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BOUNDARY BEHAVIOR OF FUNCTIONS ON COMPLETE
MANIFOLDS OF NEGATIVE CURVATURE
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In 1985, Anderson and Schoen [2] extensively studied positive harmonic functions
on a complete, simply connected TV-dimensional Riemannian manifold M of bounded
negative curvature. In particular, they proved that the sphere at infinity S(co) of the
manifold is homeomorphic to its Martin boundary, and generalized, to the manifold M,
the classical Fatou theorem on the boundary behavior of harmonic functions on the
open unit disc.

THEOREM 0.1 (Anderson and Schoen [2]). Every positive harmonic function on M
converges nontangentially at almost every point of S(oo) with respect to a harmonic
measure ω.

Recently, A. Ancona [1] investigated minimal-fine convergence of functions on M,
and proved that the manifold has the so-called "Fatou-Doob" property, which is an
extension of Theorem 0.1. (For a detailed statement of the property, see [1, Theorem 4]
or Corollary 3.3).

The purpose of this paper is to consider the relationship among nontangential,
minimal-fine (fine, for short) and semifine convergence of functions on M. In fact, we
shall prove that the ratio u/h of two positive harmonic functions u and h on M converges
nontangentially at QeS(oo) to / if and only if / is a semifine limit of u/h at Q (cf.
Theorems 3.1 and 3.2). As an immediate consequence of the theorems we obtain the
result of Ancona on fine convergence. Furthermore, we introduce the notion of
admissible convergence on M, and prove, using this concept, that u/h has a fine limit φ
dω-a.e. on £cS(oo) if and only if u/h converges nontangentially to φ ί/ω-a.e. on E (cf.
Corollary 4.5). Moreover, we prove a local version of the "Fatou-Doob" property of M
(cf. Section 5) and as a result, we give a refinement of Theorem 0.1 (cf. Corollary 5.3).
This result is a generalization to M of the classical local Fatou theorem on the unit disc.
For the local Fatou theorem and the classical theory of fine convergence, we refer the
reader to the books of Stein [18] and Doob [8]. Fatou's theorem and its local version
play important parts in classical analysis.

Ancona [1] dealt also with a class of elliptic harmonic functions, and all results in
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our paper hold good for certain elliptic harmonic functions (cf. Remark 5.4).

In the classical case, the above mentioned results were obtained earlier by Brelot

and Doob [4] for the upper half space in RN, and Koranyi and Taylor [17] for symmetric

spaces of rank one (see also Hunt and Wheeden [13] and Taylor [19]).

In the following, C1, C2, C3, , cu c2, c3, will denote positive constants

depending only on the dimension TV and the bounds of the curvature of the manifold M.

ACKNOWLEDGEMENT. The author would like to thank Professor Satoru Igari for

his constant encouragement.

1. Preliminaries. Throughout this paper we denote by (M, g) a complete, simply

connected, TV-dimensional Riemannian manifold such that the sectional curvatures KM

satisfy —co<—b2< KM < — a2 < 0 for two positive constants a and b. Let us fix a point ζ

in M. We call a curve y a geodesic if 7 is a unit speed geodesic.

We now recall some facts on the sphere at infinity of M: Two geodesies yλ and y2 are

said to be asymptotic if d(?i(0> 72(0) is bounded as /-• + 00 where d( , ) is the distance

function with respect to the Riemannian metric of M. The sphere at infinity of M is, by

definition, the set £(00) of all asymptotic classes of geodesies in M. Then M = M US(oo)

is a compactification of M under the following cone topology: Let C(/?, v, δ) be the cone

at veTpM of angle δ, that is, C(p, v, δ) = {xeM: <p{υ, ypx(0))<<5}, where γpx is the

geodesic with ypx(0)=p and ypx(t) = x for some ίe(0, + 00], and £ p denotes an angle in

TpM. Let Tp(v, δ, R) = C(p, v, δ)\B(p, R), where B(p, R) = {zeM: d(z,p)<R}. Then

the sets T(p, v, δ) (ve TpM, δ>0) together with the geodesic balls B(q, r) (qeM, r>0)

form a local basis for a topology of M. It is called the cone topology and does not

depend on the choice of/?. Under this topology, M and £(00) are homeomorphic to the

closed unit ball in RN and its topological boundary, respectively. For further details, see

Eberlein and O'Neill [9].

