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1. Introduction. The space of smooth mappings from one manifold into another
is an infinite dimensional manifold modelled on a Frechet space. However, the concept
of a Frechet manifold is so general that its general theory is not very effective. In
studying a mapping space, it is customary to complete it to a Banach manifold by an
appropriate Sobolev norm. In this paper we shall show that for certain problems such as
computing the curvature of a mapping space it is unnecessary to complete the space to a
Banach manifold. For this purpose we introduce a very restricted category of infinite
dimensional manifolds that comprises mapping spaces.

An ^-dimensional manifold is modelled on Rn with the usual structure sheaf ΘRn of
germs of C°° real valued functions. While an ordinary manifold is defined over the field
of real numbers /?, a manifold in this new category is defined over a function algebra A
and is "finite dimensional" over A. Let S be a fixed compact manifold (with or without
boundary), and let A be the algebra of C00 real valued functions on S. Let V be a real
vector bundle (of finite rank) over S, and let E = Γ(S, V) denote the space of C00 sections
of V over S. In the next section we define a very small structure sheaf ΘE on E\ it is not
the sheaf of germs of ordinary C00 real valued functions on E but is a certain sheaf of
germs of ,4-valued functions on E. With (£, ΘE) as a model space, we can define a
manifold, called ^-manifold, in the same way as we define an ordinary manifold
modelled on (Rn, ΘRn).

A justification for introducing the concept of v4-manifold is that the space Ms of C00

mappings from S to an ordinary (finite dimensional) manifold M is an A -manifold and
that some differential geometric properties of such a mapping space can be studied more
easily as properties of an ^-manifold. If M is a Riemannian manifold and S is a
compact manifold with a volume element, the mapping space Ms has an induced Rie-
mannian metric. In [1] Freed calculated its curvature by suitably completing Ms to a
Banach manifold. By introducing the concept of a Riemannian Λ-metric and inter-
preting the induced Riemannian metric of Ms as the integrated form of a Riemannian
,4-metric, we define the Levi-Civita connection of Ms and compute its curvature with-
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out completing Ms.

A large part of this paper is devoted to the basic theory of .4-manifolds. For the sole

purpose of computing the curvature of a mapping space in an elementary manner, the

general theory developed here is probably excessive. But we are hoping that these basic

facts on A -manifolds presented here may have other applications.

For a number of interesting problems related to mapping spaces, ^-manifolds are

often inadequate. When a problem involves derivatives of mappings, our structure sheaf

ΘE is simply too small. For this reason we introduce in the last section a sequence of

larger sheaves, i.e., sheaves of Λ(r)-functions for r=0, 1, 2, . For problems involving

r-th partial derivatives of mappings, ^(r)-functions are needed. It is definitely more

interesting and non-trivial to develop the theory of Λ(r)-manifolds for r> 1. The first step

in such a task would be to extend classical theorems of analysis such as the implicit

function theorem to Λ(r)-functions. However, we confine ourselves in this paper to

explaining ,4(1 ̂ functions and Λ(1 ̂ vector fields with examples.

2. Model spaces for /ί-manifolds. We fix a compact manifold S, and let A be the

algebra of real C00 functions over S. Let V be a real vector bundle (of finite rank) over S

and, E = Γ(S, V) the space of C00 sections of V over S. Then E is a finitely generated

reflexive projective ^-module, its dual E* being isomorphic to the space Γ(5, V*) of

sections of the dual vector bundle V*.

We have the usual C°°-topology on E, which makes E into a Frechet space. But we

shall not be concerned with this topology at this moment since the structure sheaf can be

defined in terms of a more coarse topology, namely the C°-topology defined as follows.

We define it by specifying its neighborhood system. For α e £ , let Na V be a

neighborhood of the section oc(S) cz V. Let N be the neighborhood of α in E given by

N={ξeE; ξ(s)eN for seS} .

Thus N consists of all sections that lie in N.

We construct a sheaf ΘE on E by specifying what an v4-function is. Let/be a real C00

function on N. Then/induces a mapping/: N^A by

(2.1) (f(ξ))(s)=f(ξ(s)) for ξeE, seS.

Let ΘE(N) be the set of ^-valued functions/on N obtained in this way. We call/the

A'function on N corresponding to the function/on N.

A typical neighborhood of OLEE in the C°°-topology consists of points ξ of N

satisfying additional conditions on derivatives of ξ. For such a neighborhood, say N\

we set ΘE(N') = ΘE(N).

With ΘE as its structure sheaf, E is a ringed space. The function algebra A and the

ringed space (£, (9E) will play the roles analogous to those of/? and Rn, respectively.

Let V be another vector bundle over the same base manifold S and let E' —

Γ(S, V). We define a (local) morphism from (£, ΘE) to (E\ ΘE). lfφ:N^> V is a fiber-
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preserving C00 map which induces the identity transformation on the base manifold S, it

induces a map φ: N-+E' by

(2.2) (φ(ξ))(s) = φ(ξ(s)) for ξeN.

If g is a C00 function on E\ then

(2.3) (Pφ=g°φ.

This shows that, for every smooth geΘE,{E'), goφ is in ΘE(N), i.e., φ is a morphism of

the ringed space (iV, 0£|ff) into the ringed space (E\ ΘE). We call φ the Λ-map induced

by φ. We can show that, conversely, all morphisms F: N-+E' arise in this way.

