# A NEW CONSTRUCTION OF A COMPACTIFICATION OF $C^{3}$ 

Dedicated to Professor Friedrich Hirzebruch on his sixtieth birthday

Mikio Furushima and Noboru Nakayama

(Received April 12, 1988, revised November 24, 1988)

Introduction. Let $(X, Y)$ be a smooth projective compactification of $C^{3}$, namely, $X$ is a smooth projective 3 -fold and $Y$ is a subvariety of $X$ such that $X-Y$ is analytically isomorphic to $C^{3}$. We will write simply as $X-Y \cong C^{3}$ if there is an algebraic isomorphism of $X-Y$ onto $C^{3}$. Assume that $Y$ is normal. Then $X$ is a Fano 3-fold of index $r(1 \leq r \leq 4)$ with the second Betti number $b_{2}(X)=1$, and $Y$ is a hyperplane section of $X$. Then, in the paper [1], we have the following results:
(i) $r=4 \Rightarrow(X, Y) \cong\left(P^{3}, P^{2}\right)$
(ii) $r=3 \Rightarrow(X, Y) \cong\left(\boldsymbol{Q}^{3}, \boldsymbol{Q}_{0}^{2}\right)$, where $\boldsymbol{Q}^{\mathbf{3}}$ is a smooth quadric hypersurface in $\boldsymbol{P}^{4}$ and $Q_{0}^{2}$ is a quadric cone.
(iii) $r=2 \Rightarrow(X, Y) \cong\left(V_{5}, H_{5}\right)$, where $V_{5}$ is a Fano 3-fold of degree 5 in $\boldsymbol{P}^{6}$ and $H_{5}$ is a singular del Pezzo surface with exactly one rational double point of $A_{4}$-type.
(iv) $r=1 \Rightarrow(X, Y)$ is not completely determined (see also [2], [3], [9]).

These 3 -folds $\boldsymbol{P}^{3}, \boldsymbol{Q}^{3}, V_{5}$ are compactifications of $\boldsymbol{C}^{3}$. In the case of $r=4$, it is clear that $\boldsymbol{P}^{\mathbf{3}}-\left\{\right.$ a hyperplane $\left.\boldsymbol{P}^{\mathbf{2}}\right\} \cong \boldsymbol{C}^{\mathbf{3}}$. In the case of $r=3$, projecting $\boldsymbol{Q}^{\mathbf{3}}$ from the vertex of $\boldsymbol{Q}_{0}^{2}$ to $\boldsymbol{P}^{3}$, one can see that $\boldsymbol{Q}^{3}-\boldsymbol{Q}_{0}^{2} \cong \boldsymbol{C}^{3}$. In the case of $r=2$, projecting $V_{5}$ from a line $C$ in $V_{5}$ through the singular point $x$ of $A_{4}$-type of $H_{5}$, one can see that $V_{5}-H_{5} \cong C^{3}$. Moreover, let $H_{5}^{\infty}$ be the ruled surface swept out by lines which intersect the line $C$. Then $H_{5}^{\infty}$ is a non-normal hyperplane section of $V_{5}$ such that $V_{5}-H_{5}^{\infty} \cong C^{3}$ (see [1]). In particular, $H_{5}, H_{5}^{\infty}$ are members of the linear system $|H-2 x|:=\mid \mathcal{O}_{V_{5}}(1) \otimes$ $\mathscr{M}_{x}^{2} \mid$, where $H$ is a member of $\left|\mathcal{O}_{V_{5}}(1)\right|$ and $\mathscr{M}_{x}$ is the maximal ideal of the local ring $\mathcal{O}_{V_{5}, x}$.

To see how many members of the linear system $|H-2 x|$ can be normal (or non-normal) boundaries of $C^{3}$ in $V_{5}$, we will study in this paper the double projection from the singular point $x$ of $H_{5}$. Consequently, we have a new construction of a compactification of $C^{3}$ in the case of index $r=2$.

Our main result is the following:
Theorem. (1) The set $\mathfrak{A}:=\left\{x \in V_{5}\right.$; there is a unique line in $V_{5}$ through the point $x\}$ is not empty.
(2) Take a point $x \in \mathfrak{A}$ and a line $C$ through $x$. Let $\sigma: V_{5}^{\prime} \rightarrow V_{5}$ be the blowing up of $V_{5}$ at the point $x$, and put $E:=\sigma^{-1}(x) \cong \boldsymbol{P}^{2}$. Then there is a $\boldsymbol{P}^{1}$-bundle $\pi: \boldsymbol{P}(\mathscr{E}) \rightarrow \boldsymbol{P}^{2}$ over $\boldsymbol{P}^{2}\left(\mathscr{E}\right.$ is a locally free sheaf of rank 2 over $\left.\boldsymbol{P}^{2}\right)$ and a birational map $\rho: V_{5}^{\prime} \rightarrow \boldsymbol{P}(\mathscr{E})$,
called a flip, such that the following (i)-(iii) hold:
(i) there is a smooth rational curve $f$ in $\boldsymbol{P}(\mathscr{E})$ such that $V_{5}^{\prime}-C_{1}$ is isomorphic to $\boldsymbol{P}(\mathscr{E})-f$, where $C_{1}$ is the proper transform of $C$ in $V_{5}^{\prime}$,
(ii) $\Sigma:=\rho(E)$ is a rational section of $\pi: \boldsymbol{P}(\mathscr{E}) \rightarrow \boldsymbol{P}^{2}$ with a rational double point $q$ of $A_{2}$-type. In particular, $q \in f G \Sigma$, and
(iii) there is a point $p \in \boldsymbol{P}^{2}$ such that $\pi^{-1}(p) \subsetneq \Sigma$ and $\Sigma-\pi^{-1}(p)$ is isomorphic to $\boldsymbol{P}^{2}-\{p\}$.
(3) The set $L_{\infty}:=\pi(f)$ is a line in $\boldsymbol{P}^{2}$ through $p$, and $H_{5}^{\infty}:=\sigma \rho^{-1}\left(\pi^{-1}\left(L_{\infty}\right) \cup \Sigma\right)$ is the ruled surface swept out by lines which intersect the line C. For any line $L_{t}(t \neq \infty)$ through the point $p, H_{5}^{t}:=\sigma \rho^{-1}\left(\pi^{-1}\left(L_{t}\right) \cup \Sigma\right)$ is a normal surface with a rational double point of $A_{4}$-type. In particular, $V_{5}-H_{5}^{\infty} \cong C^{3}$ and $V_{5}-H_{5}^{t} \cong C^{3}$.

Corollary. For each $x \in \mathfrak{H}$,
$\left\{H_{5} \in\left|\mathcal{O}_{V_{5}}(1) \otimes \mathscr{M}_{x}^{2}\right| ; V_{5}-H_{5} \cong C^{3}\right\}=\left\{H_{5}^{t}\right\}_{t \in C} \cup\left\{H_{5}^{\infty}\right\}$.
Acknowledgement. The authors would like to thank the Max-Planck-Institut für Mathematik in Bonn especially Professor Hirzebruch for hospitality and encouragement.

1. Preliminaries. Let us recall some results in the paper [1]. Let $(X, Y)$ be a projective compactification of $C^{3}$ such that $Y$ is normal. Assume that the index $r=2$. Then $(X, Y) \cong\left(V_{5}, H_{5}\right)$ (see the Introduction). Then the anti-canonical line bundle can be written as follow:

$$
-K_{Y} \cong \mathcal{O}_{Y}(\Gamma),
$$

where $\Gamma$ is an elliptic curve not through the singularity of $Y=H_{5}$. Thus $\operatorname{deg} Y=\left(\Gamma^{2}\right)_{Y}=5$. In particular, the singular locus of $Y$ consists of exactly one point $\{x\}$, which is of $A_{4}$-type. Let $\alpha: \tilde{Y} \rightarrow Y$ be the minimal resolution of singularity of $Y$ and put

$$
\alpha^{-1}(x)=\tilde{l}_{2} \cup \tilde{f}_{1} \cup \tilde{f}_{2} \cup \tilde{l}_{1},
$$

where $\tilde{l}_{i}, \tilde{f}_{i}(1 \leq i \leq 2)$ are smooth rational curves with the self-intersction number equal to -2 and the dual graph of the exceptional divisor $\alpha^{-1}(x)$ is a linear tree (see Figure 1).