Let dωp be the harmonic measure relative to p and M, that is, dωp is a probability

measure on S(co) such that

HLHf(p)=\ fdω", /
JS( 00)

where Hfis the unique harmonic function on M with boundary values/. The existence

of dωp was proved by Anderson and Sullivan (see [2]). Let KQ(z) (Q e S(oo), z e M) be the

Poisson kernel: KQ is a positive harmonic function on M such that KQ(ζ) = 1 and that KQ

extends continuously to the zero function on S(oo)\{2}. By [2], there exists a unique

kernel function KQ at every QeS(cc). For simplicity, set dω = dωζ. From [2] follows that

dωp(Q) = KQ(p)dω(Q).

From now on, we denote by ί(x) the time such that yζx(t(x)) = x for every

jceλ?\{ζ}.
To conclude this preliminary section, we state theorems of Cheng, Yau, Anderson
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and Schoen to which we will refer often in the main body of our paper.

THEOREM CY (Cheng and Yau [7]; see also [1], [2]). Let u be a positive harmonic
function on B(x, r), xeM, r>0. Then, for every 0<s<r, there exists a constant Cx s

depending only on N, α, b and s such that

C^su(z)<u(x)<CUsu(z),

for all zeB(x, s). Moreover, C1>s may be taken arbitrarily close to 1 provided s is small
enough.

THEOREM AS (Anderson and Schoen [2]; see also [1], [15]). LetpeM andveTpM
with gp(v, v)=\. Denote C = C(p, v, π/4) and T=Tp(v, π/8, 1). Let u and h be positive
harmonic functions on CΠM, continuous up to dC, and vanishing on CΓ\S(oo). Then

(1) Q exp{ - C2d(p, x)}u(po)<u(x)< C3exp{- C4d(p, x)}u{p0),

for xeT, where p0 = expp(v).

( ] 5

for xeT.

2. Fine or semifine convergence and semίthίn sets. We define fine and semifine
convergence adapted to our context. For QeS(oo) and teR, let Q(t)=yζQ(t), C(Q, t) =
C(Q(t), Q(t\ π/4) and σ(Q, t) = C(Q, t)\C(Q, ί+ 1). Then a set EaM is said to be thin
(resp. semithiή) at Q if

lim REnc(Q>k)KQ = 0 (resp. lim
k^ + ao \ k^ +

where RFf is the reduction of/: M^R relative to FaM, that is, RFf(z) = 'mϊ{u{z): w>0,
superharmonic on M, and u>f on F}. We denote by ^(Q) (resp. £f(Q)) the family of
subsets E of M whose complements M\E are thin (resp. semithin) at Q. It is easy to
check that ^(Q) and ^(Q) are filters at Q. Obviously,

DEFINITION 2.1. A function/: M^R converges finely (resp. converges semifinely)
to / at QeS(co) or has a fine limit (resp. semifine limit) I at QeS(oo) if for every ε>0,
there exists a set Ee^(Q) (resp. EeSf(Q)) such that |/(z)-/ |<ε for all zeE.

REMARK 2.2. Obviously, fine convergence implies semifine convergence. How-
ever, the converse is not true in general.

From the argument given in [13, Lemma 5.1] it follows that a set £<=M is thin at
QeS(co) if and only if REKQ(p) <KQ(p) for some peM.

To study fine and semifine convergence, we present examples of non-semithin sets
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and semithin sets: For QeS(co), t>0 and d>0, let

Γd(Q) = {zeM: d(z, yζQ)<d and φ , ζ)>/} .

The set Td(Q) was introduced by Anderson and Schoen [2] and called the nontangential

cone.

PROPOSITION 2.3. Let {xn} be a sequence of points in a nontangential cone Td(Q)

such that t(xn) ( = d(ζ, x n ) ) | +oo. Let re(0, 1]. Then the set

is not semithin at Q, and the set B intersects each element o

PROPOSITION 2.4. Let Q e S(oo), and let r(n) be a positive integer with r(n) >n,n

1, 2, . Then the set

is semithin at Q.

REMARK 2.5. The set B in Proposition 2.3 is an analogue of a bubble set which is

well-known in classical potential theory (cf. [19]). In the proof of Ancona [1, Theorem

4], it was proved that B is not thin at Q.

To prove Propositions 2.3 and 2.4, we need some lemmas:

.LEMMA 2.6. For QeS(oo) and teR, let Δ(Q, t) = C(Q, t)Γ\S(co). There exists a

constant C 6 > 0 such that ωz(A(Q, t))>C6Jor allzeC(Q, t + to)UB(Q(t), ί0), where t0 is a

positive constant depending only on the curvature bounds.

