Toéhoku Math. J.
41 (1989), 291-305

AREA-MINIMIZING HYPERSURFACES DEFINED BY
HOMOTOPY CLASSES OF MAPPINGS OF
1-ESSENTIAL MANIFOLDS

Dedicated to Professor Shingo Murakami on his sixtieth brithday

YOSHIHIKO SUYAMA

(Received February 10, 1988)

0. Introduction. We consider a homotopy class = of C'-mappings of a compact
1-essential manifold M " into a compact Riemannian manifold N"*!. For fe Z, f,u(M) is
an n-dimensional integral varifold in N. Then Q={ f,u(M): fe E} is a subset of the
space V,(N) of n-dimensional varifolds in N. In this paper, we will show that there exists
an n-dimensional integral varifold V, in the closure of € such that
| Vol (N)=inf{|| V|| (N): VeQ}, and study the regularity of the weight || ¥, |.

Let M be a smooth compact 1-essential manifold (§ 1, (A) and [6]) of dimension »
with the following property:

(0.1) Ifany loop in a connected open set U is contractible in M, then U is contained in
a coordinate neighborhood in M.

Let (N, g) be a smooth compact Riemannian manifold of dimension n+1. Then we
assume the following condition:

(0.2) There exists a continuous mapping f,: M—»N such that the induced map
Jos: 1 (M, p)—>7,(N, fo(p)) is injective,

where 7,(M, p) denotes the fundamental group of M. (In case n=2, we can assume a
condition weaker than (0.2). See §1, (B) (2).)

Let G,(N) be a fibre bundle over N associated with the bundle of linear frames L(N)
with fibre G,(N), over p, where G,(N), is the Grassmann manifold of n-dimensional
subspaces of the tangent space 7,(N). We denote by n:G,(N)—N the canonical
projection. Then an n-dimensional varifold VeV, (N) is a Radon measure on G, (N).
The weight | V| of V is a Radon measure on N. In particular, we have
So(MYG (N))=| fiv(M) || (N)=Volume(M, f*g) for C'-mappings f (see §2, (B) and
[1]). Put

E={f: M- N:fis a C'-mapping and homotopic to f,} ,
Q={fo(M): fe E} (<=V,N)).
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Let spt || V|| denote the support of the Radon measure | V| on N, and A~B
denote the subtraction for subsets of N. For a hypersurface S in N, v(S) is an n-
dimensional varifold in N. For Ve @, put

sing || V||=spt| V| ~{pe N: p satisfies the condition () below} .

Condition (x): There exist finite smooth hypersurfaces S; (i=1, - - -, k) imbedded in N
for some r>0 such that

Via U, n=Yr uS),

where U(p,r)=Nn0{q:d(p,q)<r}. pespt| V| is called a singular point if
pesing || V|. We say that p is a regular point of spt| V| if pereg| V|, where
reg || V{=spt| V| ~sing]|l V.

Our therorem is as follows.

THEOREM. Let M, N and Q be as above. Then there exists an n-dimensional inte-
gral varifold V,, in N such that

(1) VoeQ,

@) Vol (N)=inf{]| V[[(N): VeQ}>0,

(3) HXsing | Vo)=0  for k>n—7,
where #* is the k-dimensional Hausdorff measure on N.

We emphasize that this theorem is independent of the choice of a Riemannian
metric of N. In case n=1, the result is well-known due to the existence of minimizing
closed geodesics.

The contents of this paper are as follows.

§1. Examples and notation.

§2. Fundamental lemmas and preliminaries on geometric measure theory.

§3. Normalization of area-minimizing sequence.

§4. Regularity.

White [11] gave the following result related to our theorem.

THEOREM ([11, §5 Cor. 1]). Suppose

(1) M and N are smooth compact manifolds,

2) 3Z2dimM=dimN-1Z7,

(3)  fou(m (M) is of finite index in n(N),

(4) the integral current f, M is not homologous to 0 in some sense (see [11], Theorem
3-6).
Then there exists a mapping F: M— N of least mapping area in the homotopy class of f,,
and the image of F is a smooth submanifold of N together with a singularity set of
dimension<dim M — 1. '

White’s theorem says, under the conditions (2), (3) and (4), that V, e Q (to be exact,
Voe{fso(M)|f is a Lipschitz map and homotopic to f,}) and #*(sing | ¥, [)=0 for
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k>n—1. Our theorem, of course, does not assume these conditions. In particular, our
theorem also gives a condition for || ¥, [|[(N)>0.

