
Tόhoku Math. J.
41 (1989), 321-348

LINEAR DIFFERENTIAL EQUATIONS MODELED
AFTER HYPERQUADRICS

Dedicated to Professor Ichiro Satake on his sixtieth birthday

TAKESHI SASAKI AND MASAAKI YOSHIDA

(Received March 3, 1988)

0. Introduction. In this paper, we study systems of linear partial differential

equations in n ( ^ 3) variables of rank ( = the dimension of the solution space) n + 2. The

case n = 2 is treated in [SY1] and [SY2].

Here we would like to mention our motivation. Let D be the symmetric domain of

type IV of dimension n ( ^ 3), Γ be a transformation group acting properly discon-

tinuously on D, X be a quotient variety of D under Γ naturally equipped with the

structure of orbifold, π be the projection of D onto X and finally let φ be the inverse map

π " 1 : X->D, which is called the developing map of the orbifold X. We think there should

be a system of linear differential equations (E) defined on X such that the solution of the

system gives rise to the map φ. It is called the uniformizing differential equation of the

orbifold X. Since D can be thought of as a part of a non-degenerate quadric hypersurface

Q in Pn + ί and since we have the following inclusion relations

Aut(D) c Aut(β) c Aut(P" + 1)^ PGL(n + 2)

of the groups of complex analytic automorphisms, the system (E) must be of rank n + 2

and the mapping defined on X by the ratio of n + 2 linearly independent solutions of (E)

has its image in the hyperquadric Q. In this way we encounter equations in n variables of

rank n + 2. Making a linear change of independent variables x = (x1, , xn) if necessary,

we may assume that any system in n variables of rank n + 2 with the unknown w has the

form

d2w d2w ™ , dw

where

This system is the key to connecting the theory of conformal connections, the projective
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theory of hypersurfaces and the theory of uniformizing differential equations of

orbifolds uniformized by symmetric domains of type IV. The ratio of n + 2 linearly

independent solutions is called a projective solution.

Let a hypersurface M in Pn + 1 be the image of the projective solution of (EQ). We

study in § 1, as a preparation, the induced conformal metric II on M and the cubic

invariant form III of the embedding MczPn + \ and formulate the fundamental theorem

of projective hypersurfaces (Theorem 1.3). We show that the coefficients gu represent the

induced conformal metric II and that the coefficients Ak

i} and A°i} are expressed in terms

of II and the cubic invariant III (Theorem 2.1). When M is a quadric hypersurface, we

show that the coefficients Ak

i} and A°i} are expressed in terms of the gt/s (Theorem 2.3).

Conversely, for a given conformally flat quadratic form gip we can associate a system of

the form (EQ) with the principal part gu such that the projective solution has its image in

a hyperquadric in Pn + 1 (Theorem 2.4).

Let X be an ^-dimensional orbifold (or simply a manifold) which has a conformally

flat structure. As Kuiper ([Kui]) pointed out, there is a conformal map, called the

developing map, from the universal cover of X into the model space, hyperquadric in

Pn + ί. Applying Theorem 2.4, we can answer the following question: "How can we get

the developing map?" Let gυijdxι

υdxj

υ be the conformal structure for coordinate

neighborhoods (£/, xv). We consider the system (EQ)^ of the form (EQ) with the gVi/s as

the principal part such that the image of the projective solution φv is a part of a

nondegenerate quadric hypersurface in Pn + 1. If Fis another chart such that VΓ\ UΦ0

then φv and φv are projectively related. The developing map of X is given by the

collection {φυ}υ.

Let M = H2 be the Siegel upper half space of degree 2 and Γ(2) be the Siegel

modular group of level 2. The regular orbit of H2 modulo Γ(2) is known to be the space

Λ = {(λ\λ2, Λ 3 ) e C 3 | / l V 0 , \,λJ

Let π: //2->Λ be the natural projection. The space A can be thought of as the parameter

space of a family of curves of genus 2:

C(λ): w V = u(u - w)(u - λ1 w)(u - λ2w)(u - λ3w)

in the projective plane. The periods of C(λ) gives a (multi-valued) inverse of π and they

satisfy a system of linear differential equations which is sometimes called the Gauss-

Manin connection of the fiber space \JλC(λ)^A. In §3, we explicitly write down the

system of differential equations, which turns out to be of the form (EQ).

1. Review of the projective theory of hypersurfaces.

1.0. Summary. In this section we recall the fundamental formulation of the

intrinsic conformal geometry and the projective theory of hypersurfaces, which are

necessary in the discussion of systems of linear differential equations in the following

sections. Although the fact stated in this section is already known by [Sas], our present
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version is made in order to clarify and to show up the story of the theory, which may not
be easy to grasp in reading [Sas].

To have a better understanding of the theory, we first recall the gist of the intrinsic
Riemannian geometry, that of hypersurfaces in the Euclidean spaces and the fundamen-
tal theory connecting them.

Intrinsic Riemannian geometry: Let M be an ^-dimensional manifold equipped
with a Riemannian metric. Then there is a unique affine connection compatible with the
metric (Levi-Civita connection). The Riemannian curvature tensor is defined by the
Levi-Civita connection.

Hypersurfaces: Let i: M<^Rn + ι be an embedding of a manifold M. The induced
metric and the second fundamental form are defined on M. The Levi-Civita connection
and the Riemannian curvature tensor of the induced metric are defined as above. They
are related as follows:

Gauss equation: The Riemannian curvature tensor is expressed in terms of the
second fundamental form.