On the other hand, $\tilde{Y}$ can be obtained from $\boldsymbol{P}^{2}$ by the blowing up of four points (infinitely near points allowed) on a smooth cubic curve $\Gamma_{0}$ on $\boldsymbol{P}^{2}$. Let $\tilde{\Gamma}$ be the proper transform of $\Gamma_{0}$ in $\tilde{Y}$ (see Figure 1).

In Figure 1, there exists an exceptional curve $\tilde{C}$ of the first kind with $(\tilde{C} \cdot \tilde{\Gamma})_{\tilde{Y}}=1$. We put $C=\alpha(\tilde{C})$ and $\Gamma=\alpha(\tilde{\Gamma})$. Let $H$ be a general hyperplane section of $X:=V_{5}$ such that $\mathcal{O}_{Y}(H)=\mathcal{O}_{Y}(\Gamma)$. Since

$$
1=(\tilde{\Gamma} \cdot \tilde{C})_{\tilde{Y}}=(\Gamma \cdot C)_{Y}=(H \cdot C)_{X},
$$

$C$ is a line on $X$. By [1, Proposition 15], $C$ is a unique line in $\boldsymbol{P}^{6}$ contained in $Y \subset X$.


Figure 1

Since the multiplicity $m\left(\mathcal{O}_{Y, x}\right)$ of the local ring $\mathcal{O}_{Y, x}$ is equal to two, any line through the point $x$ must be contained in $Y$. Therefore $C$ is a unique line in $X$ through the singularity $x$ of $Y=H_{5}$. Thus we have:

Lemma 1.1. Let $(X, Y)=\left(V_{5}, H_{5}\right)$ be a compactification of $C^{3}$ such that $Y=H_{5}$ is normal. Then $Y$ has exactly one singular point $x$ of $A_{4}$-type. Moreover, there exists a unique line $C$ in $X$ through the point $x$, which is contained in $Y$.
2. Double projection from a point. We will study the double projection of $X=V_{5}$ from the singularity $x$ of $A_{4}$-type of $Y=H_{5}$. For this purpose, let us consider the linear system

$$
|H-2 x|=\left|\mathcal{O}_{X}(H) \otimes \mathscr{M}_{x}^{2}\right|,
$$

where $H$ is a hyperplane section of $X$ and $\mathscr{M}_{x} \subset \mathcal{O}_{X, x}$ is the maximal ideal of the local ring $\mathcal{O}_{X, x}$. Let $\delta_{1}: X_{1} \rightarrow X$ be the blowing up of $X$ at the point $x$ and put $E_{1}:=\delta_{1}^{-1}(x) \cong \boldsymbol{P}^{2}$. Let $Y_{1}$ and $C_{1}$ be the proper transform $Y$ and $C$, respectively. Then we have:

Lemma 2.1. $\operatorname{dim}|H-2 x|=2$.
Proof. Let us consider the exact sequences:

$$
\begin{gathered}
0 \longrightarrow \mathcal{O}_{X_{1}}\left(\delta_{1}^{*} H-E_{1}\right) \longrightarrow \mathcal{O}_{X_{1}}\left(\delta_{1}^{*} H\right) \longrightarrow \mathcal{O}_{E_{1}} \longrightarrow 0 \\
0 \longrightarrow \mathcal{O}_{X_{1}}\left(\delta_{1}^{*} H-2 E_{1}\right) \longrightarrow \mathcal{O}_{X_{1}}\left(\delta_{1}^{*} H-E_{1}\right) \longrightarrow \mathcal{O}_{E_{1}}(1) \longrightarrow 0
\end{gathered}
$$

Since $\operatorname{dim}|H-x|=\operatorname{dim} H-1$, we have

$$
H^{0}\left(X_{1}, \mathcal{O}_{X_{1}}\left(\delta_{1}^{*} H-E_{1}\right)\right) \cong C^{6}, \quad \text { and } \quad H^{1}\left(X_{1}, \mathcal{O}_{X_{1}}\left(\delta_{1}^{*} H-E_{1}\right)\right) \cong 0
$$

Let $\mathscr{L}:=\operatorname{Tr}_{E_{1}}\left|\delta_{1}^{*} H-E_{1}\right| \subseteq \mathcal{O}_{E_{1}}(1) \mid$ be the trace of the linear system $\left|\delta_{1}^{*} H-E_{1}\right|$ on $E_{1}$. Since $\left|\delta_{1}^{*} H-E_{1}\right|$ has no fixed component and no base point on $X_{1}$, neither does $\mathscr{L}$ on $E_{1}$. Therefore $\mathscr{L}=\left|\mathcal{O}_{E_{1}}(1)\right|$. Thus, we have a surjection

$$
H^{0}\left(X_{1}, \mathcal{O}_{X_{1}}\left(\delta_{1}^{*} H-E_{1}\right)\right) \longrightarrow H^{0}\left(E_{1}, \mathcal{O}_{E_{1}}(1)\right) \cong C^{3}
$$

This means that

$$
H^{0}\left(X_{1}, \mathcal{O}_{X_{1}}\left(\delta_{1}^{*} H-2 E_{1}\right)\right) \cong C^{3}, \quad \text { and } \quad H^{1}\left(X_{1}, \mathcal{O}_{X_{1}}\left(\delta_{1}^{*} H-2 E_{1}\right)\right) \cong 0 . \quad \text { q.e.d. }
$$

By Lemma 2.1, we have rational maps

$$
\Phi:=\Phi_{|H-2 x|}: X \longrightarrow P^{2}, \quad \text { and } \quad \Phi^{(1)}:=\Phi_{\left|\delta \uparrow H-2 E_{1}\right|}: X_{1} \longrightarrow \boldsymbol{P}^{2} .
$$

Since $\left(\delta_{1}^{*} H-2 E_{1}\right) \cdot C_{1}=-1<0, C_{1}$ is a base curve of the linear system $\left|\delta_{1}^{*} H-2 E_{1}\right|$.
Next, we will study the singularities of $Y_{1}$. Let $\Delta$ be a small neighborhood of $x$ in $X$ with a local coordinate system $\left(z_{1}, z_{2}, z_{3}\right)$. Since the singularity $x \in Y=H_{5}$ is of $A_{4}$-type and $C$ intersects the component $\tilde{f}_{2}$ of $\alpha^{-1}(x)$ in $\tilde{Y}$ (see Figure 1), we may assume that

$$
\begin{gather*}
\Delta \cap Y=\left\{z_{1} \cdot z_{2}=z_{3}^{5}\right\} \subsetneq \Delta \quad \text { with } \quad x=(0,0,0),  \tag{2.1}\\
\Delta \cap C=\left\{z_{1}=z_{3}^{2}, z_{2}=z_{3}^{3}\right\} \subsetneq \Delta .
\end{gather*}
$$

By an easy calculation, we find that $Y_{1}$ has exactly one singular point $x_{1}$ of $A_{2}$-type. Then there exists a birational morphism $\mu_{1}: \tilde{Y} \rightarrow Y_{1}$ such that

$$
\mu_{1}^{-1}\left(x_{1}\right)=\tilde{f}_{1} \cup \tilde{f}_{2}, \quad \text { and } \quad \tilde{Y}-\left(\tilde{f}_{1} \cup \tilde{f}_{2}\right) \stackrel{\mu_{1}}{\cong} Y_{1}-\left\{x_{1}\right\} \text { (isomorphic). }
$$

We put $l_{i}^{(1)}:=\mu_{1}\left(\tilde{l_{i}}\right)(1 \leq i \leq 2)$ and $C_{1}=\mu_{1}(\tilde{C})$. Then we have

$$
\begin{equation*}
E_{1} \cdot Y_{1}=l_{1}^{(1)}+l_{2}^{(1)} . \tag{2.2}
\end{equation*}
$$

In particular, $l_{1}^{(1)}, l_{2}^{(1)}$ are two distinct lines on $E_{1} \cong \boldsymbol{P}^{2}$ and $C_{1}$ is the proper transform of $C$ in $X_{1}$.

