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1. Preliminaries, Let G be a discrete subgroup of PSL(2, C) acting
on H* = {z + uj; z e C, u > 0}, the upper half space model of the hyperbolic
space. If XeG — {id } is not a parabolic element, then we denote by gx

the geodesic in Hz joining the fixed points of X on the boundary of H3.
For a positive number k, we define a tubular neighborhood about gx as
the set

where d is the hyperbolic distance. Let Gx be the subgroup of G which
leaves gx invariant. We call Nk(X) a collar for X in G, if T(Nk(X))Γ)
Nk(X) = 0 for all TeG-Gx and T(Nk(X)) = Nk(X) for all TeGx. In
this case, the number k is called the width of the collar Nk(X).

The first purpose of this note is to prove the following theorem, the
so-called collar lemma.

THEOREM. Let GaPSL(2, C) be a non-elementary discrete group.
(i) Suppose that XeG satisfies 0<| trace 2 X-4| = s < s o = 2 ( - l + i/"2~).

Then gx has a collar Nk{s)(X), where

( 1 ) sinh2fc(s) = β-^l - s)1/2 - 1/2 .

(ii) Let X and Y be in G and suppose that X and Y generate a
non-elementary group. 7/0<|trace2X—4| and |trace2 Y— 4|<2( —l + i/~2),
then the collars Nk{8)(X) for X and Nk{ssΊ(Y) for Y are disjoint, where
s = I trace2 X — 4|, s' = | trace2 F— 4| and k is the function defined by (1).

Brooks and Matelski [2] proved the above theorem for the constant
s0 = 1/2 and for the function k defined by sinh2 k(s) = s"1 — 3/2. Gallo
[3] also obtained the theorem for the constant s0 = (i/41 — 5)/2 and for
k defined by sinh2fc(s) = s"1 — (s + 3)/2. The constant s0 and the function
k in the Theorem are better than those in [2] and [3].

Sections 2 through 4 are devoted to preliminary discussions for the
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proof of the Theorem. In Section 5, we give three examples: the first
shows the asymptotic sharpness of our Theorem, the second gives the
existence of a discrete group G and an element XeG where the geodesic
Qx does not possess a collar for G and the third states a relation between
the existence of an inscribed ball in the Dirichlet fundamental region and
the existence of a collar.

Finally the author would like to express his gratitude to Professor
Tadashi Kuroda for valuable advice, and to the referee for his helpful
comments.

2. Complex distance and the cosine rule. Following [1], we in-
troduce the notion of complex distance between two geodesies in IP and
also state the cosine rule. Denote a directed geodesic L by the ordered
pair of its endpoints; so L = (α, b) for its endpoints α, b e C, a Φ b. The
complex distance t = δ(Llf L2) e C between two directed geodesies Lx =
(a19 bj) and L2 = (α2, 62) is defined as follows: Reί ^ 0 is the hyperbolic
distance between the geodesies and Imί is the angle made by the geo-
desies along their common perpendicular and is determined modulo 2π
unless Re£ = 0, in which case ± I m ί is determined modulo 2π. We can
compute the complex distance by the formula

(2) c o s h 2 ! = (αlf α,, δ2, W .
Li

The right hand side of this equality denotes the cross ratio of those four
points. Therefore, for any 7 e PSL(2, C), we see δ(L19 L2) = δ(7(Li), 7(L2)).

Let XePSL(2, C) be non-parabolic and let gx be the directed geodesic
in the hyperbolic space joining the fixed points of X. If L is a perpen-
dicular to gΣ, then the complex distance t between L and X(L) is called
the complex translation length of X. In this case, we have

(3) trace2 X=4cosh 2 — ,

which makes sense even if X is not loxodromic.
For the geodesies Lo, L19 L2, put ω = δ(L19 L2), tx = δ(L09 Lx) and t2 —

δ(L09 L2) and denote by a the complex distance from the perpendicular
between Lo and Lx to the perpendicular between Lo and L2. Brooks-
Matelski [1] proved the so-called cosine rule:

(4) cosh ω = cosh tx cosh ί2 — cosh a sinh tλ sinh ί2 ,

3. An application of Jorgensen's inequality. If X and Y generate
a discrete non-elementary subgroup of PSL(2, C), then the inequality
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(5) | t r a c e 2 X - 4 | + \traceXYX^Y'1 - 2| ^ 1

holds. This inequality is called Jorgensen's inequality. Using the cosine
rule (4) and Jorgensen's inequality (5), we have the following lemma.