PROOF. By the proof of Anderson and Schoen [2, Lemma 7.4], we have

ωQ{t\Δ(Q, t))>CΊ>0. The function φ(z) = \—ωz(A(Q, ή) is a positive harmonic func-

tion on M vanishing at A(Q, t). Applying Theorem AS (1), [2, Lemma 6.1(ii)] and

Theorem CY to φ, we obtain the lemma. •

We will use the following geometric lemma:

LEMMA 2.7. Let δ be a positive number. Then there exists α > 0 such that

d(dC(Q, t), dC(Q, t + oi))>δ

for every QES(GC) and t>0.

PROOF. By [2, Lemma 6.1], there exists β>0 such that C{Q(t), Q(t), π/8) =>

C(Q, t + β). Take any xedC(Q, ήΠM, xφQ{f). Let γ be a geodesic starting at Q(t)
with * Q ( f ) ( f Q ( t ) Q ( 0 ) , y(0)) = π/8. Set θ = * Q ( f ) (y Q ( f ) J C (0), y(0)), τ(x)=d(Q(t\ x) and
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r(s)=d(x,γ(s)), seR. Obviously, Θ>π/4 — π/8=π/8. By Rauch's comparison theorem
([16, Corollary 2.7.3]) together with the law of hyperbolic cosine, we have

cosh(ar(s)) > cosh(aτ(x)) cosh(as) - c sinh(ατ(x)) sinh(as) =: fx(s)

for s>0, where c = cos(π/8). Since the minimum value offx is {(1 — c2)(cosh(ατ(;c)))2+
c2}1/2 = : φ(τ(x)), we have that

φc, dC(Q(t), Q(t), πl%))>a~ι arccosh(fl^(τ(jc))).

Let α0 be a number such that a~ι arccosh(aψ((x0))>δ and αo>max((5, β). Then
α = 2α0 is a desired number, because for xedC(Q, t)Γ\M, if d(Q(ή, x)<α0, then

, / + α)) > α0 > <5, and if rf(β(/), x) > αo, then

), β(0, π/8)) > 5 . •

Now we are ready to prove the propositions:

PROOF OF PROPOSITION 2.3. For every large JEN= {positive integers}, there
exists n=n(J)eN such that n>J and xneC(Q, J). Take k=k(n, J)eN with k>J and
xneσ(Q, k). By Lemma 2.7, there exists α>0 satisfying

Since xneσ(2, A:), we have

B(xn, r) a σ(Q, k - α, α) U σ(Q, k, α) U σ(β, Λ + α, α),

where σ(β,y, α) = C(β,y)\C(β,y
For simplicity, set B(n) = B(xn, r) and σ(J)=σ(Q9j\ ct),jeR. Then we get that

It is simple to check that RB(n)KQ is harmonic on the outside of the closure of B(n)
(cf. [12]) and vanishes continuously on 5(oo). Hence, by Theorems AS and CY, we have
that for every z e dB(xn, 2r),

R B M K Q ( ζ ) > Cs * Z }

where C8 and C9 depend only on N, a, b, d and r.

To estimate RB(n)\(z), we use the ''bounded geometry" property of M (cf. [1,
p. 497]), that is, there is a constant r0 >0 independent of xn such that the normal coordi-
nate φ at xn satisfies

I Ψ(P) ~ <P(q) I < d(p, q)<cx\ φ{p) - φ{q) \ ,

for every /?, qeB{xn, r0). We may assume that r<ro/100. Let yn be a point in dB(xn, 3r),
and set RB(n)l =inf{/:/>0, superharmonic on φ'Hί^GΛ^: |^-φ(j Π ) |<5r}) and/> 1
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on B{n)}. Then RB(n)\(yn)>RB{n)l(yn). From the "bounded geometry" property and
Bishop's comparison theorem (cf. [6, p. 66]), it follows that the Laplace-Beltrami
operator ΔM on Mis uniformly elliptic on φ~\{XeRN: \X-φ(yn)\<5r}). Denote by ώ
the zlM-harmonic measure relative to φ(yn) and φ(B(yn, 3r)). Then by the superharmo-
nicity of RB{n)\ and [5, Lemma 3.5] we have that

RB{n)l(yn)> \RBin)ldώ>ώ{φldB(ym 3r) Πβ(n)]} > C 1 0 > 0 .