Codazzi-Minardi equation: The covariant derivatives of the second fundamental
form and the induced metric are related.

Fundamental theorem: Let M be a manifold equipped with a Riemannian metric
and a quadratic form. They are the induced metric and the second fundamental form
defined by some embedding i: MaRn + 1 if they satisfy the Gauss equation and the
Codazzi-Minardi equation. The embedding i is unique up to rigid motions of Rn + ί.

Now we summarize the gist of the intrinsic conformal geometry, that of hyper-
surfaces in the projective space and the fundamental theorem connecting them.

Intrinsic conformal geometry: Let M be a manifold equipped with a conformal
metric h. Then there is a unique conformal connection π compatible with the conformal
metric (the normal conformal connection). The conformal curvature tensor C is defined
by the normal conformal connection.

Hypersurfaces'. Let i: MaPn + 1 be an embedding of an /^-dimensional manifold
M. The induced conformal metric h and the 1-form τ (called the invariant of i) are
defined. The normal conformal connection π and the conformal curvature tensor C of
the induced metric are defined intrinsically as above. They are related as follows.

Gauss equation: The conformal curvature tensor is expressed in terms of the
invariant τ.

Codazzi-Minardi equation: Covariant derivatives of τ and the induced metric h
are related.

Fundamental theorem: Let M be a manifold equipped with a conformal metric h
and a 1-form τ. They are the induced conformal metric and the invariant defined by
some embedding i: M<=P" + 1 if they satisfy the Gauss equation and the Codazzi-
Minardi equation. The embedding i is unique up to projective transformations of Pn + 1.

1.1. Intrinsic conformal geometry. We recall some facts on the conformal
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connection. A precise and detailed description can be found in the book [Kob].
Let M be an ^-dimensional complex manifold and h = (hij) be a non-singular

symmetric matrix. Define the group of conformal transformations for h to be

CO(/0 = {λaIaeGL(n, C), ahta = h, λeC*} .

Let L(M) be the bundle of complex linear frames on M. A holomorphic principal
subbundle P of L(M) with structure group CO(Λ) is called a holomorphic CO(h)-
structure. Such subbundles on M are in a natural one-to-one correspondence with the
sections M-^L(M)/CO(h). In other words, for such a structure, we associate a
conformal covariant tensor field g = (g(j) called a conformal metric written locally as

with respect to a local coordinate system (V). (Throughout this paper, we follow
Einstein's convention.)

We consider a non-singular hyperquadric Qn in Pn + ί defined in terms of the
homogeneous coordinate system (z°, , zn + 1) by the equation

Let Q be the symmetric matrix of degree n + 2 corresponding to this quadratic form:

/ 0 0 - 1

Q = ί 0 h 0

\ - 1 0 0/

The group

acts transitively on the hyperquadric. Let H be the isotropy subgroup at '(0, , 0, 1). It
consists of matrices of the form

(1.1)

We have a principal bundle O(Q) over Qn = O(Q)/H with structure group H. The linear
isotropy representation of the group H at f(0, •••,(), 1) has a non-trivial kernel
consisting of matrices of the form

λv=\, ahta = h, b = λahtc, μ = λchtc/2.
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Denote this kernel by N. Then H/N is isomorphic to CO(h). Thus we have a principal

bundle O(Q)/N over the hyperquadric Qn = O(Q)/H with structure group CO(Λ):

0(0 0(Q)/N

{ H j H/N^CO(h).
Q" = 0(Q)IH=0(Q)IH

This is called ίΛe canonical conformaί structure of the quadric. The associated conformal

metric is given as follows. Let φ=—2dz°dzn + 1+hijdzidzj be the tensor field on

C + 2 - { 0 } . Let s be a local section of the bundle C + 2 - { 0 } over Pn + ι . Although the

pull-back s*φ depends on the section s, its restriction to Qn is defined independently of s

up to a multiplicative factor of non-vanishing holomorphic functions. Thus the

conformal metric of s*φ\ Q" is uniquely defined.

Consider again a CO(/z)-structure P on a manifold M. Let P2(M) be the bundle of

2-frames over M with structure group, elements of which are holomorphic 2-frames of

Cn at the origin ([Kob, Chapter 4, § 5]). The first prolongation of P, which is a principal

subbundle of P2(M) with structure group H, is denoted by P{1). The correspondence

between P and P{1) is known to be bijective ([Kob, Chapter 4, §6]). In fact, we can

recover P from P{ί) by putting P=P{ί)/N. For the hyperquadric β", this bundle P(1) is

nothing but the bundle O(Q)^O(Q)/H. The bundle P{1) has Cartan connections ([Kob,

Chapter 4]). Let o(Q) be the Lie algebra of O(Q). Then a Cartan connection in question

is a 0(0-valued 1-form π on i*1* considered as a set of 1-forms (πhπ
j

hπ
j) by the

identification

π =

where π°= — (l/«)£π£. The forms π/and πJ are the restriction to Z*1* of the components

of the canonical form of P{ί). They have the property dπj=J^πk Aπ{. The curvature

form Π of π is defined by Π = dπ — π A π which is written as

77 =

/77°

(77°

\ 0

0

Π{

h>kΠ°k

0

0

-77°

There exists a unique Cartan connection, called the normal conformal connection,

satisfying the (normalization) condition

where

77/ - δ\Π° = dπ\ - πf Λ π{ - π, A πJ - hikh
Jίπk Λ π, - δjπk A πk =: — CJ

ω πk Λ π r .
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In fact, this condition determines the forms π, uniquely ([Kob, Chapter 4, Theorem 4.2]).

