύωκ of (MKf ωκ)
is expressed as

By the above theorem, 7ωκ and ωκ are eohomologous. Since Ύωκ re-
presents cγ(Mκ) and a)κ is a positive form, we have:

COROLLARY 2. If M is a Fano manifold, the symplectic quotient Mκ

is a Fano manifold again.

The following corollary is also obvious.

COROLLARY 3. Let M be a compact Kdhler-Einstein manifold of
positive Ricci curvature. Then the symplectic quotient (Mκ, ωκ) is a
Kdhler-Einstein manifold if and only if \\ζ\\ is constant on μ~\ϋ).

This work was motivated by the problem of finding Kahler-Einstein
manifolds of positive Ricci curvature. Corollary 3 suggests that one may
find new examples of Kahler-Einstein manifolds out of well-known ones.
The simplest manifolds, on which it is unknown whether a Kahler-Einstein
metric of positive Ricci curvature exists, are three and four point blow-
ups of P\C), see [1]. In §5 we give examples where these two manifolds
appear as symplectic quotients of (P\C))3 and (P\C))5. Unfortunately
however, \\ζ\\ is not constant in these examples and the problem remains
open. We remark that the only known non-homogeneous examples of
Kahler-Einstein manifolds of positive Ricci curvature are Sakane's ex-
amples [10].

This work was also motivated by Kobayashi's work [6] in which he
computed the holomorphic sectional curvature of Mκ in terms of the
holomorphic sectional curvature of M and the second fundamental form
of μ~\ϋ) in M. His set-up is in a situation where M and K may be
infinite dimensional, so that his computation applies to the moduli spaces
of Hermitian-Einstein vector bundles, which have been studied by Itoh
[3] (see also [7]). Our formula does not apply to this infinite dimensional
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situation, since \\ξ\\ does not make sense.
This work was done while the author was a visitor at the University

of California, Berkeley, with the support of the Japan Society for the
Promotion of Science. He is grateful to JSPS and to his host Professor
Kobayashi.

2. Symplectic Quotients of Kahler Manifolds. Let M be a Kahler
manifold, g its Kahler metric, and J its complex structure. The Kahler
form ω is defined by

ω(X, Y) = -^βVX* Y)

for any real or complex vector fields X and Y of M. By the Kahler
condition ω is closed, and since g is positive definite, ω is nondegenerate;
thus ω is considered as a symplectic form. Let K be a compact con-
nected Lie group which acts on M as holomorphic isometries and μ:
M—> &* a moment map for the action of K. Any element X of k defines
a vector field of ikf, which we denote by the same letter X. For each
point p of M, kp denotes the vector subspace of the tangent space TPM
spanned by X9, Xek. If peμ~\0) and YeTpμ-\O), then g(JX, Y) =
ω(X, Y) = Yμx = 0. It follows from this and codim μ~\0) = dim K we
have an orthogonal decomposition

(2.1) TPM= Tpμ~\0)®Jkp

at any peμ~\0). Letting Ep be the orthogonal complement of kp in
Tpur\0)9 we have from (2.1) an orthogonal decomposition

(2.2) TPM = Ep@kp@ Jkp .

Clearly Ep is J-invariant and the distribution E = {Ep}peμ-i{0) is if-in-
variant. Since E is J-invariant we have a decomposition E®C =
E1'0 φ E0'1 into ±i eigenspaces. It is obvious that

(2.3) £7M = T 'Mlμ-iw Π(Tμ-χθ) (g) C) .

It follows from (2.3) that Elt0 is integrable (but E may not be).
Let π: μ~\0) -> Mκ = μ~\0)/K be the projection. Then dπ\Ep induces

an isomorphism from Ep onto Tπ{p)Mκ. We define an almost complex
structure Jκ of Mκ so that dπ\EoJ = Jκodπ\E.

LEMMA 2.4. Jκ is integrable.

PROOF. Let sx and s2 be sections of T1>OMK and s[ and s'2 the unique
if-invariant sections of E1>0 such that dτr(s ) = sif i = 1, 2. Since i?1'0 is
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integrable, [$[, s'2] is a if invariant section of Eι*°. Thus dπ[s[, s'2] = [slf s2]
is a section of Tlf0Mκ. q.e.d.

