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Introduction. Let Γ be a Fuchsian group leaving the upper half plane U and
hence also the lower half plane L invariant. By means of the Bers embedding ([2]) the
Teichmύller space T(Γ) of Γ is identified with a bounded domain in the space B(L, Γ)
of bounded quadratic differentials for Γ. The inner radius i(Γ) of T(Γ) is the supremum
of radii of balls in B(L, Γ) centered at the origin which are contained in T(Γ). The
inequality i(Γ)^2 obtained by Ahlfors and Weill ([1]) is well known. If, in addition, Γ
is finitely generated and of the first kind, then the strict inequality i(Γ) > 2 holds (see
§2). Our main objective of this paper is to prove the following theorem:

THEOREM. Let σ = (g;v1, , vM) be a signature different from (0; v l 5 v2, v3). Then

7(σ) = inf{/(Γ); Fuchsian groups Γ with signature σ} = 2 .

For the definition of signature, see 1.2. The Teichmύller space of a Fuchsian group
with signature (0; vl9 v2, v3) or a triangle group is a single point and its inner radius is zero.

The author would like to thank Professors H. Shiga and H. Yamamoto for several
useful comments.

1. Preliminaries. Our basic references in the theory of Fuchsian groups and
Teichmύller spaces are [7] and [8].

1.1. We denote by Mob the group of all Mόbius transformations of the Riemann
sphere C=Cu{oo} and Mδb^ the subgroup of Mob whose transformations leave U
and hence L invariant. Then Mδb^ is also the group of orientation-preserving isometries
of the hyperbolic plane U (and L) with the metric

(1.1) ds2 = dX \ d y , z = x + iyeU (or L).
y

Geodesies with respect to this metric are circular arcs and straight lines orthogonal to
the real line.

Let Γ be a Fuchsian group in Mδb .̂ We consider the action of Γ on U. The
quotient space RΓ=U/Γ is a Reimann surface and the canonical projection πΓ: U^RΓ

is a ramified universal covering. The metric (1.1) induces a metric on RΓ which is referred
to as the hyperbolic metric on RΓ in this paper. For a set D a C, the stabilizer of D in
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Γ is Stab(Z), Γ) = {yeΓ; y(D) = D}. As a subgroup of Γ, Stab(Z>, Γ) is also a Fuchsian

group.

Let y be a hyperbolic transformation of Γ. Then geodesic Aγ connecting the fixed

points of y is called the axis of 7. Then y or more precisely the conjugacy class

[γ] = {δγδ~1;δeΓ} degermines a geodesic curve nΓ(Aγ) on RΓ. Let lγ be the positive

value determined by | tr y \ = 2 cosh(/y/2), where tr y is the trace of y represented as a

matrix in SL(2; R). We say that y is primitive if y = δn holds for some δsΓ and some

integer n if and only if n= ± 1. If 7 is primitive and Stab(Aγ, Γ) contains no elliptic

transformations, g = πΓ(Ay) is a closed geodesic and /y is the length of g.

1.2. Let Γ be a finitely generated Fuchsian group. Suppose that RΓ has genus g

and fc boundary curves and m punctures. Suppose also that RΓ has ramification points

Pί9 " m,Pι with orders v l 5 , vh respectively. By reordering we may assume that

Vi ^ * * * ̂  Vj. Set n = l+m and v/ + 1 = = v π = 00. We call the ordered sets (g, n + k) and

(θl v l 9 , vπ; k) the (y/?e and the signature of Γ, respectively. If, in particular, Γ is of

the first kind, k = 0. In this case we abbreviate (#; v l 9 , vπ; 0) to (g; vί9 • , vπ).

1.3. Let JFbe a connected subset of i£Γ and FT be a lift of W, that is, a component

of πf H ^ ) . If Stab( ̂ , Γ) is of type (0, 3), then we also say that Wis a set of type (0, 3).

Now we assume that Γ is of the first kind with signature σ = (g; vί9 , vn). If

σφ(0\ v1? v2, v3), then except in the cases in (*) below there exists a system

^ = {[?i]» *' *> [Vs]} of conjugacy classes of S = 3g — 3 + n primitive hyperbolic elements

in Γ with the following properties:

(a) The classes [ y j , , [y s] determine pairwise disjoint simple closed geodesies

gl9 - ,gs, respectively;

(b) Each component W of RΓ— (Jf=i 9s i s °f tyP e (0> 3).