D E F I N I T I O N . A CO(/z)-structure P (or a conformal metric g) is said to be confor-

mally flat if the normal conformal connection π is integrable, i.e., Π = dπ — π AU = 0.

1.2. Projective theory of hypersurfaces. Suppose we are given a piece of an n-

dimensional hypersurface M in the projective space Pn + 1. Let /: M-^Pn + 1 be the

embedding. We assume the map / to have a lift, denoted by e0, to Cn+2 — {0}, the

natural covering of Pn + ί. Let {el9 , en} be a set of independent tangent vector fields to

M along e0 and choose another vector field en +1 so that det (e0, ex, , en9 en + {) = 1 with

respect to a fixed frame of Cn+2. Then the hypersurface M is described by the motion of

the vectors ea ( 0 ^ α ^ « - h 1) which we call a projective moving frame field along M. We

introduce the associated Maurer-Cartan form ω by

de = ωe.

Here we use abbreviations e = (e0, eu • , en + ι) and ω = (ωj), the indices α, j8, ••

ranging from 0 to « + 1. When we use the indices /,y, , these are understood to range

from 1 to n. The 1-form ω has values in sl(n + 2, C). It satisfies the Maurer-Cartan

equation:

(1.2) dω = ωΛω, i.e., dωβ

aL = ώ)

a/\ωβ

y .

First notice that the above choice for a frame implies ω^ + 1 = 0 , and {ω^ 11 ̂ j^n} are

independent on M. In the rest of this paper, we write ωi = ωJ

0. Then (1.2) implies

0 = dωo

n + 1 = ω k Λ ω J + 1, which allows us to put

(1.3) ωΓ + 1 = * i k ω f c , Aίk = Λkί.

We have

ω°0 ωj 0

Let us define a symmetric quadratic form II on M by

(1.4) H =

An important property of this form is its invariance in the following sense. Let e' be

another projective frame, which is easily seen to have the form

I λ 0 0'
(1.5) e' = ge with g=ί b a 0

\μ c v

where λ, μ and v are scalar functions, a is an n x n matrix function, and b and c are n-
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vector functions. Then the associated Maurer-Cartan form ω' is given by

(1.6) ω/ = (dg + gω)g'\

and this leads to the identity

(1.7) λvh[Γa\hk[a\.

In particular, the associate quadratic form II' is given by

(1.8) Π ' = 4 Π

This implies that the conformal class of II is intrinsic on the manifold M. Hence,

especially, its rank is independent of the choice of frames. We now assume that the form

II is non-degenerate. Notice that the above process defining II shows that it is

determined by the second order derivatives of the embedding /. We next derive another

invariant which depends on its third derivatives. In order to make the following

formulae look simpler, we choose a frame so that

(1.9) detA0.= l , ω° + ω"nX\=0.

This is possible because of the non-degeneracy assumption for II and the transformation

rule (1.6). Then the exterior derivation of (1.2) gives

(dhij—hikω
kj — hjkω

k) Λ ω 7 — 0 ,

which enables us to define a symmetric quantity hijk by

(1.10) hijkω
k = dhij ~ nikω) — hjkω

k.

Let us define a symmetric cubic form III on M by

(1.11) III = A W

and call this the (Wilczynski-Fubini-Pick) cubic invariant form. Indeed it has the

invariance:

(1.12)

III =A 2 IΠ

with respect to the frame change (1.5). The role of this form can be seen in:

PROPOSITION 1.1. Let M be a connected piece of a hyper surface in P π + 1. Assume

the quadratic form II is non-degenerate and the cubic invariant form III vanishes

everywhere. Then M is contained in a quadric hypersurface.

The projective description of a hypersurface needs one more invariant. Take a

derivation of ωQ + ω"nX\=0. Then we have



328 T. SASAKI AND M. YOSHIDA

which allows us to define a symmetric quantity Ltj by

(1.13) hifi^n + 1 ~~ ω°i = LijCOj .

It is possible to show the existence of a projective frame satisfying

(1.14) dethij=\, α>o + ω" + } = 0 and tracehL( = Lijh
ij) = O.

Now we fix a frame e with this property. Then, at every point p where the frame is

defined, the matrix h = (hij) defines a Lie group by (1.1) which we denote by H{p).

Analogously, the group O(Q(p)) and its Lie algebra o(Q(p)) are defined. Take another

frame e' with the property h'ij = hij and (1.14). A calculation shows that the frame

change g from e into ef belongs to the group H(p) at each p.

We next formulate the fundamental theorem by using the language of conformal

geometry. Define a tensorial matrix-valued 1-form τ by

0 0 0

(1.15) τ=f
2 '•

'» + i hjlMιk<

where

-ω° /Λl/,tω 0

_ - 1 F _ J _ L

Kik = hipqh^k and F=hpqrh"'9

and put

(1.16) π = ω + τ .

(Here the raising of indices relative to hi} is used. e.g. hij

k = hijph
pk.) Then a computation

shows the invariance

(1.17) τ '

under the frame changes belonging to the group H(p) for each point p\ and it is easy to

see the form π has its value in the Lie algebra o(Q(p)). Let Π be the curvature tensor of

π. It has the following expression with 77° = 0:

= dπ —
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where Π° = hijΠ
j

n + ί. Since Π is a tensorial 2-form, we may put

(1.17) Π{=±σiklω
kΛωι C t t I +C' I I k = 0

Π?=±Ciklω
kΛωι Cikl+Cilk = 0.

