Toéhoku Math. J.
41 (1989), 263-282

MANIFOLDS OVER FUNCTION ALGEBRAS AND
MAPPING SPACES

Dedicated to Professor Ichiro Satake on his sixtieth birthday

SHoOsHICHI KOBAYASHI*

(Received December 17, 1987)

1. Introduction. The space of smooth mappings from one manifold into another
is an infinite dimensional manifold modelled on a Fréchet space. However, the concept
of a Fréchet manifold is so general that its general theory is not very effective. In
studying a mapping space, it is customary to complete it to a Banach manifold by an
appropriate Sobolev norm. In this paper we shall show that for certain problems such as
computing the curvature of a mapping space it is unnecessary to complete the space to a
Banach manifold. For this purpose we introduce a very restricted category of infinite
dimensional manifolds that comprises mapping spaces.

An n-dimensional manifold is modelled on R" with the usual structure sheaf Oy, of
germs of C* real valued functions. While an ordinary manifold is defined over the field
of real numbers R, a manifold in this new category is defined over a function algebra A4
and is “finite dimensional” over 4. Let S be a fixed compact manifold (with or without
boundary), and let 4 be the algebra of C* real valued functions on S. Let V be a real
vector bundle (of finite rank) over S, and let E=TI(S, V') denote the space of C* sections
of V over S. In the next section we define a very small structure sheaf ¢, on E; it is not
the sheaf of germs of ordinary C® real valued functions on E but is a certain sheaf of
germs of A-valued functions on E. With (E, Of) as a model space, we can define a
manifold, called 4-manifold, in the same way as we define an ordinary manifold
modelled on (R", Ogn).

A justification for introducing the concept of A-manifold is that the space M5 of C*®
mappings from S to an ordinary (finite dimensional) manifold M is an 4-manifold and
that some differential geometric properties of such a mapping space can be studied more
easily as properties of an A-manifold. If M is a Riemannian manifold and S is a
compact manifold with a volume element, the mapping space M® has an induced Rie-
mannian metric. In [1] Freed calculated its curvature by suitably completing M5 to a
Banach manifold. By introducing the concept of a Riemannian A4-metric and inter-
preting the induced Riemannian metric of M5 as the integrated form of a Riemannian
A-metric, we define the Levi-Civita connection of M5 and compute its curvature with-
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out completing M.

A large part of this paper is devoted to the basic theory of A-manifolds. For the sole
purpose of computing the curvature of a mapping space in an elementary manner, the
general theory developed here is probably excessive. But we are hoping that these basic
facts on A-manifolds presented here may have other applications.

For a number of interesting problems related to mapping spaces, A-manifolds are
often inadequate. When a problem involves derivatives of mappings, our structure sheaf
O is simply too small. For this reason we introduce in the last section a sequence of
larger sheaves, i.c., sheaves of A”-functions for r=0, 1, 2, - - -. For problems involving
r-th partial derivatives of mappings, A"”-functions are needed. It is definitely more
interesting and non-trivial to develop the theory of 4"-manifolds for r> 1. The first step
in such a task would be to extend classical theorems of analysis such as the implicit
function theorem to A-functions. However, we confine ourselves in this paper to
explaining A'"-functions and 4"-vector fields with examples.

2. Model spaces for 4-manifolds. We fix a compact manifold S, and let 4 be the
algebra of real C* functions over S. Let V be a real vector bundle (of finite rank) over S
and, E=TI(S, V) the space of C* sections of V over S. Then E is a finitely generated
reflexive projective 4-module, its dual E* being isomorphic to the space I'(S, V'*) of
sections of the dual vector bundle V'*.

We have the usual C*-topology on E, which makes FE into a Fréchet space. But we
shall not be concerned with this topology at this moment since the structure sheaf can be
defined in terms of a more coarse topology, namely the C°-topology defined as follows.
We define it by specifying its neighborhood system. For a€E, let NcV be a
neighborhood of the section a(S)< V. Let N be the neighborhood of a in E given by

N={(€E; {s)eN for se S} .

Thus N consists of all sections that lie in N.
We construct a sheaf O on E by specifying what an A-function is. Let fbe a real C*
function on N. Then f induces a mapping f: N—A4 by

2.1) (fEONs)=f(&(s))  for Ee€E, seS.

Let O4(N) be the set of 4-valued functions fon N obtained in this way. We call f the
A-function on N corresponding to the function f on N.

A typical neighborhood of a€E in the C*-topology consists of points ¢ of N
satisfying additional conditions on derivatives of ¢. For such a neighborhood, say N’,
we set O (N')=04N).

With @ as its structure sheaf, E is a ringed space. The function algebra 4 and the
ringed space (E, Of) will play the roles analogous to those of R and R", respectively.

Let V' be another vector bundle over the same base manifold S and let E' =
I'(S, V). We define a (local) morphism from (E, Of) to (E’, O). If @ : N— V"’ is a fiber-
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preserving C* map yhich induces the identity transformation on the base manifold S, it
induces a map ¢: N-E’ by

2.2) (PON)=p(&s))  for EeN.

If g is a C* function on E’, then

(2.3) §°p=4°o.

This shows that, for every smooth e Op(E’), o @ is in Ox(N), i.e., ¢ is a morphism of
the ringed space (N, 0, |5) into the ringed space (E’, Oy.). We call ¢ the A-map induced
by @. We can show that, conversely, all morphisms F: N—E’ arise in this way.

