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0. Introduction. In this paper, we study systems of linear partial differential
equations in n (= 3) variables of rank (=the dimension of the solution space) n+2. The
case n=2 is treated in [SY1] and [SY2].

Here we would like to mention our motivation. Let D be the symmetric domain of
type IV of dimension n (=3), I' be a transformation group acting properly discon-
tinuously on D, X be a quotient variety of D under I' naturally equipped with the
structure of orbifold, n be the projection of D onto X and finally let ¢ be the inverse map
n~': X— D, which is called the developing map of the orbifold X. We think there should
be a system of linear differential equations (E) defined on X such that the solution of the
system gives rise to the map ¢. It is called the uniformizing differential equation of the
orbifold X. Since D can be thought of as a part of a non-degenerate quadric hypersurface
Q in P"*! and since we have the following inclusion relations

Aut(D) = Aut(Q) = Aut(P"* 'Y= PGL(n+?2)

of the groups of complex analytic automorphisms, the system (E) must be of rank n+2
and the mapping defined on X by the ratio of n+ 2 linearly independent solutions of (E)
has its image in the hyperquadric Q. In this way we encounter equations in » variables of
rank n+ 2. Making a linear change of independent variables x =(x!, - - -, x") if necessary,
we may assume that any system in » variables of rank »+ 2 with the unknown w has the
form
0*w 0w 0
(EQ) axiaxj:gijax1axn+z::=1A:‘ja_)‘::c"'AinW (I=i,j=n)

where
gij=9 Alj=A%, AY=A4%, g,,=1, 4},=49,=0.

This system is the key to connecting the theory of conformal connections, the projective
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theory of hypersurfaces and the theory of uniformizing differential equations of
orbifolds uniformized by symmetric domains of type IV. The ratio of n+2 linearly
independent solutions is called a projective solution.

Let a hypersurface M in P"*! be the image of the projective solution of (EQ). We
study in §1, as a preparation, the induced conformal metric II on M and the cubic
invariant form III of the embedding M — P"*!, and formulate the fundamental theorem
of projective hypersurfaces (Theorem 1.3). We show that the coefficients g;; represent the
induced conformal metric II and that the coefficients 4 and A}; are expressed in terms
of II and the cubic invariant III (Theorem 2.1). When M is a quadric hypersurface, we
show that the coefficients A}, and A}, are expressed in terms of the g;;’s (Theorem 2.3).
Conversely, for a given conformally flat quadratic form g;;, we can associate a system of
the form (EQ) with the principal part g;; such that the projective solution has its image in
a hyperquadric in P"*! (Theorem 2.4).

Let X be an n-dimensional orbifold (or simply a manifold) which has a conformally
flat structure. As Kuiper ([Kui]) pointed out, there is a conformal map, called the
developing map, from the universal cover of X into the model space, hyperquadric in
P"*!. Applying Theorem 2.4, we can answer the following question: ‘“‘How can we get
the developing map?” Let gwjdxﬁ,dx{, be the conformal structure for coordinate
neighborhoods (U, xy). We consider the system (EQ)y, of the form (EQ) with the gy;;;’s as
the principal part such that the image of the projective solution ¢ is a part of a
nondegenerate quadric hypersurface in P"*!. If V is another chart such that VN U# &
then ¢, and ¢, are projectively related. The developing map of X is given by the
collection {¢@y}y-

Let M=H, be the Siegel upper half space of degree 2 and I'(2) be the Siegel
modular group of level 2. The regular orbit of H, modulo I'(2) is known to be the space

A={(A, 22, B)eC?|11#0, 1, (i#))}

Let n: H,— A be the natural projection. The space A can be thought of as the parameter
space of a family of curves of genus 2:

C(A): w3 =u(u—w)(u— A w)(u—22w)(u—1*w)

in the projective plane. The periods of C(4) gives a (multi-valued) inverse of 7 and they
satisfy a system of linear differential equations which is sometimes called the Gauss-
Manin connection of the fiber space [J,C(1)—A. In §3, we explicitly write down the
system of differential equations, which turns out to be of the form (EQ).

1. Review of the projective theory of hypersurfaces.

1.0. Summary. In this section we recall the fundamental formulation of the
intrinsic conformal geometry and the projective theory of hypersurfaces, which are
necessary in the discussion of systems of linear differential equations in the following
sections. Although the fact stated in this section is already known by [Sas], our present
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version is made in order to clarify and to show up the story of the theory, which may not
be easy to grasp in reading [Sas].

To have a better understanding of the theory, we first recall the gist of the intrinsic
Riemannian geometry, that of hypersurfaces in the Euclidean spaces and the fundamen-
tal theory connecting them.

Intrinsic Riemannian geometry: Let M be an n-dimensional manifold equipped
with a Riemannian metric. Then there is a unique affine connection compatible with the
metric (Levi-Civita connection). The Riemannian curvature tensor is defined by the
Levi-Civita connection.

Hypersurfaces: Let1: McR"*! be an embedding of a manifold M. The induced
metric and the second fundamental form are defined on M. The Levi-Civita connection
and the Riemannian curvature tensor of the induced metric are defined as above. They
are related as follows:

Gauss equation: The Riemannian curvature tensor is expressed in terms of the
second fundamental form.

Codazzi-Minardi equation: The covariant derivatives of the second fundamental
form and the induced metric are related.

Fundamental theorem: Let M be a manifold equipped with a Riemannian metric
and a quadratic form. They are the induced metric and the second fundamental form
defined by some embedding 1: M= R"*! if they satisfy the Gauss equation and the
Codazzi-Minardi equation. The embedding 1 is unique up to rigid motions of R"*!.

Now we summarize the gist of the intrinsic conformal geometry, that of hyper-
surfaces in the projective space and the fundamental theorem connecting them.

Intrinsic conformal geometry: Let M be a manifold equipped with a conformal
metric 4. Then there is a unique conformal connection © compatible with the conformal
metric (the normal conformal connection). The conformal curvature tensor C is defined
by the normal conformal connection.

Hypersurfaces: Let1: M< P"*"! be an embedding of an n-dimensional manifold
M. The induced conformal metric 4 and the 1-form t (called the invariant of 1) are
defined. The normal conformal connection 7 and the conformal curvature tensor C of
the induced metric are defined intrinsically as above. They are related as follows.

Gauss equation: The conformal curvature tensor is expressed in terms of the
invariant 1.

Codazzi-Minardi equation: Covariant derivatives of t and the induced metric A
are related.