The choice for τ has been made under the normalization condition

(1.18) C' y ι = 0.

In this notation, the following analogues of the Gauss and the Codazzi-Minardi
equations hold:
(1.19) (The Gauss equation)

Cijki = himC m

m=—(hilphkf - hikph/) + — — (hjkKn - hnKik + hnKjk - hikKβ)

iu =fu, k -fik, i + — (hjLfl - ha

jhjk) ,

where/, is the projective analogue of the Schouten tensor defined by

F

and filk is the covariant derivative of fu with respect to π, i.e., fu,kcok =

, _ {
 K i F h

Jiι~ 4(n2) α + 8 ( n l ) ( n 2 ) iι

(1.20) (The Codazzi-Minardi equation)

hijk, i — hiji, k = ^i/^jfe - Likh}l -f L jZΛlfc - Ljkhu

Lij, u - Lik, j = hulfik ~ hik% + 2{hikyj - htjy k)

where yt is defined by ω^ + 1 = — y^ and hijk h LijΛ and yuj are covariant derivatives of
hijk, Lij and yt with respect to π.

Now we choose a frame £ so that h is a constant matrix, which we denote by °h. This
is possible by (1.7). Then the set of projective frames satisfying (1.14) and h(p) = °h
becomes a principal bundle P with the group H, corresponding to °/z, as the structure
group. The 1-forms π and τ corresponding to ge(geH) can be thought of as 1-forms on
P in view of (1.6) and (1.17). We denote these forms by ft and τ. These considerations
then show:

PROPOSITION 1.2. The pair (P, ft) defines a normal conformal connection defined in
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§ 1.1 on the hyper surface M. The form τ is the invariant satisfying the relations (1.19) and

(1.20).

Conversely we have:

THEOREM 1.3. Let M be an n (^.3)-dimensional complex manifold with a normal

conformal connection π. Let τ be a tensorial \-form in the form (1.15). Assume that the

covariant derivatives of τ satisfy the relation (1.20) and that the curvature tensor of π is

given by (1.19). Then, for a given point p of M, there exists a neighborhood of p which can

be embedded as a non-degenerate hypersurface in a projective space of dimension n+ 1 so

that π and τ become the connection and the invariant induced by this embedding,

respectively. This embedding is unique up to projective transformations.

For the proof of this theorem and for the induction of the above formulae, see [Sas].

For use in the next section, we review the local expression, for πj and π° in terms of the

conformal structure tensor htj. Let (xι) be a local coordinate system and choose a frame

so that ^ = dxl. (This frame is, in general, different from the frames defining the bundle

P.) The definition of π in (1.16) is so made that dhu — hikπ
k — hjkπ

k =0. This leads, as

usual, to the identity π{ = Γj

ikω
k, where Γ\k is the Christoffel symbol of hu:

Πk = y hj\hilt k + hkU- hikί t), dhn = hilt kω
k.

Let Rj

ikl be the Riemannian curvature tensor:j

ikl

dn\ - πf Λ n[=—Rj

ikιω
h A ωι.Rikι

The Ricci and the scalar curvatures are denoted by Ru and by R, respectively:

Ru= R>UJ, R = WRU.

If we put π°= —Sikω
k then the definition (1.17) implies

Cj

ikl = Rj

ikl + Sikδ{ - Suδi + hiktiSml - hah^Smk.

The requirement (1.18) easily shows

(..2.)

The tensor Si} is called the Schouten tensor relative to the tensor
i}

2. Local geometric theory of linear differential equations in n variables of rank n + 2.

The purpose of this section is to give a geometric interpretation for the system of linear

differential equations in n variables of rank w + 2, by using the projective study of hyper-

surfaces reviewed in § 1.
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2.1. Geometry of hypersurfaces defined by linear differential equations. Let us

first fix such a differential system. x = ( x 1 , , JC") will denote a coordinate system and

subindices attached to functions mean derivatives with respect to these coordinates, e.g.,

wi = dw/Bx\ wij = d2w/dxιdxJ. Let us consider n + 2 linearly independent functions

H> , ' , W in x. They are solutions of linear differential equations

w

W:: W)

.,n + 2

W n + 2

yij

1 kl W; 1 W n + 2

= 0

with the unknown w. Since the linear independence of wι says that

H'ί

κ +2

for some pair (1,7), we may assume

equation by Aίn, we get a system

without loss of generality. Then, dividing the

(EQ) Wij^gijW j

where

(2.1) 4 = 4 > 4 = 4 ' Λj

The functions Ĥ 1 also satisfy equations

w W n + 2

W

w"

n + 2

Wi ijk

= 0.

A part of these equations will be written for short as

(2.2) wιjH = GjW
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Notice that these equations are derived from (EQ) by differentiation.

The system (EQ) when n = 2 was first treated by Wilczynski in his memoirs [Wil] in

the beginning of this century. The reformulation of this case was given by the authors in

[SY 1] in terms of the moving frame method. In this paper we treat this system when

H^3, aiming at making the geometric meaning of the coefficients clear.

Let us consider the equation (EQ) with (2.1) of rank n + 2 which satisfies

(2.3) J = d e t ^ - # 0 .