This implies that RB(n)KQ(ζ)>Cί d r >0, where C1 dr is a constant depending only
on N, a, b, d and r. Hence, there is j(k)e{k — α, k, k + oc} such that

Further, σ(J(k))^σ(Q,j(k))Ό Uσ(β,y"(&) + [α]+ 1), where [α] denotes the integral
part of α. Therefore, we can take a number i(k)e{j(k), ,7*(A:)-|-[α]+ 1} such that

Note that i(k)>J—(x by the choice of k. Consequently, we have a sequence {ι(n)}czN
such that ι{ή) | + oo as «-• + oo and RBΓiσ(Q'ι{n))KQ(ζ)> C2 άr for every n. This guarantees
that the set B is not semithin at Q.

We now prove the remaining part of Proposition 2.3. If there is a set Ee ̂ (Q) with
Ef)B= 0 , then BczM\E, and M\E is semithin at Q. Thus the set B must be semithin
at Q. This contradicts the first part of the proposition. •

PROOF OF PROPOSITION 2.4. By Theorems AS and CY, we have

KQ(x) < Cγ 1 exp{ - C74x, Q(k))}KQ(Q(k)),

for every xeσ(Q, k) and keN. Hence for every ε>0 there is (5(ε)>0 independent of k
such that KQ<εKQ(Q(k)) on σ(β, k)Π[M\B(Q(k), δ(ε))l keN.

Let n be an arbitrary integer with n>δ(ε). For every m>r{ή)

[M\TT\Q)] n σ(β, m) c [M\5(β(m), (5(ε))] Π σ(Q, m),

because if x is an element of the left-hand side, then d(ζ, x)>m>r{n) and
d(Q(m), x)>d(yζQ, x)>n>δ(ε). Hence KQ<εKQ(Q(m)) on .yΓΠσ(Q, m). Consequently

^^πσ(Q,m)^(Q < ε^ Q (ρ(m))^ n σ ( Q m ) l (ζ) < εKQ(Q(m))Rσ{Qm)l(ζ).

We now show that KQ(Q(m))Rσ(Qm)\(ζ) is bounded by a constant independent of m.

Let/(z)=ωz(zl(ρ,m-ί0)) By Lemma 2.6, Rσi^m)\<C^f. Hence

Rσ{Qm)\(ζ)<C^ιω{Δ{Q, m-to))<C12ω(A(Q, m)) (cf. [2, Lemma 7.4]).

On the other hand, from Theorems AS and CY, we have



FUNCTIONS ON COMPLETE MANIFOLDS 313

Consequently, KQ(Q(m))Rσ{Qm)\(ζ)<C12Cί3 which implies the proposition. •

3. Semifine and nontangential convergence. As is well-known, the study of
nontangential convergence was begun in 1906 by P. Fatou, and his result has been
developed by A. P. Calderόn, E. M. Stein, L. Carleson and others. In particular, Brelot
and Doob [4] found relationship among nontangential limits, fine limits and semifine
limits of functions on upper half-spaces, and improved the Fatou theorem and its local
version, the so-called local Fatou theorem, by proving them for quotients of positive
harmonic functions. Somewhat later, Hunt and Wheeden [13] generalized the results of
Brelot and Doob to Lipschitz domains in RN.

In the following sections, we extend these results to the manifold M. To state our
results we recall the definition of nontangential convergence on M.

DEFINITION (Anderson and Schoen [2]). A function /: M->/? converges non-
tangentially to / at Q e S(oo) or has a nontangential limit I at Q if for every d> 0 and ε > 0,
there exists a t>0 such that |/(z)-/ |<ε for all zeTd(Q).

Our results in this section are the following:

THEOREM 3.1. Let f: M-+R be a function which has a nontangential limit I at
QeS(co). Then f converges semίfinely to I at Q.

PROOF. For every ε>0 and neN, there exists r(n) = r(n, ε)sN such that r(n)>n
and | / - / | < ε on Γn

in)(Q). Let E(ε) = ( J ^ Tr

n

in\Q). Then | / - / | < ε on E(ε) and
E(ε)e<Sf(Q) by Proposition 2.4. Thus / is the semifine limit of/at Q. •

The converse of Theorem 3.1 can be proved when / is the ratio of two positive
harmonic functions:

THEOREM 3.2. Let u and h be positive harmonic functions on M. Then u/h has a
nontangential limit I at QeS(oo) if and only if u/h has the semifine limit I at Q.