Finally we define a Riemannian metric gκ of Λf* so that

(2.5) g(X,, Yp) = gκ(dπ(Xp), dπ{Yp))

for all Xp, YpeEp. Then gκ is Hermitian with respect to Jκ, namely gκ

is /^-invariant. Moreover, we have:

LEMMA 2.6. gκ is a Kdhler metric and the Kdhler form ωκ for gκ

satisfies π*ωκ = c*ω where c: μ~\0) —> M is the inclusion.

PROOF. We first prove the last equality. Then we have π*dωκ =
c*dω = 0, since ω is closed. Since π is surjective, dωκ — 0. This proves
that gκ is a Kahler metric.

The Kahler form ωκ for gκ is by definition

ωx(Z, W) = ±-gκ(JκZ, W)
2π

for any vector fields Z and W. If Zf and W are the unique if-invariant
section of E such that dπ(Zr) = Z and dτr(TΓO = W, then

gκ{Jκdπ(Z')9 dπ{W'))oπ

2π

2ττ

If Z' 6 Γ,(-BΓp), then π * ^ ^ ' , W) =.0 for any TΓ'. On the other hand, for
the same Z' we have t*ω(Z\ W) = (l/2π)g(JZ'9 W) = 0 since JZ' is per-
pendicular to μ-1(0) by (2.1). Thus we have proved π*ωκ = ^*α). q.e.d.

REMARK 2.7. Let V and V^ be the Levi-Civita connections of (M, g)
and (MX9 gκ). Let pι:c*TM-+E be the orthogonal projection. Then we
have

(2.8) ( V I } I 7 = f e o Λ ( v r r ) ,

where X and F are arbitrary local vector fields of Mκ and X* and Y'
are the unique if-invariant sections of E such that dπ(X') = -X* and
cfar(Γ') = Y. We can see (2.8) by proving that, defining V* by (2.8), it
is compatible with gκ and is torsion-free.

REMARK 2.9. If dimc M = n and dimΛ K = d, then dimc M# =
dimc J©1'0 = n - d.
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3. The Ricci Curvature of Mκ. Let Xlf " ,Xd be a basis of k.
Then ξt = (Xt - i / ^ Ϊ J X , ) ^ , 1 ^ i ^ d, are holomorphic vector fields
and the real parts Xt are Killing vector fields.

LEMMA 3.1. ξ1 A Λ ξd and Us norm are K-invariant.

PROOF. The tangent vector Xp at p corresponding to Xek is
defined by Xp = (d/dt)\t=0 exp(ίX)p. Thus if σ e K then Xσp =
and

(& Λ Λ ξd)σP = detίAcKσ-1)!*)^^ Λ Λ &), = **(& Λ Λ &)p ,

since detίAcKσ"1)!*) = 1 by the compactness of K. Since σ is an isometry
we have \\ξ\\op = ||f||p. q.e.d.

Let F be the distribution {kp φ Jkp}peM Then we have decompositions
F <g) C = ί71'0 φ F 0 ' 1 and c* Tι-°M = Eu° φ Fι>\ the latter being an
orthogonal decomposition. Let Vh and Vv be the connections of Elt0

and F 1 ' 0 induced from *̂V of fT^M. The connections **V, VΛ and Vv

induce connections of det c* Tlt0M, detE1*0, and detF 1 ' 0, which we shall
denote by the same letters. Let Zίf — ,Zd be a local orthonormal K-
invariant frame of E1*0. Let θ, θh and θv be the connection forms of
£*V, Vh and Vv with respect to the frames Zλ A AZd A ^ Λ Λ ξd,
Z1 A Λ Zd and ^ Λ Λ ξd, respectively. Then we have θ = θh + <?v;
this is a merit of having taken wedge product. We further define 0j,
0*, ίί and θl by