LEMMA 1. Let X and Ybe non-parabolic elements of PSL(2, C) whose
complex translation lengths are t and tf', respectively, and let β be the
complex distance between gx and gγ. If X and Y generate a non-
elementary discrete group, then

(6) |1-cosht | (2 + |sinh2/3||l - coshί'l) ^ 1 ,

(7) |1-coshί ' | (2 + | s inh 2 /3 | | l - cosh£|) ^ 1 .

PROOF. Let ω be the complex distance between gx and gγxγ-i. Then
we can normalize X and YXY~ι as follows:

X =

cosh— sinh—\

sinh— cosh—]
2 2,

YXY'1 =

cosh— eωsinh—
2 2

e"ωsinh— cosh—
2 2

We have trace XYX^Y'1 -2= - ( 1 - cosht)(l - coshω). Thus (3) and
(5) yield

(8) | ( 1 - c o s h t ) ( l - coshω)| + 2 | 1 - coshί| ^ 1 .

Recall the cosine rule (4) and take L2 = gx, Lo = gγ and Lx = gγxγ-i = Y{gx).
It is easy to show that β = δ(gτ, gx) = δ(gr, gYXY-i). Thus we have
cosh ω = cosh2 β — cosh V sinh2 β. From (8) and this equality, we have
the inequality (6) and similarly (7).

There exist various discrete groups which satisfy the equality in (6)
or (7) and we shall show these examples in Section 5.

4. Proof of the Theorem. First we prove (i) of the Theorem stated
in Section 1. From the assumption of the Theorem, XeG is not para-
bolic. Let t be the complex translation length of X. We may assume
traceX = 2cosh(ί/2) φ 2. Put Y= TXT'1 for any TeG-Gx. Let β
be the complex distance between gx and gγ. Considering the conjugate
of G, we may assume that X and YeG are of the form

, t i t
cosh— smh—

2 2

sinh— cosh—
and Y =

cosh—
2

eβ sinh—

'sinh— cosh—

Let X be elliptic. If exp(i/ —10) is the multiplier of X, then we
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have 2(1 - cos θ) = | trace2 X - 4|. Hence, if | trace2 X - 4| < 1, then the
order of X is not less than 7. Hence the order of Y is also not less
than 7. Therefore X and Y generate a non-elementary discrete subgroup
<X,Γ> of G.

If X is not elliptic, then we can conclude that β Φ 0 and <X, Y) is
a non-elementary discrete subgroup of G. Thus <X, Y) is non-elementary
for any JΠn G. Lemma 1 shows that | sinh2 β | *>(1—211—cosh 11)|1—cosh 11~2.
Clearly cosh Re /3 ̂  | sinh β | and the equality holds for Im/3=±ττ/2.
Therefore we have

(9) 2 sinh2(Re β/2) + 1 = cosh Re β

Setting I trace2 X - 41 = 14 sinh2(£/2) | = s < s0 = 2(i/ΊF -1) and defining k(s)
by sinh2fc(s) = s'^l - s)1/2 - 1/2, we see that Nk{8)(X) is a collar for X.

Next we prove (ii) of the Theorem. Let t and t' be the complex
translation lengths of X and F, respectively, and let /3 be the complex
distance between gx and gγ. We may assume that s = \ trace2 X — 4| ^
I trace2 Γ - 4| = *', or equivalently, that |sinh(ί/2)| ^ |sinh(ί'/2)|. Then (6)
and (9) imply

I sinh2 /31 ^ (1 — 2|1 — coshί |)|1 - cosh t M l - c o s h ί ' Γ 1

^ (2 sinh2 k(s) + 1)(2 sinh2 fc(β') + 1)

= (cosh2fc(s) + sinh2 fc(s))(cosh2 k{s') + sinh2A;(s'))

^ {cosh &(s)cosh ft(s') + sinh fc(s) sinh λ (s')}2

where A: is the function defined by (1). From cosh2 Re β ^ |sinh2/3|, we
have Re/3 ^ k(s) + k(s'), which proves (ii) of the Theorem.

