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Introduction. Let M be a compact oriented manifold and & a
Riemannian and harmonic foliation with respect to a bundle-like metric.
Kamber and Tondeur [3] proved the fundamental formula for a special
variation of &, and making use of it they showed in [4] that the index
of a Riemannian and harmoniec foliation on the sphere S* (» > 2) for which
the standard metric is bundle-like is not smaller than ¢ + 1, where ¢q is
the codimension of &~

The purpose of this paper is to prove that any harmonic foliation on
a compact Riemannian manifold of non-negative constant curvature for
which the normal plane field is minimal (see § 1 for the definition) is totally
geodesic. As a corollary we can state that any Riemannian and harmonic
foliation on the sphere S™ (n > 2) for which the standard metric is bundle-
like is totally geodesic. Moreover, Escobales [1] has classified recently
all totally geodesic foliations on the spheres for which the standard metrics
are bundle-like. This means that harmonic foliations on the spheres for
which the standard metrics are bundle-like have been completely classified.

On the other hand, a theorem of Ferus [2] gives an estimate for the
codimension of a totally geodesic foliation of the sphere S*. Thus we
can apply these results to the foregoing theory of Kamber and Tondeur
to sharpen their result. ‘

The authors wish to thank the referee for his useful advice.

1. Preliminaries. We shall be in the C>-category. Let (M, g) be
an n-dimensional Riemannian manifold, and & a foliation of codimension
q on M. Then there arise two tensor fields associated with a foliated
Riemannian manifold (M, g, &) as follows. Denote by V(M) the space
of vector fields on M, and by V the Riemannian connection on M. For
any Xe V(M) we decompose it as

X=X+ X",
where X’ (resp. X") is tangent (resp. normal) to .. Actually, choosing
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a suitable Riemannian metric on the tangent bundle T(M) of M, we may
decompose T(M) as the direct product &7 @ &+, where & * is called a
normal plane field. Then we define two tensors A and & of type (1, 2)
on M by

AKX, Y) = —(Ve XY,

X, Y)= (Ve X)), X, YeV(M).

The restriction of & to each leaf of & is what is called the second fun-
damental form of the leaf. From now on we express them with respect
to a locally defined orthonormal frame field, and derive some basic formulas

among them and their derivatives. As for the range of indices we use
the following convention unless otherwise stated:

A; B,Cy ccc :1; PR (2
’i’j,k’...:]"...,p;

(1.1)

a,B,’)’, e :p+1; e, M,
where p = n — q denotes the dimension of .. The summation 3, is taken
over all repeated indices. Let {e, ---, ¢,} be a local field of orthonormal

frames on M such that ¢, ---, ¢, are always tangent to .. Denote its
dual forms by w, -+, ®,. The connection forms w,; with respect to w,
are defined by the equations

Wps + W =0,

dws + Xl 0 Nws =0.
The Riemannian connection V on M is given by
1.3) V.5 = 2. 0cs(esec -
It follows from (1.1) and (1.3) that

ke, €;) = 2. wai(ei)e, »

Ales, €5) = 2. wai(epe; .

Thus the only components h4y, (resp. A%;,) of h (resp. A) which may not
vanish are

1.2)

(1.4)

(1.5) h*; = @ale;) (resp. A'p = 0alep)) -
Moreover the connection forms w,, are given by
1.6) Woi = 2, 0%0; + > Al s

The foliation & is said to be harmonic or minimal (resp. totally geodesic)
if > k%, = 0 (resp. h*; = 0).

After Kitahara [5] and Reinhart [9], we define the second fundamental
form B of the normal plane field . &+ by
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a.mn B(X,Y)={AX,Y) + A(Y, X)}/2, X, YeV(M).
The normal plane field &+ is said to be minimal (resp. totally geodesic)
if TrB= 3, A’ e; =0 (resp. B =0).

The curvature form 2 = (2,;) of M is defined by

(1.8) Q4= dwas + 3 010\ Wgs +

We put

(1.9) Rus = =2 (Rupen/2)0c A®@p ,  Rupop + Rappe =0 .
Then the components R, z;, of 2 satisfy

(1.10) Risop = —Rpacp = Ropas -

Since the distribution w, = 0 is integrable by definition, we have
(1.11) h%; = h%; .