Fundamental theorem: Let M be a manifold equipped with a conformal metric A
and a l-form 7. They are the induced conformal metric and the invariant defined by
some embedding 1: M < P"*! if they satisfy the Gauss equation and the Codazzi-
Minardi equation. The embedding ¢ is unique up to projective transformations of P"**,

1.1. Intrinsic conformal geometry. We recall some facts on the conformal
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connection. A precise and detailed description can be found in the book [Kob].
Let M be an n-dimensional complex manifold and h=(h;;) be a non-singular
symmetric matrix. Define the group of conformal transformations for # to be

CO(h)={Aa|aeGL(n, C), ah'a=h, ie C*} .

Let L(M) be the bundle of complex linear frames on M. A holomorphic principal
subbundle P of L(M) with structure group CO(k) is called a holomorphic CO(h)-
structure. Such subbundles on M are in a natural one-to-one correspondence with the
sections M— L(M)/CO(h). In other words, for such a structure, we associate a
conformal covariant tensor field g=(g;;) called a conformal metric written locally as

gi(x)dx'dx’,  detg;#0,

with respect to a local coordinate system (xY). (Throughout this paper, we follow
Einstein’s convention.)

We consider a non-singular hyperquadric Q" in P"*! defined in terms of the
homogeneous coordinate system (z°, - - -, z"*') by the equation

—22%2"" 4 b 7' =0

Let Q be the symmetric matrix of degree n+ 2 corresponding to this quadratic form:

0 0 —1
Q= 0 h 0
1 0 o0

The group
0(Q)=1{geGL(n+2)|gQ'9g=0}

acts transitively on the hyperquadric. Let H be the isotropy subgroup at (0, - - -, 0, 1). It
consists of matrices of the form

A 0 0
(1.1) b a 0 Av=1, ah'a=h, b=lah'c, n=JAch'c/2 .
U c v

We have a principal bundle O(Q) over Q"= O(Q)/H with structure group H. The linear
isotropy representation of the group H at ‘(0,---,0,1) has a non-trivial kernel
consisting of matrices of the form

+1
b +
u
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Denote this kernel by N. Then H/N is isomorphic to CO(#). Thus we have a principal
bundle O(Q)/N over the hyperquadric Q" =0(Q)/H with structure group CO(h):

o)  OQ)N
| H j H/N=CO(h).
0"=0(Q)/H=0(Q)/H

This is called the canonical conformal structure of the quadric. The associated conformal
metric is given as follows. Let ¢ =—2dz°dz"*' +h;dz'dz’ be the tensor field on
C"*2—{0}. Let s be a local section of the bundle C"**—{0} over P"*!. Although the
pull-back s* ¢ depends on the section s, its restriction to Q" is defined independently of s
up to a multiplicative factor of non-vanishing holomorphic functions. Thus the
conformal metric of s*¢| Q" is uniquely defined.

Consider again a CO(#)-structure P on a manifold M. Let P?(M) be the bundle of
2-frames over M with structure group, elements of which are holomorphic 2-frames of
C" at the origin ([Kob, Chapter 4, § 5]). The first prolongation of P, which is a principal
subbundle of P?(M) with structure group H, is denoted by P. The correspondence
between P and P is known to be bijective ([Kob, Chapter 4, §6]). In fact, we can
recover P from PV by putting P= P'Y)/N. For the hyperquadric Q", this bundle PV is
nothing but the bundle O(Q)— O(Q)/H. The bundle P has Cartan connections ([Kob,
Chapter 4]). Let o(Q) be the Lie algebra of O(Q). Then a Cartan connection in question
is a o(Q)-valued 1-form n on P") considered as a set of 1-forms (x;, i, n/) by the
identification

n° nl 0
= | n, ni+8in®  h,n* |eo(Q)
0 hhr, —n°

where n° = —(1/n) ) n}. The forms n{ and n/ are the restriction to P'*’ of the components
of the canonical form of P'". They have the property dn’=) n* Amj. The curvature
form IT of n is defined by Il =dn—n A which is written as

m o 0
o= (m° m o
0 A9 —11°

There exists a unique Cartan connection, called the normal conformal connection,
satisfying the (normalization) condition

Cji 1= 0
where

o . . 1, .
IT{—8i1° = dn} — ! /\n{(—n,-/\nl—h,-kh"n"/\n,—é{nk/\n"=:?C’,-k,n"/\n’.
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In fact, this condition determines the forms n; uniquely ([Kob, Chapter 4, Theorem 4.2]).

DEFINITION. A CO(h)-structure P (or a conformal metric g) is said to be confor-
mally flat if the normal conformal connection = is integrable, i.e., [[=dn—n An=0.

1.2. Projective theory of hypersurfaces. Suppose we are given a piece of an n-
dimensional hypersurface M in the projective space P"*'. Let i: M—P"*! be the
embedding. We assume the map i to have a lift, denoted by e,, to C"**—{0}, the
natural covering of P"*'. Let {e,, - - -, e,,} be a set of independent tangent vector fields to
M along e, and choose another vector field e, , , so that det (ey, e, - - -, €,,, €,+1) =1 with
respect to a fixed frame of C"*2. Then the hypersurface M is described by the motion of
the vectors e, (0 <a<n+ 1) which we call a projective moving frame field along M. We
introduce the associated Maurer-Cartan form w by

de=we .

Here we use abbreviations e=(ey, €, " -, e,,,) and w=(wf), the indices a, B, - - -
ranging from 0 to n+ 1. When we use the indices i, j, - - -, these are understood to range
from 1 to n. The 1-form w has values in s/(n+2, C). It satisfies the Maurer-Cartan
equation:

(1.2) do=wrw, ie, dof=wirdl.

First notice that the above choice for a frame implies wg ™' =0, and {w}|1<j<n} are
independent on M. In the rest of this paper, we write «’=wj. Then (1.2) implies
0=dw,""' =w" A w}™!, which allows us to put

(1.3) («0,'"+1=h,‘kwka hie=hy; -

We have

oy o 0

o=@h)= of

i ol hyo

4y Wy O)F]
Let us define a symmetric quadratic form II on M by
(1.4) M=h;0'e .

An important property of this form is its invariance in the following sense. Let ¢’ be
another projective frame, which is easily seen to have the form

A 0 0
(1.5) e'=ge with g=(b6 a 0],
u c v

where A, p and v are scalar functions, a is an n x n matrix function, and b and ¢ are n-
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vector functions. Then the éssociated Maurer-Cartan form w’ is given by
(1.6) o' =(dg+go)g ",

and this leads to the identity

(1.7) Avh{;=athya;.

