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1. Introduction. We consider stochastic differential equations with asymptotic
almost perodic coefficients and give sufficient conditions for a bounded solution to be
asymptotically almost periodic in distribution. The case of almost periodic coefficients
has been discussed in many articles and the total stability property is an important
concept for the existence of an asymptotically almost periodic solution for ordinary
and functional differential equations, see [1], [2] as references. A total stability concept
is necessary also for stochastic differential equations, but we have to adopt an adequate
strategy since the convergence in distribution of the initial conditions is too large for
giving the convergence in L2(Ω, P) of the corresponding solutions.

To avoid such a difficulty we do not fix the basic probability space {Ω, #', P} and
use Skorohod's theorem for defining equivalent stochastic differential equations which
are more suitable for our purpose.

2. Formulation of the problem and the main result. Let f{\ IxRn-+Rn, i=
0,1, ,m, be continuous and asymptotically almost periodic in the variable tel,
/= [0, oo), uniformly with respect to x belonging to compact sets in Rn; i.e. for any
ε>0 and K^Rn fixed there exist l(e,K)>0 and Γ(ε)>0 such that any interval of
length / contains a τ fulfilling | ft{t + τ, x) — /f(ί, x) \ < ε, for all t^T,xe K. It is equivalent
to the property that any sequence of real numbers {tk} ΐ oo contains a subsequence
{t'k} ΐ oo such that {/j(ί + t'k, x)}k> i is convergent uniformly in t e I and JC in compact sets
in Rn (see [1], [2]).

Denote by L+(/o, ,/m) the set of functions gt{t, x): [0, oo) xRn^Rn, i=
0, 1, * , m, which are obtained as limits of/j(t, x), i.e., g£t9 x) = limίk^00 /f(V+ tk, x), i =
0, 1, , m, uniformly in t^0 and x in compact sets in Rn.

Let w(ί), ί^0 be an w-dimensional Wiener process over the probability space

{β, #", P}.
Let {^t}t^o be an increasing family of σ-algebras in !F such that the σ-algebra

generated by w(t + s) — w(t), s>0, is independent of !Ft for each t^0. Let x0 be
J^o-measurable and xoeLp(Ω, P). The following stochastic differential equation

(1) dx =/0(ί, x)dt + Σ M x)dwi(t), t>0, x(0) = xo
t = l
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has a unique solution x(ί), on the interval [0, oo), if

(ii) \Mx)\^K(l + \x\), \ftt9x2)-fltt,x1)\*ZKN\x2-x1\

for all t^O, xeRn, xux2eRn, \

In addition, for each p^2, we have E\ x(t) \p< oo, for any t^0, if E\ x0 \p< oo.

The solutions for (1) are studied using limiting equations

m

(2) dx = go(t, x)dt + £ gfa x)dWi(t),

where

REMARK 1. For our purpose we do not need to and it is suitable not to fix in

advance the probability space {Ω, 3F, P). The auxiliary probability space will be

{β, fr, P} where Ω = Ω x Ω, β = <F x y, P=P x P, and Ω = [0,1), # is the σ-algebra

of Borel sets in [0,1), and P is the Lebesgue measure. The solutions in (1) and (2) are

defined considering w(ί), t^0, a Wiener process on {Ω, &', P} with the reference family

of σ-algebras {^t}t^0 and initial condition x(0) = xo a random vector in {Ω, # } .

Denote by 9 the set of probability measures on Rn. Let I^I^R be some intervals.

DEEFINITION 1. We say that Pk: 1-^0*, k^ 1, is weakly compact uniformly with

respect to telx if there exists 77: /->^ and a subsequence {Pk,}^{Pk} such that

l i n v ^ \Rnφ(x)Pk{t, dx) = \Rnφ(x)Π(t, dx\ tel, uniformly with respect to tell9 for any

φ e Cb(Rn), φ Lipschitz continuous.

Let x(t\ ί^0, be a solution in (1). Denote by P(ί, dx\ ί^0, the probability measure

on Rn generated by x(ί).