Since $Y_{1} \in\left|\delta_{1}^{*} H-2 E_{1}\right|$, by (2.2), we have

$$
\mathcal{O}_{Y_{1}}\left(Y_{1}\right)=\mathcal{O}_{Y_{1}}\left(\delta_{1}^{*} H-2 E_{1}\right)=\mathcal{O}_{Y_{1}}\left(\Gamma^{(1)}-2 l_{1}^{(1)}-2 l_{2}^{(1)}\right),
$$

where $\Gamma^{(1)}=\delta_{1}^{*}\left(\left.Y\right|_{H}\right)=\mu_{1}(\tilde{\Gamma})$. We have

$$
\begin{equation*}
\mu_{1}^{*} \mathcal{O}_{Y_{1}}\left(\Gamma^{(1)}-2 l_{1}^{(1)}-2 l_{2}^{(1)}\right) \cong \mathcal{O}_{\tilde{Y}}\left(\tilde{\Gamma}-2 \tilde{f}_{1}-2 \tilde{f}_{2}-2 \tilde{l}_{1}-2 \tilde{l}_{2}\right) \cong \mathcal{O}_{\tilde{Y}}(\tilde{\Gamma}-2 Z) \tag{2.3}
\end{equation*}
$$

where $Z=\tilde{f}_{1}+\tilde{f}_{2}+\tilde{l}_{1}+\tilde{l}_{2}$ is the fundamental cycle of the singularity $x$ associated with the resolution $(\tilde{Y}, \alpha)$. From the exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{X_{1}} \longrightarrow \mathcal{O}_{X_{1}}\left(Y_{1}\right) \longrightarrow \mathcal{O}_{Y_{1}}\left(Y_{1}\right) \longrightarrow 0, \tag{2.4}
\end{equation*}
$$

we have

$$
H^{0}\left(Y_{1}, \mathcal{O}_{Y_{1}}\left(Y_{1}\right)\right) \cong H^{0}\left(\tilde{Y}, \mathcal{O}_{\tilde{Y}}(\tilde{\Gamma}-2 Z)\right) \cong C^{2}
$$

since $H^{0}\left(X_{1}, \mathcal{O}_{X_{1}}\left(Y_{1}\right)\right) \cong \boldsymbol{C}^{3}$ by Lemma 2.1. Let $\left\{\psi_{0}, \psi_{1}\right\}$ be a basis of $H^{0}\left(\tilde{Y}, \mathcal{O}_{\tilde{Y}}(\tilde{\Gamma}-2 Z)\right)$ such that

$$
\begin{align*}
& \left(\psi_{0}\right)=3 \tilde{C}+2 \tilde{f}_{2}+\tilde{f}_{1}+\tilde{f}_{0}  \tag{2.5}\\
& \left(\psi_{1}\right)=5 \tilde{C}+4 \tilde{f}_{2}+2 \tilde{f}_{1}+\tilde{l}_{1},
\end{align*}
$$

where $\tilde{f}_{0}$ is a smooth rational curve in $\tilde{Y}$ such that $\left(\tilde{f}_{0}^{2}\right)_{\tilde{Y}}=0$ and $\left(\tilde{f}_{0} \cdot \tilde{l}_{2}\right)_{\tilde{Y}}=1$ (in fact, $\tilde{Y}$ can be regarded as a ruled surface over a smooth rational curve, which has $\tilde{f}_{0}$ as a fiber $\tilde{I}_{2}$ as a section). Since

$$
\left(\psi_{0}\right) \cap\left(\psi_{1}\right)=\tilde{C} \cup \tilde{f_{1}} \cup \tilde{f_{2}},
$$

we have the base locus

$$
\operatorname{Bs}\left|\mathcal{O}_{Y_{1}}\left(Y_{1}\right)\right|=C_{1} \ni x_{1} .
$$

By (2.4), since $H^{1}\left(X_{1}, \mathcal{O}_{X_{1}}\right)=0$, we have the base locus

$$
\operatorname{Bs}\left|\mathcal{O}_{X_{1}}\left(Y_{1}\right)\right|=C_{1} \ni x_{1} .
$$

Since $\operatorname{Pic} X \cong Z \mathcal{O}_{X}(H),|H-2 x|$ has no fixed component, hence neither does $\left|\delta_{1}^{*} H-2 E_{1}\right|$. Thus we have the following:

Lemma 2.2. The linear system $\left|\delta_{1}^{*} H-2 E_{1}\right|$ on $X_{1}$ has no fixed component, but has the base locus

$$
\mathrm{Bs}\left|\delta_{1}^{*} H-2 E_{1}\right|=C_{1} \ni x_{1} .
$$

3. Resolution of indeterminancy. The indeterminancy of the rational map $\Phi^{(1)}: X_{1} \longrightarrow \boldsymbol{P}^{2}$ can be resolved as follows: First, let us consider the blowing up $\delta_{2}$ : $X_{2} \rightarrow X_{1}$ of $X_{1}$ along $C_{1} \cong \boldsymbol{P}^{1}$. Then $C_{1}^{\prime}=\delta_{2}^{-1}\left(C_{1}\right) \cong \boldsymbol{F}_{2}$. Next, let us consider the blowing up $\delta_{3}: X_{3} \rightarrow X_{2}$ of $X_{2}$ along the negative section $C_{2}$ of $C_{1}^{\prime} \cong F_{2}$. Then $C_{2}^{\prime}:=$ $\delta_{3}^{-1}\left(C_{2}\right) \cong F_{2}$. Finally, let us consider the blowing up $\delta_{4}: X_{4} \rightarrow X_{3}$ of $X_{3}$ along the negative section $C_{3}$ of $C_{2}^{\prime} \cong F_{2}$. Then, we have a morphism $\bar{\Phi}: X_{4} \rightarrow \boldsymbol{P}^{2}$ and the following diagram:

where $\delta:=\delta_{2} \circ \delta_{3} \circ \delta_{4}$. This is a desired resolution of the indeterminancy of the rational $\operatorname{map} \Phi^{(1)}: X_{1}---\boldsymbol{P}^{2}$.

Notation.
$\bar{C}_{j}^{\prime}$ : the proper transform of $C_{j}^{\prime}$ in $X_{4}(1 \leq j \leq 2)$.
$f_{j}^{(j+1)}$ : a fiber of the ruled surface $C_{j}^{\prime}$.
$C_{j+1}:$ a section of $C_{j}^{\prime}$.
$K_{X_{j}}$ : a canonical divisor on $X_{j}$.
$N_{C_{j} \mid X_{j}}$ : the normal bundle of $C_{j}$ in $X_{j}$.
$Y_{j+1}$ : the proper transform of $Y_{j}$ in $X_{j+1}$.
$E_{j+1}$ : the proper transform of $E_{j}$ in $X_{j+1}$.
$l_{i}^{(j+1)}(i=1,2)$ : the proper transform of $l_{i}^{(j)}$ in $X_{j+1}$.
$x_{j}$ : the singular point of $Y_{j}(1 \leqq j \leqq 2)$.
$\Delta_{j}$ : a neighborhood of $x_{j}$ in $X_{j}$ with a local coordinate system $\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}^{j}, z_{2}^{j}, z_{3}^{j}\right)$.