(*) The exceptions are the signatures (i) 0 = 0, n^.4, v1= = v M _ x = 2 and v n ^ 3 and

(ϋ) gf = O, « ^ 5 and vx = =vΠ = 2. In these cases set S=n — 3. Then there is a system

^ = {[7i]? ' "9 Lϊs]} of conjugacy classes of primitive hyperbolic elements in Γ satisfying

the following property (a') and also (b) above with gί, , gs replaced by those in (ar):

(a') The class [yx] (and [y s] for the case (ii)) determines a simple geodesic segment

g1 (and gs) connecting two ramification points of order 2 and other classes [y j determine

simple closed geodesies gs. Moreover gί9 , gs are pairwise disjoint.

What we have described above is the so-called pants decomposition of RΓ (see

Figure). A more detailed description can be found in [12, pp. 154-156], but in this paper

additional g closed geodesies are needed to cut the hundles.

Let y be an element of a conjugacy class [y j in c§. We denote by C(ω, y) the

ω-neighborhood of Ay with respect to the hyperbolic distance. If Aγ happens to coincide

with the positive imaginary axis /, then C(ω, y) is the set
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(4; v l s v2, v3) (0; 2, 2,

F I G U R E

(0; 2, 2, 2, 2, 2)

(1.2) C(ω) = {zeU;θ< arg z < π — 0} , where ω = log cot 0/2 .

C(ω, y) is called the c0//αr of width ω about 4̂y if C(ω, y)nδC(ω, y) = 0 for
(5 G Γ- StabC4r Γ). Let ^(Γ) be the set of parabolic fixed points of Γ. If 0>(Γ) Φ 0 , for
pe&(Γ), let Z>p be the horodisc based at /? with area(Z)p/Stab(/?, Γ))= 1. For a positive
number /, let ω(/) be the value determined by 2sinh ω(/) = (sinh //2)"1.

LEMMA 1.1. (The collar lemma, cf. [4], [10, Theorem 4.2]). For any y e (J s

s = χ [yJ,
C(ω(/y), y) w α collar about Ay. Moreover,

(i) 7/> G [yJ α«rf̂  e [yj (1 ̂ s, t^ 5) are&ί/«cί, ίte/i C(ω(/y), y) n C(ω(/Λ), δ) = 0.
(ϋ) // 7 e [yJ (1 ̂  J g S) αwd /7 G ̂ (Γ), ίΛe« C(ω(/y), y) n Dp = 0.

For (ω l 9 , ωs)eRs+ with ωs^ω(/Vs) (1 ̂ s^S) define βΓ(ωs) = ΩΓ(ω l5 , ωs)
to be

(1.3) Ωr(ωs) = ί / - c l ( U p ^ ( r Λ u Uf-iL)yeIγJC(ωwy))

(here cl .β means the closure of a set B). By definition of the collar, C(ω(ly), y) contains
no elliptic fixed points of Γ — Stab(^4y, Γ). Then we see without difficulty that, for each
component W of ΩΓ(ωs), Stab( W, Γ) is a Fuchsian group of type (0, 3).

1.4. The space B(L, Γ) of bounded quadratic differentials for Γ consists of
holomorphic functions φ in L such that φ(z) = φ(y(z))y'(z)2 for yeΓ and ZGL and that
H0II =supz e L4(Imz)2 |0(z)|<oo. If Γ is finitely generated and of the first kind, then
B(L, Γ) is a finite-dimensional space and if Γ is of type (g, n), the dimcB(L, Γ) = 3g — 3 + n.
Let Q(Γ) be the set of conformal mappings / in L such that / admit quasiconformal
extensions f to C with fΓf~1 = {fyf-1; yeΓ}c= Mob. If feQ(Γ), its Schwarzian
derivative {/, z} = ((/7/')'-(l/2)(/7//)2)(z) belongs to B(L, Γ). The Teichmϋller space
Γ(Γ) of Γ is the set of all Schwarzian derivatives of functions in Q(Γ). The inner radius
i(Γ) of T(Γ) is defined to be

sup{r; φeB(L, Γ) and \\φ\\ <r imply φe T(Γ)}

and satisfies i(Γ)^2 (cf. [1]).
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1.5. Let / be the positive imaginary axis and Mob/ = {y e Mob; y(Γ) = 1} consisting

of the transformations of the form:

(1.4) y(z) = λz (λ>0) or y(z) = λz~1 (λ<0).