We shall show that, conversely, if F: N—E’ is a morphism between these ringed
spaces, then F=¢ for some fiber-preserving C* map ¢: N— V"’ which induces the
identity transformation on S. Let ¢eN and se S. We are forced to define @(&(s)) by

P(£(5)) = (FE)(s) -

Then we have to verify that ¢(&(s)) depends only on &(s), not on &. In other words, we
have to show that (FE)(s)=(F&')(s) for any £’ e N such that £’(s)=E&(s). Let g be an
arbitrary C* function on V. Since F is a morphism of (N, 0, IN) into (E’, O.), there is a
C* function fon N such that

goF=f on N.
Then
JFY=/&),  gEFE)=f&).
Hence,
JUED()=1(Es) ., g((FENs)=F(E(9) .
Since ¢(s)=¢'(s), we have f(£(s)) =/(£ (). Hence,
g((FE)(8)) =g((FE')(s)) -
Since this holds for all g, we have
(FE)($)=(FE")s),

which proves our assertion.

Let a€ E (resp. fe E') and Nc V (resp. N’ <= V') a neighborhood of a(S) < V (resp.
B(SYc= V). A fiber-preserving diffeomorphism ¢: N—-N’ (which covers the identity
transformation of S)induces an invertible morphism ¢ : (N, Ug|5) (N, Oy |5.), and the
inverse ¢ ! is induced by ¢ ~!. We call ¢ the A-diffeomorphism induced by .

We have shown that if F: (N, Og|5)—>(N’, Oy |5) is an isomorphism of the ringed
spaces (i.e., an invertible morphism such that F~! is also a morphism), then Fis the 4-
diffeomorphism induced by some diffeomorphism ¢: N> N".
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For brevity, by a local diffeomorphism of V to V' we mean a fiber-preserving
diffeomorphism of a neighborhood N of a section a(S) = V onto a neighborhood N’ of a
section B(S)<= ¥V’ which induces the identity transformation on S. Specializing what we
have shown above to the case V'=V, we see that the pseudogroup of local A4-
diffeomorphisms of E is isomorphic to the pseudogroup of fiber-preserving local
diffeomorphisms of V.

Having constructed the pseudogroup of local A-diffeomorphisms of E, we are in a
position to define a manifold modelled on E. An A-manifold modelled on E is a
Hausdorff topological space .# covered with coordinate charts (U,, ¢;);.;, Where {U;} is
an open cover of .# and each ¢, is a homeomorphism of U; onto an open set N;< E such
that

Pio@; ' oUiNU) > oUiNU))

is an A-diffecomorphism. (Here, N, is the open set obtained from an open set N,c V
which projects onto S, i.e., which is a neighborhood of a section of V) If we need not
specify the model space E, then we call .# simply an A-manifold.

An A-function on ./ is a mapping f: .# — A such that fo ¢,
@{U,;) < E for every coordinate chart (U, ¢;).

In order to construct a global object on a manifold by patching local objects
together, we often use a partition of unity. However, our structure sheaf is too small to
construct a partition of unity by A-functions on an A-manifold. To see this, let N,
and N, be neighborhoods of a section «(S) in ¥ such that N, = N,. Then by Tietze’s
theorem, there is a C* real valued function f on V such that (i) f=1 on N,, (ii) f=0
outside of N,, and (iii) 0<f<1 on V. Then the induced A-function f has the property
that f=1 on N,, but it does not have the property that f=0 outside of N, since a section
¢ € E which lies partially in N, and partially outside N, is not a point of N, but f(&)#0.

Although we may not have a partition of unity by A-functions, in applications we
will be dealing mostly with naturally induced Riemannian metrics and connections
rather than constructing them from local data.

!'is an A-function on

(2.4) REMARK. In the definition of 4-manifold, we could have used the algebra
A of continuous functions on any compact topo]ogical space S and the mode] space E =
I'(S, V) consisting of all continuous sections of a topological vector bundle V. Then, in
defining an A4-function, one should consider a continuous function on N < ¥ which is C*
on each fibre VN N. Accordingly, a local diffeomorphism of V to V'’ should be a fibre-
preserving homeomorphism of N onto N’ which induces the identity transformation on
S and a diffeomorphism on each fibre VN N.

3. Mapping spaces. We fix a compact manifold S. Given an n-dimensional
manifold M, let M® be the space of smooth maps from S into M with the C*-topology.
This space may not be connected. Each connected component consists of maps which
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are homotopic to each other. Obviously, the most important component is the one
containing the constant maps.

In particular, RS=4 and (R")S=(R%)"=4".

Let xe M5 ie., x: S-»M. Let x ' TM be the pull-back of the tangent bundle TM
by x; it is a vector bundle of rankn over S. If x and y are in the same connected
component of M5, i.e., if they are homotopic to each other, then the two vector bundles
x~'TM and y ™! TM are isomorphic to each other. If x is homotopic to a constant map,
then x ™! TM is isomorphic to the product bundle S x R".

We define the tangent space T (M®) of M® at x by

(3.1) T(MS)=TI(S,x 'TM).

It is a finitely generated reflexive projective A-module.
We shall define an 4-manifold structure in M5 by identifying a neighborhood of x
in M5 with a neighborhood of the origin in T (MS). More precisely,

(3.2) THEOREM. For each x € M®, the connected component of MS containing x is
an A-manifold modelled on E=TI(S, x ' TM).