We shall show that, conversely, if F: N-*E' is a morphism between these ringed

spaces, then F=φ for some fiber-preserving C00 map φ: N-+V which induces the

identity transformation on S. Let ξeN and seS. We are forced to define φ(ξ(s)) by

Then we have to verify that φ(ξ(s)) depends only on ζ(s), not on ξ. In other words, we

have to show that (F£)(s)=(F£%?) f°Γ a n v ξ'eN such that ξ/(j) = ξ(j). Let g be an

arbitrary C00 function on K'. Since Fis a morphism of (iV, ίP£|#) into (£"', ̂ £ ) , there is a

C00 function/on Λ̂  such that

g o F=f on N .

Then

S(Fξ')=?(ξ').

Hence,

flf((/Ώ(j)) = / ( « J ) ) , g((Fξ ')(j» =/(ξ

Since f(j) = ξ r(5), we have f(ξ(s)) =f(ξ '(s)). Hence,

Since this holds for all g, we have

which proves our assertion.

Let oceE(resp. βeE') and iVc F(resp. Λ^'c F') a neighborhood of α(5)c: K(resp.

jg(5)cF / ) . A fiber-preserving diffeomorphism φ: N-+N' (which covers the identity

transformation of 5)induces an invertible morphism φ: (N, ΘE \$)-+(N\ &E, |#,), and the

inverse φ'1 is induced by φ'1. We call φ the A-diffeomorphism induced by φ.

We have shown that if F: (N, ΘE |#)->(JV', ΘE. \n) is an isomorphism of the ringed

spaces (i.e., an invertible morphism such that F~ι is also a morphism), then Fis the A-

diffeomorphism induced by some diffeomorphism φ: N^>N'.
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For brevity, by a local diffeomorphism of F to K' we mean a fiber-preserving
diffeomorphism of a neighborhood N of a section a(S) a Fonto a neighborhood TV' of a
section β(S)a V which induces the identity transformation on S. Specializing what we
have shown above to the case V'=V, we see that the pseudogroup of local Λ-
diffeomorphisms of E is isomorphic to the pseudogroup of fiber-preserving local
diffeomorphisms of V.

Having constructed the pseudogroup of local ^-diffeomorphisms of E, we are in a
position to define a manifold modelled on E. An Λ-manifold modelled on E is a
Hausdorff topological space Jί covered with coordinate charts (Uh <jP;)ίej, where {£/,} is
an open cover of Jt and each φi is a homeomorphism of ί/f onto an open set Nt a E such
that

is an A -diffeomorphism. (Here, Nt is the open set obtained from an open set Ntcz V
which projects onto S, i.e., which is a neighborhood of a section of V.) If we need not
specify the model space E, then we call M simply an Λ-manifold.

An A -function on Jί is a mapping/: M-+A such that/o φΓ1 is an Λ-function on
φ^U^czE for every coordinate chart (£/;, <pf).

In order to construct a global object on a manifold by patching local objects
together, we often use a partition of unity. However, our structure sheaf is too small to
construct a partition of unity by ^-functions on an ^-manifold. To see this, let N1

and N2 be neighborhoods of a section oc(S) in V such that N1aN2. Then by Tietze's
theorem, there is a C°° real valued function/on V such that ( i )/=l on Nλ, (ii)/=0
outside of N2, and (iii) 0</< 1 on V. Then the induced yί-function/has the property
that/= 1 on Nί, but it does not have the property that/=0 outside of N2 since a section
ξ e E which lies partially in N2 and partially outside N2 is not a point of N2 but/(£) #0.

Although we may not have a partition of unity by ^-functions, in applications we
will be dealing mostly with naturally induced Riemannian metrics and connections
rather than constructing them from local data.

(2.4) REMARK. In the definition of ^-manifold, we could have used the algebra
A of continuous functions on any compact topological space S and the model space E =
Γ(S, V) consisting of all continuous sections of a topological vector bundle V. Then, in
defining an ^-function, one should consider a continuous function on Na Fwhich is C00

on each fibre VSΠN. Accordingly, a local diffeomorphism of V to V should be a fibre-
preserving homeomorphism of N onto N' which induces the identity transformation on
S and a diffeomorphism on each fibre Vs Π N.

3. Mapping spaces. We fix a compact manifold S. Given an ^-dimensional
manifold Λ/, let Ms be the space of smooth maps from S into M with the C^-topology.
This space may not be connected. Each connected component consists of maps which
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are homotopic to each other. Obviously, the most important component is the one

containing the constant maps.

In particular, Rs = A and (Rn)s = (Rs)n = A".

Let xeMs, i.e., x: S-*M. Let x~γTM be the pull-back of the tangent bundle TM

by x; it is a vector bundle of rank n over S. If x and y are in the same connected

component of Ms, i.e., if they are homotopic to each other, then the two vector bundles

x~ιTM and y"1 TM are isomorphic to each other. If x is homotopic to a constant map,

then x~ιTM is isomorphic to the product bundle SxRn.

We define the tangent space TX(MS) of Ms at x by

(3.1) Tx(Ms) = Γ(S,χ-ιTM).

It is a finitely generated reflexive projective ^-module.

We shall define an ^[-manifold structure in Ms by identifying a neighborhood of x

in Ms with a neighborhood of the origin in TX{MS). More precisely,

(3.2) THEOREM. For each xe M s, the connected component of Ms containing x is

an A-manifold modelled on E = Γ(S, x~ίTM).