1. Examples and notation. (A) Examples of compact 1-essential manifolds
with property (0.1) are as follows:

(1) Compact manifolds which admit a metric with non-positive sectional
curvature.

(2) The real projective space P"R.

(B) Examples of mappings f,: M— N are as follows:

(1) Let M be the n-torus 7" and let N be a compact manifold which has an (n+ 1)-
torus as a covering space. Then there exists a continuous mapping f;, : M— N such that
Jos maps m;(M, p) injectively into a part of infinite abelian subgroup of =,(N, fo(p)).

(2) We denote by L,(y) the length of the curve y in N with respect to a metric g.
Our assumption (0.2) is, in general, necessary for inf{L(f(y)): fe Z, y is a non-
contractible loop in M}>0. But, in case n=2, Theorem holds good under a weaker
assumption. For example, we take M =T? and N=P?R x S, where S is a circle. We
choose generators of n,;(T?, p) and n,(N, g) so that n,(T?,p)=<a,, a,) and 7,(N, q) =
{B;, B.>, where 28, =0. Then we can construct a mapping f, : 72— N such that f,(«,) =
B, anf fy,(o,)=kp, for any integer k(#0). In this case, fy,,; is not injective, but
inf{L,(f(y)): fe E, y is a non-contractible loop in T2} >0. Indeed, by n=2 every loop
y€[2ma,] for a non-zero integer m contains a subloop y, such that y, €[«,], where
y € [2ma,] implies that y is free homotopic to a loop y,€2ma,. Therefore, we have
L(f(7))ZL,(f(y1))Za(>0) for fe E. (see §2, Lemma 2.1 and §3, Lemma 3.1).

(C) We use the following notation in this paper:

For pe N and r>0, let

B(p,)=Nn{q: dp, g)=r}

Ulp,N=Nn{q: dp, q)<r}

0B(p,r)=Nn{q: d(p, p=r}

B,0,r)=T,N)N{a: |a|=r}

U 0,r=T,(N)N{a: |a|<r},
where T,(N) is the tangent space to N at p and |a|>*=g(a, @). When pe N is fixed, we
denote B(p, r) (resp. B,(0, r), - - -) by B(r) (resp. B(0, r), - - ) for simplicity. When we say
that (', - - -, y"*!) is a normal coordinate of U(p, r), we assume g(d/0y’, 3/0y’)(p) =9;
and y(p)=0(i=1, - - -, n+1). For a normal coordinate (3*, - - -, y" ") of U(p, r), a polar
coordinate (a', - - -, a"*'; u) of U(p, r) is defined by y'=a'u and (a*)*+ - - - +(a"*!)* =1.
Let Exp,: T,(N)—N be the exponential map. For r>0 and a fixed pe N, let

ula)=ra for aeT,N)

i(q)=p Exp,'(q9)  for qeUp,r).
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Let G,(N), be the Grassmann manifold of n-dimensional subspaces of T,(N). We
denote by G ,(N) a fibre bundle over N associated with the bundle of linear frames L(N)
with fibre G (N), over p. We denote by n: G,(N)— N the canonical projection. We fix a
real number s,(>0) with the following property:

(1.1) For 0<r<2s, and each pe N, U( p, r) is a convex normal neighborhood of p.

2. Fundmental lemmas and preliminaries on geometric measure theory.
(A) We put

2.1 a=inf{L,(y): y is a non-contractible loop in N} .
For fe E, f*g is a possibly degenerate Riemannian metric of M.

LEMMA 2.1. There exists a constant Cy(>0) depending only on the dimension n of
M such that

2.2) a< Cy{Volume(M, f*g)}*'"  for feZ.

PROOF. Let y be a non-contractible loop in M. By the assumption (0.2), f(y) is
also non-contractible in N for fe Z. Therefore we have L. (y)=L,(f(y))=a by (2.1).
Thus, we have

2.3) inf{L.,(y): fe E, y is a non-contractible loop in M} =a.

Next, we fix a (non-degenerate) Riemannian metric & of M. f*g+¢h is a non-
degenerate Riemannian metric of M for ¢>0. By (2.3) we have

(24) L(["g-f-eh)(y) g Lf‘g(y) ; a

for a non-contractible loop y in M and fe £. By Gromov [6] and (2.4), there exists
a constant Cy(>0) depending only on the dimension n of M such that
a=< Co{Volume(M, f*g+¢eh)}'/" for fe E and £>0. Since lim,_,, Volume(M, f*g +¢eh) =
Volume(M, f*g), we are done. g.e.d.