PROOF. Choose a Riemannian metric on M, and let exp,: T,,M—M be the

ordinary exponential map for the Riemannian manifold M. We define the induced
exponential map

exp,: T (M5 - M5
by
(33) (expx é)(s) = expx(s) é(s) fOI’ é € Tx(MS) s S€E S .

Then it is not hard to see that exp, gives a homeomorphism from a neighborhood N, of
the origin in T (MS) onto a neighborhood U, of x in M. We have to verify that
coordinate changes are A-diffeomorphisms. Let ye M® be another point in the same
connected component as x. We have a homeomorphism exp, : ]Vy—+ U,. Then we have to
verify that

exp, 'eexp,: exp, ' (U,NU,) - exp, ' (U NU))
is an A-diffeomorphism (in the sense of Section 2). Set
N.y=exp;'(U,NU)=N,, N, =exp, ' (U.NU)=N, .

Let N, ,cx 'TM (resp. N, , <y 'TM) be the neighborhood of the zero section
corresponding to N, , = T,(M%) (resp. N, .= T(M%)). For each se S, exp,} o exp, is a
diffeomorphism of N, ,Nn~'(s) onto N, . Nn~'(s). Varying s€ S, we obtain a diffeomor-
phism of N, , onto N, ,, which induces the map exp, ' -exp,: ZVx_y-»IVy_x. Thus the
connected component of M® containing x is an A-manifold modelled on E=
I'(S, x 'TM), in the sense of Section 1. q.e.d.
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We denote the tangent bundle of M® by T(M®)=| ) T,(M%). Now we consider
(TM)S. Then there is a natural isomorphism

3.4) (TM)S=T(M®) .

In fact, &£ e (TM)S can be considered as a tangent vector of M5 at the point x=n0 e M5
since &(s) € Ty, yM for all se S. So without ambiguity we may write TM® for the tangent
bundle of M5, i.e.,

(3.5) TMS = T(MS)=(TM) .

Similarly, we define the cotangent space T*(MS5) by
(3.6) T*(MS)=TI(S,x 'T*M).
Under the natural pointwise pairing

I(S, x 'TM)x I'(S, x 'T*M) - 4,

T*(M5) is the dual A-module of T (M®). We denote the cotangent bundle of M5 by
T*(MS)={) T*(M®). Then as in the case of the tangent bundle, we have a natural
isomorphism T*(MS)=(T*M)5. So we can write
3.7 T*M®=T*(MS)=(T*M)S .

Let N be another manifold. Each smooth map f: M— N induces a map

fS: MS_’ NS ,

called the extension of f, by
(3.8) L3 x)=fex.

The extension n%: (TM)>—-MS of n: TM—M is consistent with the projection
T(MS)— M* and the isomorphism (3.4).

If p: MxN-M and g: Mx N->N are the projections, pSx¢q° defines an
isomorphism

3.9) (Mx NYS=MSx NS

An ordinary function on M® is a mapping M5—R. An A-function is a mapping
f: M5— 4 such that foexp, is an A-function for every x in the sense of Section 2.

Fix a point x, of M® and consider the graph I', ={(s, x,(5)); s€ S} =S x M. Let f
be a real valued smooth function defined in a neighborhood of this graph in Sx M.
Then f defines an A-function fon M5 by

(3.10) (J(x))(5) =15, X(s)) .

We shall show that every A-function defined in a neighborhood of x, arises in this way.
Let ¥=x,'TM. Using a Riemannian metric.of M and its exponential map exp, we
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define a mapping Exp: V—Sx M by
Exp(&)=(s,exp, &) for seV,.

Then Exp defines a diffeomorphism from a neighborhood of the zero section in V onto a
neighborhood of the graph I',_in S x M. Now our assertion follows from the definition
of an A-function.

So the ring of germs of A-functions as x, € M* is naturally isomorphic to the ring of
germs of real valued smooth functions at I', = Sx M.

But we proved a little more:

(3.11) LEMMA. Given xo€ M®, there is a neighborhood N of I', in Sx M such

that the ring of real C* functions on N is naturally isomorphic to the ring of A-functions on
the corresponding neighborhood N of x, in M°.

A global version of (3.11) reads as follows:

(3.12) PROPOSITION. Every smooth function f: M— R defines on A-function f on
MS by (3.10). Conversely, for any connected component M of M5, every A-function F on
M comes from a real C* function fon Sx M.

Thus the ring of real C* functions on S x M is naturally isomorphic to the ring of A-
Sfunctions on M.

PROOF. It suffices to construct f from F. Fix a point (0, p)€ S x M. Then given
X, y€.# = M® such that p =x(0) =y(0), we have only to show that (F(x))(0) =(F(y))(0).
(Then we set f(o, p) =(F(x))(0) =(F(»))(0).) Since x and y are homotopic to each other,

we have a finite sequence of mappings x =Xx,, * * -, X, =y € .4 such that p =x,(0) and x; is
close enough to x;_, in the C°-topology of M? (i.e., x; lies in the neighborhood N of x;_,
as described in (3.11)). Then the assertion follows from (3.11). q.e.d.

For applications it is useful to have the following generalization of (3.2). The proof
is almost identical to that of (3.2).

(3.13) THEOREM. Let B be a fibre bundle over a compact manifold S with
projection p. Let T'B be the subbundle of the tangent bundle TB consisting of vertical
vectors. Let I'(S, B) be the space of C* sections of B. For each section x: S— B, the
connected component of I'(S, B) containing x is an A-manifold modelled on E=
(S, x 'T'B).