We fix a vector w = (wx, , H'"* 2 ) made of linearly independent solutions, which defines

a local embedding of the x-space into the projective space of dimension n + 1. We call

this embedding the projective solution of (EQ), which is unique up to PGL(n + 2, C). By

abuse of language we sometimes regard w as the embedded hypersurface. Put

(2.4) eβ = det(fw,fw1, , fw I I,
ίw l l l),

which we call the normalization factor of the system (EQ). The function θ is independent

of the choice of w up to additive constants. Define a set of vectors e = t(e0, , en + ί) by

(2.5) eo = w, ei = wt, en + 1=e~θwln.

Then this is a projective frame along w in the sense explained in § 1. The system (EQ) and

the equations (2.2) can be written in a Pfaffian form

(2.6) de = ωe

where

= A%dxk

V e-βB°kdxk

dxJ

A\k

e~6

dxk

'B{dxk

0

e\

(G

1ikdxk

)dx

is the Maurer-Cartan form of the frame e. The result of § 1 says that the tensor hij = eθgij

defines the induced conformal metric of the hypersurface. Then the process of

normalization in § 1 can be applied to the above frame e. A suitable choice of a

transformation g in the form

(2.7)

suffices for this normalization. Namely, writing ω' = dg-g ί + gωg *, which is a coframe

of the transformed frame e'' =ge, the element g is determined so that

(2.8) deth[>= 1 , ωό° + ω£+l = 0 and traceLy = 0 ,

(see Proposition 1.2). Then by (1.16) ω' is decomposed into the sum of the connection
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form π associated with h^ and the tensorial invariant form τ of the embedding w.

Reversing this process, we have

(2.9) ω = dh-h

for h = g ~*. The point here is that the right hand side is known to have a geometrically

invariant meaning. Consequently, the coefficients of the system (EQ) is written in terms

of the invariants of the hypersurface w, which we now write down explicitly. Since

h'ij = λn+2hij = λn+2eθgip the component λ is determined by

(2.10) λ = (enθAy1/n{n+2).

The other components c and μ may be computed by the normalization process. In the

present case, however, they can be determined also by the requirements A$n = A°ln=0.

We prove:

THEOREM 2.1. Let the equation (EQ) of rank n + 2 (n^>3) with (2.1) and (2.3) be

given. If the normalization factor satisfies

(2.11)

then the coefficients A\k are given by

Here Γ\k and Sik are the Christoffel symbol and the Schouten tensor of the tensor eθgip

defined in § 1.2. The hj

ik, Lik and Mik are components of the form τ defined in § 1.2 with

respect to the normalized frame ge.

PROOF. Put hij = eθgij. Since λ is chosen to be 1, we have h'ij = hij. By our dis-

cussion in § 1, π and τ have the following form

π = \ π ? πj π? + ί )=[ -Sίhdxk Γ\kdxk hikdxk

dxj 0

Γ{kdxk hi

-hjlSlkdxk 0

Note that TΓQ = πn

nX\ = 0 because ω^0 = 0, which is deduced by <x>o = 0 and by the choice of

g(λ=l). Substituting these expressions into (2.9), we get
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(2.12)

πj

πj

n + ί-τj

n + ί-dcj-μπj . Λ

Hence

The requirements A\n = A°ln = Q are satisfied when

(2.14) c J = - e - \ r [ n ~ h \ n ) , μ = e ( ί n ln ln)

Substituting these equalities into (2.13), we have the formulae. •

R E M A R K . From (2.12) and (2.14) follow also the formulae for G} and B} in (2.2).

If the equation (EQ) does not satisfy the condition (2.11), then by multiplying a

suitable function to the unknown w, one can transform (EQ), without changing the

hypersurface w nor the coefficients gip into one satisfying the condition. The other

coefficients are obtained by the following lemma, the proof of which is a straightforward

computation.

LEMMA 2.2 Let the system (EQ) be given with the normalization factor eθ. If the

unknown w is transformed into a new unknown u by w = e~au, then the system is subject to

the change

(2.15) uik

where

(2.16) Pίk = Λik + oi

The new normalization factor is e

e + (n+2^

2.2. Linear differential equations defining maps into hyperquadrics.

DEFINITION. The system (EQ) is said to satisfy the quadric condition if the image

of w is contained in a certain quadric hypersurface, i.e., if the cubic invariant form III

vanishes identically (Proposition 1.1).

Since the quadric hypersurface is conformally flat, the invariant τ vanishes under
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the quadric condition; and the connection form π itself is flat. This fact can also be seen

directly from the formulae (1.19) and (1.20). Therefore we get the following from

Theorem 2.1.

THEOREM 2.3. Let the equation (EQ) of rank n + 2 (n^3) satisfying (2.1), (2.3)

and (2.11) be given. If it satisfies the quadric condition, then the coefficients A\k are

expressed as rational functions in g(j and their derivatives'.

(2-17) A\k = Γ\k

Here Γ\k and Sik are the Christoffel symbol and the Schouten tensor of eθgu.

Converse of this theorem holds.

THEOREM 2.4. Assume n^3. Let gijdxidxj(g1 n = 1) be a non-degenerate symmetric

tensor which is conformally flat. Define θ so that det(Λ/0 ) = 1 and define quantities A\}

and A®j by (2.17) according to the tensor eθgu. Then the equation

fjWk + A%w

is of rank n + 2 and satisfies the quadric condition. Its normalization factor is eθ.

PROOF. Put hij = eθgij. Since hu is conformally flat by assumption, the associated

normal conformal connection π is integrable. Apply Theorem 1.3 by putting τ = 0 . The

Gauss and the Codazzi-Minardi equations are trivially satisfied so that there is a unique

embedding w = (wί, , wn+2) of the x-space into Pn + ί such that the induced conformal

metric is hu and the invariant form τ is zero. Let

(#) Wij=9'ijWln + A '*}Wk + A %W

be the system with the projective solution w and with the normalization factor eθ. The

argument in §2.1 tells us that the surface w has the induced conformal metric eθg'ij.