PROOF. The "only if" part is a special case of Theorem 3.1. We prove the "if"
part. Suppose that u/h does not converge nontangentially to / at Q. Then there exist
ε>0, d>0 and {xn}aT°d(Q) such that t(xn) | +oo and \{u/h)(xn)-l\>ε for all n. By
Theorem CY there is r>0 such that |(u/h)(z) - /1 > ε/2 for every ze (J*= 1 B(xn, r) = :B.
From Proposition 2.3 it follows that for every Ee ^(Q) the set B intersects E. Therefore
/ is not a semifine limit of u/h at Q. •

By the Anderson and Schoen theorem [2, Theorem 6.5] for every nonnegative
harmonic function/on M there is a unique, finite, positive Borel measure μ on S(oo)
such that
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f(z)=\ KQ(z)dμ(Q), zeM.

We denote by μf the measure μ.

As a direct consequence of Theorem 3.2, we have a result of Ancona in the case of

harmonic functions:

COROLLARY 3.3 (cf. Ancona [1, Theorem 4]). Let u and h be positive harmonic

functions on M. Then we have the following'.

(1) If u/h has a fine limit latQe S(oo), then u/h converges nontangentially to I at Q.

(2) The ratio u/h converges nontangentially to the Radon-Nikodym derivative

dμjdμh μh-almost everywhere in S(oo).

PROOF. Since a fine limit of a function is also its semifine limit, Theorem 3.2

implies (1). The statement (2) is an immediate consequence of (1), Remark 2.2 and the

generalization of Fatou-Naim-Doob theorem obtained by Gowrisankaran [11]. •

4. Fine and admissible convergence. In the case of upper half-spaces, non-

tangential convergence does not imply pointwise fine convergence, but does almost

everywhere (cf. Brelot and Doob [4]; [13], [17], [19]). In this section we will consider this

fact in our setting. For technical reasons we introduce the notion of admissible domains

and admissible convergence:

DEFINITION 4.1. (1) For zeM let z(t)=yζz(t + t(z)), teR. If zeM and αe/?,

then C(z, α) denotes the set {xeM; £z ( α )(z(α), yz(a)x(O))<π/4}. For QeS(oo) and oceR

we call the set {zeM: QeC(z, α)} an admissible domain at Q and denote it by Γ(Q, α).

(2) For ί > 0 let Γ(Q, oc) = Γ(Q, oc)f\{ze M: d(ζ,z)>ή. A function/: M^R

converges admissibly to / at QeS{co) or has an admissible limit I at Q if for every cceR

and ε > 0 there exists />0 such that \f(z)-l\<ε for all zeΓ\Q, α).

Before stating our results, we mention a motivation for the definition of admissible

domains. Consider the upper half-plane R\ =/?x(0, oo). The classical nontangential

cone Γa(x) is defined as {{y, t)eR\ : \y — x\<oιt}, xeR, α > 0 . Here \y — x\ and /can be

regarded as the distances between x and y, and between (y,t) and dR\( = R),

respectively. Since the distance between any point in M and S(oo) is +00, we cannot

translate the definition of nontangential domains Γa(Q) to our case. On the other hand,

nontangential cones are also characterized by tangent vectors at dR\ but, in general,

S(oo) is a C(fl/ί))-manifold (cf. Anderson and Schoen [2]).

Now, we recall a characterization of Γα(x) in R\ which does not use distance and

tangent vectors at the boundary. Our definition of admissible domains is motivated by

the following observation. For z = (zo,/)e/? 2

+, let #(z, oc) = {yeR: <z{zy, zz o )<α},

where zy is the line segment z(y, 0). Then zeΓa(x) if and only if xe^(z , α).

Admissible domains are related to nontangential cones defined by Anderson and
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Schoen as follows:

PROPOSITION 4.2. Let QeS(oo), OCER and T>0. Then:

(1) The set ΓT(Q, α) contains the line {yζQ(ή: t>T).

(2) The intersections ofS(co) with the closure ofΓτ(Q, α) in M consists of one point

{g}
(3) There exists a nontangential cone T^(Q) such that ΓT(Q, α) c: Tj(Q). Hence

ΓT(Q, α) is a nontangential domain in the sense of Anderson and Schoen [2, Definition 7].

(4) If a function f on M has a nontangential limit I at QeS(cc), then f converges

admissibly to I at Q.