For the proof, we need the following:
Lemma 3.1 (Morrison [7]). Let $S$ be a surface with only one singularity $x$ of $A_{n}$-type in a smooth projective 3-fold $X$. Let $E \subset S \subset X$ be a smooth rational curve in $X$. Let $\mu: \tilde{S} \rightarrow S$ be the minimal resolution of the singularity of $S$ and put

$$
\mu^{-1}(x)=\bigcup_{j=1}^{n+1} C_{j}
$$

where $C_{j}$ 's $(1 \leq j \leq n+1)$ are smooth rational curve with

$$
\begin{array}{ll}
\left(C_{j}^{2}\right) \tilde{S}=-2 & (1 \leq j \leq n+1) \\
\left(C_{j} \cdot C_{j+1}\right) \tilde{S}=1 & (1 \leq j \leq n) \\
\left(C_{i} \cdot C_{j}\right) \tilde{S}=0 & \text { if }|i-j| \geq 2
\end{array}
$$

Let $\tilde{E}$ be the proper transform of $E$ in $\tilde{S}$. Assume that
(i) $N_{\tilde{E} \mid \tilde{S}} \cong \mathcal{O}_{\tilde{E}}(-1)$, where $N_{\tilde{E} \mid \tilde{S}}$ is the normal bundle of $\tilde{E}$ in $\tilde{S}$, and
(ii) $\operatorname{deg} N_{E \mid X}=-2$, where $N_{E \mid X}$ is the normal bundle of $E$ in $X$.

Then we have
(1) $N_{E \mid X} \cong \mathcal{O}_{E} \oplus \mathcal{O}_{E}(-2)$ if $x \in E$ and $\left(C_{j} \cdot \tilde{E}\right)_{\tilde{S}}=1$ for $j=1$ or $n+1$, or
(2) $N_{E \mid X} \cong \mathcal{O}_{E}(-1) \oplus \mathcal{O}_{E}(-1)$ if $x \notin E$.

Proof. In the proof of Theorem 3.2 in Morrison [7], we have only to replace the conormal bundle $\tilde{N}_{\tilde{E} \mid \tilde{S}}^{*}=\mathcal{O}_{\tilde{E}}(2)$ by $N_{\tilde{E} \mid \tilde{S}}^{*}=\mathcal{O}_{\tilde{E}}(1)$.
q.e.d.
(Step I). Since $\left(K_{X_{1}} \cdot C_{1}\right)=0$, we have $\operatorname{deg} N_{C \mid X_{1}}=-2$. Since $x_{1} \in C_{1}$ and the normal bundle $N_{\tilde{C} \mid \tilde{Y}} \cong \mathcal{O}_{\tilde{C}}(-1)$ (see §2), by Lemma 3.1, we have

$$
\begin{equation*}
N_{C_{1} \mid X_{1}} \cong \mathcal{O}_{C_{1}} \oplus \mathcal{O}_{C_{1}}(-2) \tag{3.1}
\end{equation*}
$$

Since the singularity $x_{1}$ of $Y_{1}$ is of $A_{2}$-type and $\left(\tilde{C} \cdot \tilde{f}_{2}\right)_{\tilde{Y}}=1$, we may assume that

$$
\begin{align*}
& \Delta_{1} \cap Y_{1}=\left\{z_{1} z_{2}=z_{3}^{2}\right\} \subsetneq \Delta_{1}  \tag{3.2}\\
& \Delta_{1} \cap C_{1}=\left\{z_{1}=z_{3}, z_{2}=z_{3}^{2}\right\} \subsetneq \Delta_{1} .
\end{align*}
$$

(Step II). Let $\delta_{2}: X_{2} \rightarrow X_{1}$ be the blowing up of $X_{1}$ along $C_{1} \cong \boldsymbol{P}^{1}$. By (3.1), we have $\delta_{2}^{-1}\left(C_{1}\right)=: C_{1}^{\prime} \cong F_{2}$. By (3.2), we find that $Y_{2}$ has exactly one singularity $x_{2}$ of $A_{1}$-type. Then there exists a birational morphism $\mu_{2}: \tilde{Y} \rightarrow Y_{2}$ such that $\mu_{2}^{-1}\left(x_{2}\right)=\tilde{f}_{2}$ and $\tilde{Y}-\tilde{f}_{2} \cong Y_{2}-\left\{x_{2}\right\}$. Furthermore, we have
(i) $C_{2}=\mu_{2}(\tilde{C})$ is the negative section of $C_{1}^{\prime} \cong F_{2}$,
(ii) $Y_{2} \cdot C_{1}^{\prime}=f_{1}^{(2)}+C_{2}$,
(iii) $f_{1}^{(2)}=\mu_{2}\left(f_{1}\right) \subseteq Y_{2} \cap E_{2} \cap C_{1}^{\prime}$ and $l_{i}^{(2)}=\mu_{2}\left(\tilde{l}_{i}\right) \subseteq Y_{2} \cap E_{2}(1 \leq i \leq 2)$,
(iv) $\left(l_{i}^{(2)} \cdot l_{i}^{(2)}\right)_{E_{2}}=0(1 \leq i \leq 2)$ and $\left(f_{1}^{(2)} \cdot f_{1}^{(2)}\right)_{E_{2}}=-1$.

Since $K_{X_{2}}=\delta_{2}^{*} K_{X_{1}}+C_{1}^{\prime}$, we have $\left(K_{X_{2}} \cdot C_{2}\right)=0$. Hence $\operatorname{deg} N_{C_{2} \mid X_{2}}=-2$. Since $x_{2} \in C_{2}$, by Lemma 3.1, we have

$$
\begin{equation*}
N_{C_{2} \mid X_{2}} \cong \mathcal{O}_{C_{2}} \oplus \mathcal{O}_{C_{2}}(-2) . \tag{3.3}
\end{equation*}
$$

Furthermore, we may assume that

$$
\begin{align*}
& \Delta_{2} \cap Y_{2}=\left\{z_{1} z_{2}=z_{3}^{2}\right\} \subsetneq \Delta_{2},  \tag{3.4}\\
& \Delta_{2} \cap C_{2}=\left\{z_{1}=z_{2}=z_{3}\right\} \subsetneq \Delta_{2} .
\end{align*}
$$

(Step III). Let $\delta_{3}: X_{3} \rightarrow X_{2}$ be the blowing up of $X_{2}$ along $C_{2}$. By (3.3), we have $\delta_{3}^{-1}\left(C_{2}\right)=: C_{2}^{\prime} \cong \boldsymbol{F}_{2}$. By (3.4), we find that $Y_{3}$ is a smooth surface. Then there exists an isomorphism $\mu_{3}: \tilde{Y} \xrightarrow{\sim} Y_{3}$. Furthermore, we have:
(i) $C_{3}=\mu_{3}(\tilde{C})$ is the negative section of $C_{2}^{\prime} \cong F_{2}$,
(ii) $Y_{3} \cdot C_{2}^{\prime}=f_{2}^{(3)}+C_{3}$,
(iii) $f_{1}^{(3)}=\mu_{3}\left(\tilde{f}_{1}\right) \subseteq Y_{3} \cap \bar{C}_{1}^{\prime} \cap E_{3}, f_{2}^{(3)}=\mu_{3}\left(\tilde{f}_{2}\right) \subseteq Y_{3} \cap C_{2}^{\prime} \cap E_{3}$, and $l_{i}^{(3)}=\mu_{3}\left(\tilde{l}_{i}\right) \subseteq Y_{3} \cap E_{3}(1 \leq i \leq 2)$,
(iv) $\quad\left(l_{1}^{(3)} \cdot l_{1}^{(3)}\right)_{E_{3}}=\left(f_{2}^{(3)} \cdot f_{2}^{(3)}\right)_{E_{3}}=-1, \quad\left(l_{2}^{(3)} \cdot l_{2}^{(3)}\right)_{E_{3}}=0,\left(C_{3} \cdot l_{1}^{(3)}\right)_{Y_{3}}=0$, $\left(C_{3} \cdot f_{2}^{(3)}\right)_{Y_{3}}=1$.
Since $\left(K_{X_{3}} \cdot C_{3}\right)=0$, we have $\operatorname{deg} N_{C_{3} \mid X_{3}}=-2$. Since $Y_{3}$ is smooth, by Lemma 3.1, we have

$$
\begin{equation*}
N_{C_{3} \mid X_{3}} \cong \mathcal{O}_{C_{3}}(-1) \oplus \mathcal{O}_{C_{3}}(-1) . \tag{3.5}
\end{equation*}
$$