Therefore we have g^g^ Since (#) is of rank n + 2, Theorem 2.2 asserts that Affj=Afj

and A% = A9j. D

We can formulate this in a more symmetric way:

THEOREM 2.5. Assume n^3. Let σijdxidxj be α non-degenerate symmetic tensor

which is conformally flat. Then the system

- ^ 2 RklW)= σkl(WiJ~ r?Jw?+~l2R>Jw)

is of rank n + 2 and satisfies the quadric condition. Here Γfj and Ru stand for the

Christoffel symbol and the Ricci tensor with respect to σfJ .

PROOF. Assume first eη: = σlnφ0 and put gij = e~ησij and det(0o) = e ~ 2 T Define
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hij = e2pgij so that det(/ztj) = 1. We have only to combine Theorem 2.4 and Lemma 2.2 as
well as the transformation formulae of the Christoffel symbol and the Ricci tensor for hu

into those for σ0:

Πk(σ) = Γ{k(h) + α^ί + 0Lkδ{- hik

RiklP) = Rik(h) ~(n- 2)(ocik - aμk - otjΓj

ik(h)) - {Ahoc + (n - 2)hjpoιμp}hik

where oι = (l/2)η + ρ and J Λ is the Laplacian for AfJ. (see [Gol, p. 115]). Let us next turn to
the case when σi7 =0 for all iφj. Introduce new coordinates y — iy1) by

and put

dχp dχq

= σ

Pq jyΓ -jjΓ > i-e., σudxιdxJ = s

Then 50 satisfies the above assumption slnφΰ. Denote by yί and by rtj the Christoffel
symbol and the Ricci tensor with respect to the tensor Gtj\ and put

...

Since (*) is linear we have

k_ dχP dxq δyk _ XP dx*

and so

;K«w

Hence we have

dχp dχ« dχr dxs

D

3. Uniformizing equation of a Siegel modular orbifold.

3.1. Statement of the result. The domain

D={(z\ •• ,zπ)

is called the symmetric domain of type IV of dimension «(^2). If w=2, then D is
biholomorphically equivalent to the product HxH of the upper half plane H=
{τeC\ Imτ>0}. If w = 3, then Z) is biholomorphically equivalent to the Siegel upper half
space H2 of genus 2:
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Let Q be an (n + 2) by (n + 2) symmetric matrix given by

( Λ ' " 9 t n + 1)Q%fl9 - -,tn + 1)=-t°tn + 1 + t1

and let

be the quadric hypersurface of Pn + 1 defined by Q. Then the domain D can be regarded
as a connected component of the open subset of Qn through the embedding:

The group Aut(D) of analytic automorphisms of D is a subgroup of

{XeGL(n + 2, R)\XQtX=Q}/± of index two via the embedding DczQn<=Pn + ι. The

restriction of the canonical conformal structure of Qn to D is represented by

ω = dz1dzn + dzndz1 -2ΣnjZl

2(dzj)2 .

Let Γ cz Aut(Z)) be a properly discontinuous transformation group acting on D, and
let D' be the maximal open subset of D on which Γ acts freely. Denote the quotient
manifold D'/Γ by X and the natural projection D-+X by π. Since Aut(Z)) acts
conformally on Z>, there is a holomorphic conformal structure π^ω on X. Let gijdxidxj

(gin = 1) be a conformal metric representing π^ω on a chart, with local coordinates x\ of
X There is a linear differential equation (UDE) called the uniformizing equation of Xin
the form (EQ) with the principal part gV) such that the projective solution gives the
inverse of π. When «^3, Theorem 2.2 tells us that gu determine the remaining
coefficients of (UDE). Therefore if one knows gtj as functions of x\ then one knows
the equation (UDE).

Indeed this is the case for the Siegel modular group Γ(2) of level 2 acting on the
Siegel upper half space H2 of degree 2, equipped with the canonical conformal structure

ω = dτιdτ3 + dτ3dτ1-2(dτ2)2 .

THEOREM 3.1. The regular orbit of H2 under Γ{2) is isomorphic to the space
X={(x\ x2, x3)eC3 |x ιVθ, 1, x\iΦj)}. The image π^ω is a form on X conformal to

(x1 -x2)x3(x3 - \)(dxιdx2 + dx2dxx) + (x2 - x W ^ l)(dx2dx3 + dx3dx2)

+ (x3-x1)x\x2-\)(dx3dxl+dx1dx3).

The uniformizing equation (UDE) on X is given as follows:
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1 1 1 / 1 1
(3.1)

x' " x ι-l ' 2 W-xj x'-x

x\xk-l)

( Vx7 — x xJ — xJ

+ ) +

where (i,j, k) is a cyclic permutation of (I, 2 , 3 ) .

In the next subsection (Proposition 3.4), we shall express π^ω in terms of the x-
coordinate. Once it is done, the equation (UDE) is derived as follows: We apply
Theorem 2.5 to the tensor σu of the form

0 E3

Ey 0

E2 Eγ 0

which is assumed to be conformally flat and EιE2E3Φθ. Put

Then the system is

(3.2)

where (z,y, k) is a cyclic permutation of (1, 2, 3).
The actual computation is now sketched. The inverse matrix of σ is given by

E2Eλ - E\ E2E:2^3

2
3EX E3E2 —E\

LEMMA 3.2. The Christoffel symbols of σ are given by
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1 ;: =

4Ej 4EiEj

— (£•;)( and (i,j, k) is as above.