(B) Wechoose and fix an arbitrary Riemannian metric 4 of M. Then the n-dimensional
integral varifold v(M) in M is defined. Thus f,v(M) is an n-dimensional integral varifold
in N for fe =. The weight | f,u(M) || is a Radon measure on N (cf. [1]). Then we have

(2.5) So(M)(G (N))=| fyo(M) || (N)=Volume(M, f*g)
for f€ E. By Lemma 2.1 and (2.5), we have
b=inf{ fu(M)(G,(N)): fe E} 2(a/Co)" .

Since the set {u: u(G,(N))=c} of Radon measures on G,(N) is compact for any ¢>0,
there exist a sequence {f;} = Z and an r-dimensional varifold V, in N such that
lim,, , fiszv(M)=V, and lim,_, , f;u(M)(G,N))=>b. By Tychonoff’s theorem (see also
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[1, 2.6(2)])), we have V(G ,(N))=>b. Thus we have the following:

LEMMA 2.2. Put b=inf{fuM)(G(N)): fe E}. Then we have b>0. Moreover,
there exist a sequence {f;} = E and an n-dimensional varifold V in N such that

(1) limy., fio(M)=V,,

(2) Vo(G,(N))=lim,_, ., fxu(M NG (N))=lim;_, , || fiso(M) | (N)= | Vo [(N)=b .

LEMMA 2.3. The varifold V, is stationary.

PROOF. We take a C™-isotopic deformation h: Rx N-N with h(0, p)=p for
PEN, and put h(p)=h(t, p). Then we have h,f € E for f € E and t € R. Furthermore, by
lim;,  fi;u(M )=V, we have lim,_,  (hf);v(M)=h,,V,. Therefore we have

b=lim,_, o, (h.f)o(M)G (N)) =hiVo(G,(N)) .
q.e.d.

By Lemma 2.3 and Allard [1, 4.4, 5.1, 5.5], the varifold ¥V, has the following
properties (2.6), (2.7) and (2.8):
(2.6) There exists a real number M(=0) such that r~"| V, || B(p, r)exp(Mr) is non-
decreasing in 0 <r <s, for each pe N, where the number s, is defined in (1.1). In
particular, the n-dimensional density @"(|| ¥, |, p) exists at each point pe N, i.e.,

O (Il Vo Il, p)=lim, Loa(n) "'r~"|| ¥, || B(p, r)€R .
There exists a constant C; such that
O"(| Vol,p)=C,  for peN.
2.7 6" ¥, |, p) is upper semi-continuous for pe N. In particular, @"(|| V, ||, p) >0
for pespt| V, ||. Moreover, we have

I Voil(u)=f u(p)@"(IVoll, ppd#"p  for ueAH(N).
N

(2.8) V, is an n-dimensional rectifiable varifold in N.

For 0<r<sy, fi,,,4(V, Lu~'B(p, r)) is an n-dimensional varifold in T,(N) such that
the support of ||fy,s(Vo Ln™'B(p, r)) | is in B,(0, 1). We have,

2.9) | ldps(Vo L™ B(p, 1) | BO, )=r~" | Vo | B(p, r)|<o(r),  for 0<r<s,.

For each pe N, there exist a sequence {¢,} of real positive numbers, ¢,—0 (k— o), and
an n-dimensional varifold C(p) in T,(N) with the following property:

(1) spt]| C(p) = B,0, 1).

(2.10)  (2) limy g Ay a(Vo Ln ™ B(p, 1)) =C(p).
() Niys(Vo Ln™ ' B(p, 1,)) | 9B,(0, 1)=0.
@ 1 Cp) | B0, =0"(| Vo |, p)adrn)r™.
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(see Allard [1, 3.4]). Then, there exists a subsequence { f;,} of {f;} such that

5 lim,,, ﬂl/tk#(fi(k)ﬂv(M) Ln™ lB(Pa t))=C(p),

(6) Ly, | Ay figost(M) L™ B(p, 1)) || B,(0, 1)= | C(p) || B,(0, 1),
since lim; , , fi; 4, s(fis¥(M) L™ ' B(p, t,))= iy ;,,s(Vo Ln ™' B(p, t,)) for each k (cf. [1, 2.6
(2)]). Furthermore, since V, is stationary, we have the following:

(2.11) C(p) is stationary. Namely, if h: Rx T,(N)-T,N) is a C*-isotopic defor-
mation with A(q) =h(t, g)=¢q for (1, )€ Rx (T (N)~U,(0, 1)) and A(0, q) =4,
then we have || C(p) || B,(0, )< | ~:C(p) || B,(0, 1).