(3.14) REMARK. Every real C* function f on B defines an A-function f on
I'(S, B) by

(fe)s)=f(x(s)) ~ for xeI(S,B), seS.
Then both (3.11) and (3.12) extend to this case if Sx M is replaced by B.
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The space of sections I'(S, B) may be obtained also as an 4-submanifold of the
mapping space B%; locally it can be described as the zeros of a finite number of A-
functions.

(3.15) REMARK. As we remarked in (2.5), for any compact topological space S
and for the space M® of continuous mappings from S to M the results in this section are
still valid.

4. Vector fields. In order to discuss local properties of vector fields on an A4-
manifold it suffices to consider vector fields on its model space. As in Section 2, let E=
I'(S, V) be the space of smooth sections of V. Let a € F and let X be a vertical vector field
defined only along the section a(S), i.e., for each s€ S, X is a tangent vector to the fibre
V, at ofs). Such a vector field X may be identified with a tangent vector Xe T,E.

We may also regard a tangent vector Xe T,E as a derivation on the algebra of 4-
functions defined in a neighborhood of «. Let f be a real C* function defined in a
neighborhood of the section a(S)< ¥, and f the corresponding A-function defined in a
neighborhood of a€ E. Then we define Xfe 4 by

@.1) (XN)(s)=(Xf)a(s))eR  for seS.
It is easy to verify

(4.2) X(f+9=X+Xqg,

4.3) X(/9)=Xf"§(a)+f(2) X .

Conversely, if X is an A-linear mapping of the algebra of (germs of) smoooth A-
functions at a€ F into A satisfying (4.2) and (4.3) and if we define X by (4.1), then X
satisfies similar formulas on the algebra of (germs of) C* functions around «(S) and is
seen to be a vertical vector field on V defined along o(S).

Since a tangent vector at o is defined as a vertical vector field of ¥ defined along the
section a(S), a cotangent vector at « may be defined as a cotangent vector field (i.e., a
1-form) on V defined along «(S) modulo the horizontal cotangent vector fields along
a(S). More precisely, let I'(S, a ' T*V)=I'(a(S), T*V) denote the space of sections of
the cotangent bundle T*V over a(S). The space I'(S, T*S) of 1-forms of S, pulled back
by the projection n: V- S, may be regarded as a subspace of I'(«(S), T*V). Then
the cotangent space TFE of E at a is defined by

4.4) T*E=I(S,a 'T*V)/I(S, T*S).

Now we shall introduce the concept of A-vector field. Let N be a neighborhood of
a(S)< ¥ and N the corresponding neighborhood of a € E. Let ¢ € N. Then every vertical
vector field X on Nc V, restricted to &(S)< N, defines a tangent vector X <= TE. The
vector field X on N thus obtained is called the A-vector field induced by X. The
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correspondence X — X gives an isomorphism of the Lie algebra of vertical vector fields
on N onto the Lie algebra of 4-vector fields on N.

Since the vector bundle ¥ is locally a product bundle, i.e., 1 !U=U x R" for a
small open set U< S, using a natural coordinate system x!, - - -, x" in R" we can express a
vertical vector field X on V in the form:

™M=

(4.5) X=

i

.0
ua—xi,

1

where each v'=ui(x', - - -, x", 5) is a function of x', - - -, x", s. We may consider (4.5) as
a local expression for X also.

Given a finite dimensional manifold M, we shall now describe A4-vector fields on
M3, Let Sx TM denote the pull-back of the tangent bundle TM by the projections
Sx M— M. We should regard S x M as a (product) bundle over S and then Sx TM as
the space of vertical vectors of this bundle. For any x,e M5, the pull-back bundle
x,'TM is naturally isomorphic to the restriction of the vector bundle S x TM to the
graph I', ={(s, x(s)); s€ S} of x. So a tangent vector X'e T MS is a section of the vector
bundle S x TM defined along the graph I', . Every local section X of the bundle $x TM,
defined in a neighborhood N of the graph I', =S x M, gives rise to an 4-vector field Xin
the corresponding neighborhood N of xe M. Explicitly,

(4.6) X (s)=X(s, x(s)) for xeN, seS.

If f'is a real C* function on N and f'is the corresponding A-function on N, then X 7
is by definition the A-function on N corresponding to X7, i.e.,

(4.7) Xf=X7.

In this way, X acts as a derivation on the ring of germs of A-functions at x,e M5,
In terms of a local coordinate system x', - - -, x" of M, a local A-vector field X at
x,€ M5 is therefore represented by

(4.8) X=Zé"£7,

where each & =¢(s, x) is a function of s', - - -, " and x', - - -, x".
The proofs of (4.9) and (4.10) are similar to those of (3.11) and (3.12).

(4.9) LEMMA. Given x,€ M®, there is a neighborhood N of T, in S x M such that
the Lie algebra of real C* vertical vector fields on N is naturally isomorphic to the Lie
algebra of A-vector fields on the corresponding neighborhood N of x, in M.

(4.10) PROPOSITION. For any connected component M of M5, the Lie algebra of
real C* vertical vector fields on S x M is isomorphic to the Lie algebra of A-vector fields on
M under the correspondence given by (4.6).
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(4.11) REMARK. As in the case of (3.11) and (3.12) (see Remark (3.14)), both
(4.9) and (4.10) extend to the space of sections I'(S, B) of a bundle B over S.