In particular, the associate quadratic form II” is given by
. A
(1.8) IT = II.

This implies that the conformal class of II is intrinsic on the manifold M. Hence,
especially, its rank is independent of the choice of frames. We now assume that the form
II is non-degenerate. Notice that the above process defining II shows that it is
determined by the second order derivatives of the embedding i. We next derive another
invariant which depends on its third derivatives. In order to make the following
formulae look simpler, we choose a frame so that

(1.9 deth;=1, oY+ wli1=0.

This is possible because of the non-degeneracy assumpticn for II and the transformation
rule (1.6). Then the exterior derivation of (1.2) gives

(dhij—hywk—hjof) A’ =0,

which enables us to define a symmetric quantity 4;;, by
(1.10) hj* = dh;;— hy ok — hof .
Let us define a symmetric cubic form III on M by
(1.11) III=h,-jkwiijk
and call this the (Wilczynski-Fubini-Pick) cubic invariant form. Indeed it has the
invariance:
(1.12)
11" = A2 111
with respect to the frame change (1.5). The role of this form can be seen in:

PROPOSITION 1.1.  Let M be a connected piece of a hypersurface in P"*'. Assume
the quadratic form 11 is non-degenerate and the cubic invariant form 111 vanishes
everywhere. Then M is contained in a quadric hypersurface.

The projective description of a hypersurface needs one more invariant. Take a

derivation of W+ w"t!=0. Then we have
(0] n+1
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(hyjwh oy — o)) A@'=0,
which allows us to define a symmetric quantity L;; by
(1.13) hjoh — o =L .
It is possible to show the existence of a projective frame satisfying
(1.14) deth;=1, wo+w,i}=0 and trace, L(=L;#%)=0.

Now we fix a frame e with this property. Then, at every point p where the frame is
defined, the matrix h=(h;;) defines a Lie group by (1.1) which we denote by H(p).
Analogously, the group O(Q(p)) and its Lie algebra o(Q(p)) are defined. Take another
frame e’ with the property 4’;;=h;; and (1.14). A calculation shows that the frame
change g from e into e’ belongs to the group H(p) at each p.

We next formulate the fundamental theorem by using the language of conformal
geometry. Define a tensorial matrix-valued 1-form 7 by

0 0 0
(1.15) o= M+ Lot %hikfwk 0
-, WM, 0
where
M"‘=4(n—12) K"‘+8(n —2I;(n— 1) h"‘_% Lu
Kiy=hy,,h?", and  F=h, h"",
and put
(1.16) T=w+t.

(Here the raising of indices relative to h;; is used. e.g. h;;* =h;;,h"*.) Then a computation
shows the invariance
1

(1.17) =919
under the frame changes belonging to the group H(p) for each point p; and it is easy to
see the form = has its value in the Lie algebra o(Q(p)). Let II be the curvature tensor of
7. It has the following expression with IT°=0:
0 0 0
H=dn—nAn=|II I 0],
0 I, 0
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where IT7 =hyIT, . ;. Since IT is a tensorial 2-form, we may put

1. . .
(1.17) HJ:?CJiklka o' Cli+Cliy=0

13

1
st):? Cia®* A &' Cia+Ciy=0.
The choice for T has been made under the normalization condition
(1.18) Cj,-j,=0.

In this notation, the following analogues of the Gauss and the Codazzi-Minardi

equations hold:
(1.19) (The Gauss equation)

1

1
z_ hkjp - hikphjlp) t—— (hijil - hleik + hilKjk - hikKjl)

4(n—2)
(hikhjl - hilhjk)F

Cijkz= him ijkl: (h

ilp
+ 1
4n—1)n—2)
1 ; .
Cikl:fil,k _fik,z‘*‘z‘ (hikijl - hiljhjk) s
where f}, is the projective analogue of the Schouten tensor defined by

! K+ F h
4n-2) " 8m—1)n-2) "

fu:

and f; , is the covariant derivative of f; with respect to =, ie., f; @ =
dfy—funt ”‘fkﬂt;c + zfiﬂfo-
(1.20) (The Codazzi-Minardi equation)

hijk,l—_ hijl. k= Lilhjk - Likhjl + lehik - ijhil

Lij— L j= hij’flk - hiklﬁj+ 2(hikyj_ hijyi)

Vi.j'“?j.izlefli_Luflj s

where 7, is defined by ., = —y,0' and h;;, ,, L;; , and y, ; are covariant derivatives of
hijw L;; and p; with respect to m.

Now we choose a frame e so that /4 is a constant matrix, which we denote by °A. This
is possible by (1.7). Then the set of projective frames satisfying (1.14) and h(p)=°h
becomes a principal bundle P with the group H, corresponding to °h, as the structure
group. The 1-forms 7 and 7 corresponding to ge(g € H) can be thought of as 1-forms on

P in view of (1.6) and (1.17). We denote these forms by 7 and 7. These considerations
then show:

ijko

PROPOSITION 1.2.  The pair (P, ) defines a normal conformal connection defined in
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§ 1.1 on the hypersurface M. The form 7 is the invariant satisfying the relations (1.19) and
(1.20).

Conversely we have:

THEOREM 1.3.  Let M be an n (= 3)-dimensional complex manifold with a normal
conformal connection . Let t be a tensorial 1-form in the form (1.15). Assume that the
covariant derivatives of t satisfy the relation (1.20) and that the curvature tensor of m is
given by (1.19). Then, for a given point p of M, there exists a neighborhood of p which can
be embedded as a non-degenerate hypersurface in a projective space of dimension n+1 so
that n and 1 become the connection and the invariant induced by this embedding,
respectively. This embedding is unique up to projective transformations.

For the proof of this theorem and for the induction of the above formulae, see [Sas].
For use in the next section, we review the local expression for 7/ and n? in terms of the
conformal structure tensor A;;. Let (x') be a local coordinate system and choose a frame
so that o' =dx". (This frame is, in general, different from the frames defining the bundle
P.) The definition of 7 in (1.16) is so made that dh;;— hyn}—h;nf=0. This leads, as
usual, to the identity n/=I"},w*, where I'/; is the Christoffel symbol of 4;;:

. 1 ..
ka:? Wy o+ P i — hi ) dhy=hy ot .
Let R’;, be the Riemannian curvature tensor:
J k i1 k 1
drn] — i Ami=— R, 0" A 0.
2

The Ricci and the scalar curvatures are denoted by R;; and by R, respectively:
R=h"R,;.