5. Examples. Here we give an example of a non-elementary discrete
group with two elliptic generators of order n (2^7) which satisfy the
equality in Jorgensen's inequality. This example shows the asymptotic
sharpness of our Theorem. First we state a lemma due to Jorgensen
and Kiikka [4].

LEMMA 2. Suppose that X and Y generate a non-elementary discrete
group and that

(10) I trace2 X - 41 + | trace XYX~ι Y~ι - 21 = 1 .

Then X is elliptic and is of order at least 7 or X is parabolic. Fur-
thermore, X and Yλ = YXY~X generate a non-elementary discrete group
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and the equality

(11) I trace2 X - 41 + | trace XY,X~ι Ff1 - 21 = 1

holds.

Now, take

0 \ A V (a b

and Y =

where εn = exp(i/^-ϊπ/w) (w ^ 7), α, 6, c, d e C and αd — δc = 1. Put X9 =
T~x and

In9 h'\

for W = V 2 ~ι

The condition (10) for X and Y is equivalent to

(12) 41 δc I = (1 - 4 sin2(7rM))(sin(τrM))-2 .

For two real numbers p and g(^0), we put ar = dr — V^Λpq'1. 6 ' =
— (p2q~1 + q) and c' = g"1. Then we have

(13) 2α = v /"-ϊ(2pg"1 - p2q'λ - q - q~ι) ,

2cZ = \/ — l(2pq~1 + p2q~ι + q + g"1) and 26 = 2c = —{p2q~ι + q — q"1)

Choose 2g = v + ('y2 + 4)1/2 > 0, where v = -(sinfa/ri))-1 + (1 - 4 sin2(π/tι))1/2

x (2 sin(7r/w))-\ Since q2 — qv = 1, we see that q2 + 2g(sin(ττ/w))~1 = 1 + 9
x [v + 2(sin(ττ/n))~1] > 1. Hence there is a positive p such that p2 + 1 =
q2 + 2<7(sin(ττ/w))~1. Moreover, we see q — q~ι = v, so we have (ί)2^"1 +
^ — gr1)2 = 4[ v + (sin(πM))"1]2. Thus we obtain positive numbers p and
q satisfying

(14) (p2^"1 + q - g"1)2 = (1 - 4 sin2(π/n))(sin(π/w))-2 ,

(15) p2 + 1 = q2 + 2g(sin(π/^))"1 .

By considering the isometric circles of X'', Xf~\ Y9, Y'~ι and noting that
Xf is elliptic and is of order not less than 7, we see from (15) that X9

and Y9 generate a non-elementary discrete group. Hence X and Y also
generate a non-elementary discrete group and (14) implies that (12) and
(10) hold. By Lemma 2, we see that two elliptic elements X and Yλ =
YXY'1 of order n(^7) generate a non-elementary discrete group and
that the equality (11) holds.

Let β = d(gz, gTl) be the complex distance between the two geodesies
gx and gYχ in H\ We see from (13) that the fixed points Γ(0), Γ(oo) of
Y1 on Care both purely imaginary and that Im/3 = 0. Furthermore, we
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see by (2) that cosh2(/3/2) = ad, which gives

sinh2/3 = Abc(bc + 1) = (1 - 4 sin2(ττM))(4 sinX

Putting I trace2 X — 41 = 4 sin2(τr/w) = s, we have

sinh2(/3/2) = (1 - 4 sin2(τrM))(4 s i n 2 ^ ) ) - 1 = s' 1 - 1

Summing up the above, we have the following:

EXAMPLE 1. Let

h ) and Y

where en = exp(v/—lπ/w) (w is 7) and α, 6, c and d are determined by (13)
for positive numbers p and q satisfying (14) and (15). Put Yx = YXY~\
Then (X, Yi> is a non-elementary discrete group and | trace2 X — 41 +
I trace X Y X"1 Γf1 - 21 = 1, Furthermore, sinh2 k(s) = (1 - 4 sin2 (Λ / n))
x (4 sinXTr/w))"1 = s"1 — 1 where A; is the width of the collar of Nkw(X)
for X in (X.ΓΊ) and s = |trace2 X - 4|.