An element of Mδb z is either hyperbolic or elliptic of order 2 or the identity.

We review Kalme's paper [6]. We consider a holomorphic function φa(z) = az~2 in

L with a complex parameter a. Let a = (l-δ2)/2. Then the equation {g, z} = φa(z) has

a solution expressed by

zδ if

logz if δ = 0

(we consider single-valued branches of the functions defined in the simply connected

region L). If aeΛ = {a = (\-re2iθ)/2; O < r < 4 c o s 2 0 , O^ |0 |<π/2} , then the solution

δ = δ(a) of a = (l-δ2)/2 with Re<5>0 satisfies | < 5 - 1 | < 1 . In this case, by setting

ga(z) = zzδ~1 for zeC-L, we can extend ga to a quasiconformal automorphism of C

The Beltrami coefficient of ga is

for zeC-L,

.0 for zeL.

Let C(ω) be the subregion of U defined in (1.2). If as A, let βaω, ω > 0 , be the function

defined by βaf(O(z) = βa(z) for zeC(ω) and βa,Jz) = 0 for zeC-C(ω). Then

llî α,ω II oo = I ^ — 11 < 1 By a direct computation using (1.4) we see that

ly'(z) for

Let ε be real. We define βa{z) to be the limit of βa(yε(z))yε{z)lyε{z) as ε->0, where

yε(z) = (z-ε)/(z + ε). Then,

(<5-l)z2/z2 for zeC-L,

.0 for

Set Λα(z) = (5 |z | 2 ((^-l)z-hz)- 1 for zeC-L and Λfl(z) = z for z e L . Then ha is a

quasiconformal automorphism of C with the Beltrami coefficient βa. Obviously

\\βa\\ co = | 5 - l | and {Λα, z} = 0 for

2. The inequality /(Γ) > 2 for finitely genrated Fuchsian groups Γ of the first kind. If

Γ is a finitely generated Fuchsian group of the first kind, then i(Γ)>2. To see this,

assume that i(Γ) = 2. Then \\φ\\ =2 for a boundary point φ of J(Γ) in B(L, Γ). Let W^

be a meromorphic function in Z, satisfying { Wφ9 z} = φ(z). Then it is known that Wφ is

univalent and Γφ = WφΓ Wφ

 ι is a Kleinian group with precisely one invariant component

WΦ(L) ([2, p. 593]). The limit set of Γ 0, which coincides with dWφ(L)9 cannot be a

Jordan closed curve. Then, since | | 0 | | = 2 , a result by Gehring and Pommerenke ([3,
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Theorem 1]) implies that Wφ(L) is the parallel slit {z; — π/2<Imz<π/2}, if we replace
Wφ by δWφ for some <5eMόb. However this is impossible, because any loxodromic
element of Γφ cannot leave the parallel slit invariant. Hence we can conclude that i(Γ) > 2.

The author learned the above result from Professors H. Shiga and H. Sekigawa.

3. Proof of the theorem (1). Our proof of the theorem is somewhat lengthy. So
we divide it into three parts. We shall complete the proof in § 5.