DEFINITION 2. We say that a solution x(ί), ί^0, in (1) is asymptotically almost

periodic in distribution if Pk(t, dx) = P(t + tk, dx), k^ 1, is weakly compact uniformly in

/e[0, oo), for any sequence {**}<= [0, oo), limίk=oo.

Assume that (1) has a bounded solution in Lp(Ω, P), p>2, i.e., there exists x(t\

O, a solution for (1) such that

(i2) supEIx(t)\p^M<oo for some p>2 ,

and we call it an Lp-bounded solution.

Denote by Jf the set of measurable processes h: [0, oo) x Ω-+Rn x ( m + υ which are

continuous in the variable /e[0,oo) and for each />0, h(t, •) is #Γadapted, βt =

For each s^0 we need to consider solutions of the following equation
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m

(Is) dx =/0(ί + s, x)dt + £ fit + s,

x(0) = xo(ώ),

where x0eL2(Ω; P) and w(ί), ί^O, is the fixed Wiener process on the probability space
{Ω, &, P} with the given reference family of σ-algebras {^t}t^0^^. The equation (ls)
is considered on the new space {Ω, # , P} and the corresponding reference family given
by^^^xJ*,.

In a similar way, for each (gθ9 , gm)eL+(f0, ,/m) and s^O we consider the
following equation

s, x)dt +
i = l

x(0) = x o (ώ).

Any solution for (ls) and (2S) is a measurable process x(ί, ώ): [0, oo) x Ω^>Rn, whose
trajectories are continuous functions a.e. (P) and with x(ί, •) #Γadapted. Denote
/=(/o> *' 'Jm\g = (Go, *' ,0janddefine/s(ί,x) = (/o(ί + s,x), • ,/m(ί + 5,x)),#s(ί, x) =
(̂ fo(ί + s, x), ,^m(ί + s, x)). The solutions for (ls) and (2S) are denoted by
AUfs> *o) and x(ί, gfs, x0), respectively.

DEFINITION 3. We say that x(t,fs, x0) in (ls) is totally stable if for any ε>0 there
exists <5(ε)>0 such that sup^0E\x(tJs + h, xo + vo)-x(t,fs, xo)\2^ε, for any voe
L2(Ω, P) and he Jf fulfilling E\ v0 \

2^δ(ε) and sup^ 0 E\ h(t9 ώ)\2^δ(ε).

An Lp-bounded solution for (ls) is defined by sup^ 0 E\x(t,fs, xo)\p^M<ao and
similarly for (2S).

DEFINITION 4. We say that the equation (1) (or (2)) is totally stable if any
Lp-bounded solution for (ls) (or (2S)) is totally stable for any s^O.

THEOREM 1. Assume (ix) and (i2) are fulfilled and (1) is totally stable. Then any
Lp-bounded solution x(t)for (1) is asymptotically almost periodic in distribution.

THEOREM 2. Assume (ix) and (i2) are fulfilled. Let (g0, ',gm)sL+(f0, , / J
and the corresponding equation (2) is totally stable. Then any Lp-bounded solution x(t)
in (I) is asymptotically almost periodic in distribution.

REMARK 2. From Theorem 1 or 2 follows that for any φeCb(Rn), φ Lipschitz
continuous, the real function f(t) = Eφ(x(t, x0)), defined on /=[0, oo), is an asymptotic
almost periodic function and the results in [1] associated to it apply to this case in
dependence of the function φ we choose. More generally, the space of Lipschitz
continuous functions in Cb(Rn) is separable and there is a metric p on & such that any
P(ί, dx): /-K^, p) which corresponds to an asymptotically almost periodic solution with

has an almost periodic components Π: R-+0>, such that l i m ^ ^ P ί ί ) , 77(ί)) = 0
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and the corresponding decomposition P(ί, dx) = Π(t, dx) + β(ί, dx) is unique, where

Q(t, dx) is a finite Random measure.