R;;=R'

ij ilj o
If we put n¥= — S;,w* then the definition (1.17) implies
Cjikl = Rjikl + Siké{_ Silb‘jl'( + hikhijml - hilhijmk .

The requirement (1.18) easily shows

1 R
1.21 S, = R, — h, ).
( ) ik n_2< ik 2("—1) zk)

The tensor S;; is called the Schouten tensor relative to the tensor 4;;.

2. Local geometric theory of linear differential equations in » variables of rank n+ 2.
The purpose of this section is to give a geometric interpretation for the system of linear
differential equations in n variables of rank n+ 2, by using the projective study of hyper-
surfaces reviewed in § 1.
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2.1. Geometry of hypersurfaces defined by linear differential equations. Let us
first fix such a differential system. x=(x!, - - -, x") will denote a coordinate system and
subindices attached to functions mean derivatives with respect to these coordinates, e.g.,
w;=0w/0x', w;;=0*w/0x'0x’. Let us consider n+2 linearly independent functions

w!, .-+, w""? in x. They are solutions of linear differential equations
w w1 Y. wn+2
1 .. n+2
wy Wy wy
1 . n+2 _
w, W, wh =0
1 . n+2
Wi Wi w;
Wi Wi Cwy'?

with the unknown w. Since the linear independence of w' says that

W’l . 14)n-+-2
1 .. n+2

Wi Wi

A= #0

1 e n+2

w, w,
1 V.. n+2

wij wij

for some pair (i, j), we may assume 4, ,#0 without loss of generality. Then, dividing the
equation by 4,,, we get a system

x 0 ..
(EQ) Wii=gijWiat AW+ Aiw, 1£i,jsn,
where
k_ 4k 0 _ 40 _ _ k __ 40 _
(2.1) Aij—Ajis Aij-‘Ajis 9ii=9Yji» gin=1, A{,=A47,=0.
The functions w' also satisfy equations
w wl . wn+2
w, wl wit2| =0
1 . n+2
Win Win Win
1 . n+2
Wik Wijk Wik

A part of these equations will be written for short as

(2.2) Wy jn=G Wy, + Biw,+Bjw, 1<jgn.
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Notice that these equations are derived from (EQ) by differentiation.

The system (EQ) when n=2 was first treated by Wilczynski in his memoirs [Wil] in
the beginning of this century. The reformulation of this case was given by the authors in
[SY 1] in terms of the moving frame method. In this paper we treat this system when
n =3, aiming at making the geometric meaning of the coefficients clear.

Let us consider the equation (EQ) with (2.1) of rank n+ 2 which satisfies

We fix a vector w=(w', - - -, w"*2) made of linearly independent solutions, which defines
a local embedding of the x-space into the projective space of dimension n+ 1. We call
this embedding the projective solution of (EQ), which is unique up to PGL(n+ 2, C). By
abuse of language we sometimes regard w as the embedded hypersurface. Put

(24) ee=det('wa twl’ T, twm (wl n) ’

which we call the normalization factor of the system (EQ). The function 6 is independent
of the choice of w up to additive constants. Define a set of vectors e=(eg, * * *, €,+1) by

= b
2.5) e=W, €=W;, €,.1=€ "W,.

Then this is a projective frame along w in the sense explained in § 1. The system (EQ) and
the equations (2.2) can be written in a Pfaffian form

(2.6) de=we
where
0 dx’ 0
== A%dx*  Aidx* g dx*

e *BYdx* e Bidx* (G,—0,)dx*

is the Maurer-Cartan form of the frame e. The result of § I says that the tensor h;;=¢’g;;
defines the induced conformal metric of the hypersurface. Then the process of
normalization in §1 can be applied to the above frame e. A suitable choice of a
transformation g in the form

1 0 0
2.7) g=1 0 A, 0
u c AT

suffices for this normalization. Namely, writing w’=dg-g ' +gwg "', which is a coframe
of the transformed frame e’ =ge, the element g is determined so that

(2.8) deth;=1, o§+w, /=0 and traceL{=0,

(see Proposition 1.2). Then by (1.16) o’ is decomposed into the sum of the connection
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form 7 associated with Aj; and the tensorial invariant form 7 of the embedding w.
Reversing this process, we have

2.9) w=dh-h ' +h(n—1)h~!

for h=g~!'. The point here is that the right hand side is known to have a geometrically
invariant meaning. Consequently, the coefficients of the system (EQ) is written in terms
of the invariants of the hypersurface w, which we now write down explicitly. Since
h';j=A"*%h;=A""2e"g,;, the component A is determined by

(2.10) d=(e" )" 1/mn+2)

The other components ¢ and u may be computed by the normalization process. In the
present case, however, they can be determined also by the requirements 4%, =A49,=0.
We prove:

THEOREM 2.1. Let the equation (EQ) of rank n+2 (n=3) with (2.1) and (2.3) be
given. If the normalization factor satisfies

@.11) det(e’g;)=1,

then the coefficients A;, are given by
; . ; 1 . .
Afk=(rfk—gikrj1n)"?(hjik—gikhju)

AY=(=Su+9uS1)—{My+Ly—gu(M,;,+ L)} .

Here I, and S, are the Christoffel symbol and the Schouten tensor of the tensor €’g;,
defined in §1.2. The W', L,, and M, are components of the form t defined in §1.2 with
respect to the normalized frame ge.

PROOF. Put h;;=¢’;;. Since 4 is chosen to be 1, we have h’;;=h;;. By our dis-
cussion in §1, = and 7 have the following form

0 o 0 0 dx’ 0
n={n} nl aftt|=| —Sudx* TI}adx* hdx*
0 Ty 0 0 —h'Sydx* 0

0 0 0 0 0 0
= o 0 | =| (My+Lydx* % Wydx* 0
Tos1 They O — Wty H Myt 0

Note that ny=n"*1=0 because w; =0, which is deduced by w3 =0 and by the choice of
g(A=1). Substituting these expressions into (2.9), we get
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0 nl 0
212) o= 7%= +unrt! =i+ cnp ! nt
-1, —du Moy —Thyy —ded— pn i n+1
— =@ pn ) —ci(mi—ti ety
Hence
(2.13) Aly= Tl Wit O,

Af = —Siu— My + L)+ phy .

The requirements 4%, = A49,=0 are satisfied when
; _ ; 1 .
(2.14) d=—e "(F’ln—ghﬂ.,), p=e %S, + M, +L,,).

Substituting these equalities into (2.13), we have the formulae. O
REMARK. From (2.12) and (2.14) follow also the formulae for G; and B; in (2.2).