= o ,
0*(Z) - 0 , Θ\{X) = Θ\X) ,

«(Z) = Θ\Z) , «(X) = 0 ,
= o , β (JC) = ̂ v (Z)

for any ZeE and Xekp, peμ~\0). Then naturally, we have 0 = θ\ +
0v + #Λ + 0Ϊ- Let 0^ be the connection form of det Tlt0Mκ with respect
to the local frame dπ{Zx) A Λ dπ(Zn_d). Then by Remark 2.7 we
have π*θκ = 0j. This is proved as follows:

rtZx) Λ Λ dπ(Zn_d)

i) Λ Λ ^(pV^Z,) Λ Λ

i Λ Λ

Λ , , )

where X and X' are as in Remark 2.7. Thus we get
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(3.3) π*Ί . = 4-dπ*θ* = 4-dθ*

= Λ-(dθ - dθh

v - dθl - dθζ)
2π

= '*?- - 4-Wl + dθl + dθl) .

LEMMA 3.4. dθl = *r*(d log |||||2) = π*(dd log | | | | | 2 ) .

PROOF. If YeE1-", then since ζf are holomorphic,

and

llίli

Thus ^ ( ? ) = 0 and θl{Y) = Flog ||£||2. This implies θ\ = ττ*(31og | | | | | 2 ) .
q.e.d.

Let V be the Levi-Civita connection of Tμ~\0). For any vector field
X on μ~\0), we denote by Xv the (ker cfor)-component of the decomposition
Tμ-'iO) = E © ker (fo. We define C: Ex E-+F by

(3.5) C(Γ, TΓ) = (V^TΓ) .

Then C is a skew-symmetric bilinear form and satisfies

(3.6) 2C(Γ, TF) = [y, WY

(see [6]).

LEMMA 3.7. Let Y be a section of E1'0 and let 2 Re Y =
2 Re ^ = ^ . ΓΛe^

(WJ( Y,Ϋ) = 2 Σ <C( F, F),

= —-r Σ <C(M, Jtt), CK, /«,)> .

PROOF. This follows from the next three equalities (3.8)-(3.10).

(3.8) dθ\(Y, Ϋ)= -Θ"Λ[Y, ΫY),

(3.9) Vtr,MZi Λ Λ Zn_d)

= Σ ^ i Λ Λ <Vir.n'Zt, Zi}Zι A Λ Zn_d .

If [Y, Ϋ]v = ΣtLiftXi, where {XJ is the basis of k and /, are complex
valued functions, then, since ^ are ϋΓ-invariant and [Xit Zs] = 0, we
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have

(3.10) <V [ F,F ]^, Zt) = (VZi[Y, Ϋ]\ Zt) -

/̂ 7 Γ y VΛV 7 \ / r y VΊ*> T7 7 \
\ * Zj\. •*• f -*• J f " % / \ L - £ > - * J > ^Zi^i/

= -2(C(Y, Ϋ), C(Zir Z<)) . q.e.d.

LEMMA 3.11. Let Y and u be as in Lemma 3.7. Then

dθ%Y, Ϋ) = ~(JC(u, Ju))\og Hill2.

Δ

PROOF. Clearly one has

If we put X=([Y, ΫY-iJ[Y, Ϋ]v)/2, then, since [Y, Ϋ]υ is purely
imaginary, we get [Γ, Y]υ = X - X. Thus

«([y; ?]v)fi Λ Λ ξd = Vΐτ,Mξi Λ Λ ξd)

— Vr Ίr(£i Λ ' " * Λ ίrf) = Vrfe Λ " * Λ ^ )

= - i - ( j [ y , ? r log ιiίii2)f.

The last equality holds, since ||£|| is if-invariant. We get the lemma
from [Y, Ϋγ = iC(u, Ju). q.e.d.

Combining (3.3), (3.4), (3.7) and (3.11), we obtain:

PROPOSITION 3.12. Let ~BλεMκ and Ricj, be the curvature of Mκ and
M, respectively. Let Y be a vector in E1-0 and 2 Re Y = u. Then

ΈticMκ(dπ(Y), dπ{Ϋ)) = RicM(Y, Ϋ) + (π*ddlog ||f||2)(Γ, Ϋ)

+ -5-Σ <C(u, Ju), C(vt, Jvd)

+ \jC{u, Ju)\og \\ξf .
Li

where {vl9 , vn_d, Jvv , Jvn_d} is an orthonormal basis of E.