PROOF. Here the summation rule is not applied to the indices i, j and k. By

definition, we have

Hence the first equality. The others are similarly obtained. •

As for the Ricci tensor recall the definition:

Rij = Δ^lR ilJ==Δ^lΓij,l~ΣlΓil,j + Ll,mΓ?jΓml — Zul,mΓ'ilΓjm .

LEMMA 3.3. The Ricci tensor is given as follows

E, (. E;_

EkRik - EjRtJ=±- {Ej(\og Ek)u -

PROOF. We show the first identity only. RH is the sum of three parts:

Rii = Σ/^a,/ ~ Σ/^/Z, i "*~ Σ/, m^Ti^lm ~ Γ™Γmi) .

Lemma 3.2 shows

Here note that Aj+Ak = 2(Ei)i. The second term is
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The third term is computed as follows:

L. J f «r'mί - r jr { j = Σ J Γ jrί,, - nrjm+r?kr
k

mt - ΓJ

The first bracket is equal to (Ak-Ai)/4Ej-(l/2)(\ogEiEk)j. Notice the Ak-Ai

\. Hence the sum of the first two terms is

The third term is, in view of Γj

β + Γk

ki = (l/2)(log £,-).•> equal to

—

The last term is

Summing up these, we have

iJk

which implies the first equality of the lemma. Π

PROOF OF (3.1). We choose a conformal class σ given by

(3.3) Er1 = - ( x ' - x ό ^ - x V ^ - l)x\xk- 1),

which is conformal to π^ω. Substituting these into the identities in Lemmas 3.2 and 3.3,

the system (3.2) becomes the system (3.1). •

3.2. The conformal structure on a modular variety. The real symplectic group

5/7(2, R) is by definition
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Ά B\f 0 I2Y(A B\J 0 I2

c D)\-I2 O)\C D) \-I2 o

where Ik stands for the k by k identity matrix. The group of analytic automorphisms of
H2 is given by Sp(2, /?)/ ± with the action

- l

Let us consider the following two discrete subgroups of Sp(2, R):

Γ = GL(4, Z)Π 5/7(2, /?): the full modular group
Γ(2) = {XeΓ\ X=I4moά2}: the principal congruence subgroup of level two.

The group Γ(2) is a normal subgroup of Γ such that

where S6 is the symmetric group on six letters. The transformation

rl

(i e Γ(2)) fixes the hyperplane FoczH2 given by τ2 =0. The set F of fixed points of Γ(2) on
H2 is given by F=ΓF0.

Consider the space

S = {ξ = « 1, , ξ 6 ) e ( P 1 ) 6 | ξ / # ^ (iΦj)}.

The group PGL(2, C) and the symmetric group S6 act on Ξ as follows:

For ξ G Ξ, we consider a non-singular plane curve

C(ξ): w4v2 = (u-ξ1w) - (u-ξ6w)

of genus two in P2 with a homogeneous coordinate system (w, v, w). Two curves
and C(ξf) are biholomorphically equivalent if and only if ζ = gξ' for some
geS6x PGL(2, C). The space Ξ modulo PGL(2, C) is isomorphic to the space

\λiϊ0, l,λJ

which parameterizes plane curves in the Rosenhein normal form

C(λ): w3v2 = u(u - w)(u - λ1 w)(u - λ2w)(u - λ3w).

Notice that the group Aut(yl) of automorphisms is isomorphic to S6. We consider the
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curve C(λ) for a fixed λeΛ. We take a basis of the homology group Hλ(C(λ), Z) so that
the corresponding four by four intersection matrix takes the canonical form

0 I2

-h o
Then we take two linearly independent differentials of the first kind on C(λ) so that the
period matrix takes the form (τ, /2). This is always possible and we get a point τ of H2.
Notice that the choice for the basis of H^Ciλ), Z) is not unique but, once it is chosen, the
choice of two differentials is unique. Notice also that τeH2 — F, since the Jacobian
variety C2/(τ, I2)ZAr of the curve C{λ) cannot be the product of two elliptic curves. Now
we let λeΛ vary and let the basis of Hx{C{λ), Z) depend continuously on λ. Then the
correspondence λ -• τ(λ) gives a multi-valued map

φ: Λ -> H2 — F,

which turns out to be an inverse map of the natural projection

π:H2-F^{H2-F)/Γ(2)*Λ.

Notice that (H2-F)/Γ^Λ/S6. The isomorphism (H2-F)/Γ(2) ^Λ can be explicitly
given as follows.

We define sixteen theta constants θ . ..wh,,{τ) for g', g", h\ h" = 0, 1 by

which are holomorphic functions in

'=l τ 2 τ 3 ) ^ 2

In terms of theta constants, the natural map π: τ -* (λ1, λ2, λ3) can be expressed (cf.
[Igu]) by

V^OlOoWy VβoOOoW/

A o o i M / •

We have chosen the above expression from 6! = #Aut(Λ) possibilities. We want an
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explicit expression of the form π^(dτιdτ3+ dτ3dτι — 2(dτ2)2) in terms of coordinates λ1, λ2

and λ3.