By (2.10), (4) and (2.11), C(p) has the properties in [1, 5.2, (2) Theorem]. In particular,
| C(p) |l is a cone with vertex 0e T,(N) (cf. [1, 5.2, (2) Theorem, (a) and (b))).

(C) We consider the following condition on fe Z:

(2.12) There exists no pair {D,, D,} of #"-measurable sets in M such that D,ND, =
B, fsu(Dy) =f0(D5), and | fu(Dy) | (N) #0.

If fsatisfies (2.12), the weight || f,u(M) | of f,u(M) coincides with the variation measure
| fiM | of the n-dimensional integral current f,M on N, i.e.,

(2.13) Ifo(M) || = /M .

By a slight modification of f; given in Lemma 2.2, we may assume that each f; satisfies
(2.12). Thus, we can replace the sequence {f,v(M)} by the sequence {f, M} of n-
dimensional integral currents as far as the weight || f,u(M) | is concerned. But note that
lim;_,  f;;M =T does not imply || T|(N)=| V, [(N). For an integral current 7 on N
(resp. T(N)), put M(T)=|| T|[(N) (resp. || T{[(T,(N))).

3. Normalization of area-minimizing sequence. Let {f;} = Z be the sequence
given in Lemma 2.2. Let s, be the number given in (1.1). In this section, we fix pe N.

LEMMA 3.1. We fix r with 0<r=<s,. We can modify f; to get F; satisfying the
following conditions:
(1) Fe &, || Fpo(M) [(N)Z || fiso(M) [|[(N).
(2) Put
F U =) X} (countable sum) ,

where F,"'U(r) is the inverse image of U(r) by F; and each X ¥ is a connected component of
F,”'U(r). Then each X* is homeomorphic to D"=R"N{x: |x|<1}.

PROOF. Let E'={f: M—>N: fis a Lipschitz map and homotopic to f,}. Z is
dense in Z’. Thus it suffices to construct a Lipschitz map F; from f; satisfying the
properties (1) and (2).

We put
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(3.1 fi7 U=, Wk  (countable sum),

where each W ¥ is a connected component of f;~* U(r). The proof is divided into several
steps.

(1) Suppose that there exist W¥ and non-contractible loop y in M such that
yc W Then, f(y) is contractible in N by fi(y) <= U(r). This is a contradiction to our
assumption (0.2). Therefore, each W} is contained in a coordinate neighborhood in M
by our assumption (0.1).

(2) Suppose that there exists W¥ which is represented as W =A~B for a
connected open set 4 and a closed set B in M such that 4 o B. For simplicity, we denote
f;and Wk by fand W from now on. 4 is contained in a coordinate neighborhood in M.
Let (a', - - -, a"*'; u) be a polar coordinate of U(2s,). We define a map f: N— B(r) by

for qge N~ U(2r)

p
o= [q for qe U(r)

and Bl(a'(q), - -, a""(q): u(g)]=Bl(a'(g), - - -, a""(q); 2r—u(g))] for ge U(2r)~ U(r).
Then we define F: M—N by

)= [ﬂf(x) for xeA _
f(x) for xeM~A.

We have F{(4)< B(r). Since no open set in dB(r) is area-minimal in N, we can slightly
modify this F to get F with F(A)cU(r) and | Fo(M)|(N)Z| fizo(M)||(N).
Furthermore, by n>2, we easily see Fe 5. Thus we may assume . (WE *x)={1} in
(3.1). In particular, in case n=2, we may assume that W ¥ is homeomorphic to D?.

(3) Suppose that n=3 and there exists W ¥ such that n;(W ¥, ) # {1}. Then we will
construct F,e £ from f; in such a way that X!o W}k =n,(Xk +)={1}, and
| Fo(M) [(N)< | fis0(M) [[(N).

For brevity, we denote W ¥ and f; by W and f from now on. A typical case is shown
in Figure 1:

M3 N4 f(z-axis)

1)

Wt !(p)

FIGURE 1
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In Figure 1, Wnf~!(p) is a circle in the xy-plane. W is a tubular neighborhood of this
circle. §; (i=1, 2) is a circle in the yz-plane through the origin and a point of Wnf ~!(p).
We consider the following cone Y in R3:
Y={(ra,t(2—r)): —1<t<1,0<r<2, and ac R? with |a|=1}.
Then, 0Y={(ra, +(2—7r)): 0<r=<2, and ae R? with |a|=1}.
Put Y,={(ra,0): 0<r<2, and a€ R? with |a|=1}.