PROOF. Choose a Riemannian metric on M, and let expx(s): TX{S)M-+M be the

ordinary exponential map for the Riemannian manifold M. We define the induced

exponential map

expx: TX(MS) - Ms

by

(3.3) (expxξ)(s) = expx{a)ξ(s) for ξeTx(Ms), seS.

Then it is not hard to see that expx gives a homeomorphism from a neighborhood Nx of

the origin in TX(MS) onto a neighborhood Ux of x in Ms. We have to verify that

coordinate changes are ,4-dhTeomorphisms. Let yeMs be another point in the same

connected component as x. We have a homeomorphism expy: Ny-> Uy. Then we have to

verify that

exp; 1 oexpx: exp; 1 (UxOUy) ->exp;1 (UxOUy)

is an >4-difΓeomorphism (in the sense of Section 2). Set

Let Nx^yczx~1TM (resp. Ny^xαy~1TM) be the neighborhood of the zero section

corresponding to Nx%yα TX(MS) (resp. Ny xcz Ty{Ms)). For each seS, e x p ^ °expx(s) is a

diffeomorphism of NxyΓ\π~1(s) onto NyxΓ\π~ί(s). Varyingse5, we obtain adiffeomor-

phism of NXtV onto Ny^x, which induces the map exp '^exp^: Nx^Ny^x. Thus the

connected component of Ms containing x is an ^-manifold modelled on E =

Γ(5, x~ιTM), in the sense of Section 1. q.e.d.
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We denote the tangent bundle of Ms by Γ(MS) = (J TX(MS). Now we consider

(TM)S. Then there is a natural isomorphism

(3.4)

In fact, ξe(TM)s can be considered as a tangent vector of Ms at the point x = πoξeMs

since ξ(s) e TX{S)M for all s e S. So without ambiguity we may write TMs for the tangent

bundle of Ms, i.e.,

(3.5) TMS=T(MS) = (

Similarly, we define the cotangent space T*(MS) by

(3.6) TΪ(MS) = Γ(S, x~ιT*M).

Under the natural pointwise pairing

T*(MS) is the dual Λ-module of TX(MS). We denote the cotangent bundle of Ms by

T*(Ms) = [j T*(MS). Then as in the case of the tangent bundle, we have a natural

isomorphism Γ*(MS)^(Γ*M)S. So we can write

(3.7) T*MS=T*(MS) = (T*M)S.

Let TV be another manifold. Each smooth map/: M^N induces a map

fs MS^NS,

called the extension of/, by

(3.8) /S(x)=/oX.

The extension π s : (ΓM)5->MS of π.TM^M is consistent with the projection

Γ(MS)->MS and the isomorphism (3.4).

If p\ MxN-+M and q: Mx N^N are the projections, psxqs defines an

isomorphism

(3.9) (MxN)s^MsxNs.

An ordinary function on Ms is a mapping MS^R. An Λ-function is a mapping

/ : Ms-+A such that/oexpx is an v4-function for every x in the sense of Section 2.

Fix a point xo of M 5 and consider the graph ΓXo = {(s, xo(s)); seS}<^Sx M. Let/

be a real valued smooth function defined in a neighborhood of this graph in Sx M.

Then /defines an ,4-function / o n Ms by

(3.10) (f(x))(s)=f(s,x(s)).

We shall show that every ^-function defined in a neighborhood of xo arises in this way.

Let V=x~xTM. Using a Riemannian metric.of M and its exponential map exp, we
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define a mapping Exp: V^Sx M by

Exp(ξ) = (s, QxpXo ξ) for seVs.

Then Exp defines a diffeomorphism from a neighborhood of the zero section in Konto a
neighborhood of the graph ΓXo in Sx M. Now our assertion follows from the definition
of an ^-function.

So the ring of germs of Λ-functions as xoeMs is naturally isomorphic to the ring of
germs of real valued smooth functions at ΓXo czSx M.

But we proved a little more:

(3.11) LEMMA. Given xoeMs, there is a neighborhood N of ΓXo in Sx M such
that the ring of real C00 functions on N is naturally isomorphic to the ring of A-functions on
the corresponding neighborhood N of x0 in Ms.

A global version of (3.11) reads as follows:

(3.12) PROPOSITION. Every smooth function / : M-+R defines on A-function f on
Ms by (3.10). Conversely, for any connected component Ji of Ms, every A-function F on
Ji comes from a real C°° function f on Sx M.

Thus the ring of real C00 functions on Sx M is naturally isomorphic to the ring of A-
functions on M.

PROOF. It suffices to construct /from F. Fix a point (o,p)eSx M. Then given
x.yeJί aMs such that p = x(o)=y(o), we have only to show that (F(x))(o)=(F(y))(o).
(Then we setf(o,p)=(F(x))(o)=(F(y))(o).) Since x and y are homotopic to each other,
we have a finite sequence of mappings x = xθ9 , xk — y e Jt such that p — x,(o) and xt is
close enough to xi_1 in the C°-topology of Ms (i.e., x{ lies in the neighborhood N of x{^ ί

as described in (3.11)). Then the assertion follows from (3.11). q.e.d.

For applications it is useful to have the following generalization of (3.2). The proof
is almost identical to that of (3.2).

(3.13) THEOREM. Let B be a fibre bundle over a compact manifold S with
projection p. Let T'B be the subbundle of the tangent bundle TB consisting of vertical
vectors. Let Γ(S, B) be the space of C°° sections of B. For each section x: S-+B, the
connected component of Γ{S, B) containing x is an A-manifold modelled on E =
Γ(S,x~ιT'B).