If the equation (EQ) does not satisfy the condition (2.11), then by multiplying a
suitable function to the unknown w, one can transform (EQ), without changing the
hypersurface w nor the coefficients g,;, into one satisfying the condition. The other
coefficients are obtained by the following lemma, the proof of which is a straightforward
computation.

LEMMA 2.2 Let the system (EQ) be given with the normalization factor €°. If the
unknown w is transformed into a new unknown u by w=e " “u, then the system is subject to
the change

(2.15) U =Gty + Pluj+ P,
where
(2.16) Ply= A} + 0,0, + 0,0 — g0, 64+ 01,69)
P(i)k=A?k+(aik'—aiak)+Atjkaj_gik(aln_alan) .
0+ (n+2)a

The new normalization factor is €
2.2. Linear differential equations defining maps into hyperquadrics.

DEFINITION. The system (EQ) is said to satisfy the quadric condition if the image
of w is contained in a certain quadric hypersurface, i.e., if the cubic invariant form III
vanishes identically (Proposition 1.1).

Since the quadric hypersurface is conformally flat, the invariant 7 vanishes under
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the quadric condition; and the connection form = itself is flat. This fact can also be seen
directly from the formulae (1.19) and (1.20). Therefore we get the following from
Theorem 2.1.

THEOREM 2.3. Let the equation (EQ) of rank n+2 (n=3) satisfying (2.1), (2.3)
and (2.11) be given. If it satisfies the quadric condition, then the coefficients A;, are
expressed as rational functions in g;; and their derivatives:

(2.17) Af=Ti—gul1,
Af=—Si+GuSin-
Here I'}, and S, are the Christoffel symbol and the Schouten tensor of €’g;;.

Converse of this theorem holds.

THEOREM 2.4. Assume nZ3. Let g;dx'dx'(g,,=1) be a non-degenerate symmetric
tensor which is conformally flat. Define 0 so that det(e’y;;))=1; and define quantities A,f‘j
and AY; by (2.17) according to the tensor €g,;. Then the equation

- k 0
Wii=giWin+ Aijwi+ Ajw
is of rank n+2 and satisfies the quadric condition. Its normalization factor is é°.

PROOF. Put h;;=e;;. Since h;; is conformally flat by assumption, the associated
normal conformal connection = is integrable. Apply Theorem 1.3 by putting 7 =0. The
Gauss and the Codazzi-Minardi equations are trivially satisfied so that there is a unique
embedding w=(w", - - -, w"*?) of the x-space into P"*! such that the induced conformal
metric is 4;; and the invariant form 7 is zero. Let

€)) Wij=gi/jwln+A’?jwk+A/?jw

be the system with the projective solution w and with the normalization factor e’. The

argument in §2.1 tells us that the surface w has the induced conformal metric ’g;;.

Therefore we have g;;=g;;. Since () is of rank n+2, Theorem 2.2 asserts that A’};=A},

and 4");=A7; |
We can formulate this in a more symmetric way:

THEOREM 2.5. Assume n23. Let o,idx'dx’ be a non-degenerate symmetic tensor
which is conformally flat. Then the system

1 1
O','j(wkl—r,‘flwp+n~2R“W>=O'k,(wij—rf’jwp+;:-—2Rijw>

is of rank n+2 and satisfies the quadric condition. Here I'’; and R;; stand for the
Christoffel symbol and the Ricci tensor with respect to o;.

PROOF. Assume first e":=0,,7#0 and put g;;=e "0;; and det(g;j))=e>". Define
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h; j=e2"g,» ; so that det(h;;) =1. We have only to combine Theorem 2.4 and Lemma 2.2 as
well as the transformation formulae of the Christoffel symbol and the Ricci tensor for A;;
into those for o

Iifo)=Ti(h) + o0+ 0,01 — hy e,
Ri(0) =Ry (h)—(n—2) (ot — ;00— O‘jr{k(h)) {4+ (n— 2)hjp°‘j°‘p}hik

where o =(1/2)n+ p and 4, is the Laplacian for h;; (see [Gol, p. 115]). Let us next turn to
the case when ¢;;=0 for all i#. Introduce new coordinates y=(") by

(%) yi=xt4xn,  yl=xt (2<iZn),
and put

0xP 0x4

Si= g oy’ ie, oydx'dxi=s;dy'dy’.

Then s;; satisfies the above assumption s,,#0. Denote by vk and by r;; the Christoffel

symbol and the Ricci tensor with respect to the tensor ¢;; and put
62W 6W Y
W=k i
Y oytoy! Vij oy* +n—2 v
Since () is linear we have
OxP 0x? Oy xP 0Ox4
ij=F;q‘—T-*—y—r’ rii=Rpg— =5
oy 0y' Ox y'ooy
and so
Ox? Ox1 , 1
W= PGyt oyl where qu=wpq_rpqwr+n_;—2quw :
Hence we have
OxP 0x? Ox" 0x*
SijWkl _sleVij= 1 (quer_ arsqu) . [:I

oy 0yl oyt 0y

3. Uniformizing equation of a Siegel modular orbifold.
3.1. Statement of the result. The domain
D={(', -,z eC"|(Imz")(Imz") - 1 (Im z/)* >0, Imz' >0}

is called the symmetric domain of type IV of dimension n(=2). If n=2, then D is
biholomorphically equivalent to the product Hx H of the upper half plane H=
{reC|Imt>0}. If n=3, then D is biholomorphically equivalent to the Siegel upper half
space H, of genus 2:
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72
{( 23 ) ' (Imt)(Im *)—(Im t2)>>0, Im 'cl>0}.
Let Q be an (n+2) by (n+2) symmetric matrix given by
(- O, ) = — O =Y ()
and let
Q" ={(% -, " e PP, -, 1" THQNO, -, 1" ) =0}

be the quadric hypersurface of P"*! defined by Q. Then the domain D can be regarded
as a connected component of the open subset of Q" through the embedding:

_‘ 2.
(@, 2 (0 Y=, 2 2 22 =) (),

The group Aut(D) of analytic automorphisms of D is a subgroup of

{XeGL(n+2, R)|XQ'X=Q}/¢ of index two via the embedding D= Q"< P"*'. The

restriction of the canonical conformal structure of Q" to D is represented by
w=dz'dz"+dz"dz' — 22;;;(dzj)2 )

Let I' = Aut(D) be a properly discontinuous transformation group acting on D, and
let D’ be the maximal open subset of D on which I' acts freely. Denote the quotient
manifold D’/T" by X and the natural projection D’—X by n. Since Aut(D) acts
conformally on D, there is a holomorphic conformal structure 7, on X. Let g;dx'dx’
(91,=1) be a conformal metric representing 7w on a chart, with local coordinates x', of
X. There is a linear differential equation (UDE) called the uniformizing equation of X in
the form (EQ) with the principal part g;; such that the projective solution gives the
inverse of m. When n=3, Theorem 2.2 tells us that g;; determine the remaining
coefficients of (UDE). Therefore if one knows g;; as functions of x', then one knows
the equation (UDE).