Xa
(2,2
2,2t

:— ———l-v 0 4 X3
_1)—9

Image P(Y)

2, -2
FIGURE 2

Then, by the identification of {(2a, 0): |a|=1}(< Y) with Wnf~!(p) in Figure 1, we can
regard Y to be contained in M. We will show that we can get a desirable F by a
modification of fon Y~3Y.

We define a map P: Y- R* by

Pl(ra, t2—r))]=2—r)ra, 1,1).

Then we have P[(2a, 0)]=(0, 0, 0) and P[(0, 2:)]=(0, 2, 2¢). Furthermore, P is injective
for r#2. Therefore, f: Y— N defines G=fP~': P(Y)— N. Take a C*-function (s, f) on
[0, 11x[—1, 1] with 0=Zu(s, ) 1, (1, t)=1, v(s, £ 1)=1 and v(0, 0)=0. Put

h[(2—r)(ra, 1, H]=Gl2 —r)v(s, H)({2—(2—r)u(s, t)}a, 1, 1)].
Then, A, maps P(Y) into M and satisfies
hy=G, h(P(Y))<G(P(Y)) for sel0, 1],
hf(2—r)(ra, 1, + 1)]=G[2—r)(ra, 1, £1)] for sel0,1],
hol(2—r)(ra, 1,0)]=p for re[0,2] and ae R* with |a|=1.
By Pl(ra, +(2—r))]=(2—r)ra, 1, +1) and P[(ra, 0)]=(2—r)(ra, 1, 0), {h}, defines a

homotopy map {H,},,, H;: Y- N, such that H,(q)=f(q) for qe Y, H(q)=f(g) for
qedY and s€|0, 1], and Hy(q) =p for g€ Y,,. Therefore, we take F=H,, and then Fis a
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desirable map on Y.
(4) In the same way as in (3), for the case n =4, we can construct F; from f; so that
nXE0=(1} (j=1,2,-,n=2). ged.

Let {z,} be the sequence of real numbers with the property (2.10). Then, we can
further assume

(3.2) So2t, L220,4,>0  (k=1,2,---).
The following lemma will be used in §4.

LEMMA 3.2.  There exists a sequence {F,} = E satisfying the following properties:

(1) {F} satisfies Lemma 2.2 (with f; replaced by F)).

(2) N Fuo(M) =l FieM ||

(3) There exist constants C,, C; and r,€(t,/2, t,] for each k so that the following
hold:

(A) Mlﬂurka(stM LB(r)l=C, Jor k=1,2,---.

(B) MIOf o(FisM LBr DISC;s  for k=1,2,---.

(C) Put F,'U(r)=Y., X} (countable sum), where each X} is a connected com-
ponent of F,”'U(r,). Then each X" is homeomorphic to D".

REMARK. (1) We will show in §4 that the sum on the right hand side of
F,"'U(r,) in (3) (C) is essentially finite.

(2) By (3) (C), the rectifiable current [, ,(F, M L B(r,)) is an integral current for
each k (cf. [3, 4.2.16. (2)]). The sequence {(i, ,, Fi); Y., (0X W)} ie-, of (n—1)-dimensional
integral varifolds in N has a convergent subsequence, because of

M[aﬁl/rkﬁ(Fk#M LB(ry))]l= “(ﬁurka)z Z;. U(aXZ)H Tp(N)

and (3) (B) (see § 2 (C)). Furthermore, there exists a sequence { P, } of integral polyhedral
chains (cf. [3, 4.2.20 and 21]) such that, for >0,

spt P,= U(0, 1 +&)~B(0, 1 —-¢),
F(Py— 0y, (FisM LB(rp) < e/k
N(P) = MO, ., o(FisM L B(r,))]+¢/k .

Therefore, we approximately replace Of,,, (FizM LB(r,)) by P, (or py(P,), where
p: T,(N)~{0}—0dB(0, 1) is the canonical projection). Then, we may assume, for
each k and A, that the mapping f,, F,: 0X »—0B(0,1) is a Lipschitz map G,:
oD"—-0B(0, 1).

(3) By 1=¢4/ry=2 for k=1,2,--- in Lemma 3.2 and lim,_  f, (VoL
n~'B(t,))= C(p) in (2.10), we have also lim,_, Ay rs(Vo L™ 1 B(r,)) = C(p). So, taking
a subsequence of {F,} if necessary, we also have
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limk—» © ﬂl/rkz(stv(M) La~ lB("k)) =C(p),
lim_, o, ||y s (Fis0(M) L~ B(r )| B0, 1)= || C(p)|| B0, 1) =a(m)®"(|| V5 I, p) »

in the same way as in (2.10), (5) and (6).