(3.14) REMARK. Every real C00 function / on B defines an Λ-function / on
Γ(5, B) by

(f(x))(s)=f(x(s)) for xeΓ(S9B), seS.

Then both (3.11) and (3.12) extend to this case if Sx M is replaced by B.
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The space of sections Γ(S, B) may be obtained also as an ,4-submanifold of the
mapping space Bs\ locally it can be described as the zeros of a finite number of Λ-
functions.

(3.15) REMARK. AS we remarked in (2.5), for any compact topological space S
and for the space Ms of continuous mappings from S to M the results in this section are
still valid.

4. Vector fields. In order to discuss local properties of vector fields on an A-
manifold it suffices to consider vector fields on its model space. As in Section 2, let E =
Γ(S, V) be the space of smooth sections of V. Let oceE and let X be a vertical vector field
defined only along the section α(S), i.e., for each se S, Xs is a tangent vector to the fibre
Vs at α(V). Such a vector field X may be identified with a tangent vector Xe TaE.

We may also regard a tangent vector Xe TaE as a derivation on the algebra of A-
functions defined in a neighborhood of α. Let / be a real C00 function defined in a
neighborhood of the section oc(S)a F, and/the corresponding ^-function defined in a
neighborhood of α e E. Then we define Xfe A by

(4.1) (Xf)(s) = (Xf)(φ))eR for seS.

It is easy to verify

(4.2) X(f+g) = Zf+Xg9

(4.3) X(fg) = Xf 0(α) +/(α) Xg .

Conversely, if X is an ^-linear mapping of the algebra of (germs of) smoooth A-
functions at oteE into A satisfying (4.2) and (4.3) and if we define X by (4.1), then X
satisfies similar formulas on the algebra of (germs of) C00 functions around (x(S) and is
seen to be a vertical vector field on V defined along <x{S).

Since a tangent vector at α is defined as a vertical vector field of V defined along the
section a(S), a cotangent vector at α may be defined as a cotangent vector field (i.e., a
1-form) on V defined along oc(S) modulo the horizontal cotangent vector fields along
α(5). More precisely, let Γ(5, α"1Γ*K) = Γ(α(5), Γ*K) denote the space of sections of
the cotangent bundle Γ*Fover oc(S). The space Γ(5, T*S) of 1-forms of S, pulled back
by the projection π: F->5, may be regarded as a subspace of Γ(α(5), T*V). Then
the cotangent space T%E of E at α is defined by

(4.4) T*E=Γ(S, <xιT*V)IΓ{S, T*S).

Now we shall introduce the concept of ^4-vector field. Let iVbea neighborhood of
α(5) c V and N the corresponding neighborhood of α e E. Let ξ e N. Then every vertical
vector field I on iVc K, restricted to ξ(S)cN, defines a tangent vector Xξa TξE. The
vector field X on TV thus obtained is called the A-vecΐor field induced by X. The
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correspondence X i—>X gives an isomorphism of the Lie algebra of vertical vector fields

on N onto the Lie algebra of ^-vector fields on N.

Since the vector bundle V is locally a product bundle, i.e., π~1U=Ux Rn for a

small open set U c S, using a natural coordinate system x1, , xn in /?" we can express a

vertical vector field X on K in the form:

(4.5) *=Σ«Vr,

where each u^u^x1, , xM, s) is a function of Λ:1, , JC", ^. We may consider (4.5) as

a local expression for X also.

Given a finite dimensional manifold M, we shall now describe ^-vector fields on

Ms. Let S x ΓM denote the pull-back of the tangent bundle TM by the projections

SxM^M. We should regard Sx M as a (product) bundle over 5 and then S x TM as

the space of vertical vectors of this bundle. For any xoeMs, the pull-back bundle

x~ιTM is naturally isomorphic to the restriction of the vector bundle S x TM to the

graph ΓXo = {(s9 x(s)); seS} of x. So a tangent vector Xe TXM
S is a section of the vector

bundle S x TM defined along the graph ΓXo. Every local section X of the bundle S x TM,

defined in a neighborhood TV of the graph ΓXo czSx M, gives rise to an ,4-vector field X in

the corresponding neighborhood N of xeMs. Explicitly,

(4.6) Xx(s) = X(s,x(s)) for xeN, seS.

If/is a real C00 function on N and / i s the corresponding ^4-function on N, then A/

is by definition the ^-function on N corresponding to Xf, i.e.,

(4.7) Xf=Xf.

In this way, X acts as a derivation on the ring of germs of ,4-functions at xoeMs.

In terms of a local coordinate system x\ , xn of M, a local ,4-vector field Â  at

JC0 G M 5 is therefore represented by

(4.8) X = Σ ^ ^ T ,

where each ξι = ξι(s, x) is a function of s\ , sm and JC1, , xn.

The proofs of (4.9) and (4.10) are similar to those of (3.11) and (3.12).

(4.9) LEMMA. Given x0eMs, there is a neighborhoodNofΓXo in Sx Msuch that

the Lie algebra of real C* vertical vector fields on N is naturally isomorphic to the Lie

algebra of A-vector fields on the corresponding neighborhood N of x0 in Ms.

(4.10) PROPOSITION. For any connected component Jt of Ms, the Lie algebra of

real C00 vertical vector fields on Sx M is isomorphic to the Lie algebra of A-vector fields on

Ji under the correspondence given by (4.6).
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(4.11) REMARK. AS in the case of (3.11) and (3.12) (see Remark (3.14)), both

(4.9) and (4.10) extend to the space of sections Γ(S, B) of a bundle B over S.