3. Some auxiliary results and proof of the theorems. In order to get uniform

convergence of a sequence Pk: [0, oo)->^, with respect to / S* 0, where Pk(t, dx) represents

the marginal distribution of a fixed solution for (1) or (2), we need to work with strong

solutions and their continuous dependence with respect to perturbations. Denote by

{Ω, β', P} a new probability space, where ff=[0,1), P the Lebesgue measure and #

the σ-algebra generated by the intervals [α, b), 0^a<b<\. If we take a solution x(ί),

t^O, for (1) and {tk} | oo, then xk(t) = x(t + tk, x0), k^l, fulfils the following equation

(3) dx = fo(t + tk, x)dt + £ fit + tk9 x)dw\{t),

where w*(ί) = wf(ί + tk), i = 1, , m, is a new Wiener process on {Ω, « ,̂ P}. The solution

xk(t) and the corresponding equation (3) is well defined for any te[a, oo), where a^O

is fixed arbitrarily, if A: is sufficiently large such that α + / fc^0.

Moreover, the probability Pk(t, dx), te[a, oo), generated by xk(t) on Rn, coincides

with the probability generated by the solution xk(t), te [α, oo) of the following equation

m

(4) dx =/0(ί + tk, x) + X /.(ί + ίk, *)Av,(ί), / e [α, oo),

where iv, (ί), ί e [α, oo) is a fixed Wiener process on {Ω, # \ P}, Jcfc is a random vector on

{Ω, # , P} with the distribution Pk(α, dx) on iΓ.

In addition, if Pk(a, dx) converges weakly to P0(dx), then there exists a random

vector xo(ώ) on {Ω, β, P} such that the distribution of x0 is Po, \imk^O0xk(ώ) = x0(ώ)

a.e. with respect to P\ it is ensured by Skorohod's theorem (see [4]).

Assuming that (ix) and (i2) are fulfilled for (1) and then applying the above remark

to the Lp-bounded solution x(t\ t ̂  0, one may get that xk(t) = x(t + tk), t^a,k^k0, fulfils

(5) supE\xk(t)\p^M<oo for some p>2

and therefore the corresponding distributions {Pk(t, dx)}k>ko are weakly compact for

any t^a (see [4]). In addition, denoting by {Pk(a, dx)}k^1 a weakly convergent

subsequence of {Pk(a, dx)}k>ko and Po its limit, by Skorohod's theorem we get xk, x0

random vectors on {Ω, # , F} such that

(6) E\xk\
p<M, E\xo\

p<M, limχk(ώ) = x0(ώ), a.e. P,
fc->oo

where E means the expectation with respect to P, and the constants M and p in (6) are

the same with those appearing in (5).
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Using (6) we get the uniform integrability of the sequence | xk(ώ) — x0(ώ)\2, k^l,

on {Ω, # , P} and the convergence of xk to x0 in L2(Ω, P)

(7)
fc-00

LEMMA 1. Let the conditions (ix)9 (i2) and p^A be fulfilled for (1), and P(t,dx),

t ^0, be the corresponding probability generated by x(t). Then for any a<0 and {tk} | oo

there exists a subsequence {tw} t oo and P(t, dx)e^ such that P(t + tw, dx) = Pk{t, dx) is

weakly convergent to P(ί, dxjfor any a^t<oo.

PROOF. Denote x(t) = x(t + tk) and for k sufficiently large, k ̂  k0, xk(t) is defined by

(3) for any t^a, with xk(a) = x(a-\-tk).

By hypotheses

(8) E\xk(a)\p^M for some p^4 for all

and

(9) E\xk(t")-xk(t')\^K(T)\t"-t'\2 for all f, t»e[a, f\ , k>k0.

Using Theorem 4.3 in [4, p. 18] we get a sequence {Πk) of probabilities on

C([a, oo); Rn) and Π such that Πk^>Π weakly and the conclusion follows by restriction

to C([α, ί]; ^ π ) .

REMARK 3. Using Skorohod's theorem, the function P(t,dx) t^a in Lemma 1

can be generated for each ί as the marginal distribution of a continuous process and

therefore P(t, dx) is weakly continuous in the variable t.