PROOF OF LEMMA 3.2.  We already showed (2) in §2, (C). Let {f;,} be the
sequence given in (2.10), (5) and (6) for the point p. For brevity, we denote { f;;,} by
{fx} from now on. Since (3) (C) is shown by Lemma 3.1, we have only to fix C,,
C, and r,e(4/2, t,] for each k. Since we may assume |fi ,v(M)||=|S M|, we
have lim, ., M[A,(fisM L B(t)]=a(n)@"(|Vol,p) by (2.10). We take C,=
xm@"(|| V5|, p)+ 1. Then we have M[fy,,,(fiuM LBt IS C, (k=1,2,- ).

Since M[f,;M L B(f)] is non-decreasing in ¢, it is differentiable for #*-almost all 7.
Let

A,=(t)2, t,In{t: dM[f,.M L B(2)]/dt exists} .

We have, for te 4,,

(3.3) Maﬂum(fkaM LB dM[/Ium(szM LB(s))]/ds|s=, s
(34 d[ﬂl/w(fk#M L B(2)))/dt = -nt_lM[ﬂl/t#(fk#M L B(1))]
+ 17 My o (freM L B(s))]/ds]s, .
Put
D\(t, u) =M ;oy(fisM L B(O))] — M[A; )s(fisM L B(w))] ,
d(ty=lim inf,,,_D(t, u)/(t—u) .
We have
3.5) lim inf,,,_D(t, u)=0.

Put B,=(t,/2, t,]N{t: 6,(1)<0}.
(1) Thecase 4, NB,=F. Then, §,(t)=0 for te 4,. By (3.4) and (3.5) there exists
ri€(t,/2, t,] such that

(3.6) 27 d[i, ra(fisM L B(s))]/ds |t —r S UM o (fisM L B(2)))]
— My o (fisM L B(1,/2)]} + 27 'nt, M3y, ,(frsM L B(2}))] .

By (3.3) and (3.6), we have
M0y o(fisM L B(r))) = (n+ 2)Mfy ,o(fiaM L B(21))] -
Furthermore, by 6,(¢)=0 and (3.5) we have
My, o(feM L B(ri)] = MIfy ,, o(fisM LB(1)))] .

Therefore, we can take C;=(n+2)C, in this case.
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(2) The case 4, NB,# . Put s=sup 4, N B,. If se 4, N B,, then we have

3.7 MOy o(feM L B SnM[pty o fisM L B(s))]
by (3.3) and (3.4). By 6,(t)=0 for te 4, N(s, t,] and (3.5), we have
(3.8) MIa, o (fisM LB(S))]éM[IIurks(fksM LB(t))].

In this case, we can take r,=s and C;=nC,.
If s¢ A, or t¢ B,, we take r,€ A, N B, N(s, 1,] sufficiently close to s. For this r,, we
can show (3.7) and (3.8) (with s replaced by r,). g.e.d.

Now, we may further assume the following in Lemma 3.2:

(1) limy | Fuo(M) L™ B(ry) | B(ry) = | Vo L™ B(r,) | B(r,).

(2) M[OF M LB(r)I=C, for k=1,2,---.

(3) Put F,"'U(r,)=).,Z} (countable sum), where each Z} is a connected
component of F, ' U(r,). Then each Z} is homeomorphic to D".
The reason is the same as in (2.10), (5) and (6), Lemma 3.2 and the above remark (3).

4. Regularity. In this section, we will prove the following theorems.

THEOREM 1. We have

(H 1CP)IBLO, 1)2a(n) Jor pespt||Vyll,
(2) A#"(sing| C(p)| ~0B,0, 1))=0  for pespt|V,| and m>n—7.

THEOREM 2. We have

H™(sing| Vyl)=0 for m>n—1.

THEOREM 3. V, is an n-dimensional integral varifold.