Indeed this is the case for the Siegel modular group I'(2) of level 2 acting on the
Siegel upper half space H, of degree 2, equipped with the canonical conformal structure

w=dr'dr® +dridr' — 2(dr?)? .

THEOREM 3.1. The regular orbit of H, under I'(2) is isomorphic to the space
X={(x", x%, x*)e C*|x'#0, 1, x/(i#))}. The image n,w is a form on X conformal to

(x! = xH)x3(x3 — 1)(dxt dx? + dx?dx') + (x — x3)x (x! = 1)(dx2dx® + dx3dx?)
+ (= xHx?(x? = 1)(dx3dx! + dx'dx?) .

The uniformizing equation (UDE) on X is given as follows:
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1 1 1 1 1
3.1 iFd—t— e )
@1 w {x’ Y172 (x'—x’—'_x‘—x")}w'

X =1) Xk -1) 1
2 — D —x) T 2 — D) — ) T e — 1)

w=0,

(k= xH)xi(x! —1) {2w,~ it (% + —1——,> w;

x/—x" x'—x

1 1 1
+| — +— . . , .
<x'—x" x* —x’) w’+(x"—x‘)(x"—x’) w}

=(x"— x)xk(x*k— 1){2wik+ < 1 "+‘—1—>Wi

xk_xJ xk_xi

1 1 1
+(— I _
<x‘ —x* + x'— x’>w" + (2! = xY)(x/ — x¥) W}

where (i, j, k) is a cyclic permutation of (1, 2, 3).

In the next subsection (Proposition 3.4), we shall express m, in terms of the x-
coordinate. Once it is done, the equation (UDE) is derived as follows: We apply
Theorem 2.5 to the tensor ¢;; of the form

0 E; E,
(O'ij)-_‘ E; 0 E, s
E, E 0

which is assumed to be conformally flat and E, E,F;#0. Put
W=w,;—Tkw,+Rw.
Then the system is
(3.2) W,;=0
EW,,—EW;=0,
where (i, J, k) is a cyclic permutation of (1, 2, 3).
The actual computation is now sketched. The inverse matrix of ¢ is given by
—E* EE, EE,
(2E,E,E,)"'| E,E, —E} E,E,
E\FE, E,E, —E2

LEMMA 3.2. The Christoffel symbols of o are given by
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1 . E; E;
i—=— E.E,). = it
ii 2 (lOg J k)l > i 2 ; (lOg Ek >|

ri= A rk:_ﬂ
4E;’ YT 4EE;

where A;=(E;);+(E)—(E); and (i, ], k) is as above.

PROOF. Here the summation rule is not applied to the indices i, j and k. By
definition, we have

. 1 . .
F;i='2— ZIO"’(ZO'”,,- —0u)= ZIO'”O'“’,' (0,;,=0)
=0 Jau i + O’ aik,i (Ek): ( _})l (IOg EjEk)i .

Hence the first equality. The others are similarly obtained. O

As for the Ricci tensor recall the definition:

Rij:Zde erul Zt”l,j""Zl,mrsrlml_Zz,mr?llrﬂ
LEMMA 3.3. The Ricci tensor is given as follows

1 E. E; E E 1 E;
R.=——— E). ——L iy _Zk —k - E.. T
i > {(log i E, (log E, )U E <log E, )u} ) (log E); | log EE,),
1 1 Ej Ej | E, E, 1 E;
4 °8 E, /); —El_ OgEjEk i E OgEjEk K

1
E\R;— EjRij=7 {Ej(l()g Ek)ij —E,(log Ej)ik}

. (logE.) (E;—E)+— : <10g g ) {E (1og§ ) +Ek<log E )}

PROOF. We show the first identity only. R;; is the sum of three parts:
R Z[ ii, 1 Z[ il, 1+Zl m(rmr! mrlmi) .

Lemma 3.2 shows

, A, A
S =i+ T+ Tk =— (logE Edit 4 +4—E——(logE,-EjEk)i.

Here note that 4;+ 4, =2(E));. The second term is
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erul F:ll+rllj+rllk

1 E; E, B Ex
_—2—(103 EE);+ {EE (10g E;).}j+ {Z_E, log E; )i

The third term is computed as follows:
Z,m(l"'”l"’ —rrrt )= Zm(l"'”l"’ ryri +FmF".—F'"F"m)
= DM —Tjy—Th)+ THTh— =T
—r;I,.(Ff +r )+{(F )2+2r{ +(r ).

The first bracket is equal to (4,—A4,)/4E;—(1/2)(log E;E,);. Notice the A,—A4;=
2{(E));—(E,),}. Hence the sum of the first two terms is

1 E EE E.E
lo E llog—L ) —E. (1 ik .
4E< gEH *("g E, > ’("g E, >}

The third term is, in view of I';;+I'y;=(1/2)(log E)),, equal to

1
4 (log EEy);(log E}); .

The last term is

AV A; 2 —AE;, —AE, 1 ,
4E, =—E 2(A;+ A)*=—{(log E)}*.
<4Ei> +<4E> +2EE, 4EE, 16 ( W= {( og E));}

Summing up these, we have

1 1 E; E; E E
R.——— E.E.E): +— EE,).+<{—L = +{ "k _L)}
ii 2 (10g i~j k)u 2 (lOg J k)u {2El <10g Ek )i}j {2E, <]0g Ej Ju

1 E; EE; EE,
4E (logE ){ «(log E, )k—E,-(log E, >J}

1 1
+ vy (log E E,);(log E}); + 4 {(log E);}*,

which implies the first equality of the lemma. O
PROOF OF (3.1). We choose a conformal class ¢ given by
(3.3) E ' = —(x = x)(x' = x*)xi(x/ — 1) xK(x*—1)

which is conformal to m,w. Substituting these into the identities in Lemmas 3.2 and 3.3,
the system (3.2) becomes the system (3.1). O

3.2. The conformal structure on a modular variety. The real symplectic group
Sp(2, R) is by definition
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A B A B 012‘A3_012>}
(¢ p ot R)Kc o) o) (e )= o
where I, stands for the k by k identity matrix. The group of analytic automorphisms of

H, is given by Sp(2, R)/ + with the action

b 12
t=<12 13>|——+(A1+B)(Ct+D)"1.