In addition, one may obtain that \Rnφ(x)Pk{t,dx) converges to jRnφ(x)P(t, dx)

uniformly in t e [a, T\ for any T> 0 and φ Lipschitz continuous, φ e Cb(Rn), but it does

not mean that Pk{t, dx) converges uniformly with respect to te [0, oo).

The next step is to prove that total stability of (1) or (2) implies the uniform

convergence of Pk{t, dx) with respect to

LEMMA 2. Let the conditions ( i j and (i2) be fulfilled, and x(t% ί^O, be the

Lp-bounded solution given by the hypothesis (i2). Assume that there exists

g = (g0, , gm) eL+(/O, , fm) such that (2) is totally stable. Then there exists a sequence

{ ώ ^ i c [ 0 > °°)> limί k=oo, such that Pk(t,dx) = P(t + tk9dx) is weakly convergent to a

P(U dx) uniformly in tε [0, oo). In addition, P(t, dx) is generated by an Lp-bounded solution

v(t) for (2) fulfilling supt^0E\v(t, ώ ) | p < M < o o , and Pk(t9dx) is generated by an Lp-

bounded solution vk(t) in (l ί k) such that l im^^ E\vk(t, ώ) — v(t, ώ ) | 2 = 0 uniformly in

PROOF. By hypotheses there exists { ί J T 0 0 such that gjlt, x) = limk^00/)(ί + ίk, x)

uniformly in t^O and for x in compact sets in Rn, ι = 0, 1, , m.

By definition xk(t) = x(t + tk, x0), ί^O, k= 1, 2, , is the solution in (3) with initial
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condition xk(0) = x(tk) and using (i2) we get that {P(tk, dx)}k^1 is tight and therefore

weakly compact. Substract a subsequence if necessary and one obtains P(0, dx)e@> and

P(tk, dx) converges to P(0, dx) weakly. Using Skorohod's theorem we get xk(ώ), xo(ώ)

random vectors on {Ω, # , P} such that the probabilities generated on Rn by xk and x0

coincide with P(tk,dx) and P(0, dx) respectively, and (7) is fulfilled. Moreover the

probability generated on C([0, oo); Rn) by xk(t), t>0, coincides with the probability

generated on C([0, oo); Rn) by the solution vk(t, ώ) in (4) with initial condition

vk(0) = xk(ώ), k^l. Take initial condition ι;(0) = xo(ώ) and denote v(t, ώ), ί^O, the

corresponding solution for (2) where g0, , gm are given by hypotheses. We shall show

that

(10) lim EI vk(t, ώ) - v(t, ώ) | 2 = 0 uniformly in t e [0, oo),
k->σo

where E means the expectation with respect to the product measure P=PxP on

(ΩxΩ, # x J ^ ) = (Ω, # ) . It is easily seen that vk(t,ώ), t^O, fulfils the following

equation

m

(11) dx = go(t, x)dt + Σ git, x^w^t) + [/0(t + h, vk{t)) - go(t, vk{t))]dt

m

+ Σ lfi(t + tk, vk(t))-gi(t, vMfidWiiή ,
ί = l

x(0) = xk(ώ).

On the other hand v(t), ί^O, fulfils

m

(12) dx = go(t, x)dt + £ gt(t, x)dwi{t),
ί = l

Denoteh% ώ) = /& + tk, vk(t, co^-g^t, vk(t, ώ)\ i=0, 1, , m, whereώ = (ώ, ω)e

Ω x Ω. If we show that

(13) lim2?|/^(i,ri))|2 = 0 uniformly in
fc-*oo

then using (7) and total stability property of (12) we get

(14) lim sup E \ vk(t, ώ) - v(t9 ώ) \2 = 0 ,
fcfc->oo

which implies the convergence conclusion in the lemma.

In order to prove (13) we notice that E\vk(t, ώ)\p = E\ x(t + tk)\p and using (i2) we

have
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(15) sup E\vk(t, ώ) | p <M<oo for some p>2.

From (14) and (15) we get the Lp-boundedness of v(t, ώ), t^O. Using (15) it is
easily seen that for any (5e(0, 1) there is Nδ>0 such that

(16) P{ώ:\vk(t9ώ)\>Nδ}<δ for all ί ^ O , A;=l,2, •••.