(Step IV). Let $\delta_{4}: X_{4} \rightarrow X_{3}$ be the blowing up of $X_{3}$ along $C_{3} \cong \boldsymbol{P}^{1}$. By (3.5), we have $\delta_{4}^{-1}\left(C_{3}\right)=: C_{3}^{\prime} \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. Since $Y_{3}$ is smooth, we also have an isomorphism $\mu_{4}: \tilde{Y} \xrightarrow{\sim} Y_{4}$. We identify $\tilde{Y}$ and $Y_{4}$ via the isomorphism $\mu_{4}$, and put, for simplicity, $\tilde{f}_{i}:=\mu_{4}\left(\tilde{f_{i}}\right), \tilde{l}_{i}:=\mu_{4}\left(\tilde{l}_{i}\right)(1 \leq i \leq 2), \tilde{\Gamma}:=\mu_{4}(\tilde{\Gamma})$ and $\tilde{C}:=\mu_{4}(\tilde{C})$. Then we have
(i) $\tilde{f}_{i} \subseteq Y_{4} \cap E_{4}, \quad \tilde{l}_{i} \subseteq Y_{4} \cap E_{4}(1 \leq i \leq 2), \quad \tilde{f}:=f_{3}^{(4)} \subseteq C_{3}^{\prime} \cap E_{4}$,
(ii) $\tilde{C}:=C_{4}$ is a section of $C_{3}^{\prime} \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ with $(\tilde{C} \cdot \tilde{C})_{C_{3}^{\prime}}=0$,
(iii) $Y_{4} \cdot C_{3}^{\prime}=\tilde{C}$,
(iv) $\left(\tilde{l}_{1} \cdot \tilde{I}_{1}\right)_{E_{4}}=-1,\left(\tilde{l}_{2} \cdot \tilde{l}_{2}\right)_{E_{4}}=0, \quad\left(\tilde{f}_{1} \cdot \tilde{f}_{1}\right)_{E_{4}}=\left(\tilde{f}_{2} \cdot \tilde{f}_{2}\right)_{E_{4}}=-2, \quad(\tilde{f} \cdot \tilde{f})_{E_{4}}=-1$. Thus we have Figure 2 (see also Pagoda (5.8) in Reid [10]).


Figure 2


Figure 3

Now, since $Y_{j+1}=\delta_{j+1}^{*} Y_{j}-C_{j}^{\prime}(1 \leq j \leq 3)$, we have

$$
Y_{4}=\delta_{4}^{*} \delta_{3}^{*} \delta_{2}^{*} \delta_{1}^{*} H-2 \delta_{4}^{*} \delta_{3}^{*} \delta_{2}^{*} E-3 C_{3}^{\prime}-2 \bar{C}_{2}^{\prime}-\bar{C}_{1}^{\prime} .
$$

Therefore we have

$$
\mathcal{O}_{Y_{4}}\left(Y_{4}\right)=\mathcal{O}_{Y_{4}}\left(\tilde{\Gamma}-2 Z-\tilde{f}_{1}-2 \tilde{f}_{2}-3 \tilde{C}\right)=\mathcal{O}_{Y_{4}}\left(\tilde{f}_{0}\right)\left(\cong \mathcal{O}_{\tilde{F}}\left(\tilde{f_{0}}\right)\right),
$$

where $Z=\tilde{l}_{1}+\tilde{l}_{2}+\tilde{f}_{1}+\tilde{f}_{2}$ (see (2.3)). Since $\tilde{f}_{0}$ is a general fiber of the rational ruled surface $\tilde{Y}=Y_{4},\left|\mathcal{O}_{Y_{4}}\left(\tilde{f}_{0}\right)\right|$ has no fixed component and no base point. Thus, it defines a morphism $\varphi:=\varphi_{\left|0_{\mathbf{Y}_{4}}\left(\mathcal{F}_{0}\right)\right|}: Y_{4} \rightarrow \boldsymbol{P}^{1}$. Then $Y_{4} \xrightarrow{\varphi} \boldsymbol{P}^{1}$ is a ruled surface over $\boldsymbol{P}^{1}$ with exactly one singular fiber $2 \tilde{C}+2 \tilde{f}_{2}+2 \tilde{f}_{1}+\tilde{l}_{1}$. In particular, $\tilde{l}_{2}$ is a section. Let us consider the following exact sequence:

$$
0 \longrightarrow \mathcal{O}_{X_{4}} \longrightarrow \mathcal{O}_{X_{4}} \longrightarrow \mathcal{O}_{Y_{4}}\left(Y_{4}\right) \longrightarrow 0 .
$$

Since $H^{1}\left(X_{4}, \mathcal{O}_{X_{4}}\right)=0$ and the linear system $\left|\mathcal{O}_{Y_{4}}\left(Y_{4}\right)\right|$ has no fixed component and no base point, neigher does $\left|Y_{4}\right|:=\left|\mathcal{O}_{X_{4}}\left(Y_{4}\right)\right|$. Therefore, it defines a morphism $\bar{\Phi}:=\bar{\Phi}_{\left|Y_{4}\right|}: X_{4} \rightarrow \boldsymbol{P}^{2}$ of $X_{4}$ onto $\boldsymbol{P}^{2}$ such that $\bar{\Phi}^{*} \mathcal{O}_{\boldsymbol{P}^{2}}(1)=\mathcal{O}_{X_{4}}\left(Y_{4}\right)$. Thus, we have the following:

Proposition 3.2. There exists a morphism $\overline{\boldsymbol{\Phi}}: X_{4} \rightarrow \boldsymbol{P}^{2}$ of $X_{4}$ onto $\boldsymbol{P}^{2}$ with $\bar{\Phi}^{*} \mathcal{O}_{\boldsymbol{P}^{2}}(1)=\mathcal{O}_{X_{4}}\left(Y_{4}\right)$, which is a resolution of the indeterminancy of the rational map $\Phi^{(1)}: X_{1} \longrightarrow \boldsymbol{P}^{2}$.
4. Structure of $\mathbf{V}_{5}$. Let $X_{4}, Y_{4}$, and $C_{3}^{\prime} \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ be as in $\S 3$. Since

$$
N_{C_{3} \mid X_{3}} \cong \mathcal{O}_{C_{3}}(-1) \oplus \mathcal{O}_{C_{3}}(-1)
$$

by Corollary 5.6 in [10], there exists a birational morphism $\phi: X_{4} \rightarrow V$ of $X_{4}$ onto a smooth 3-fold $V$ with the second Betti number $b_{2}(V)=2$, and a morphism $\pi: V \rightarrow \boldsymbol{P}^{2}$ of $V$ onto $P^{2}$, and a birational map $\rho: X_{1} \rightarrow V$ which is called a flip such that $\rho=\phi \circ \delta^{-1}$ and $\bar{\Phi}=\pi \circ \phi$. Thus we have the diagram (*):


In particular, $f:=\phi\left(\bar{C}_{1}^{\prime} \cup \bar{C}_{2}^{\prime} \cup C_{3}^{\prime}\right)$ is a smooth rational curve in $V$, and

$$
\begin{equation*}
X_{4}-\left(\bar{C}_{1}^{\prime} \cup \bar{C}_{2}^{\prime} \cup C_{3}^{\prime}\right) \stackrel{\phi}{\sim} V-f \stackrel{\stackrel{\rho}{\sim} X_{1}-C_{1} . . . . ~}{.} \tag{4.1}
\end{equation*}
$$