5. Differential forms. As in Section 2, let V' be a vector bundle of rank » over a
compact manifold S with projection n. Let e E=TI'(S, V) and N = ¥ a neighborhood of
the section a(S)< V. Let

A(N)=Y A?(N)

be the algebra of differential forms on N. Similarly, let «/(S) be the algebra of
differential forms on S. Let #(N) be the ideal of .2/(N) generated by ”*(Zp>o AP(S)).
The algebra of vertical differential forms on N is defined to be

(5.1 HL(N|S)=A(N)/F(N) .

We write

A(N/S)= 3, A4*(N/S).
p=0
We note that, for p>n, o/P(N) is contained in the ideal #(N) so that o/?(N/S)=0.
Since the ideal #(N) is closed under d, exterior differentiation

d: /P(N|S) - /P {(N/S)

is well defined. In particular, every element f of A4 behaves like a constant under d, i.e.,
d(n*f)e #(N) so that df=0 in A (N/S).

We consider an element of .&/P(N/S) as a p-form on NcE, where N is the
neighborhood of a € E corresponding to N. Thus we set

(5.2) AP (N)=o4"(N|S) .

In the preceding section, we defined an 4-vector field on N as a vertical vector field on N.
It is a straightforward matter (by going back to N) to verify the usual relations between
vector fields and differential forms on N. We note that the definition of .«?(N) is con-
sistent with the definition of the cotangent space given by (4.4). We call an element of
AP(N) an A-form of degree p.

Assume that N is contractible to « in the sense that there is a map

h: Nx[0,1]1> N
such that
(v, D)=v, h(v, 0)=a(m(v)) , n(h(v, 1))=n(v) for veN, t€[0,1].

The last condition says that the homotopy # leaves each fibre N,=n"'(s) N N invariant.
Then the Poincaré lemma holds for 2/(N). To prove this assertion, we apply the usual
proof of the Poincaré lemma to forms on N. First we define an operator
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K: P Y (Nx[0, 1]) - #?(N)

by setting

1
(5.3) K0=(~1)"J 0,dt  for 0=0,+0,dte.a? (Nx[0,1]),
0

where 0, and 60, are forms of degree p+1 and p, respectively, not involving dt. The
integral on the right hand side of (5.1) means the integral of the coefficients of 8, with
respect to di. Then we obtain

(5.4) Kd(h*w)+dK(h*w)=w—h¢w for weAP(N),

where h,: N—N is defined by hy(v)=Ah(v, 0)=a(nv). Since h*(F(N))=.F(Nx[0, 1])
and h¥we #(N) and since K(F(N x [0, 1])) = #(N), we see from (5.4) that if dwe #(N),
then

w=dK(h*w) modulo #(N).
Interpreted on N, this means that if we o/?(N) is closed, then w=dw’ for some

w’ €? Y(N).
If we o/"(N), the integral [y we 4 is defined by

(5.5) (J w)(s)zj Wy for seS,
N Ne

where N;=NN=n"'s and wy is an n-form on N representing w. We note that the integral
@ is not a real number but is a function on S.

(5.6) REMARK. In applications, S is often equipped with a measure g, or even
with a Riemannian metric. Then integrating {5 w over S with respect to ug, we obtain a
real numbers [ ({gw)us.

Similarly, if 6€ 2"~ '(N), then the boundary integral |, 0€ 4 is defined by

(5.7) <J 9>(s)= J 0, .
oN ON

The Stokes formula

(5.8) J d@:f 0
bl oN

follows from the usual Stokes formula for N, and 6.

We consider now differential forms on the mapping space M5. Let S x T*Mdenote
the pull-back of the cotangent bundle 7*M by the projection Sx M— M. Then the
germs of 1-forms at x,e M® are identified with the germs of sections of the bundle
S x T*M along the graph I', = S x M. More generally, the germs of p-forms at x,e M*
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are identified with the germs of sections of S x A ? T*M along the graph I', . We call a
section of Sx AP T*M a vertical p-form.

In terms of local coordinates s*, - - -, s™and x', - - -, x" of S and M, a vertical p-form
on M5 can be therefore expressed locally as
(5.8) w=) fi,. .. dxT A Adx
where each coefficient f; .. i is a function of s', - - -, s™ and x!, - - -, x".

More precisely, we have the following (cf. (3.11) and (4.9)).

(5.9) LEMMA. Given x,€ M5, there is a neighborhood N of Iy, in Sx M such that
the algebra of real C* vertical differential forms on N is naturally isomorphic to the
algebra of A-forms on the corresponding neighborhood N of x, in M®.

Correspondingly to (3.12) and (4.10) we have the following global version of (5.9).

(5.10) PROPOSITION. For any connected component M of M5, the algebra of real
C* vertical differential forms on S x M is naturally isomorphic to the algebra of A-forms
on M.

Thus, if w is a vertical p-form and X, - - -, X, are vertical vector fields on S x M and
if @ and )?l, S X’p are the corresponding 4-form and A-vector fields on .# — M5, then
(X, X ,) is the A-function that corresponds to the real valued function
(X, -, X,)on SxM.

From (5.10) it follows that the de Rham cohomology of 4-forms on each connected
component .# of M is isomorphic to H*(M, R) ® A.