5. Differential forms. As in Section 2, let V be a vector bundle of rank n over a

compact manifold S with projection π. Let (xeE=Γ(S, V) and Na Va neighborhood of

the section α(S) c V. Let

be the algebra of differential forms on N. Similarly, let stf(S) be the algebra of

differential forms on S. Let J{N) be the ideal of sί(N) generated by π * ( £ p > 0

The algebra of vertical differential forms on N is defined to be

(5.1) st(N/S) = s/(N)/S(N).

We write

s*(N/S)=
p = 0

We note that, for p>n, <tfp(N) is contained in the ideal J(N) so that jrfp(N/S) = 0.

Since the ideal J>(N) is closed under d, exterior differentiation

d: <tfp(N/S)^jrfp + 1(N/S)

is well defined. In particular, every element/of A behaves like a constant under d, i.e.,

d(π*f)eJ(N) so that df=0 in s/(N/S).
We consider an element of stfp(N/S) as a /?-form on NaE, where TV is the

neighborhood of <xe E corresponding to N: Thus we set

(5.2)

In the preceding section, we defined an ^-vector field on TV as a vertical vector field on N.

It is a straightforward matter (by going back to N) to verify the usual relations between

vector fields and differential forms on N. We note that the definition of srfp{N) is con-

sistent with the definition of the cotangent space given by (4.4). We call an element of

srfp{N) an Λ-form of degree p.

Assume that N is contractible to α in the sense that there is a map

h: 7Vx[0, \]-+N

such that

π(h(v, t)) = π(v) for veN, ίe[0, 1].

The last condition says that the homotopy h leaves each fibre Ns = π~ί(s) Γ\N invariant.

Then the Poincare lemma holds for s/(N). To prove this assertion, we apply the usual

proof of the Poincare lemma to forms on N. First we define an operator
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K: stfp + 1(Nx[0, l])-+s

by setting

(5.3) Kθ = (-iγ\ θ2dt for θ=fl1 + 9
Jo

where θx and θ2 are forms of degree /?-hl and /?, respectively, not involving dt. The
integral on the right hand side of (5.1) means the integral of the coefficients of θ2 with
respect to dt. Then we obtain

(5.4) Kd(h*ω) + dK(h*ω) = ω-hξω for

where h0: N->N is defined by ho(v) = h(ι\ 0) = α(πι;). Since A*(/W)c/(iVx[O,l])
and h$ωeJ(N) and since K(J(Nx [0, l]))cijφV), we see from (5.4) that if dω e f(N),
then

ω = dK(h*ω) modulo JφV).

Interpreted on N, this means that if ωesrfp(N) is closed, then ω = dω' for some

If ωes/n(N), the integral J ^ ω e ^ is defined by

(5.5) M ωj(s)=: ωN for seS,

where Ns — Nf)π~ιs and ωN is an «-form on N representing ω. We note that the integral
j ^ ω is not a real number but is a function on S.

(5.6) REMARK. In applications, S is often equipped with a measure μs, or even
with a Riemannian metric. Then integrating §N ω over 5 with respect to μs, we obtain a
real numbers Js(j#ω)μs.

Similarly, if θes/n~1(N), then the boundary integral \dnθeΛ is defined by

(5.7) θ (s)=

The Stokes formula

(5.8)

follows from the usual Stokes formula for iVs and ΘN.
We consider now differential forms on the mapping space Ms. Let Sx Γ*Mdenote

the pull-back of the cotangent bundle T*M by the projection SxM-^M. Then the
germs of 1 -forms at x0 e Ms are identified with the germs of sections of the bundle
Sx Γ*M along the graph Γ tzSx M. More generally, the germs of /7-forms at xoeMs
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are identified with the germs of sections of S x Λ p T*M along the graph ΓXo. We call a

section of S x Λ p T*M a vertical p-form.

In terms of local coordinates s1, , sm and x1, , xn of S and Λ/, a vertical /?-form

on Ms can be therefore expressed locally as

(5.8) ω = Σfir iP

dχiiA--Adχip>

where each coefficient/^.. .ip is a function of s\ - - -,sm and x 1, , xn.

More precisely, we have the following (cf. (3.11) and (4.9)).

(5.9) LEMMA. Given x0 e M s , there is a neighborhood N O/ΓXQ in Sx M such that

the algebra of real C°° vertical differential forms on N is naturally isomorphic to the

algebra of A-forms on the corresponding neighborhood N of xQ in Ms.

Correspondingly to (3.12) and (4.10) we have the following global version of (5.9).

(5.10) PROPOSITION. For any connected component Ji of Ms, the algebra of real

C x vertical differential forms on Sx M is naturally isomorphic to the algebra of A-forms

on Ji.

Thus, if ω is a vertical p-foxm and Xγ, , Xp are vertical vector fields on S x M and

if ώ and A\, , Xp are the corresponding ,4-form and v4-vector fields on M c= M s , then

ώ(X1, - - ,Xp) is the A -function that corresponds to the real valued function

ω(AΊ, -',XP) on SxM.

From (5.10) it follows that the de Rham cohomology of ,4-forms on each connected

component Ji of Ms is isomorphic to //*(M, R) ® A.