4. Fano Manifolds. In this section we assume that M is a Fano
manifold, i.e., a compact complex manifold of positive first Chern class.
We choose a Kahler form ω in c^M). Since both ω and the Ricci form
Ίω of ω represent cx(M) there exists a real smooth function F such that
7ω — a) = (i/2π) ddF. We define a second order elliptic differential opera-
tor ΔF by
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Then AF is self-adjoint with respect to the volume form eFωm and its
eigenvalues are nonnegative, i.e., if Δpu + Xu = 0 for some u Φ 0, then
λ ^ 0. We let Ax be the eigenspace belonging to an eigenvalue λ. Let
i{M) (resp. h{M)) be the real (resp. complex) Lie algebra of all Killing
(resp. holomorphic) vector fields of M. Then i(M) is imbedded in h(M)
by i(M) 3X-+ξx = (X- iJX)/2 e h{M). We identify ί(M) with its image
by this imbedding. The following is a generalization of Matsushima-
Lichnerowicz's theorem and can be proved quite analogously if we replace
the canonical volume form ωm by eFωm; for this reason we shall omit
the proof (see [8]).

PROPOSITION 4.1. Let the situation be as above.
(1) The first non-zero eigenvalue λx of ΔF satisfies \ ^ 1.
(2) λx = 1 if and only if h(M) Φ 0. When this is the case, A1 is

isomorphic to h(M) through the correspondence u ι-> du%: = gaβ(du/dzβ)(d/dza)
and du* is a Killing vector field if and only if u is purely imaginary.

Let K be a connected closed subgroup of the group of isometries
and k its Lie algebra. By Proposition 4.1 for any Xek there exists a
unique ux e Ax such that ξx = dux. We put μx = (i/2π)ux, which is a real
function by Proposition 4.1, and define μ:M->k* by (μ(p), X) — μz{p).

LEMMA 4.2. μ\ M-*k* is a moment map for the action of K.

PROOF. Since ω = (i/2π)gajdza A dzβ we have

i(ξx)ω = i{dux)ω = dμx

and

i{X)ω = i(ξx + ξx)ω = i(ξx)ω + i(ξz)ω = dμx .

This proves (1.1).
If σ is an isometry, then σ* commutes with Δ, σ*F = F, and thus

σ* commutes with Δ^. Therefore if uxeAlf then σ*uzeA1Λ For any
vector field Y of type (0, 1),

ω{dσ*uXy Y) = Yσ*μz = {σ*Y)μx = ωφux, σ*Y)

= <o(σ?ξz, Y) = ω(ξAά{σ-i)X, Y) = ω(duίά{σ-i)X, Y) .

This shows σ*ux = uAά{σ-i)X and thus σ*μx = ^Δd(σ-i)χ> proving (1.2).
q.e.d.

Assuming that 0 is a regular value of μ and that K acts on μ~\d)
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freely, we have a quotient Kahler manifold (Mκ, ωκ) by Lemmas (2.8)
and (2.10). By (3.3), (3.4), (2.10) and yω = co + (ί/2π)d<iF, we have

(4.3) π*Ίωκ = c*7ω + -±-π*d$ log | | | | |* - -j-d(θh

v + θl)

= π*(ωκ + -i-δ5 loS Hill1) + 4~c*d*F - 4-d^ + *»\ 2π I 2π 2π

We now compute the last two terms of the right-hand side of (4.3).

LEMMA 4.4. Let s be any section of det Tlt0M and Lxs the Lie
derivative of s with respect to Xek. Then

Lxs = Vxs + (2πiAμx)s .

PROOF. Since Lx — Vx is C°°(M) (g) C-linear, it is sufficient to prove
it for an appropriate s. Let Z19 -—,Zn be an orthonormal frame of
T10M and take s to be Zx Λ Λ Zn. Then

Lxs = Σ Zi Λ Λ {VxZt - VZiX) Λ Λ Z ,
i=l

- Σ g(Vz.X, Z()s .Σ
Thus it is sufficient to show Σ"=i 9C^ztX> Zt) = —2πiAμΣ. Note that
i{X)ω = dj«x implies

JH/(JX, Y) = Γ/ιx

Δπ

and thus if Γ is of type (0, 1) then

g{X, Y) = -ig(JX, Y) = -2πiYμx .