PROOF. (1) is obvious. Since (2) and (4) are consequences of (3), we prove only

(3). We use the ideas of Anderson and Schoen [2, Lemma 6.1 and Lemma 7.2]. Let

xeΓτ(Q, α). Denote by R(t) the surface consisting of geodesic segments joining ζ with

points in {yxQ(s): t>s>0}, t>0. Then R(t) is smooth away from ζ and has the Gaussian

curvature KR{t)<-a2 (see [2, p. 453]). Applying the Gauss-Bonnet theorem to

R(t) \ B(ζ, e), ε > 0 , we have areaOR(+oo))<tfΓ2(π + 0), where θ=<x(γxQ(O)9 yζx(t(χ)))

Let do=d(x,γζQ). By Bishop's comparison theorem [6, p. 68] 2~1(π — θ)dl<

area (R(+oo)). Hence

If α = 0, then by the definition of x, the angle θ is less than π/4. Hence we have

ΓT(Q, α) c Γ τ ( β , 0) c TJ(π/4)(0 for every α > 0.

Assume that α < 0 . Let y = yζx(t(x) + oc) and ^ = * y(y y Q(0), γyx(0)). Obviously,

ψ<π/4. For />0 let θ(t) be the angle at x between yζx and the geodesic joining x with

By the same argument as in [2, Lemma 6.1], we have that

l i m p ( ( ) )
t~* + oo

= F{\θi\).

Hence 0<π-arccos(F( |α |)). Thus

d\ < 2[2π - arccos(F(| α |))]/α2 arccos(F(| α | )),

which completes the proof of (3). •

Now we state our result.

THEOREM 4.3. Let E be a set of S(cc) and f: M^R be a function which has an

admissible limit f* on E. Then f converges finely tof* at dω-almost every point of E, that

is, there is a set EoaS(cc) such that ω(Eo) = 0 and that f admits a fine limit f* on each

point Q in EΓ\(S(oo) \ Eo).

PROOF. The following proof is an application of the proof of [4, Theorem 9] and
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[17, Theorem 4.1] to the context of the manifold M.
Let OLER and denote V(f9 t)(Q) = sup{\f(x)-f(y)\: x, yeΓ(Q, α)} for QeS(oo). It

is easy to check that V(f, t) is lower semicontinuous and that V*(f) =lim^ + ^ V(f, ή is
Borel measurable. Hence the set F={V*(f) = Q} is a Borel set which contains E. From
this fact, we may assume that E is Borel measurable. By Egorov's theorem we have that
for every nsN there is a compact set Dnc:F, with ω(F\ Dn)<\/n, such that V(f, t)
converges uniformly to 0 on Dn Π E.

Now we show that / * is continuous on Dn Π E. Indeed, let Qo e Dn Π E. For every
ε>0 there is T=T(ε)>0 such that K(/, Γ)<ε on DnΓ\E and |/«/*(β 0)I<« o n

ΓT(QO,OL). Take a point x in Γ τ (β 0 , α). Then QoeC(x9 α)ΠS(oo). Note that
C(x, α)(15(00) is an open set in S(oo). Let (^ be an arbitrary point in C(x, <x)Γ\DnΓ\E.
There is τ (> T) so that | / * - / * ( β i ) | <ε on Γ τ(β1 ? α). Hence for a point ^ e Γ ^ , α) we
obtain that

which implies that/* is continuous at β 0 .

Now we continue the proof of Theorem 4.1. For ε>0 let T= Γ(ε, n) be a positive
number such that V(f, T)<ε on Dn Π is. Then, by the continuity of / * for every
QoeDnΓϊE there is a neighborhood ^ of Qo in the cone topology such that

U {ΓT(Q,OL): QeDnf]E}OW^{yeM: \Λy)-f*(Q0)\<2ε] .

Therefore the proof is reduced to the following lemma:

LEMMA 4.4. For every Borel measurable set AaS(oo), T>0 and αe/f, put
S(A, α, T)= (J {ΓΓ(β, α): QeA}. Then M\S(A, α, T) is thin ί/ω-a.e. o« A.

PROOF. Let w(z) = ωz(A), z e M. By the Fatou-Naim-Doob theorem [11, Theorem
8], w converges finely to the characteristic function χA ί/ω-a.e. on £(00). Hence for every
/?e(0, 1) the set {w<β} is thin rfω-a.e. on A. Denote by Ao the exceptional set. We will
prove that

(4.1) {w>β} Π Γζ(yζQ(O), π/4, T)cS(A9 α, T)

for every QeA\A0 and for a constant β which is sufficiently close to 1. Since the
complement of every neighborhood of Q in the cone topology is thin at β, (4.1) implies
the desired result.