3.1. Let σ = (g; v l9 , vΠ) be a signature different from (0; v l5 v2, v3). We fix a
Fuchsian group Γo with signature σ and a system ^ 0 = {[yo,i]> " ', [7o,s]} °f conjugacy
classes of hyperbolic elements in Γ o as in 1.3. We shall retain the notations used in § 1.
For a subset D of U9 we denote by DL the image of D under the reflection z^z with
respect to the real line. Choose a number ω for which 0<ω<ω(/ y o s) for all s, 1 g s ^ S .
There exists a sequence of quasiconformal automorphisms {/„}, neN={\, 2, •}, of
C satisfying the following properties: (1) fn(z) = fn(z) and fn leaves U invariant; (2)/Π

takes Γo into a Fuchsian group Γn = fnΓof~
1; (3) lyns converges to 0 as «->oo, where

7n,s = fnΊoJn * \ and (4) SUpp(/n), C= U f. ! U ye [ y o > s/
C ^ ' ^ U C ^ ^ ^ A c t u a l l Y W e C a Π

construct fn by pinching simple closed curves freely homotopic to πΓo(Ayos) (see the
proof of Theorem 11 in [2]). We set Rn = RΓn and nn = πΓn the canonical projection.
Moreover we set 9H = {[yuΛ']9 , [yn,s]} and ^ w = ̂ (Γ n ).

Let Ω = ΩΓo(ω, •• ,ω) be the set defined in (1.3). Let V0Λ, •••, F0,τ b e t h e

components of πΓo(Ω), all of which are of type (0, 3). We remove a small neighborhood
of dV0Λ from VOtt to obtain a subregion F 0 ) ί of type (0, 3) such that cl VθΛc: VOt. The
mapping /„ induces a homeomorphism Fn: R0^Rn between the surfaces. Since (/Π)z = 0
in Ω, fn is conformal in Ω and hence Fn is conformal in each F O ί . Let ί/

w,ί = iΓ

n(^o,t)
For each t (l^t^T), choose a lift F O ί of F O ί . Let J f (,) be the distance defined by the
hyperbolic metric on VOft of constant curvature — 1 . Since fn\vQtt is conformal, the
Ahlfors-Schwarz lemma yields

(3.1) d(fn(z)JnM)<3t(z,w) for z,weVOa,

where d(,) is the hyperbolic distance of U. Let <?,(,) denote the distance of VOyt induced
by <?,(,). Since cl FOίc= VOft, suppqeVoβt(p, q) are finite for all t. Let Mx be the largest
among them. Let </„(,) be the hyperbolic distance of Rn. Then, by (3.1) we obtain

(3.2) diam VnΛ = sup p,qevnJn(p, q)<Ml9 λ^t^T.

Note that Mi is independent of n.
Let Ωn = ΩΓn(ω(lγn J) and ^ Π > ί , * * *, WnJ be the components of nn(Ωn). Here ^ Π ) ί

is given the subscript t so that WnΛ is deformable to Knί by an isotopy on Rn which
fixes each ramification point. For a given ε>0, lyns<ε (l^s^S) except for finitely
many n. By applying a result by Matelski (the boundedness of the reduced diameter
[11, sec. 8.8]) we can find a constant M'2 independent of n such that:
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(3.3) diam Wn,t = supp>qefrntdn(

Since Fn\ R0-+Rn is a homeomorphism preserving ramification points and since VnΛ is

of type (0, 3) in Rn, Vna meets Wnr Hence by (3.2) F M is included in the Mx -neighborhood

Wnt of WnΛ with respect to the distance dn{,). We set M2 = 2M1 + M'2, ωΛtS = ω(lγns) - Mγ

and Ωn = ΩΓn(ωns). Then we obtain:

LEMMA 3.1. (1) Each component Wnt ofπn(Ωn) contains VnΛ which is the image

of V0Λ under the conformal mapping Fn \ Vot; (2) The diameter of WnΛ is less than a constant

M2 independent ofn; and (3) ωπ s-»oo as «-»oo.

4. Proof of the theorem (2).

4.1. Let Γn, # n = {[yn(1], , [yn>s]} and ωn>s be as above. For each s (l^s^S)

choose a θ = θnjS e Mδb^ which sends the axis Ayns to the positive imaginary axis /. Let

βa,ωns, a G Λ , be the function as in 1.5 defined for ω = ωHtS. We set βa^s = {βa^n s ° Θ)F/Θ'.