On the compact set Sδ = {xeRn:\x\ <Nδ} we have limίk _ ̂  f£t + tk,x) = gfa x),

uniformly in (ί, x ) e / x S ,̂ / = [ 0 , OO). Since Λ*(r, χ) = /j(ί + ίk, x)-gι(t, x) fulfils

(17) | Λ f t t , j c ) | < £ ( l + |jc|) for all J t ^ l ,

we get

(18) I Af(ί, ώ) 12 ^ £ ( 1 +1 vk(t, ώ) | 2 ) for some constant K> 0 .

By definition we have

(19) E\ h% ώ) |2 = ί I h\{U ώ) 12P(dώ) ί I Af(ί, ώ) 12P(dώ),

where Aδ = {ώ e Ω: | ι?fc(ί, ώ) | > Nδ}.
Using (15), (16) and (18) in (19) one obtains that the first term on the right hand

side of (19) can be made smaller than any positive number uniformly with respect to
ί^O, k= 1, 2, , if we choose δ sufficiently small. On the other hand the second term
on the right hand side of (19) converges to zero for fc->oo and δ>0 fixed.

It allows one to conclude that (13) is fulfilled and the proof is complete.

Denote by Px the probability on Rn generated by a random vector c( ).

LEMMA 3. Assume that (1) has an L^bounded solution x(t), t^O, and(X) is totally
stable. Then for any {tk} | oo there exist {Sj}^{tk}, {Sj} ΐ oo, and xjίfj, solution for (lSj),
and x(t)eL2(Ω, P) such that l i m ^ sup^ 0 E\Xj(t, ώ)-x(t, ώ)\2 = 0and p*Λ» = *
for any

PROOF. By definition, χ(t + tk) = xk(t) fulfils (3) with xk(0) = x(tk) and it generates
a probability Πk on C([0, oo); Rn) which coincides with Πk on C([0, oo); Rn) generated
by the solution xk(t, ώ) in (l ίk) with initial condition x(0) = xk(ώ). In addition

sup E\xk(t, ώ)\p^M<oo for all k^l .

Using the above boundedness condition, we get a subsequence {jc/ώ)} jMc
{xk(ω)}fc^! corresponding to {̂ }} ^ {tk}, {s'j} | oo, which converges in L2(Ω, P) to xo(ώ)
(see (6), (7)). On the other hand, there is a subsequence {SJ}^{S'J}, {SJ} t oo, such that

Sj, x)}j>i converges uniformly in t^O and x in compact sets in Rn.
Denote by xβ, ώ),j^ 1, the corresponding solution in (lSj) with initial condition
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= Xj(ώ). We note that xj{t9 ώ) is a solution for the following equation

m

dx=/0(ί + s,, x)Λ + Σ M + s,, x)dw,{ή + [/o(t+Sj, xft)) - /0(ί + s,,
i = l

+ Σ U

Using arguments similar to those in the proof of Lemma 2 (see (16)—(19)) we can

prove that for any η>0 there is l=l(η) such that we have

s u p £ Ί / φ , ώ ) | 2 < ί / , E\xjω)-xjω)\2£η for any y>/(ιj),

where *J(t, ώ) = /j(ί + si, xjίt))-fjί + sh xff)).
Using total stability property of (1) we obtain that {xj(t9 ώ)}^ x is a Cauchy sequence

in L2(Ω, P), uniformly in t ̂  0, which ensures the convergence conclusion and the proof

is complete.

Now we are in a position to prove the theorems.

PROOF OF THEOREM 2. Let (g0, ,gm)eL+(f0, , / J . By hypotheses, Lemma

2 applies and the corresponding equation (2) is totally stable. Let {ίk} ] oo be a sequence

such that P(t + tk, dx) = Pk(t, dx) converges weakly to P(t, dx), uniformly in ί^O.

Take an arbitrary sequence {h'k} f oo. Then there exists a subsequence {hk}^{hk},

{hk} t oo such that hk — tk-\-sk, hk>2tk.