To prove (4.1) we suppose that there is a point z in M\S(A, T,oc) which is
contained in the left-hand side of (4.1). Then C(z, α)ΠS(00)c5(00)\A. Hence by
Lemma 2.6 we have

1 - w(z) > ωz(C(z, α) Π S(oo)) > C1 4 > 0 ,

where C14 is a constant depending only on N, a, b and α. This contradicts the fact that
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Using the results obtained in Sections 3 and 4, we will show the following:

COROLLARY 4.5. Let u and h be positive harmonic functions on M. For every set
EaS(co), the following conditions are mutually equivalent

(1) u/h converges nontangentially rfω-a.e. on E.

(2) u/h converges admissibly ί/ω-a.e. on E.

(3) u/h converges finely dω-a.e. on E.

(4) u/h converges semifinely dω-a.e. on E.

PROOF. The implications (1)=>(2), (2)=>(3) and (4)=>(1) are immediate con-

sequences of Proposition 4.2, Theorems 4.3 and 3.2, respectively. By Remark 2.2, the

implication (3) => (4) is obvious. •

5. Local Fatou theorem. In this section we consider the local Fatou theorem on
M.

THEOREM 5.1. (1) Let h be a positive harmonic function on M. Let E be a Borel

measurable subset of 5(oo), and u be a harmonic function on ί(J {Vd{Q).QeE} for some

t, d>0, such that Td/2(Q)^>Γt(Q, a) for some oceR. Assume that u/h is bounded below on

each Td(Q), QeE. Then there are sets Fι andF2 such that ω(F1)=μh(F2) = 0 and that u/h

converges admissibly at every point in isXί/^ UF2).

(2) Moreover, suppose that u is harmonic on [jQeF Ufc°=i ^* ( k ) (0 ( = 'Ή)for some

t(k)>0 and FczE with ω(E\F) = Q. If u/h is bounded below on //, then u/h converges

nontangentially on F\(Fί VF2).

REMRK. By the proof of Proposition 4.2, Tt

e(Q)=>Γt(Q9 0) when e>d(π/4).

A theorem of this type was obtained by L. Carleson, M. Brelot and J. L. Doob for

the upper half-space (cf. [18], [4]) and by Koranyi and Taylor [17] for symmetric spaces

of rank one. We refer also to Jerison and Kenig [14] and Taylor [19] for nontangentially

accessible domains.

Using Lemma 4.4 and the argument in the proof of Theorem 3.2, we can apply a

method of the proof of Koranyi and Taylor [17, Theorem 3.5] to our context. Thus to

prove Theorem 5.1 it is enough to show the following lemma.

LEMMA 5.2. For every β < α, t > 0 and ε > 0, there are k>0 and a compact subset F

ofE such that ω(E\F)<ε and S(F, β, k)czS(E, α, t).

PROOF. AS in the proof of Jerison and Kenig [14, (6.2)], we use Calderόn's den-

sity argument. By Anderson and Schoen [2, p. 456], there is τ > 0 such that if

A(Q, t)f)Λ(Q\ i)φ0, then Δ(Q\ t)<=Δ(Q, ί-τ), β, Q'eS(oo). By the doubling con-
dition we have
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for all QeS(oo) and />0, where C 1 5 is a constant independent of Q and /. Now, let

1

7= 1, 2, . By the weak (1, l)-estimate for the maximal function defined in [2, p. 454],

we easily have ω(E\\JιCO

= 1 A}) = 0. Hence for every ε > 0 there is k>0 with ω(E\Ak) <ε.

Let QeAk and xeΓk + τ~β{Q, β). Set S = Δ(Q, t(x)-τ + β) and S' =

C(x, φc) + α)nS(oo). Since 2eC(jc, t(x)-τ + β)Γ\Δ(Q, t(x)~-τ + β), we have

Hence, ω(S)<C15ω(S'). From this it follows that

Consequently, S' Π £ # 0 . Thus we have X G ^ ^ , α, A:). •

As a simple consequence of Theorem 5.1 we have the following:

COROLLARY 5.3. Let E, h and u be as in Theorem 5.1(1) (resp. (2)). Ifh=\, then u

converges admissibly {resp. nontangentially) dω-a.e. on E.

PROOF. Theorem 5.1 and Theorem 4.3 imply that u converges finely Jω-a.e. on E.

Thus, by a slight modification of the proof of Theorem 3.2, we obtain the corollary.