We fix pespt|| V,l. By (2.7) we have @"(||V, ||, p)>0. Here we use Lemma 3.2 and
the remark after it. We take an element X ¥ of {X ! for each k, where {X !} is as given
in Lemma 3.2, (3) (C). By Lemma 3.2, (3) and @"(|| V, |, p) >0, we may assume that the
sequence

(4.1) {(Ay r, Fr)so(X :(k))}?=l
has a subsequence, which converges to a non-zero varifold. For simplicity, we write the
subsequence in the same notation as in (4.1). Thus, there exists a varifold Y in T,(N)
such that spt|| Y || = B(0, 1) and
(4.2) lim ., (i FOs0(X ) =Y

iy, ([ (y g Fs0(X ) BO, 1) = || Y| BO, 1)

[ Y] is a cone and Y is stationary under any isotopic deformation 4 of T,(N) with
h(t, g)=gq for (1, )€ Rx (T (N)~ U(0, 1)) and h(0, g)=gq, by (2.11).
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Furthermore, by ||V, [|(N)=inf{|| f;u(M)|(N): fe E}, we have:

(4.3) For each k, take a Lipschitz mapping G,: X " —B(0, 1) such that G(q)=
Ay Fi(g) for ge 0X 1 and G (X }¥)<= U(0, 1). Then, we have

lim inf, _, . [|G0(X i) BO, )= | Y| B(O, 1) .
LEMMA 4.1. We have || Y| B(0, 1) =a(n).

PROOF. We prove this by induction on n. Let D*=R*n{x: | x|<1}. We refor-
mulate the conditions on Y as follows: There exists a sequence {F{"}y_,,
F{": D" D"*! such that the following hold:

(1) F is a Lipschitz map satisfying F{"(0D")<oD"*! and F{"(D")=D"*".
) lim, . F,0(D"= Y™,

(4.4) (3) O<lim,_ ||F™,0(D")|R™ ! =Y ™[R! < 0.
(4) | Y™| is a cone with vertex 0.
(5) For each k, take a Lipschitz mapping G,: D"—»D"*! such that G,(¢)=
F{"(q) for ge D" and G (D")= D"*'. Then, we have lim inf, _, , || G ,u(D")||R"*"
2 Y ™[R

Under this condition (4.4), we must prove | Y ™| R"*! = a(n).

If n=1, then | Y V|| is an #'-measure on a line in D? through 0. Thus, we have the
assertion in this case. We assume that the assertion is true for n<m—1. Let n=m. We
take a vector a such that aespt||Y ™| n{x: |x|=1/2}. We defined u,: R"*'->R™*! by
u(x)=r(x—a). Let U@, r)=R™"'N{x:|x—a|<r}. Applying Lemma 3.2 and the
remark after it (with F, and M replaced by F{™ and D™, respectively), we have a
sequence {r,}, r,>0 and r,—0, so that the following hold:

(1) limy ol g s (F ™ 50(D™) L.ﬂ U, r))IR™ =amO"(| Y™, a).
(4.5) (2) Let F{® 'Ua,r)=) W/, where Wi is a connected component of
F{"~'U(a, r,). Then each W4 is homeomorphic to D™.

Thus, in the same way as in the argument before this lemma, we may assume that there
exist a sequence {W4{¥} and a varifold D(#0) satisfying the following:

() lim,, (1, FM)0(W ) =D .

@ limy ([ F)0(W )[R = || D | R™ .

(5) || D] is a cone with vertex 0.

(6) For each k, take a Lipschitz mapping G,: Wi*¥—D™*! such that G,(q) =
B F¥™(q) for ge OW® and G (WiP)=D™*!'. Then we have

lim infy ., | Gt (W {®)|R™ ' = || D R"*" .

Furthermore, we have by (4.4), (4):
(7) || D| is a cylinder with direction a/|a|. (We say that measure yon R™*! is a
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cylinder with direction ¢ if u(4+ tc)=pu(A) for AcR™*! and teR.)

Therefore, we may assume that each p,, Fi™: W{¥—-D™*! is also a cylinder map.
Thus, by the induction assumption used in the same way as in [3, Proof of 5.4.15],
we have |D|R™"'=a(m). By (2.7) (with V, replaced by Y™), we have
Y™ |R™* ' = D|R™". g.e.d.

If necessary, we take a subsequence of {F,}, and rearrange {X }} for each k. Then
we have the following:

LEMMA 4.2. There exists an integer N(p) with the following properties for some
e>0:

(1) F7'U(r)) is represented as
FUr) =Y penX it LhenX ks
where the cardinality of H is N(p),
1A FOs0(X DIBO, ) Za(m)/2  for heH
and Y (g FU(X DB, 1) <ek.
(2) F.'U(r,) is represented as
F M Ur) =Y penZi+ LnenZi
where | Fo(X })I|B(ry) 2 ria(n)/2 for he H and Y, ;.|| Fiso(X DI B(r,) <erfo(n)/k.
Furthermore, there exists an integer N such that N(p)< N for each pespt| V, |-

PROOF. This lemma follows from (2.6), (2.10), the remark after the proof of
Lemma 3.2, and Lemma 4.1. In particular, if necessary, we replace r, by a sufficiently
smaller number. q.e.d.