6. Affine connections. Let Ji be an yί-manifold modelled on E=Γ(S, V). An

affine connection on Ji can be described in terms of covariant differentiation V. Given

^-vector fields X and Y on Ji, an ̂ -vector field VXY is assigned in such a way that

(i) (Jf, Y) i—>VXF is bilinear over A,

(ϋ) S/fxY=fS/xY and Vx(fY) = Xf- Y+f-VxY for any A -function / o n M.
A curve x = x(t) in Ji is a geodesic if its velocity vector x~dx\dt satisfies the

equation

(6.1) V x i = 0

We shall express V\ Y in terms of local coordinate systems of S and V. Since the

question is local, we may assume that Ji=E — Γ{S, V).

Let s1, , sm be a local coordinate system in S. As in (4.5), using a local fibre

coordinate system x1, , xn for K, we express X and Y in the form

where the components uι and vι are functions of s\ , sm and x1, , xn. Define
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ChristoffeΓs symbols Γ)k as functions of j 1 , , s™, x1, • , x" by

(6.4) V_

Then

(6.5) S

where

(6.6) V
vxr

The torsion T and curvature R of V are given by the usual formula:

(6.7) T\X, Y) = S/XY-VYX-[X, Y], R(X9 Y) = [WX, V y ] - V ^ n .

Since a point of 2Πs a section of K, a curve x(t) in £ with parameter t is locally given

by

Its velocity vector is given by

Hence the equation of a geodesic is expressed locally as

So the equation looks the same as in the classical case except for the fact that both xι and

ChristoffeΓs symbols Γ)k depend on seS. Since S is compact, it follows that for any

initial point λ(0) and any initial velocity x(0) there is a unique geodesic x = x(t) at least

for sufficiently small t, \t\ <s. (We note that ε can be chosen independently of s since S is

compact.)

Given a finite dimensional manifold M and an affine connection V, we consider its

extension to Ms. More generally, let V=VS be a family of affine connections (i.e.,

covariant differentiation) on M parametrized by s e S. It induces an affine connection V

on Ms\

(6.11) S/χγ=^J.

Since every ,4-vector field on Ms is of the form X for some vector field X on M which

depends on the parameter ssS, (6.11) defines a connection in Ms.

In particular, given a connection V on M (independent of se S), there is an induced
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connection V on Ms.

Fix a point xeMs, and let V=x~1TM. Let (x1, ,xw) be a local coordinate

system in M. For the connection V, ChristoffeΓs symbols Γ* k are functions of Λ:1, , x",

s1 - -, sm since V depends on the parameter seS. By an obvious identification, we use

d/dx1, , d/dxn as a local basis for V. By abuse of notation, we shall denote the

corresponding local fibre coordinate system of Kalso by x1, , xn. For the connection

V, ChristoffeΓs symbols are given by (6.4). It is not hard to see that they coincide with

ChristoffeΓs symbols for V.

The curvature R of V is given as a ntural extension of the curvature R of V. Thus, if

X,Y,Ze TX(MS) = Γ(S, x~ιTM), then (R(X, Y)Ze TX(MS) is given by

(6.12) ( t o Y)Z)(s) = R(X(s\ Y(s))Z(s).

The same holds with the torsion tensor.

(6.13) REMARK. We shall explain a slight technical problem we encounter when

we try to treat an affine connection as a special case of a connection in a principal

bundle. Let P be a principal bundle over M with structure group G. The right action of

G on P extends to a right action of Gs on P5. However, it is not quite correct to say that

P8 is a principal ^-bundle over Ms with structure group Gs. Since some mappings of S

into M may not lift to a mapping of S into P, /^ may not project onto Ms. So we

consider

Ms

0 = {xeMs; x^P^SxG (product bundle)} .

In general, Ms

o is a union of some connected components of Ms. Then Ps is a principal

A -bundle over Ms

o with structure group Gs, and every connection in P induces a

connection in Ps. So with this approach we fail to treat some components of Ms.

7. Riemannian structures. An inner product bin a vector bundle Kover *S defines,

at each point seS, an inner product bs in the fibre Vs of Vin such a way that bs varies

smoothly with s. Any two inner product b and bf in V are equivalent in the sense that

there is an isomorphism/: K->F such that b'(v, w)=b{fv,fw) for all ι\ we Vs, seS.

Each inner product b in V gives rise to an inner product in E = Γ(S, V):

b: ExE^A

by

(7.1) (Rξ,η))(s) = b(ξ(s)9η(s)) for ξ9ηeE, seS.

Then b satisfies the following conditions:

(i) B: Ex E-^A is symmetric and bilinear over A;

(ii) b is positive definite in the sense that, for each ξeE, the function B(ξ, ξ)eA

is nonnegative everywhere on S and vanishes at se S if and only if ξ vanishes at s. (We
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note that (ii) is stronger than the condition that b(ξ, ξ)>0 on S for every ξeE, and = 0

on S if and only if ξ = 0).

(iii) the inner product b defines an ,4-module isomorphism E&E* sending ξ e E to

b(ξ, )eE*.
Conversely, an inner product b on E satisfying (i) and (ii) above comes from an

inner product b in V. (We note that (iii) is a consequence of (i) and (ii).)

An inner product in E is unique up to an equivalence in the sense explained above.

Let Jt be an ^-manifold modelled on E=Γ(S, V). A Riemannian Λ-metrίc goxvJί

defines at each point xeJt an inner product gx on TxJί satisfying (i), (ii) (and hence

(iii)) above and is "smooth" in x in the sense that

(iv) if X and Y are ^-vector fields on Ji, then g(X, Y) is an Λ-function on Jί.