EXAMPLE 2. If the assumption of the Theorem is dropped, then we
cannot assert the conclusion stated in the Theorem. The following ex-
ample shows this. Let G be a group generated by

2 - l - 4 i / = ϊ \

-x I and B =

The_sets {z; |z - 2\/^ϊ\ = 1}, {z; \z - 2| = 1}, {z; |z + 2| = 1} and {z; |z +
2V—1| = 1} are isometric circles of A, A"1, i? and 5"1, respectively and
these four circles are mutually disjoint in C. Therefore the group G is
a Schottky group. By a simple calculation, we have

/ l 8 ι

~ \ 4 / 3 ϊ
and

-1 - δl/^Ί -16 + 4i/^

It is easily seen that the geodesic gAB has endpoints w, —w in C, where

w = - ( 2 + (17/4)1/2)1/2 + ^ - 2 + ( lTM) 1 7 2 ) 1 7 2 ^^. The geodesic gAB has end-
points — w i / ^ I , wi/ — 1 . Hence we see flf^nff^ = {171/4i} Thus we
have d(gAB, gBA) = d(gAB, gBABB-i) = d{gAB, B(gAB)) = 0. Therefore we cannot
have a collar for gABf because B is not an element of a purely loxodromic
cyclic group (AB).
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EXAMPLE 3. First we give the definition of the Dirichlet fundamental
region of a discrete group.

A region D in H* is called a fundamental region of G, if any two
points of the interior of D are not equivalent and any point x has its
equivalent in D. Let G be a discrete group acting on Hz and let w be
any point of H* which is not fixed by any element of G. The Dirichlet
fundamental region D(w) with centre w is defined by

D(w) = {x 6 Hz; d(x, w) ^ d(x, g{w)) for all g e G} ,

= Π {x 6 HB; d(x, w) ^ d(x, g{w))} .
geG

The Dirichlet fundamental region D(w) is a convex fundamental region
for G.

Let Gn be a group generated by X: z —> (nz + n2 — l)/(z + n) and
Y: z -> (n + l)«/(n — 1) (w > 1). Then the group Gn acts discontinuously
on Hz and the Dirichlet fundamental region Dn of Gn centered at (n2 — l)1/2j
is t h e set Dn = H*Γt{z + uj; \z2\ + u2 ^ (n + l)2}Γ){z + uj; \z2\ +u2^ n2}f]

{z + uj; \z±n\2 + u2 ^1}, where {z + uj; \z ± n\2 + u2 = 1} are isometric

spheres of X*1. Considering the tessellation of Dn by Gn, we can easily
check that the set Dn satisfies the conditions for the fundamental region
of Gn. We have d(gx, F±1(gz)) = log((n + l)(n -1)"1) for Λ > 1. It is easily
seen that d(gz, Xp Y9Xr(gΣ)) = d(fof Y\gx)) = I g I log((n + l)(w -1)" 1), where
p, g and r are integers. Furthermore, we have d(gx,Y

pXqYr(gx)) ^
(Ip|/2)log((w + l)(n — I)"1), where p, g, r e Z ~ { 0 } . Therefore we have
(l/2)log((w + l)(n - I)"1) ^ d(srx, Ί(gx)) for all 7 6 Gn - Gz. Thus we have
a collar ^ ( X ) for gx, where fc = (l/4)log((w + l)(n — I)"1). But we cannot
have a collar independent of n, because k tends to 0 as n tends to ©o.
Nevertheless, we have an inscribed ball tangent to C in Dn1 because
Dn Π C contains an inscribed disc with Euclidean radius 1/2.

Waterman [5] showed the existence of a ball with the hyperbolic
radius 1/300 inscribed in the Dirichlet fundamental region for any discrete
group. It is easily seen that the existence of a collar implies the ex-
istence of an inscribed ball, but the converse is not true.
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