We will call ), X7 (resp. Y, ,Z4) the essential part of F;'U(r,) (resp.
F'U(r))). Thus, we have essentially the following conditions:

() F'Urp)=Y,.uZrand F 'Ur)=Y, ,X " where Z}>X}, and Z} and
X I are homeomorphic to D".
4.6) (2) limk_,ka,U(Zﬁ)z wh, limk—»w(ﬂl/rka)aU(X:)z Yh
lim,_, . | Fu0(Z )| B(ry) = | W"|| B(ry),
limy_, , [|(y, F):0(X DIBO, )= Y"[|B(O, 1).
3) | Y"|B, 1)=un) for heH.
@ S, lWhI=1Vo La UGN, Ypenl YHII=11C) |-
LEMMA 4.3. There exists a number Y(>1) with the following property: If

| Y"| B0, 1)< Y(n), then there exists an open neighborhood U around p such that
spt|| W" || nU is a C*-hypersurface in N.
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Furthermore, in this case we have | Y" | =||R" LU(0, 1)|, where |R™ LU(0, 1)|| is the
Z"-measure on a hyperplane through 0 of T(N) restricted to U(0, 1).

PROOF. If | Y"|B(0,1)<Ca(n), we have |W"|U(r)< Ca(n)r"exp(Mr) for
0<r<ry, by @"(|W"|, p)=a(n) || Y *|| B(0, 1) and (2.6). And we have @"(| W"||, q) =1
for gespt| W"| N U(r,) by Lemma 4.1. Furthermore, W " is stationary. Thus, by Allard’s
regularity theorem, there exists a number Y{> 1) with the following property:

If ||Y*|B(0, 1)< Yu(n), there exists an open neighborhood U around p such that
spt|W"|nU is a C'-hypersurface in N.

The C~-differentiability of spt| W"| N U follows from Schoen-Simon-Almgren [9,
Lemma 2.3]. Since Y" is a tangent varifold of W" at p, | Y*|=||R" LU(0, 1)| holds
in this case. q.e.d.

By Lemma 4.3 and (2.8), if || Y"|B(0, 1)< Ya(n), then there exists a smooth
hypersurface S imbedded in N such that W* La~}(U)=u(S). Therefore, if pespt| V| is
a singular point, there exists Y " in (4.6) such that || Y #||B(0, 1)= Ya(n). The following
lemma can be proved in the same way as Federer [4, Lemma 2]. Therefore, the regularity
around p depends only on one of spt| Y *|| ~3B(0, 1).

LEMMA 4.4. If @*¥¢* Lsing(| W"| ~03B(r,)), p]>0, then there exists a sequence
{ri} ¥ ,, which satisfies (4.6) and #*(sing|| Y " ~0B(0, 1))>0.

LEMMA 4.5. We have #™(sing|| Y "| ~0B(0, 1))=0 for m>n—17.

PROOF. Let n=2. We take a vector aespt)|Y"|n{x:|x|=1/2}). We denote
(fiy ) F)s0(X }) by F@,0(D?). Then, in the same way as in the proof of Lemma 4.1, there
exists a sequence {r,}, r,—0 (k— o0) satisfying (4.5) (with F{™ replaced by F?). Thus
spt|| Y *|| N6B(0, 1/2) is a smooth closed immersed curve in 6B(0, 1/2) by Lemma 4.3 [see
also the proof of Lemma 4.1]. Then, by the non-existence theorem of branch points (cf.
[7], [8]) we have || Y *|| = ||[R* LU(0, 1)||. So, we are done in the case n=2. Let n=3. Then,
first of all, spt|| Y *|| N dB(0, 1/2) is a smooth closed surface immersed in dB(0, 1/2) by the
result for n=2. Furthermore, spt||Y"| n0B(0, 1/2) is totally geodesic by (4.3) and
Simons [10]. Then we have || Y || B(0, 1) =ko(3) for an integer k >0. Next, from the non-
existence of branch points in the case n=2 and the simple connectedness of S?, we have
| Y ") B(0, 1) =a(3). Thus, we have || Y " =||R*> LU(0, 1)||, and we are done in this case.

By induction on n, we have || Y *|| =|R" LU(0, 1)|| for n<6 by Simons [10], and
H¥sing|| Y "|| ~0B(0, 1)) =0 for k>n—7 (cf. [4, Proof of Theorem 1]). q.e.d.

We have completed the proofs of Therems 1, 2 and 3.
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