6. Affine connections. Let .# be an A-manifold modelled on E=TI(S, V). An
affine connection on .# can be described in terms of covariant differentiation V. Given
A-vector fields X and Y on .#, an A-vector field VY is assigned in such a way that

(i) (X, Y)—V,Y is bilinear over A4,

(i) V,xY=fVyYand Vy(fY)=Xf"Y+f-V,Y for any A-function fon .#.

A curve x=x(t) in .# is a geodesic if its velocity vector x=dx/dt satisfies the
equation

(6.1) V. 5=0.

We shall express VY in terms of local coordinate systems of S and V. Since the
question is local, we may assume that .# =E=I(S, V).
Let s', - -+, s™ be a local coordinate system in S. As in (4.5), using a local fibre

coordinate system x!, - - -, x" for V, we express X and Y in the form
.0 .0

6.3 X=)u—— Y=Y v —

( ) Z“ axl ZU axl ’

where the components ' and ¢' are functions of s',---,s™ and x',---, x". Define
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Christoffel’s symbols I': ' as functions of s, - -+, s x', -+, x" by
0 .0
Then
(6.5) VY=YV v =
where
o'
(6.6) V= e J+ZF,kv

The torsion T and curvature R of V are given by the usual formula:
6.7) X, V)=V, Y-V, X—[X, Y], R(X, Y)=[Vx, Vy]=Vixy;-

Since a point of E'is a section of V, a curve x(¢) in E with parameter ¢ is locally given
by

(6.8) xX(0)=(x(1, ).
Its velocity vector is given by

dx' 0o

(6.) =L

Hence the equation of a geodesic is expressed locally as
d3x' ; dx? dx*
(6.10) S ETR S
So the equation looks the same as in the classical case except for the fact that both x' and
Christoffel’s symbols I', depend on se S. Since S is compact, it follows that for any
initial point x(0) and any initial velocity x(0) there is a unique geodesic x = x(z) at least
for sufficiently small 7, || <e. (We note that ¢ can be chosen independently of s since S is
compact.)

Given a finite dimensional manifold M and an affine connection V, we consider its
extension to M®. More generally, let V=V, be a family of affine connections (i.c.,
covariant differentiation) on M parametrized by se S. It induces an affine connection V
on MS:

(6.11) V, 7=V, 7

Since every A-vector field on M is of the form X for some vector field X on M which
depends on the parameter s€.S, (6.11) defines a connection in M5,
In particular, given a connection V on M (independent of s€ S), there is an induced
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connection V on M5,

Fix a point xe M5, and let V=x"'TM. Let (x!, -, x") be a local coordinate
system in M. For the connection V, Christoffel’s symbols I'}; are functions of x', - - -, x",
st - -+, s™ since V depends on the parameter s€.S. By an obvious identification, we use
0/ox, - -+, d/0x" as a local basis for V. By abuse of notation, we shall denote the
corresponding local fibre coordinate system of ¥ also by x', - - -, x". For the connection
V, Christoffel’s symbols are given by (6.4). It is not hard to see that they coincide with
Christoffel’s symbols for V.

The curvature R of V is given as a ntural extension of the curvature R of V. Thus, if

X, Y, Ze T(MS)=TI(S, x 'TM), then (R(X, Y)Ze T (M") is given by
(6.12) (R(X, Y)Z)(s)= R(X(s), Y(s))Z(s) .
The same holds with the torsion tensor.

(6.13) REMARK. We shall explain a slight technical problem we encounter when
we try to treat an affine connection as a special case of a connection in a principal
bundle. Let P be a principal bundle over M with structure group G. The right action of
G on P extends to a right action of G5 on P5. However, it is not quite correct to say that
PS is a principal A-bundle over M® with structure group G5. Since some mappings of S
into M may not lift to a mapping of S into P, P’ may not project onto M®. So we
consider

M3={xeMS; x 'P=Sx G (product bundle)} .

In general, M$ is a union of some connected components of M5. Then PS is a principal
A-bundle over M3 with structure group G5, and every connection in P induces a
connection in P5. So with this approach we fail to treat some components of M5.

7. Riemannian structures. An inner product b in a vector bundle V over S defines,
at each point s€ .S, an inner product b, in the fibre ¥ of ¥ in such a way that b, varies
smoothly with s. Any two inner product  and b in V are equivalent in the sense that
there is an isomorphism f: V'—V such that b’(v, w)=b(fv, fw) for all v, weV, seS.
Each inner product b in V gives rise to an inner product in E=I(S, V):

b: ExE— 4
by
(7.1) (B(E, M)s)=b(E(s), n(s))  for & neE, seS.

Then b satisfies the following conditions:

(i) b: Ex E—A is symmetric and bilinear over A;

(ii) b is positive definite in the sense that, for each ¢ € E, the function A(¢, &eA
is nonnegative everywhere on S and vanishes at se S if and only if ¢ vanishes at 5. (We
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note that (ii) is stronger than the condition that 5(¢, £)>0 on S for every £ € E, and =0
on S if and only if £{=0).

(iii) the inner product b defines an 4-module isomorphism E~ E* sending € E to
b(&, +)e E*.

Conversely, an inner product b on E satisfying (i) and (ii) above comes from an
inner product b in V. (We note that (iii) is a consequence of (i) and (ii).)

An inner product in E is unique up to an equivalence in the sense explained above.

Let .# be an A-manifold modelled on E=TI'(S, V). A Riemannian A-metric g on .#
defines at each point xe.# an inner product g, on T,.# satisfying (i), (ii) (and hence
(iii)) above and is “‘smooth” in x in the sense that

(iv) if X and Y are A-vector fields on .#, then g(X, Y) is an A-function on /.