Note that suppjSα,π>sczclC(ω^, ynj. Let Γπ>s = Stab(^^ s , Γn). Since ^'

Mobz, by (1.5) it holds that

Let Γn\Γns denote a system of representatives of the right cosets. We define

By (4.1) we see that μan is independent of the choice of representatives of Γn\Γns. Since

supp βans ° y c C(ωns, γ ~ 1γn,sy), by Lemma 1.1 the terms of the above sum have disjoint

supports. When γ runs over all cosets of Γn\Γns, so does yη for each ηeΓn. Hence μan

is a Beltrami differential for Γn with Hμ^Joo = | δ{a)—\ | < 1. We remark that, if Aγ = I

for some ye[yn,J, then μafn = βa in C(ω n s )uL, where C(ωns) is given in (1.2). Let

gan be a homeomorphic solution of the equation gz = μa,n9z a n d Φa,n(
z)= {aa,m z) f°Γ

zeL. Then gan is a quasiconformal automorphism of C with delatation K(a) =

(1 + 1 δ(a) -11)/(1 -1 δ(a) -11) and φatH belongs to J(Γn).

4.2. In the sequel, when we say that we replace Γn by a conjugation η~1Γnη for

an ηGMδbv, we also mean that we also replace μα>π, gOtn and ψβtlI by (μan <> η)η'/η\ gattι ° */

and (ψα,π°^)(^/)2ί respectively. We employ freely these replacement because of the

equation:

(4.2) 4(Im z)2\ ΦMΦl'W21 = 4(Imφ))2| φajφ))I

We shall estimate 4(Imz)2 | φatfl(z) \ for z near the axes Λv y e [yπ,J. The same argument

as in [11] applies in this case. We replace Γn by a conjugation of Γn in Mδb^ so that

Ayns = I. We can impose the condition ga,n( — ci) = ( — ci)δia) for c = l , 2 , 3, because
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otherwise we need only to replace gan by ηgan for some f/eMόb. Then the
X(α)-quasiconformal automorphisms gan of C form a normal family and a limit function
gί is also a X(α)-quasiconformal automorphism of C ([9, Sec. II 5]). Replace {ga,n} by
a convergent subsequence to g*. By Lemma 3.1 (3), the area of C— (C(ωπ s)uL) as a
subset of the Euclidean sphere S=C decreases to 0. Since βa = μatn in C(ωn s)uL, a
subsequence of {μfl „}, which is denoted again by {μfl,n}, converges to βa almost everywhere
in 5. Then we have g^ — ga the function given in 1.5, because both functions have the
Beltrami coefficient βa ([9, Theorem IV 5.2]) and take the same values at —/, — 2i and
— 3/. It follows that 0fl>π(z) converges to φa(z) = az~2 uniformly in every compact subset
of L. For positive numbers τ, /, let K=clC(τ)Ln{reiθeL; λ^r^e1}. Then φatΛ-+φa

uniformly in K. For large n, lyns<l and every zeC(τ)L is equivalent to a point in K
under {y ŝ; veZ}. Hence for any ε>0, ifnls(τ, ε) is chosen to be sufficiently large, then
4(Im z)2\ φatn(z) I <4| a | + ε for zeC(τ)L if n>nls(τ, ε). We determine /ilfS(τ, ε) for each
s and set ^(τ, ε) = m a x 1 ^ g s «i,s(τ, ε) Then by using (4.2) we obtain the inequality

(4.3) 4(Imz)2|(/>fl>π(z)|<4|α|+ε,

which holds for ze (J s

s = χ (J y e [ y n s ] C(τ, y)L and « > w^τ, ε).

4.3. In the next section we shall show that the inequality (4.3) holds for all zeL
and n > nε with nε sufficiently large. At present we assume this and prove first the desired
estimate /(σ) = 2. Since ε is arbitrary, the inequality (4.3) (established for all zeL) implies
that lim,,^ | |0β (J<*4|α|. Suppose on the contrary that /(σ) = 2 + 2p>2. Again we
assume that Aγnl = I. Substitute 1/4GΛ for a and write φn instead of φ1/4tn. Then
l i m ^ J I ^ J ^ l and by assumption (2 + p)φn belongs to Γ(ΓΠ) for all large n. Thus
the equation {w, z} = (2 + p)φπ has univalent solutions. Let wn be one of the solutions
which sends — i, —2i, - 3 / to 0, 1, oo in this order. Then {wn} is a normal family and
a limit function w is also univalent in L. As we have seen in 4.2, (2 + ρ)φn(z) con-
verges to ((2 + p)/4)z~2 uniformy in every compact subset of L. Consequently {w, z} =
((2 + p)/4)z~2 and ηw(z) = z^~p/2 for some f/eMόb. However, since j — p/2 is purely
imaginary, w cannot be univalent. This contradiction yields /(σ) = 2.