We put $A:=\phi\left(Y_{4}\right)$ and $\Sigma:=\phi\left(E_{4}\right)$. Then,

$$
\begin{gather*}
-K_{V}=2 A+2 \Sigma  \tag{4.2}\\
\mathcal{O}_{V}(A)=\pi^{*} \mathcal{O}_{\mathbf{P} 2}(1) \tag{4.3}
\end{gather*}
$$

Indeed, since $-K_{X_{1}}=2 \delta_{1}^{*} H-2 E_{1}=2 Y_{1}+2 E_{1}$ and $\mathcal{O}_{X_{4}}\left(Y_{4}\right)=\bar{\Phi}^{*} \mathscr{O}_{\boldsymbol{P}^{2}}(1)$, by (4.1), we have (4.2), (4.3). We put $l_{i}:=\phi\left(\tilde{l}_{i}\right)(1 \leq i \leq 2)$ and $L_{0}:=\pi\left(l_{2}\right) \subsetneq \boldsymbol{P}^{2}$. Then $l_{i}$ 's are smooth rational curves in $V$ and $L_{0}$ is a line in $\boldsymbol{P}^{2}$. In particular, $\left.\pi\right|_{A}: A \rightarrow L_{0}$ has a structure of the $\boldsymbol{P}^{1}$-boundle $\boldsymbol{F}_{1}$ with $l_{1}$ a fiber and $l_{2}$ the negative section. Moreover, $\Sigma$ has only one singularity $q$ of $A_{2}$-type. The rational curves $l_{1}, l_{2}, f$, which are also contained in $\Sigma$, intersect only at the point $q$ (see Figure 4).


Figure 4
By construction, $\sigma:=\left.\phi\right|_{E_{4}}: E_{4} \rightarrow \Sigma$ is the minimal resolution of the singularity of $\Sigma$ with $\sigma^{-1}(q)=\tilde{f}_{1} \cup \tilde{f}_{2}$, and $l_{i}=\sigma\left(\tilde{l}_{i}\right)(1 \leq i \leq 2), f=\sigma(\tilde{f})$ (see (i)-(iv) of Step IV and Figure 4). We put $\lambda:=\left.\pi\right|_{\Sigma}: \Sigma \rightarrow \boldsymbol{P}^{2}$. Then

$$
\begin{equation*}
(\lambda \circ \sigma)\left(\tilde{f_{1}} \cup \tilde{f_{2}} \cup \tilde{l}_{1}\right)=L_{0} \cdot L_{\infty}=\{\mathrm{p}\} \text { (a point) }, \tag{4.4}
\end{equation*}
$$

where $L_{\infty}:=\pi(f)$ is a line in $\boldsymbol{P}^{2}$.
For a general fiber $F$ of the morphism $\pi: V \rightarrow \boldsymbol{P}^{2}$, we have, by (4.2),

$$
\operatorname{deg} K_{F}=\left(K_{V} \cdot F\right)=-2(\Sigma \cdot F) \leq-2 .
$$

Hence, $F \cong \boldsymbol{P}^{1}$ and $(\Sigma \cdot F)_{V}=1$, where $K_{F}$ is a canonical divisor on $F$. Therefore $\Sigma$ is a meromorphic section of $\pi: V \rightarrow \boldsymbol{P}^{2}$.

Proposition 4.1. $\pi: V \rightarrow \boldsymbol{P}^{2}$ is a $\boldsymbol{P}^{1}$-bundle over $\boldsymbol{P}^{2}$ and $\Sigma$ is a holomorphic section on $\boldsymbol{P}^{2}-\{p\}$.

Proof. By construction,

$$
C^{3} \cong X-Y \stackrel{\delta_{1}}{\sim} X_{1}-\left(Y_{1} \cup E_{1}\right) \stackrel{\stackrel{\rho}{\sim}}{\sim} V-(A \cup \Sigma) .
$$

In particular, $\pi: V-(A \cup \Sigma) \rightarrow \boldsymbol{P}^{2}-L_{0}$ is an affine morphism. Assume that there exists an irreducible divisor $D$ on $V$ such that $\pi(D)=\{$ one point $\}$. Then the one-dimensional scheme $D \cap \Sigma$ is contracted to one point, hence, $\operatorname{Supp}(D \cap \Sigma)=l_{1}$. Since $l_{1} \subseteq A=\pi^{-1}\left(L_{0}\right)$ and $\left.\pi\right|_{A}: A \rightarrow L_{0}$ is a $\boldsymbol{P}^{1}$-bundle, this is a contradiction. Thus $\pi$ is equi-dimensional, hence, $\pi$ is a proper flat morphism. Let $G$ be an arbitrary scheme-theoric fiber. Then $(\Sigma \cdot G)_{V}=1$. Since $V-(A \cup \Sigma) \cong C^{3}$ contains no compact analytic curve, $G$ must be irreducible. Since $\left(K_{V} \cdot G\right)=-2(\Sigma \cdot G)=-2$, we see that $G$ is a smooth rational curve. Therefore $\pi: V \rightarrow \boldsymbol{P}^{2}$ is a smooth proper morphism. By the upper semicontinuity theorem, we have that $R^{1} \pi_{*} \mathcal{O}_{V}(\Sigma)=0$ and $\pi_{*} \mathcal{O}_{V}(\Sigma)$ is a vector bundle of rank 2 over $\boldsymbol{P}^{2}$. Moreover, for every point $x \in \boldsymbol{P}^{2}$,

$$
\pi_{*} \mathcal{O}_{V}(\Sigma) \otimes \boldsymbol{C}(x) \cong H^{0}\left(\pi^{-1}(x), \mathcal{O}_{V}(\Sigma) \otimes \mathcal{O}_{\pi^{-1}(x)}\right) \cong H^{0}\left(\boldsymbol{P}^{1}, \mathcal{O}_{\boldsymbol{P}^{1}}(1)\right) \cong \boldsymbol{C}^{2}
$$

Thus the natural homomorphism $\pi^{*} \pi_{*} \mathcal{O}_{V}(\Sigma) \rightarrow \mathcal{O}_{V}(\Sigma)$ is surjective and induces an
isomorphism $V \cong \boldsymbol{P}\left(\pi_{*} \mathcal{O}_{V}(\Sigma)\right)$ over $\boldsymbol{P}^{2}$. The rest is clear.
q.e.d.

Remark. $\quad \pi$ is the contraction of an extremal ray of the smooth projective 3 -fold $V$.
Finally, we will study the vector bundle $\pi_{*} \mathcal{O}_{V}(\Sigma)$ of rank 2 over $\boldsymbol{P}^{2}$.
Lemma 4.2. $\mathcal{O}_{\Sigma}(\Sigma)=\mathcal{O}_{\Sigma}\left(-3 l_{1}\right) \otimes \mathcal{O}_{V}(A)$.
Proof. Since the singularity of $\Sigma$ is a rational double point, we have $\sigma^{*} K_{\Sigma}=$ $K_{E_{4}}=-2 \tilde{f}_{1}-\tilde{f}_{2}-3 \tilde{l}_{2}$, hence, $K_{\Sigma}=-3 l_{2}$. On the other hand, since $K_{\Sigma}=\left.\left(K_{V}+\Sigma\right)\right|_{\Sigma}=$ $-\left.2 A\right|_{\Sigma}-\left.\Sigma\right|_{\Sigma}$, we have $\left.\Sigma\right|_{\Sigma}=-\left.2 A\right|_{\Sigma}+3 l_{2}$. Since $\left.A\right|_{\Sigma}=l_{1}+l_{2}$, we have $\left.\Sigma\right|_{\Sigma}=-3 l_{1}+$ $\left.A\right|_{\Sigma}$, namely, $\mathcal{O}_{\Sigma}(\Sigma)=\mathcal{O}_{\Sigma}\left(-3 l_{1}\right) \otimes \mathcal{O}_{V}(A)$.
q.e.d.