The distribution w, = 0 is integrable if and only if

(1.12) Al = A%, .

On the contrary, the Riemannian metric g is bundle-like (see Molino [6]
or Reinhart [8]) if and only if

1.13) Al = — Al .

Thus, the Riemannian metric is bundle-like if and only if B = 0, and then
the normal plane field & * is minimal.

Now, for a tensor filed T'= (T“"4r4 ...5,) on M, we define the covariant
derivative (T“v"4rp...5,0) by

r
(1.14) Z TAP“A"BI...BS(]CDO = dTAl"'ArBI'"B. - Z TAI"'Aa—ICAa+1""4731."3.0)0‘4‘1

a=1

8
1Ay+ee A,
- ,’Zl T L TBI."'Bb—IGBb+1"'BwCBb .

Then the exterior derivative of (1.6) gives

(1.15) b — B = Raie »

(1.16) hs — Alapi — 20 R uhPi; — 3 Al Alyy = Ragje

(1.17) Alyy — Ay + D 0% i(A% — Afy) = —Ryyrp

Moreover, from the definition of (h45,,) and (1.6) it follows that we have
(1.18) Rl = — 2 R k%,

(1.19) Blija = —2hP A sa 5

(1.20) ham‘ = =23 haikhﬁki ’
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(1.21) b = — 3 WA
(1022) haﬁw’ = _Z haikhﬁkj ’
(1.23) Ry = =3 A% .

The Ricci formulas on the second covariant derivatives of h are given by
the exterior derivative of the definition of the components h4;,,. For
later use we write down these equations:

(1.24) k% — b = 2R R + 2 iR + 25 B imBimia
(1.25)  Rh%s — b = 2 Rans + 20 h%iRas + 20 b aRius
(1.26) k% — h%rs = 2R + 20 A iRusr + 20 B0 Rjeer
(1.27) Alpii — Alaprs = 20 AlspRujn + 20 A%pRorip + 30 Al Ry,
(1.28) Alggir — Alapri = 20 AP ppRuir + 25 A'yRosir + 30 AlasRpsir
(1.29) Algprs — Alupsr = 25 A¥spRurs + 20 AlyRoers + 24 AiaeRﬁsra .
2. Proof of Theorem. Let (M, g, &) be a foliated Riemannian mani-

fold. We keep the notation in §1. The global vector field » = 3} v,e,
on M is defined by

Ve = 2 h%ih %, Ve=0.
The divergence év of v is first calculated.
LeEmMmA 2.1.
0v = 2 v Al e + DA% ah % + 2R R i + 20 iR
+ 2 haijhpkkhmiiﬁ + E haiihakkij + E (hﬁikRaﬁik + hmlthlJ'k + hailelik)haiJ'
+ 2% bk Ry + 2 35 hEhP R kP,
PROOF. From the definition of (v,;), we have
D VeaWs = AV — D, V4@ a0 = — 2, Vs
which implies

@1 2 Vaw = X0 A% -
Moreover we have
D V@4 = dv, — > VaW®yr = acs h®ih®5) — DI XO
= 2 bR 404 — BPj@ap + B i@y + Bay)
+ 30 PR kaws — hlp@a + B0y + B oy
+ W a®u — B ji@as + B304 + B @55 + B 5505
— 2 b uwy
= 2B awa + 3R ea@s — R0 + 2R p@p5 + B5wp)
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which together with (1.18) and (1.22) gives
(2.2) 23V = 2Rk g + 20 R e + 35 R R ke,
+ 2 3% k%R b P ahfy + 35 kA kS s
On the other hand, we have
h®iue = Rusire + B uin (by (1.15))
= Rau'kk + h‘sucRaﬁik + 2R + 2 h* Ry + B s (by (1.24))
= Rai]'lck + E hﬁik aBik + Z hathﬂjk + Z haaRlcljk + Raktki + hakki:‘ .
(by (1.15))
This, (2.1) and (2.2) complete the proof.
LEMMA 2.2. If the foliation s harmonic, then we have
(2-3) Z haiiA =0 ’
(2-4) Z hait:’k = —2 E hailhﬁlihpik .
PROOF. From the definition of (h“z;;) we have
> h®aws = 2. dh%; + Z h*@as + 2 h* @4 + X hamwm =0,
which proves (2.3). Similarly, we have
DR awa = 2 AR + D A0 + DR 400 + DR i@ + X R a4

= D\ W + 2 D B0, (by (2.3))
Hence we have from (1.18) and (1.20)
b i = 25 ki — 2 35 hopiihPy = —2 3 h* kP k%, . q.e.d.