5. Proof of the theorem (conclusion). Now we show the inequality (4.3)

||(/>α J <4| a I + ε for sufficiently large n.

5.1. In 3.1 we have chosen a lift VOtt of VOv We replace it by a lift of VOt contained
in VOft. Then by Lemma 3.1 (1) we can find a lift of WnΛ of Wnt such that
fnί = /n(F 0 > ί)c Wnr Note that the Γπ-orbits of WnΛ, , WTn cover Ωn.

We fix a ί. Let ^ o = Stab(Fo,ί9 Γo) and H^^HJ^^t^biΫ^ Γn). These are
Fuchsian groups of type (0, 3). Let χn: H0-+Hn be the isomorphism between the groups
defined by χnη = fnnfnl f o Γ *?e#o W e fix a P o i n t w e ^o,t We may replace Γn by a
conjugation of Γn in Mob^ so that fn(w) = ie Vnv Then from (3.1) d(i, χnη(ΐ))<3t(w, η(w))
for ^ye^o Hence there exists a subsequence of {χπ}, which is denoted again by {χj,
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such that χnη converges to a transformation χ^η of Mδb^ for each ηeH0. Actually we

need only to choose a subsequence so that χn converges on the set of two generators

of Ho. By the convergence theorem ([5, Theorem 1]) Hao = {χ00η;ηeH0} is a Fuchsian

group and χ^ : HQ^H^ is an isomorphism. A hyperbolic element y of Ho determined

by a boundary curve of F O t belongs to [yo,s] f°Γ some s. Then χnye[yns] and

ltΓZ/i7l-)>2 = | trχ 0 O y | as /z->oo, for /7ns->0 as w->oo. Since χ^ is an isomorphism, χ^ is

parabolic. It follows from this that H^ is a triangle group.

The Kraus-Nehari inequality ([8, Theorem II 1.3]) yields |0 f l > π(z)|^(3/2)(Imz)~2.

Hence φajΆ are locally uniformly bounded. By replacing {φβ,π} by an appropriate

subsequence, we may assume that φan converges to a holomorphic function φa uniformly

in every compact subset of L. Then for each zeL and each ηeH0,

^(z) = l i m w ^ 0 f l , ^ ^

Thus ψa is a quadratic differential for the triangle group H^ and hence identically zero.

Let B(M) denote the disc in U of hyperbolic center i and radius M. Then, for any

ε>0, if n2>f(Λf, ε) is taken to be sufficiently large, then 4(Im z)2\ φa,n(z) | < ε for zeB(M)L

and n>n2,t(M,ε). By Lemma 3.1 (2) πn(B(M2)) covers Wnt. Hence the Γn-orbits of

B(M2 + τ)L cover the hyperbolic τ-neighborhood of the Γπ-orbits of W^v We set

n2(τ, ε) = max 1 ^ ί ^ Γ « 2 ί (M 2 H-τ, ε) and denote by .yΓτ(Ωn) the hyperbolic τ-neighborhood

of Ωn. Then by using (4.2) we can conclude that 4(Imz) 2 |0 α ι I (z)) |<ε for ze</Γτ(ΩII)
L

and n>n2(τ, ε).

5.2. Choose an arbitrary parabolic fixed point/? e ^ 0 = ̂ ( Γ o ) . Then/?n = fn{p) e &n.

We replace Γn by a conjugation of Γn in Mδb^ so that (Γn)Pn = Stab(/?π, Γn) is generated

by z^>z+1. In this case, Dn = D^n = {z; Im z < - 1 } . We can identify L/(Γn)Pn with the

punctured disc A = {z; 0 < | z | < l } . Let πA(z) = e~2niz be the canonical projection L-+A.