Let us consider the exact sequence

$$
0 \longrightarrow \mathcal{O}_{V} \longrightarrow \mathcal{O}_{V}(\Sigma) \longrightarrow \mathcal{O}_{\Sigma}(\Sigma) \longrightarrow 0 .
$$

Taking $\pi_{*}$, we have

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{\mathbf{P}^{2}} \longrightarrow \pi_{*} \mathcal{O}_{V}(\Sigma) \longrightarrow \pi_{*} \mathcal{O}_{\Sigma}(\Sigma) \longrightarrow 0 . \tag{4.5}
\end{equation*}
$$

Taking $\pi^{*}$ in (4.5), we have a diagram:


In particular, we have a surjection

$$
\pi^{*} \pi_{*} \mathcal{O}_{\Sigma}(\Sigma) \rightarrow \mathcal{O}_{\Sigma}(\Sigma)
$$

We put $\lambda:=\left.\pi\right|_{\Sigma}: \Sigma \rightarrow \boldsymbol{P}^{2}$. Taking $\lambda^{*}$ in (4.5), we have a diagram:

where $\mathscr{K}:=\operatorname{ker} \dot{\tau}$ is a line bundle, and the image of the global section 1 of $\mathcal{O}_{\Sigma}$ via map $\mathcal{O}_{\Sigma} \rightarrow \mathscr{K}$ defines an effective Cartier divisor $D$ with $\operatorname{Supp} D=l_{1}$.

Proposition 4.3. $\quad \lambda^{*} \pi_{*} \mathcal{O}_{V}(\Sigma)$ is an extension of $\mathcal{O}_{\Sigma}(\Sigma)$ by $\mathcal{O}_{\Sigma}\left(3 l_{1}\right)$.
Proof. We have only to prove that $D=3 l_{1}$. Since $\lambda^{*}\left(\operatorname{det}\left(\pi_{*} \mathcal{O}_{V}(\Sigma)\right)\right)=\mathcal{O}_{\Sigma}(\Sigma) \otimes$ $\mathcal{O}_{\Sigma}\left(3 l_{1}\right)$, we have $\left(\Sigma \cdot l_{1}\right)_{\Sigma}+\left(D \cdot l_{1}\right)_{\Sigma}=0$. Since $\mathcal{O}_{\Sigma}(\Sigma)=\mathcal{O}_{\Sigma}\left(-3 l_{1}\right) \otimes \mathcal{O}_{V}(A)$ by Lemma 4.2, we must have $D=3 l_{1}$, and also, by (4.3), we have $\operatorname{det}\left(\pi_{*} \mathcal{O}_{V}(\Sigma)\right)=\mathcal{O}_{\mathbf{P}_{2}(1)}$. q.e.d.

Remark. We put $\mathscr{J}:=\lambda_{*} \mathcal{O}_{\Sigma}\left(-3 l_{1}\right)$. Then $\mathscr{J}$ is an ideal locally generated by two polynomials $x y$ and $y--x^{2}$ over $C[x, y]$. We put $\mathscr{E}:=\pi_{*} \mathcal{O}_{V}(\Sigma)$. Since $\mathcal{O}_{\Sigma}(\Sigma)=\mathcal{O}_{\Sigma}\left(-3 l_{1}\right) \otimes$ $\lambda^{*} \mathcal{O}_{P^{2}}(1)$, by (4.5), we have an exact sequence

$$
0 \longrightarrow \mathcal{O}_{\boldsymbol{P}^{2}} \longrightarrow \mathscr{E} \longrightarrow \mathscr{J} \cdot \mathcal{O}_{\mathbf{P}^{2}}(1) \longrightarrow 0 .
$$

By Lemma 1.3 .4 [8, p. 186-p. 187], $\mathscr{E}$ is a stable vector bundle of rank 2 over $\boldsymbol{P}^{2}$.
Thus we have finally the following:
Proposition 4.4. Let $\left(X_{1}, Y_{1}\right), E_{1} \cong \boldsymbol{P}^{2}, C_{1}$ be as in $\S 1$. Then one can construct a birational map $\rho: X_{1} \rightarrow \boldsymbol{P}(\mathscr{E})$ of $X_{1}$ to a $\boldsymbol{P}^{1}$-bundle $\pi: \boldsymbol{P}(\mathscr{E}) \rightarrow \boldsymbol{P}^{2}(\mathscr{E}$ is a stable vector bundle of rank two over $\boldsymbol{P}^{2}$ ) with the following properties:
(1) There is a smooth rational curve $f$ contained in $\Sigma:=\rho\left(E_{1}\right)$ such that

$$
X_{1}-C_{1} \stackrel{\rho}{\cong} \boldsymbol{P}(\mathscr{E})-f(\text { isomorphic }) .
$$

(2) There is a point $p \in \boldsymbol{P}^{2}$ such that $\pi^{-1}(p) \leftrightarrows \Sigma$ and

$$
\Sigma-\pi^{-1}(p) \cong \boldsymbol{P}^{2}-\{p\} .
$$

(3) $L_{0}:=\pi(A)$ is a line in $\boldsymbol{P}^{2}$ through $p$, where $A:=\rho\left(Y_{1}\right)$. In particular,

$$
\left.\pi\right|_{A}: A \rightarrow L_{0} \text { is a } \boldsymbol{P}^{1} \text {-bundle over } L_{0}
$$

(4) $X-Y \stackrel{\delta_{1}}{\cong} X_{1}-\left(Y_{1} \cup E_{1}\right) \stackrel{\rho}{\cong} P(\mathscr{E})-(A \cup \Sigma)$.
5. A construction and the proof of Theorem. Take any fixed line $L_{\infty}$ in $\boldsymbol{P}^{2}$ and a point $p \in L_{\infty}$. Let $L_{t}(t \in \boldsymbol{C}, t \neq \infty)$ be a line in $\boldsymbol{P}^{2}$ through the point $p$. Let $E_{4}$ be a rational surface obtained from $\boldsymbol{P}^{2}$ by succession of three blowing ups at $p$ (infinitely near points allowed). Let $\mu: E_{4} \rightarrow \boldsymbol{P}^{2}$ be the projection with $\mu^{-1}(p)=\tilde{f}_{1} \cup \tilde{f}_{2} \cup \tilde{l}_{1}$, where $\left(\tilde{f}_{i} \cdot \tilde{f}_{i}\right)_{E_{4}}=-2(1 \leq i \leq 2),\left(\tilde{l}_{1} \cdot \tilde{l}_{1}\right)_{E_{4}}=-1,\left(\tilde{f}_{1} \cdot \tilde{f}_{2}\right)_{E_{4}}=1,\left(\tilde{f}_{1} \cdot \tilde{l}_{1}\right)_{E_{4}}=0$, and $\left(\tilde{f}_{2} \cdot \tilde{l}_{1}\right)_{E_{4}}=1$. Let $\tilde{f}\left(\right.$ resp. $\left.\tilde{l}_{2}\right)$ be the proper transform of $L_{\infty}\left(\right.$ resp. $\left.L_{t}\right)$ in $E_{4}$. Let $\sigma: E_{4} \rightarrow \Sigma$ be the contraction of the exceptional set $\tilde{f}_{1} \cup \tilde{f}_{2}$, and put $f:=\sigma(\tilde{f}), l_{i}:=\sigma\left(\tilde{l_{i}}\right)(i=1,2)$. Then there is a birational morphism $\lambda: \Sigma \rightarrow \boldsymbol{P}^{2}$ such that $\lambda\left(l_{1}\right)=p, \lambda\left(l_{2}\right)=L_{t}, \lambda(f)=L_{\infty}$. Thus we have the following diagram:

(see Figure 5).