Now we can prove the following:

THEOREM 2.3. Let (M, g) be a compact Riemannian wmanifold of
constant sectional curvature ¢ (=0). Let & be a harmonic foliation
such that the normal plane field .+ is minimal. Then the foliation
Z 48 totally geodesic.

ProOF. We may assume that M is orientable, because otherwise we
may consider its double covering space instead. Then for the vector field
v defined above we have

SMb"u*I:O,

where *1 denotes the volume element of M. Since M is of constant
curvature ¢, we have

R pep = (040080 — 04cOp5) »



470 H. NAKAGAWA AND R. TAKAGI

and S0 R,ppz = 0. By assumption we have >, A’, = 0. Then Lemma
2.1 and (2.4) imply

@5 | [Shh + o S + S
+ 23, Tr (H*H*H*H* — H*H*H*H"] 1 =10,

where H*® denotes the p X p matrix (h*;). Since the matrix H*H? — H’H*
is skew-symmetric, we find

0=> Tr[(H*H? — H’H*)(H*H* — H’H")]
=22, Tr(H*H*H*H* — H*H*H*’H?) .

Therefore each term in (2.5) is non-negative. In particular, we have
> h*h% = 0, and so h%; = 0. q.e.d.

COROLLARY 1. Let (M, g) be a compact Riemannian manifold of
constant curvature ¢ (=0). Let & be a harmonic foltation such that
the Riemannian metric 18 bundle-like. Then the foliation & is totally
geodesic.

In the case of ¢ =0 in Corollary 1, it follows from (1.16) and the
fact that & is totally geodesic that A vanishes identically (cf. Ranjan
[7). Thus we have:

COROLLARY 2. Let (M, g) be a compact flat Riemannian manifold.
Let & be a harmonic foliation such that ' is minimal. Then F*
18 integrable and tatally geodesic.

REMARK. Theorem 2.3 does not hold if we replace the assumption
“of constant curvature ¢ (=0)” by “with positive Ricci curvature” (cf.
Takagi and Yorozu [10], Theorem 3.4).

REFERENCES

[1] R.H. ESCOBALES, JR., Riemannian foliations of the rank one symmetric spaces, Proc.
Amer. Math. Soc. 95 (1985), 495-498.

[2] D. Ferus, Totally geodesic foliations, Math. Ann. 188 (1970), 313-316.

[3] F.W. KAMBER AND PH. TONDEUR, Infinitesimal automorphisms and second variation of
the energy for harmonic foliations, Téhoku Math. J. 34 (1982), 525-538.

[4] F.W. KamBer AND PH. TONDEUR, The index of harmonic foliations on spheres, Trans.
Amer. Math. Soc. 275 (1983), 257-263.

[5] H. KitaHARA, Differential geometry of Riemannian foliations, to appear at Springer-
Verlag, Berlin, Heidelberg, New York.

[6] P. MoLiNo, Feuilletages riemanniens, Lecture notes, Université des Sciences et Techniques
du Languedoc, 1982-1983.

[7] A. RaNJAN, Structural equations and integral formula for foliated manifolds, Geom.
Dedicata, 20 (1986), 85-91.



HARMONIC FOLIATIONS 471

[8] B. REINHART, Foliated manifolds with bundle-like metrics, Ann. of Math. 69 (1959),
119-132.

[9] B. REINHART, Differential geometry of foliations, Springer-Verlag, Berlin, Heidelberg,
New York, 1983.

[10] R. TaracI AND S. Yorozu, Minimal foliations on Lie groups, T6hoku Math. J. 36 (1984),

541-554.
INSTITUTE OF MATHEMATICS AND DEPARTMENT OF MATHEMATICS
UNIVERSITY OF TSUKUBA FACULTY OF SCIENCE
IBARAKI, 305 CHiBA UNIVERSITY
JAPAN CHIBA, 260

JAPAN