PROPOSITION 3.4. The quadratic form π^(dτιdτ3 + dτ3 dτι - 2(dτ2)2) is a form on A
conformal to

(λ1 - λ2)λ3(λ3 - \){dλxdλ2 + dλ2dλί) + (λ2 -λ3)λ\λι - \){dλ2dλ3 + dλ3dλ2)

+ (λ3-λ1)λ2(λ2-\)(dλ3dλ1+dλ1dλ3),

whose discriminant is

λ1λ2λ3(λ1-l)(λ2-l)(λ3-\)(λ1-λ2)(λ2-λ3)(λ3-λ1).

The rest of this section is devoted to the proof of the proposition. We put q =
expπ/τ3 and study expansions of three lambdas A1, λ2 and λ3 in q. Put

λ^λ'o + λlq+Oiq2), λ2 = λ2 + χ2q + 0(q2), λ3 = λ3 +

where O(qk) stands for a holomorphic function or a form divisible by qk.

LEMMA 3.5.

°~ °~

θgh(ω)(g, h = 0, 1) are elliptic theta constants',

lambda function defined by

PROOF. We have

= Σp. nez e x P ^P^ + 2pnτ2)q"2 = θoo(τι
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+2\p

where

Coo = - C o i = 2 Σpβz exP nifj^τ1 + 2pτ2)

The following identity

leads to

r l Λ 2 Cc
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A2 = . ?

, ?
A3 =

Since we have 0<

1

1

Ooo= ~^iooi a n c ^ θoooo= ~^oooi» t n e lemma is proved.

COROLLARY 3.6. We have λι-λ2 = qh(τ\ τ2, q) and

ϋ

where h and f are holomorphic functions in τ1, τ 2 α«ί/ ^ w/z/'c/! are not divisible by q.

PROOF. The first assertion is obvious. The second follows from the calculations
below.

dλ ( dλι

0 δλ\

λ2 dλ2

+dτΓ+dτΓ πiλ\q

dλ2

0

dτ1

\ dτ1

det
dλ dλi

0

+ 0{q2)

D

LEMMA 3.7.

dλ1

qf(τι,τ2,q)dτ2 =

PROOF. This follows from the expression for qf{τ\ τ2, q)dτ/dλ\
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dλλ
O(q2) O(q2) ^

O(q) O{q) O(q)

D

Let ί/c/1 be an open subset of C 3 such that the closure U in C 3 has the property:

U0{(λι,λ2,λ3)eC3\λιΦλ2} =

COROLLARY 3.8. The quadratic form π^d^dτ2 +dτ2dτ1 -2(dτ3)2) is conformally

equivalent on U to a quadratic form with the following local expression around UΓ\V:

(dλ2dλ3 + dλ3 dλ2) - {dλ'dλ3 + dλ3 dλ1)

+ (holomorphic quadratic form in λ),

whose discriminant has double pole along {λ1 = λ2}.

This implies that the holomorphic conformal structure π^(dτιdτ2 + dτ2dτι — 2(dτ3)2)

on A can be extended to a meromorphic conformal structure η on P3 ^ A. We can put

D{λ) = λ1λ2λ\λ1 - 1 )(λ2 - 1 )(13 - 1XA1 - λ2)(λ2 - λ3)(λ3 -λ1).

We can assume det(af/A)) = D(λ) 2 since η should be a holomorphic non-degenerate

quadratic form on A. Since Γ/Γ(2)^S6 acts on A as the group of automorphisms of A,

the conformal structure of A represented by η is invariant under the action of S6. In

particular, it is invariant under the transformation:

1 2 3

Put

Then we have
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=-(μη-i°D(μ) and det(-|£)= -(μ3)"

Since

D(λ)=-(μ*y10D(μ) and d e t ( - ^ l = -

we have

det(Z>ι7(μ)) = detfa/Λ))(μ3)" 8 = D(λ)" 2 ( μ 3 ) " 8 = (μ3)12D(μ)" 2 .

Therefore multiplying a conformal factor ( μ 3 ) " 4 to g*η, we should have

aijίv) = (A*3) ~4^i/Aί) 5 0*5 7= 1, 2, 3).

In particular if 1,7= 1, 2, then

so

(3.4)

This implies, in particular, that the total degree deg(/?ti) oϊptj (i,j= 1, 2) is at most four.

Since the form η is invariant under permutations of λ1, λ2 and /I3, we conclude that

deg(p i j)^4 ( i ,7=l ,2 , 3). On the other hand, by Corollary 3.8, p12(λ) and pkk(λ)

(k= 1, 2, 3) are divisible by λ1—λ2. By using symmetry with respect to A1, λ2 and >13

again, we have the following expressions

where ^ k t and r-Ki are polynomials with deg(^rkk)^ 1 and deg(r u )^3. The first expression

satisfies (3.4) if and only if qkk is identically zero. Thus we have

0 (£=1,2,3)

and that the determinant of the matrix {atJ(λ)) can be computed as follows:

det(fly(A)) = ^ p

This expression together with the identity: det(aij(λ)) = D(λ)~2 implies that deg(/?0 ) =

(1^/Vy^3) and p12(λ)p22)(λ)p31(λ) = D(λ)/2. Substituting the expression

λ2)^, deg(r12) = 2 ,



348 T. SASAKI AND M. YOSHIDA

into (3.2), we have

Pl2(λ) = (const.)U1 - λ2)λ\λ3 - 1 ) .

By using symmetry of η with respect to the λ's and the identity D(λ1,λ3,λ2) =

-D(λ\ λ2, A3), we conclude that η is expressed, up to a multiplicative constant, by

This completes the proof of Proposition 3.4.
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