We have {sk} | oo and P(t + sk + tk, dx) converges weakly to P(t + sk, dx) for ίfc->oo

uniformly with respect tot^O and {sk}. Using again Lemma 2 we know that P(t, dx\ t^O

is generated by a solution v(t) in (2) (see (12)) which fulfils the Lp-boundedness condition

(i2). Also the equation (2) fulfils (ix) and in addition is totally stable.

We notice that vk(t) = v(t + sk), t^O is a solution for the following equation

m

(20) dx = go(t + sk, x)dt + X ^(ί + sk, x)dwk

i{t),

x(0) = v(sk9 ώ ) ,

where wf(ί) = w ί̂H-s^), ί^O, is a new Wiener process on {Ω, ^ , P} with the reference

family of σ-algebras {J2^ ic

The same procedure as in Lemma 2 applies here and (20) is replaced by an equivalent

one as follows.

Denote by Pk(t) the probability generated on Rn by vk(t). The same probabilities

Pk(t), t^O, will be generated by the solution of the following equation
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m

(21) dx=go(t+sk, x)dt +Σθιit + sk, x)dwi(t), t > 0 ,

where w(t) is the fixed Wiener process on probability space {Ω, #", P} with the reference

family {^t}, t^O, andxfc is a random vector on {Ω, # , P} with the distribution Pk(0).

The new probability space will be {Ω, # , P} and # t = ̂  x # , / ̂  0, is the associated

reference family of σ-algebras (see Remark 1).

In the sequel the solution in (21) will be denoted again by vk(t) and it is easily seen

that vk(t), fc^l, f^O, fulfils the following equation

(22) dx = go(t + sl9 x)dt + £ gff + s/5 x)dwi(t) + [^0(ί + sk, vk(ή) - go(t + S j, vk(t))\dt

Arguments similar to those in Lemma 2 apply and using total stability of (2) we

get {sk} ^ {sk}, {sk} I oo such that vk(t) = v(t + sk), t ̂ 0 , is a Cauchy sequence in L2(Ω, P),

uniformly in t^O; i.e., for any ε>0 there is /=/(ε) such that

(23) sup^|ί? k-ι? I(ί) | 2^ε for all Jt>/(ε).

From (23) it follows that {P(t + sfc, dx)}k^ x is weakly compact uniformly with respect

to t^O and denote by 17(ί, dx) a limit of it.

Thus we have obtained that P(t + hk, dx), k^ 1, is weakly compact, uniformly with

respect to ί^O and the proof is complete.

PROOF OF THEOREM 1. Let {tk} f oo. Since/;., ί=0, 1, , m, are asymptotically

almost periodic in the variable t^O, it follows that there exists a subsequence {tk} f oo

such that /*(ί, x) =/f(ί + ίk, x) is Cauchy uniformly in /^0 and x in compact sets in

Rn.

By hypotheses, the equation (1) is totally stable and Lemma 3 applies.

We get, for each k^ 1, an equivalent differential equation (l ίk) whose solution xk(t),

ί^O, generates the same probabilities P(t + tk,dx), t^O, as x(ί + ίk) and {xfc(ί)}k^i

converges to a limit x(ί) in L2(Ω, P) uniformly in t^O. Therefore {P(t + tk, dx)}k^ί is

weakly convergent to a limit P(t, dx)e^ uniformly in t^O and the proof is complete.

REMARK 4. As is pointed out in Theorem 1, for any Lp-bounded solution (p>2)

x(ί), ί^O, in (1) we get the following convergence limk^O0jRnφ(x)P(t-htk,dx) —

jRnφ(x)P(t, dx) uniformly in ί^O for each φeCb(Rn), φ Lipschitz continuous, for some

sequence {tk} | oo.

Using Lemma 3 it is possible to extend this convergence to any φeC1(Rn), which
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fulfils

dx
(X) <k(l + \x\q) with q<p.

It gives the possibility to obtain asymptotic almost periodic property using the definition
based on the moments of the bounded solution.
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