Let us consider the following two discrete subgroups of Sp(2, R):

I'=GL(4, Z)NSp(2, R): the full modular group
rQy={xXer | X=1,mod 2}: the principal congruence subgroup of level two.

The group I'(2) is a normal subgroup of I" such that
Iiry=(r/+)(re)/£)=Ss

where S, is the symmetric group on six letters. The transformation

o 12 g2
1: —
% 73 -2 3

(1e I'(2)) fixes the hyperplane F, < H, given by 1> =0. The set F of fixed points of I'(2) on
H, is given by F=TIF,,.
Consider the space

E={l=(&, -, )e(PY|E#E (#)}.
The group PGL(2, C) and the symmetric group Sg act on = as follows:

yi (& O (e 9% ye PGL(2, C)
G (él, cee 66)'—’(50(“, cee éa<6)) 0€S6 .

For &€ Z, we consider a non-singular plane curve
CQ): Wl =(u—=E'w) -+ - (u—Ew)

of genus two in P? with a homogeneous coordinate system (u, v, w). Two curves C(&)
and C(&) are biholomorphically equivalent if and only if &=g&” for some
g€ S x PGL(2, C). The space £ modulo PGL(2, C) is isomorphic to the space

A={(21, 22, ) eC?|A'#0, 1, (i#))},
which parameterizes plane curves in the Rosenhein normal form
C(2): w0 = u(u—w)(u— A w)(u—22w)(u—3w) .

Notice that the group Aut(A) of automorphisms is isomorphic to Ss. We consider the
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curve C(A) for a fixed 1€ A. We take a basis of the homology group H,(C(4), Z) so that
the corresponding four by four intersection matrix takes the canonical form

( 0 I > .

-1, 0

Then we take two linearly independent differentials of the first kind on C(4) so that the
period matrix takes the form (z, 7,). This is always possible and we get a point 7 of H,.
Notice that the choice for the basis of H,(C(4), Z) is not unique but, once it is chosen, the
choice of two differentials is unique. Notice also that 7€ H,— F, since the Jacobian
variety C?/(z, I,)Z* of the curve C() cannot be the product of two elliptic curves. Now
we let A€ A vary and let the basis of H,(C(4), Z) depend continuously on 4. Then the
correspondence A — (1) gives a multi-valued map

¢: A—> H,—F,
which turns out to be an inverse map of the natural projection
n: H,—F—> (H,—F)[I'2) x A.

Notice that (H,—F)/I' = A/Se¢. The isomorphism (H,— F)/I'(2) A can be explicitly
given as follows.
We define sixteen theta constants 0,.,.,,(7) for g’,g”’, k', "’ =0, 1 by

g/ 2 g/ g//
. / 1 2 /7
Gg’g”h’h"(t)=Zp',p"ezexp ﬂl{(p +—‘2—> T +2<p +7)<p + 5 )1;2

1" 2 ’ "
/1 g_ 3 / g_ h/ /1 L h//
+<p+2>‘t+<p+2> +<p+2>

which are holomorphic functions in

1 72
T:<'[2 1:3 )EHZ .
In terms of theta constants, the natural map n: t — (4!, A2, %) can be expressed (cf.
[Igu]) by
it =< 01 100(?) >2 < 91000‘(1) )2
65100(7) 0000(7)
/12=< 0, 100(7) )2 ( 01001(7) )2
0100(7) 00001(7)
JE ___< 0, 000(7) >2< 01001(7) )2
00000(7) 05001(7)

We have chosen the above expression from 6!=# Aut(A) possibilities. We want an
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explicit expression of the form n,(dt'dr® + de*dr! — 2(dr*)?) in terms of coordinates A, 22
and A3

PROPOSITION 3.4.  The quadratic form n (dt'dt® +dv’dt' — 2(dv*)?) is a form on A
conformal to

(A = A A3(A3 = WA dA? + d22dAY) + (A2 — A2)AN(AY — 1)(dA2dA3 + dA3dA?)
+ (A3 = INA2(A2 = 1)(dA2dA + dAtdA%y
whose discriminant is
MARRA =D - D)= DA =)A= -1Y.

The rest of this section is devoted to the proof of the proposition. We put g=
expmit® and study expansions of three lambdas A', A2 and A3 in ¢. Put

M=2+2q+0(?), P=R+23q+0(»), P=3+iq+0(),
where O(g*) stands for a holomorphic function or a form divisible by g*.

LEMMA 3.5.

Zpezexpni{<p+i>zt‘+<p+i)rz} 5 s
T % o YO

Y pez€Xp mi(p*t! + pt?) Boo(t")

1)? 1
> Ezexpni{<p+—> 1:‘+2<p+—>12} gy 5
11—_,12_411{ i 2 2 Y.pezexp mi(p>t! +2pt )}
1= 1=4%%0 - ’

910(‘[1) 000(1'-1)
'13:/1(11)7 }':l;:O’

where 0,,(w)(g, h=0, 1) are elliptic theta constants:

Ogh(w)zzpezexp ni{(p+_f;_>2w+<p+%>h} (we H)

and Mw) is the lambda function defined by

0,0(®) \*
ﬂ(w)=< Boo(w) ) )

PROOF. We have

Bo000(7) = Zp, nez €XP mi(p*t* 4+ 2pnt?)g" = 040(t") + 050009 + O(q*)
00001(1) = Zp, nez SXP ni(p*t' +2pn® + ”)‘1"2 =000(t") + 080019+ O(¢*)
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1)? 1 2
01000(DV=2, nez€XD ni{(p +—2—> 4+ 2<p +—2—)nrz}q" =0, (t")+09,,9+0(q?)

1)? 1 ,

=0,,(t")+ 07,4+ 0(g?)

1
00100(‘[)=Zp,nezexp m-{pz.[l+2p<n+?>rz}q(n+1/2)2___q1/4{gg)1)00+0(q2)}

1)? 1 ,
b ey o e

= 41/4{9(101)00 + 0(‘12)} >
where
0600 = — 06001 =2 Z,,ez exp mi(p*t' +2p7)

1 2
o=~ 04801 =2, gerori(p+ 1 ) 1425+ 3 )]

06700=2 Zpsz exp mi(p*t' + pt?)

. 1)\? 1
000=2 Zpezexp 7'El{<p+7> T4+ (p+?>rz} .