From this we have

Σ g<yttx, Z<) = ±z<g{x, z,) - g{X, vZizt)

= -2πi Σ Zt(2jix) - {VZiZt)μx

= -2πi±(ddμx)(Zi,Zι)
ϊ=l

= — 2πiΔμx . q.e.d.

Now we restrict our attention to μ~\0). Since Zi Λ Λ Zn_d and
Si Λ Λ ξd are ^-invariant by our choice of Z{ and Lemma 3.1, if we

put β = Zi Λ Λ Zn.d A ft Λ Λ ίd, we have along μ~ι(0) = {ux = 0
for all lefe},
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Vxs = Lxs - (2πiAμx)s = (Δux)s - -{uxFa)s = -(ξzF)s

If we put 0V = ί j : + θl, this shows 0V(X) = -ξzF. Since 0,(Z) = 0 for
any ZeE, we have

θυ = -e*dF+ π*dF ,

^ = c*ddF - π*33# .

Putting this into (4.3) we get

π*Ύωκ = π*(ωκ + ^ 3 3 log \\ξ\\2 + ^ 3 3 F ) .

Since π is surjective, we get Theorem 1.

5. Examples. Compact complex surfaces of positive first Chern class
are classically known as del Pezzo surfaces which are either P\C)xP\C),
P\C) or a surface obtained by blowing up P\C) at k <; 8 points in
general position (see, e.g., [11]). We shall denote by P\ the surface
obtained by blowing up at k points. Note that if k ^ 4 the complex
structure of P\ does not depend on the points where the blowing up is
carried out, but that if k ^ 5 it does. Note also that the second Betti
number b2(Pl) of Pi is equal to k + 1.

EXAMPLE 5.1. Let M be (P\C))3 = P\C)xP\C)xP\C) and K be
S1 = {e2πiθ\θ eR}. S1 acts on P\C) by [z0: zj H-> [Z0 : e^'zj and on (P\C)Y
by the diagonal action. The moment map μ: (P\C)y ^k = R for this
action is

Z o l 2 -

*o|2 +

z i 2 .

%ι\2

w0

Wo

2 — \wx
2 + wι

2 , \Uo

2 Uo

2 — l ^ i
2 + l^i

This can be interpreted as follows: (PX(C))3 can be regarded as the set
of ordered three points of P\C) = S2czRz = {(a?, j/, «)} and then ^ is
nothing more than the sum of ^-coordinates of the three points. It is
easy to see that 0 is a regular value of μ and S1 acts on μ~\0) freely.

EXAMPLE 5.2. Let M be (P\C))5 and K be SO(3). if is the identity
component of the group of isometries of P\C) = S2 and acts on (P\C)Y
diagonally. The moment map μ: (P\C))5 —> k is interpreted as follows.
Identifying P\C) with the unit sphere S2 in k = iJ3 and regarding (P\C))5

as the set of ordered five points in S2, μ is nothing but the sum of the
position vectors of the five points. In this case again, 0 is a regular
value of μ and K acts on μ~\0) freely.

In both Examples 5.1 and 5.2 it is not an easy task to see what
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the symplectic quotient Mκ looks like. But we can invoke a result of
Kir wan [4], who derived a formula for the Poincare series Pt{Mκ) of M
in terms of the Poincare series of M and the classifying spaces of K
and certain stabilizer groups. In fact, Example 5.2 is nothing but her
Example 5.18 in [4]. Applying her formula we can easily get Pt{Mκ) =
1 + 4ί2 + t* for Example 5.1 and Pt(Mκ) = 1 + 5ί2 + t' for Example 5.2.
Since (P\C)y and (P\C))δ are Fano manifolds so are the symplectic
quotients Mκ by Corollary 2. But b2(Mκ) = 4 and 5 for 5.1 and 5.2,
respectively. By the classification of the first paragraph of this section,
Mκ must be biholomorphic to P\ and P\ respectively.
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