Then there is a unique torsionfree affine connection preserving the ^-metric g\ this

is called the Levi-Civita connection of {Jί, g). The proof of this assertion is exactly the

same as in the classical case. Namely, given y4-vector fields X and Y on Jί, we define an

^-vector field VXY by the following equation:

2g(S/xY, Z) = X-g(Y, Z)+ Y g(X, Z)-Z-g(X, Y)
+ g([X, Y], Z) + g([Z, XI Y) + g(X, [Z, Y]),

which should hold for all ^-vector fields Z on Jί, By (iv), the equation above determines

a vector field Wx Y, and the usual proof of the proposition in the finite dimensional case

is valid, (see the second proof of Theorem 2.2 of Chapter IV in [2]).

With the notation of (6.3) the ,4-metric can be expressed locally in the same form

as in the classical case:

( 7 2) g(X, γ) = ΣdijUιvj, where gu=g ( — —
\vχι cχJ

We note that the coefficients gu are functions of s1, , sm, JC1, , xn.

ChristoffeΓs symbols Γ)k can be expressed in terms of gu by the well known

formula, the proof being identical to the classical case.

Given two points p and q in Ji, let Ωp q be the space of curves c: [0, 1] -• M with

c(0)=p and c(\) = q. The ^-energy E{c) of c is defined by

(7.3) E(c) = g(c(t\ c{t))dt e A , where c = dc/dt.
Jo

We note that E(c) is not a real number but is a non-negative function on S.

We can calculate the first variation of E(c) as in the classical case. If cτ, — ε < τ < ε, is

a variation of c, i.e., a 1-parameter family of curves belonging to Ωpq such that c=c0

and if X is the infinitesimal variation of c induced by cτ, i.e., X = (dcjdτ)τ=o, then

(7.4) \-j^) =-2 g(X,c)dt,
Jo
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where c = ¥ cc is the second covariant derivative of c. It follows that c is a critical point of

the energy functional E (i.e., (dE(cτ)/dτ)τ=o = 0 for all variations cτ of c if and only if c is a

geodesic.

Suppose that S is given a measure μs. Then an Riemannian ^-metric gonJi gives

rise to a real Riemannian metric g\

(7.5)

We have also the real energy

(7.6) E{c)--

Since differentiation d/dt commutes with integration with respect to μs, it follows that a

critical point of E(c), i.e., a geodesic c is a critical point of E(c).

Let X, Ye Γj.^. Unless X and y are linearly independent at each point seS, we

cannot speak of the A -sectional curvature of the A -plane spanned by X, Y. If they are,

then the .4-sectional curvature is the element of A given by

( 7 7 ) g(R(X,Y)Y,X)

= I * 0(c(ί), c(ί))Λ = I
Jo Js

g(X,X)g(Y,Y)-g(X,Y)2

Integrating (7.7) over S we obtain the real sectional curvature.

The Ricci tensor Ric is defined as an ̂ 4-bilinear form on TxJί, xeJί\ the trace of

Z i—>R(Z, Y)X makes sense and is denoted Ric^, Y). Again, integrating Ric(Z, Y)

over S, we obtain the real Ricci tensor. Similarly, for the scalar curvature.

Let M be an ordinary finite dimensional manifold and g a Riemannian metric on M

parametrized by seS. (Thus, g may be considered as a Riemannian structure in the

vector bundle S x TM over Sx M, where S x TM denotes the subbundle of T(S x M)

consisting of vertical tangent vectors with respect to the projection Sx M-+S). Then g

induces a Riemannian ^-metric g on Ms in a natural manner. At xeMs, the inner

product gx in TXM
S is given by

(7.8) (gx(X,Y))(s) = gis,x{s))(X(s\Y(s)) for X9 YeTxM
s, seS.

The proof of the following proposition is straightforward.

(7.9) PROPOSITION. The Levi-Civita connection V of a Riemannian metric g on M

parametrized by S induces, via (6.11), the Levi-Civita connection V of the Riemannian A-

metric g on Ms.

Hence the curvature R of g can be expressed in terms of the curvature R of g by

(6.12).

If S is equipped with a volume element μs, then we define as in (7.5) a real

Riemannian metric g by integrating g over S.
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(7.10) PROPOSITION. The Levi-Civita connection V of g is also the Levi-Civita

connection for g.

PROOF. Since V has no torsion, it suffices to verify that it preserves the metric g.

Let X and Y be ^-vector fields on Ms and let Z e TXM
S. We integrate the equation

Z{g(X9 Y)) =

over S. The right hand side yields gφZX, Y) + g(X, VZF) by the very definition of g. In

order to see that the left hand side yields Z(g(X, Y)), we consider in general an A-

function/on an ^-manifold M as a real valued function F on Sx Jί by setting

F(s, x) = (f(x))(s) for (5,jc)e5xJ.

Then the differentiation by Z and the integration by μs commute:

Apply this formula to f=g{X, Y). Then we obtain

f
Z(g(X, Y))= \Z(g(X, Y))μs. Q e.d.

This is consistent with Freed's curvature computation for mapping spaces in [1].

(7.11) R E M A R K . In applications, we have to consider sometimes mapping

spaces with base point. Fix a point (so9 po)sSx M, and let Mξ = (M,p0)
{S*So) be the set of

mappings xeMs such that x(so)=po. Its tangent space TXM
S

O at x is the subspace of

TXM
S given by

(7.12) TxM
s

0 = {ξeΓ(S,χ-ιTM) ξ(so) = 0} .