•
R E M A R K 5.4. By the theory of Ancona [1], all results of our paper can be

extended to L-harmonic functions. The operator L is defined by

L(u) = div(j/(Vu)) + B Vu + div(wC) + yu ,

where B and C are vector fields on M, &4 is a section of End(Γ(M)) and y is a real

function on M, and they are assumed to satisfy the following conditions:

(1) srf, B, C and y are measurable.

(2) For every {x,ξ)eT(M\

\\B\\P,x+\\C\\p,x+\\y\\q,x<λ,

where || ||r x is the U(B(x, r0), dvg)-norm (r0 is given in the proof of Proposition 2.3),

r> 1 and λ, /?, q are constants such that 1 <λ< +oo, N<p< +oo and Nβ<q< +oo.

(3) L(l) = 0, L is weakly coersive and the L-Green function Gx satisfies Gx=o(ρx)

near the boundary S(oo), where px(y) = d(x, y) and α is a positive constant.

(4) For every QeS(oo) and teR, ωQ{t)(Δ(Q, t))>c, dωQ{t) is the L-harmonic
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measure relative to Q(t) where c is a positive constant independent of Q and /. The

existence and uniqueness of dωQ{t) are guaranteed by the conditions (l)-(3) and [1,

Theorem 9].

REMARK 5.5. In order to study harmonic functions on M it is useful to consider

the Hardy spaces Hp on M, for which we refer the reader to [3], where the relationship

among Hp, BMO and their probabilistic approach are discussed.

REFERENCES

[ 1 ] A. ANCONA, Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math.

125 (1987), 495-539.

[ 2 ] M. T. ANDERSON AND R. SCHOEN, Positive harmonic functions on complete manifolds of negative

curvature, Ann. of Math. 121 (1985), 429-461.

[ 3 ] H. ARAI, Harmonic analysis on negatively curved manifolds I, Proc. Japan Acad. 63 (1987), 239-242.

[ 4 ] M. BRELOT AND J. L. DOOB, Limites angulaires et limites fines, Ann. Inst. Fourier 13 (1963), 359-415.

[ 5 ] L. CAFFARELLI, E. FABES, S. MORTOLA AND S. SALSA, Boundary behavior of nonnegative solution of

elliptic operators in divergence form, Indiana Univ. Math. J. 30 (1981), 621-640.

[ 6 ] I. CHAVEL, Eigenvalues in Riemannian Geometry, Academic Press, Orlando, 1984.

[ 7 ] S.-Y. CHENG AND S.-T. YAU, Differential equations on Riemannian manifolds and their geometric

applications, Comm. Pure and Appl. Math. 28 (1975), 333-354.

[ 8 ] J. L. DOOB, Classical Potential Theory and Its Probabilistic Counterparts, Springer-Verlag, Berlin,

Heidelberg, New York, Tokyo, 1984.

[ 9 ] P. EBERLEIN AND B. O'NEILL, Visibility manifolds, Pacific J. Math. 46 (1973), 45-109.

[10] D. GILBERG AND N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, 2nd edition,

Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.

[11] K. GOWRISANKARAN, Fatou-Naim-Doob limit theorems in the axiomatic system of Brelot, Ann. Inst.

Fourier 16 (1966), 455-467.

[12] R. M. HERVE, Recherches sur la theorie axiomatique des functions surharmoniques et du potentiel, Ann.

Inst. Fourier 12 (1962), 415-571.

[13] R. A. HUNT AND R. L. WHEEDEN, Positive harmonic functions on Lipschitz domains, Trans. Amer.

Math. Soc. 147 (1970), 507-527.

[14] D. S. JERISON AND C. E. KENIG, Boundary behavior of harmonic functions in nontangentially accessible

domains, Adv. in Math. 46 (1982), 80-145.

[15] Y. KIFER, Brownian motion and positive harmonic functions on complete manifolds of non-positive

curvature, in "From Local Times to Global Geometry, Control and Physics", Pitman Research

Notes in Math. 150 (1986), 187-232.

[16] W. KLINGENBERG, Riemannian Geometry, de Gruyter Studies in Math. 1, Berlin, New York, 1982.

[17] A. KORANYI AND J. C. TAYLOR, Fine and admissible convergence for symmetric spaces of rank one,

Trans. Amer. Math. Soc. 263 (1981), 169-181.

[18] E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press,

1970.

[19] J. C. TAYLOR, Fine and nontangential convergence on an NTA domain, Proc. Amer. Math. Soc. 91

(1984), 237-244.

MATHEMATICAL INSTITUTE

TOHOKU UNIVERSITY

SENDAI 980

JAPAN