The density of the hyperbolic metric on A is p(z) = (—\z\log\z\)~1. Since φan(z) =

0 f l ) / I(z+l), 0 α n defines a function <£β>π in J such that (Φa,n°πj)(πΆ)2 = Φa,n Let J x =

nA(Dn) = {z;0<\z\<e~2n}. By the Kraus-Nehari inequality we have

(5.1) I <?α,w(01 ̂ c ± = (3/2)(^"2-)2 for ζedA,.

Since 0fl,π(O->O as £->() ([7, p. 111]), (5.1) holds for all ζ e A x by the maximum principle.

Thus, 4(Imz) 2 | ^ / I (z) |=4p(C)- 2 | ( ? f l , π (0 l<4c 1 (- |C | log |C | ) 2 for zeDn with ζ = πΛ(z).

For a given ε > 0 , choose r (>1) to be so large that 4c 1 (2πre~ 2 π r ) 2 <ε. Then

4(Im z) 2 | φatn(z) I < ε for z with Im z < — r. Since dDn lies in the boundary of Ω%, the part

{z; — r ^ I m z < — 1} is contained in .yΓτ(βΠ)L with τ > l o g r . Hence 4(Imz)2|</>β>Π(z)|->0

for zeDn and n>n2(τ, ε) with τ>log r.

5.3. Choose a point zΠ for which 4(Im z)| φatn(zn) \ = ||0f l>Π||. Since Rn is a compact

surface with a finite number of punctures and since 4(Imz)2|0fl>Π(z)|-»O as πn(z)

approaches to a puncture, such a point zn certainly exists. We assume that there are

infinitely many n for which | | ^ β i J | > 4 | έ ϊ | + ε and consider only those n in the sequel.
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Let n(τ, ε) = max{«1(τ, ε), n2(τ, ε)} and fix a τ 0 (>log r). From the argument in 5.1-5.3

it follows that zn belongs to (C(ω π s , yntS) — C(τ0, yn >S))L for some s = sn if n>n(τ0, ε), if

we replace zn by ^(zπ) for some ηeΓn. For the sake of simplicity we assume that

zneC(ωnΛ, ynΛ)
L for all n without loss of generality. We write γn9 ωn instead of ynl,

ωnΛ. Again we assume that Ayn = I. Moreover, without losing the property that μα,π = j?fl

in C(ωn) u L we may assume that | zn \ = 1 and Re zn > 0, because otherwise we need only

to take a conjugation of Γn with respect to an element of Mδbf. For τ ( > τ 0), if n > n2(τ, ε),

the hyperbolic distance from zn to δC(ωπ)LczdΩj' is larger than τ. Hence the disc

B(z^, τ) c= U of hyperbolic center Yn and radius τ is contained in C(ωn). The transformation

ξn(z) = yεn(z) = (z-εn)/(z + εn) with εn= — tan arg(zπ/2) sends the disc B(τ) of hyperbolic

center / and radius τ onto B(z~n,τ). Hence two functions μfl,π = (μα,π°O<ίϊi/£ή a n d

(βa°ζnWn/ζn coincide with each other in B(τ)uL. Since the hyperbolic distance from Yn

to Λyn = I is larger than τ for n>n1(τ, ε) and since « eventually exceeds n(τ, ε) for any

τ as «-• oo, we see that επ->0 as n->oo. Hence a subsequence of {/2fl,Λ}, which is denoted

again by {/2Λ,Π}, converges to βa given in 1.5 almost everywhere in S. Let Λfl>n = */„ ° gfαπ ° ξπ,

where //πeMδb is so chosen that han( — ci)=—ci for c=\,2, 3. Then Λαπ satisfies

{Kir)z = βa,nQιa,r)z' By proceeding as in 4.2 we see that Λαn converges uniformly to ha.

Consequently φa,n(ζn(z))ζn(z)2 = {K,w z) converges to {ha, z}=0 uniformly in every

compact subset of L. In particular, (Imz)2|(/>ΛΠ(zn)| = |{Λαπ, — z}|->0 as n-^co. This

contradicts the assumption \\φatn\\ > 4 | α | + ε.

Now the inequality (4.3) is established for all z e L and for all large n. Then, as we

have seen in 4.3, the desired estimate of the inner radii /(σ) = 2 is obtained.
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