Hence, the ,4-vector field X of Ms corresponding to a vertical vector field X of S x M is

tangent to Ms

o if and only if X vanishes at (s09 po). If Y is another vertical vector field on

S x M vanishing at (s09 po), then Vx Y is again a vertical vector field of S x M vanishing

at (so,po). Hence, Ms

0 is a totally geodesic submanifold of Ms and its curvature is

obtained by 4'restricting" the curvature of Ms.

Since TXM
S

O is not a projective ^-module, Ms

o is not an ^-manifold in the sense

defined in Section 2.

An important example of (Λ/,/?0)
(SSo) is provided by the group of based loops in a

Lie group G.

8. Enlarged structure sheaves. We have noted already that the class of Λ-

functions on an ^4-manifold is too small to include some of the most important functions.

In this section we shall show how to enlarge our structure sheaf ΘE to a desired size.
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Let Kbe a real vector bundle of rank n over a compact manifold S, and E = Γ(S, V)

as in Section 2. We define first the r-th jet bundle V{r) of V. We say that two local

sections ξ and η of V defined in a neighborhood of a point seS define the same r-yW

at o if their partial derivatives of order < r coincide at s, and we write y ^ ) =jr

s(η). Thus,

jr

s(ξ) is the equivalence class consisting of local sections η with the same r-jet as ξ at s.

Let V[r) be the set of all r-jets of local sections at s; it is a vector space of dimension

n(m + r)\/m\r\. Let V{r)= (J s V[r); it is a vector bundle over S.

Every ξ e E= Γ(S, V) gives rise to a section/^ of V{r) in a natural manner. Let α e £

Given a neighborhood TV of (jr(x)(S) in F ( r ), the subset TVczis defined by

(8.1) N={ξeE;(jrξ)(S)^N}

is a typical neighborhood of α in E the C-topology.

We construct a sheaf 0£ } on E, called the sheaf of germs of Λ{r)-functions on £.

Every real C00 function/on JV induces a mapping/: N-+A by

(8.2) (/(£))(*) =/(/K) for ξeE, seS.

Let ( ^ ( J V ) be the set of ̂ -valued functions/on N obtained in this way. We call/the

Λ{r)'function on JV corresponding t o / .

Clearly, we have

(8.3) 0<jr)c0£ + 1 ) .

As soon as we have the sheaf Θ%] of germs of ̂ (r)-functions on the model space E,

we have the concept of A<r)-manifold and that of A{r)-map as in Section 2.

In order to define an A{r)-vector field, consider a vertical vector field X defined on

7V<= V(r). For each ξ e N, the vector field X gives a vertical vector field X\rξ at the section

jrξ(S)aN. Apply the natural projection K(r)-> V to A^̂ ^ to obtain a vertical vector field

A^ at the section ξ(S) c K. Let ^ e Γ ^ be the vector corresponding to Xξ. The vector

field X on N thus obtained is called the A(r)-vector field induced by X.

As in Section 3, let Ms be the mapping space of S into M\ its connected components

are all /1-manifolds (see (3.2)). We consider Ms as the space of sections of the product

bundle Sx M over S, and we denote the r-th jet bundle of B by B(r).

We shall exhibit an ^(1)-function which is not an ^-function on Ms. Assuming that

S is oriented, let μs be a volume form of 5; it is an everywhere positive m-form on S,

(where ra=dimS'). Let ω be any w-form on M. We define a mapping/: MS-^A by

(8.4) x*ω=f(x)μs for xeMs.

Then / is not an ^-function but is an A(1 ̂ function. In terms of local coordinates

(s1,--, sm) and (x\ , JCM) of S and M, write

μs — a -ds1
 A - - A dsm ,
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1
ω=

so that

) 1 dχji dχj»

- = — Z Aa ^ h'"j-ds1 δs"

Let (s\ xj, x{) be the local coordinate system in Z?(1) induced naturally from (s1, — -, sm)

and (x1, , xn)\ thus x{ = dxj/dsi. Then/corresponds to the real C00 function/on Ba)

given by

(8.5) / = -
u

For example, consider the group @(S) of diffeomorphisms of S. Since it is open

in the mapping space Ss, it is an Λ-manifold. Given a volume element μs on 5, let

^ ( 5 , μs) be the group of volume-preserving diffeomorphisms of S. For each diffeomor-

phism x of S, let x*μs=f(x)μs, where/(x) is a C00 real valued function on S. Then the

mapping/: Q)(S)-+A is an ,4(1 ̂ function but is not an ̂ -function. The group 2(S, μs)

defined by f(x)= 1 is not an ,4-submanifold of <2){S).

Every vertical vector field X on B{r) induces an ̂ (r)-vector field A^on Ms in a natural

way; (the construction is similar to that of the A(r)-vector field X on E explained above).

We shall now give an example of A(1)-vector field on Ms. Let Y be a vector field on

S. At each xeMs, define ΫxeTxM
s = Γ(S, xιTM) by

(8.6) Ϋx(s) = x^Ys).

Then Ϋ is an Λ(1 ^vector field on Ms although it is not an ̂ -vector field. In fact, in terms

of the local coordinate system (s\ x\ xj) introduced above, for

Ϋ is induced by the following vertical vector field on Ba\

(8-7) ΣW^

Vector fields of type Ϋ are necessary in discussing stability of mappings. (A

mapping x: S^M is said to be stable if every element of TXM
S is written as a sum of two

vectors Xx and Ϋx, where X is a vector field on M and Y is a vector field on S.)
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