Then there is a unique torsionfree affine connection preserving the 4-metric g; this
is called the Levi-Civita connection of (#, g). The proof of this assertion is exactly the
same as in the classical case. Namely, given A4-vector fields X and Y on .#, we define an
A-vector field VY by the following equation:

29(VxY, Z)=Xg(Y, 2)+ Y -g(X, Z)—Z-g(X, Y)
+9([X, Y], Z)+9(1Z, X], V) +9(X, [Z, Y],

which should hold for all A-vector fields Z on .#. By (iv), the equation above determines
a vector field VY, and the usual proof of the proposition in the finite dimensional case
is valid, (see the second proof of Theorem 2.2 of Chapter IV in [2)).

With the notation of (6.3) the 4-metric can be expressed locally in the same form
as in the classical case:
(7.2) g(X, Y)=) g,uv’, where g¢,,=g¢ (—a—, i) )

Ox" Ox’

We note that the coefficients g;; are functions of s', - - -, s, x', - - -, x".

Christoffel’s symbols I’ j-k can be expressed in terms of g;; by the well known
formula, the proof being identical to the classical case.

Given two points p and ¢ in ./, let 2, , be the space of curves c: [0, 1] - M with
c(0)=p and ¢(1)=gq. The A-energy E(c) of c is defined by

1
(7.3) E(c)= f g(dt), (t)dte A,  where ¢é=dc/dt.
0
We note that E(c) is not a real number but is a non-negative function on S.
We can calculate the first variation of E(c) as in the classical case. If ¢,, —e<7<g¢, is
a variation of ¢, i.e., a 1-parameter family of curves belonging to 2, , such that c=¢,
and if X is the infinitesimal variation of ¢ induced by c,, i.e., X =(0¢,/07), ¢, then

dE(c,) ! .
(7.4) ) —2L g(X, &)t ,
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where ¢ =V,¢ is the second covariant derivative of c. It follows that c is a critical point of
the energy functional E (i.e., (dE(c,)/dr),-,=0 for all variations c, of cif and only if cis a
geodesic.

Suppose that S is given a measure yg. Then an Riemannian 4-metric g on .# gives
rise to a real Riemannian metric g:

(7.5) g(X, Y)=J 9(X, V)us.

N

We have also the real energy

1
(7.6) E(c)= L g(c(®), )t = LE(C)#S .
Since differentiation d/dt commutes with integration with respect to ug, it follows that a
critical point of E(c), i.e., a geodesic c is a critical point of E(c).
Let X, YeT, .#. Unless X and Y are linearly independent at each point s€ S, we
cannot speak of the A-sectional curvature of the 4-plane spanned by X, Y. If they are,
then the A-sectional curvature is the element of 4 given by

g(R(X, Y)Y, X)
9(X, X)g(Y, Y)—g(X, Y)*

(7.7

Integrating (7.7) over S we obtain the real sectional curvature.

The Ricci tensor Ric is defined as an A4-bilinear form on T, .#, xe.#; the trace of
Z —R(Z, Y)X makes sense and is denoted Ric(X, Y). Again, integrating Ric(X, Y)
over S, we obtain the real Ricci tensor. Similarly, for the scalar curvature.

Let M be an ordinary finite dimensional manifold and g a Riemannian metric on M
parametrized by se S. (Thus, g may be considered as a Riemannian structure in the
vector bundle Sx TM over Sx M, where S x TM denotes the subbundle of T(S x M)
consisting of vertical tangent vectors with respect to the projection Sx M—S). Then g
induces a Riemannian A-metric § on M5 in a natural manner. At xe M5, the inner
product g, in T, M5 is given by

(7.8) GX, YD) =G5 00)(X(5), Y(5))  for X, YeT,M°, seS§.
The proof of the following proposition is straightforward.

(7.9) PROPOSITION. The Levi-Civita connection V of a Riemannian metric g on M
parametrized by S induces, via (6.11), the Levi-Civita connection V of the Riemannian A-
metric § on M5,

Hence the curvature R of § can be expressed in terms of the curvature R of g by
(6.12).

If S is equipped with a volume element pg, then we define as in (7.5) a real
Riemannian metric § by integrating § over S.
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(7.10) PROPOSITION. The Levi-Civita connection V of § is also the Levi-Civita
connection for §.

PROOF. Since V has no torsion, it suffices to verify that it preserves the metric g.
Let X and Y be A-vector fields on M® and let Ze T .M®. We integrate the equation

Z(g(X, Y)=g(V,X, Y)+4(X, VY)

over S. The right hand side yields §(V_ X, Y)+g(X, V,Y) by the very definition of §. In
order to see that the left hand side yields Z(g(X, Y)), we consider in general an A-
function f on an 4-manifold M as a real valued function F on S x .# by setting

F(s, x)=(f(x))(s) for (s,x)eSx.# .

Then the differentiation by Z and the integration by ug commute:

VA (JF(S, x),us>= JZ(F(S, X)) U -

Apply this formula to f=g(X, Y). Then we obtain
Z(g(X, V)= | Z(g(X, Y))us. ge.d.

This is consistent with Freed’s curvature computation for mapping spaces in [1].