The following identity

ap+aq+ O(qz)>2 (CO+ ¢,q+0(q?) )2
bo+b,q+0(q?)) \do+d,q+0(g?)

2
AaoCo aogCo ag Co s

+2 do—cody)+5— b—ab}+0
<b0do) (bodo)Z{do (¢xdo=cody)+ > (arbo—achy) g +0(a?)

leads to

= (6(101)00 010(11)>2 2 01000, 0(7")
9%)01)00 Ooo(t?) {0301)00 Ooo(th)}?

o©
X {9—122—0)(9(11300 Bo0(t") = 0, 0(") 05300 }q +0(q?)
oolTy
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12=<9(101)00010(71)>2 12 00001 0(t")

9301)00 000(71) {0(001)00 000(71)}2

00
x{ 1;00)(9(11301 Ooo(t!)— 010(T1)0§)10)01)}‘1+0(‘12)
o0

1y \4 1)2 1
)’3___<010(T )) ) 0,0(t') 0,4(t") 109, 000(11)—010(r1)6(1)

Ooo(t") Ooo(t)* Ooo(th) o001
011(;00 Ooo(t!)— 610(71)98300} q+0( q%).

Since we have 04y, = —0{00; and 0500 = — 0590, the lemma is proved. O

COROLLARY 3.6. We have ' —i?>=qh(t!, 1%, q) and

d (AL, 22, A3) _ L
t m =qf(t', 7%, q),

where h and f are holomorphic functions in t*, ©* and q which are not divisible by q.

PROOF. The first assertion is obvious. The second follows from the calculations
below.

oA oAy 04} 0Ay 04l
ot 81? + 6111 q 61(2) + 615 q mitig | +0)
0% 0% 02y 012 ,
ér? * 61:11 1 613 + 8121 1 mitig
043 0 0
ot!
02 043 043 0Ad 043 04§
det<—6;>=niﬁf—< T R 2>q+0(q )= —2miA! a? 5.7 g+0(¢g). O
LEMMA 3.7.
1.2 1 i1 6/{(1) 3 2
qf(t',7%, q)dt =2mii] qdA*+0(q?)

073
qf(x', 7%, g)d* = 0(q)
03 022
ot!

PROOF. This follows from the expression for g f(t!, 12, q)dt/0A:

qf(t, 13, q)d* = ((M1 d2H)+0(g?) .
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, 04}
0(g’) 0(q) 2midi— 5 q+0(q?)
0(9) 0(9) 0(9)
023 072 023 0Ab Ay 02 A% 0A} 0
B ae T~ 5 00— Gt g H0W@

Let Uc A be an open subset of C? such that the closure U in C? has the property:
UN{(A, 2, B)eC?| A £ 2 =UN A.
COROLLARY 3.8. The quadratic form n (dt'di* +di*de' — 2(dt*)?) is conformally

equivalent on U to a quadratic form with the following local expression around UNV :

1
A—2
+ (holomorphic quadratic form in 1),

(dA%dA3 +dA*dA?) — (dA'dA3 +dA3dAY)

1
At—22

whose discriminant has double pole along {i' = A?}.

This implies that the holomorphic conformal structure n,(dt'dt? + de?de! — 2(dr)?)
on A can be extended to a meromorphic conformal structure # on P>>A. We can put
n=Y:,-a(Ddidi  a;=a;

Dij (4)
D(4)
DA =223 = D) (A2 = 1) = D)(A =2 (A2 =23) (AP =AY
We can assume det(g; j(/l))=D(/7L)'2 since # should be a holomorphic non-degenerate
quadratic form on A. Since I'/T'(2) =~ S acts on A as the group of automorphisms of 4,

the conformal structure of A represented by # is invariant under the action of S4. In
particular, it is invariant under the transformation:

A _# oL

a;;(A)= pi; € C[AY, 2, 13]

a:.u_l:;s Au_ﬁa #_/{3
Put
o*n=) b(2)dudy’  b;=b;.
Then we have
a;(4) ..
bij(ﬂ)=*(‘lj37 (i,j=1,2)

_ ,ujai](i) +a;(A)+ /‘iaii(/l)

7 =12

bis(w)=
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M 2y (A)+ Zi= 1 {ras(A) + (1) a(D)} +as3(A .

basli)= W

Since

D(A)=—(*)"*°D(y) and det <—2%)= —(u3)™*4,

we have
det(b; () =det(a;(A))(1®) "8 = D(A) (1) * =(1*)"*D(p) 2 .
Therefore multiplying a conformal factor (1) ~* to g*n, we should have
a (W= bW,  GJj=1,23).
In particular if i, j=1, 2, then
a; ()= () by () = (1) ~°ay ()= ()" pi D) ;
$0

w1
(3.49) Pij(#l, p, )= —(“3)4pij<"u_3’ 7, F) .

This implies, in particular, that the total degree deg(p;;) of p;; (i, j=1, 2) is at most four.
Since the form # is invariant under permutations of A!, A2 and A*, we conclude that
deg(p;)<4 (i,j=1,2,3). On the other hand, by Corollary 3.8, p,,(1) and p,,(%)
(k=1, 2, 3) are divisible by A' —4%. By using symmetry with respect to A', 4> and A3
again, we have the following expressions

PR = =2 =232’ — v

Pij ('1)=(ii_ij)rij i#)),
where g, and r;; are polynomials with deg(q,,) <1 and deg(r;;) <3. The first expression
satisfies (3.4) if and only if g,, is identically zero. Thus we have

akk(l)=0 (k=1, 2, 3)
and that the determinant of the matrix (a;(4)) can be computed as follows:
P12(Ap23(A)p3,(4) .
D(3)* '

This expression together with the identity: det(a;(4))= D(%)~? implies that deg(p;;)=3
(1=5i#j<3) and p,,(A)p,3(A)p;5,(4) = D(A)/2. Substituting the expression

pia(A) = —'12)’12 > deg(r2)=2,

det(a;;(A)=2
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into (3.2), we have
py5(A)=(const.)(A' — A3 —1).

By using symmetry of n with respect to the A’s and the identity D(!, A°, 1*)=
— D(A', 22, %), we conclude that # is expressed, up to a multiplicative constant, by

(AL =22)A3(A3 —1) (A2= A3 —1)
D() (dAYdA2 +dA2dAY) + >0

(22— AHAxA* 1)
D(4)

(dA2d13 +di3dA%)

(dA3dAN +dArdA3) .

This completes the proof of Proposition 3.4.
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