(7.11) REMARK. In applications, we have to consider sometimes mapping
spaces with base point. Fix a point (s,, p,) € S x M, and let M5 =(M, p,)***) be the set of
mappings x € M® such that x(s,) =p,. Its tangent space T,M? at x is the subspace of
T .M? given by

(7.12) T.M3={el(S, x™'TM); &s,)=0} .

Hence, the 4-vector field X of M5 corresponding to a vertical vector field X of Sx M is
tangent to M3 if and only if X vanishes at (s,, p,). If ¥ is another vertical vector field on
S X M vanishing at (s,, p,), then VY is again a vertical vector field of S x M vanishing
at (s,, p,)- Hence, M3 is a totally geodesic submanifold of M® and its curvature is
obtained by “‘restricting” the curvature of M5

Since T, M$ is not a projective A-module, M5 is not an A-manifold in the sense
defined in Section 2.

An important example of (M, p,)5:*” is provided by the group of based loops in a
Lie group G.

8. Enlarged structure sheaves. = We have noted already that the class of A-
functions on an A-manifold is too small to include some of the most important functions.
In this section we shall show how to enlarge our structure sheaf (g to a desired size.
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Let V' be a real vector bundle of rank n over a compact manifold S, and E=TI(S, V)
as in Section 2. We define first the r-th jet bundle V' of V. We say that two local
sections £ and # of V defined in a neighborhood of a point s€ S define the same r-jet
at o if their partial derivatives of order <r coincide at s, and we write (&) =j%(n). Thus,
J(&) is the equivalence class consisting of local sections # with the same r-jet as ¢ at s.
Let V" be the set of all r-jets of local sections at s; it is a vector space of dimension
n(m+r)!/m!r!. Let V=] V; it is a vector bundle over S.

Every E€ E=T(S, V) gives rise to a section j"¢ of ¥ in a natural manner. Let x € E.
Given a neighborhood N of (j'x)(S) in ¥, the subset N E defined by

8.1) N={¢eE; (JE)S)=N}

is a typical neighborhood of « in E the C"-topology.
We construct a sheaf 0 on E, called the sheaf of germs of A"-functions on E.
Every real C* function f on N induces a mapping f: N—A by

(8.2) (fONs)=1(ji&)  for (eE, seS.

Let O%(N) be the set of A-valued functions fon N obtained in this way. We call f the
A"-function on N corresponding to f.
Clearly, we have

(8.3) OV OLty

As soon as we have the sheaf 0%’ of germs of 4”)-functions on the model space E,
we have the concept of A”-manifold and that of 4"”-map as in Section 2.

In order to define an A”-vector field, consider a vertical vector field X defined on
Nc V™. For each £ € N, the vector field X gives a vertical vector field X, |j-¢ at the section
J"&(S)<= N. Apply the natural projection ¥V to X|;.. to obtain a vertical vector field
X at the section ¢(S)< V. Let X € T,E be the vector corresponding to X,. The vector
field X on N thus obtained is called the 4”-vector field induced by X.

As in Section 3, let M5 be the mapping space of S into M; its connected components
are all 4-manifolds (see (3.2)). We consider M® as the space of sections of the product
bundle Sx M over S, and we denote the r-th jet bundle of B by B".

We shall exhibit an 4)-function which is not an A-function on M®. Assuming that
S is oriented, let pg be a volume form of S; it is an everywhere positive m-form on S,
(where m=dim S). Let w be any m-form on M. We define a mapping f: M*— A4 by

(8.4) x*o=f(x)us  for xeMS.

Then f is not an A-function but is an 4"-function. In terms of local coordinates
(s', -+, 5™ and (x', - -, x") of S and M, write

1
Us=a-ds A - nds",
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1 ; .
- . . J1 “e JIm
= Y.bj,. .. dxI A Adx

so that

x*UJ___ 1 Zb axfx ) axjm
b a LPn e

Let (s', x7, x{) be the local coordinate system in B" induced naturally from (s', - - -, s™)
and (x', - - -, x"); thus x/=0x7/ds'. Then fcorresponds to the real C* function f on BV
given by

1 . .
(8.5) lfz_a_zbJl . 'jmlel B x,’lnm .

For example, consider the group 2(S) of diffeomorphisms of S. Since it is open
in the mapping space S°, it is an 4A-manifold. Given a volume element ug on S, let
92(S, ug) be the group of volume-preserving diffeomorphisms of S. For each diffeomor-
phism x of S, let x*ug=/f(x)us, where f(x) is a C* real valued function on S. Then the
mapping f: 2(S)— A is an AV-function but is not an A-function. The group 2(S, us)
defined by f(x)=1 is not an A-submanifold of 2(S).

Every vertical vector field X on B” induces an A”-vector field X on M in a natural
way; (the construction is similar to that of the 4”-vector field X on E explained above).

We shall now give an example of A'"-vector field on M5. Let Y be a vector field on
S. At each xe M5, define Y e T MS=TI(S, x 'TM) by

(8.6) Y (9)=x,(Y)).

Then Y is an AV-vector field on M5 although it is not an 4-vector field. In fact, in terms
of the local coordinate system (s, x/, x/) introduced above, for
.0
Y= Z n (S)a_s, )

Y is induced by the following vertical vector field on B,
i J a
(8.7) Y n(s)x] ik
Vector fields of type Y are necessary in discussing stability of mappings. (A

mapping x: S— M is said to be stable if every element of T, M5 is written as a sum of two
vectors X, and Y, where X is a vector field on M and Y is a vector field on S.)
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