Figure 5
Lemma 5.1. As $\boldsymbol{Q}$-divisors, we have

$$
\begin{align*}
& \sigma^{*} l_{1} \sim_{\boldsymbol{Q}} \tilde{l}_{1}+\frac{1}{3} \tilde{f}_{1}+\frac{2}{3} \tilde{f}_{2} \\
& \sigma^{*} l_{2} \sim_{\boldsymbol{Q}} \tilde{l}_{2}+\frac{2}{3} \tilde{f}_{1}+\frac{1}{3} \tilde{f}_{2}  \tag{5.1}\\
& \sigma^{*} f \sim_{\mathbf{Q}} \tilde{f}+\frac{1}{3} \tilde{f}_{1}+\frac{2}{3} \tilde{f}_{2},
\end{align*}
$$

and the linear equivalences

$$
\begin{align*}
& \tilde{l}_{1}+\tilde{f}_{2}+\tilde{f}_{3} \sim \tilde{l}_{2} \\
& l \sim l_{2}+l_{1} \sim f+2 l_{1}  \tag{5.2}\\
& K_{E_{4}}=\sigma^{*} K_{\Sigma} \sim \sigma^{*}(-3 l)+\tilde{f}_{1}+2 \tilde{f}_{2}+3 \tilde{l}_{1},
\end{align*}
$$

where $K_{E_{4}}$ is a canonical divisor on $E_{4}$, and $l:=\lambda^{*} \mathcal{O}_{P^{2}}(1)$.
Proof. Since $\left(\sigma^{*} l_{1} \cdot \widetilde{f}_{i}\right)=\left(\sigma^{*} l_{2} \cdot \tilde{f}_{i}\right)=\left(\sigma^{*} f \cdot \widetilde{f}_{i}\right)=0$ for $i=1$, 2 , we have (5.1). By a similar calculation, we have (5.2). q.e.d.

Now, we will prove the existence of a vector bundle of rank 2 over $\boldsymbol{P}^{2}$ which is an extension of $\mathcal{O}_{\Sigma}\left(-3 l_{1}+l\right)$ by $\mathcal{O}_{\Sigma}\left(3 l_{1}\right)$.

Lemma 5.2. (1) $\operatorname{Ext}_{\Sigma}^{1}\left(\mathcal{O}_{\Sigma}\left(-3 l_{1}+l\right), \mathcal{O}_{\Sigma}\left(3 l_{1}\right)\right) \cong \operatorname{Ext}_{E_{4}}^{1}\left(\sigma^{*} \mathcal{O}_{\Sigma}\left(-3 l_{1}+l\right), \sigma^{*} \mathcal{O}_{\Sigma}\left(3 l_{1}\right)\right)$.
(2) $\operatorname{Ext}_{E_{4}}^{1}\left(\sigma^{*} \mathcal{O}_{\Sigma}\left(-3 l_{1}+l\right), \sigma^{*} \mathcal{O}_{\Sigma}\left(3 l_{1}\right)\right) \rightarrow \operatorname{Ext}_{T_{1}}^{1}\left(\sigma^{*} \mathcal{O}_{\Sigma}\left(-3 l_{1}+l\right) \otimes \mathcal{O}_{\tilde{T}_{i}}, \quad \sigma^{*} \mathcal{O}_{\Sigma}\left(3 l_{1}\right) \otimes\right.$ $\left.\mathcal{O}_{\tilde{T}_{i}}\right)$ is surjective.

$$
\begin{align*}
& \operatorname{dim} \operatorname{Ext}_{\Sigma}^{1}\left(\mathcal{O}_{\Sigma}\left(-3 l_{1}+l\right), \mathcal{O}_{\Sigma}\left(3 l_{1}\right)\right)=3 \text { and }  \tag{3}\\
& \quad \operatorname{dim} \operatorname{Ext}_{\tilde{l}_{1}}^{1}\left(\sigma^{*} \mathcal{O}_{\Sigma}\left(-3 l_{1}+l\right) \otimes \mathcal{O}_{\tilde{l}_{1}}, \sigma^{*} \mathcal{O}_{\Sigma}\left(3 l_{1}\right) \otimes \mathcal{O}_{\tilde{l}_{1}}\right)=1 .
\end{align*}
$$

Proof. (1) $\operatorname{Ext}_{\Sigma}^{1}\left(\mathcal{O}_{\Sigma}\left(-3 l_{1}+l\right), \mathcal{O}_{\Sigma}\left(3 l_{1}\right)\right) \cong H^{1}\left(\Sigma, \mathcal{O}_{\Sigma}\left(6 l_{1}-l\right)\right)$ and $\operatorname{Ext}_{E_{4}}^{1}\left(\sigma^{*} \mathcal{O}_{\Sigma}\left(-3 l_{1}\right.\right.$ $\left.+l), \sigma^{*} \mathcal{O}_{\Sigma}\left(3 l_{1}\right)\right) \cong H^{1}\left(E_{4}, \sigma^{*} \mathcal{O}_{\Sigma}\left(6 l_{1}-l\right)\right)$, we have only to prove $H^{1}\left(\Sigma, \mathcal{O}_{\Sigma}\left(6 l_{1}-l\right)\right) \longrightarrow$ $H^{1}\left(E_{4}, \sigma^{*} \mathcal{O}_{\Sigma}\left(6 l_{1}-l\right)\right)$, which is clear, since $R^{1} \sigma_{*} \mathcal{O}_{E_{4}}=0$.
(2) We have only to prove that the morphism

$$
H^{1}\left(E_{4}, \sigma^{*} \mathcal{O}_{\Sigma}\left(6 l_{1}-l\right)\right) \longrightarrow H^{1}\left(\tilde{l}_{1}, \sigma^{*} \mathcal{O}_{\Sigma}\left(6 l_{1}-l\right) \otimes \mathcal{O}_{\tilde{l}_{1}}\right)
$$

is surjective. For this purpose, let us consider the exact sequence:

$$
0 \longrightarrow \sigma^{*} \mathcal{O}_{\Sigma}\left(6 l_{1}-l\right) \otimes \mathcal{O}_{E_{4}}\left(-\tilde{l}_{1}\right) \longrightarrow \sigma^{*} \mathcal{O}_{\Sigma}\left(6 l_{1}-l\right) \longrightarrow \sigma^{*} \mathcal{O}_{\Sigma}\left(6 l_{1}-l\right) \otimes \mathcal{O}_{\tau_{1}} \longrightarrow 0 .
$$

By Lemma 5.1, we have

$$
\sigma^{*} \mathcal{O}_{\Sigma}\left(6 l_{1}-l\right) \cong \mathcal{O}_{E_{4}}\left(6 \tilde{l}_{1}+2 \tilde{f}_{1}+4 \tilde{f}_{2}-\sigma^{*} l\right) \cong \mathcal{O}_{E_{4}}\left(2 K_{E_{4}}+5 \sigma^{*} l\right)
$$

hence,

$$
\begin{gathered}
H^{2}\left(E_{4}, \mathcal{O}_{E_{4}}\left(2 K_{E_{4}}+5 \sigma^{*} l-\tilde{l}_{1}\right)\right) \cong H^{0}\left(E_{4}, \mathcal{O}_{E_{4}}\left(-K_{E_{4}}-5 \sigma^{*} l\right)\right. \\
\cong H^{0}\left(E_{4}, \mathcal{O}_{E_{4}}\left(-2 \sigma^{*} l-\tilde{f}_{1}-2 \tilde{f}_{2}-2 \tilde{l}_{1}\right)\right) \cong 0
\end{gathered}
$$

Therefore, we have a surjection

$$
H^{1}\left(E_{4}, \sigma^{*} \mathcal{O}_{E_{4}}\left(6 l_{1}-l\right)\right) \longrightarrow H^{1}\left(\tilde{l}_{1}, \sigma^{*} \mathcal{O}_{E_{4}}\left(6 l_{1}-l\right) \otimes \mathcal{O}_{\tilde{l}_{1}}\right) .
$$

(3) Since $\left(\sigma^{*}\left(-3 l_{1}+l\right) \cdot \tilde{l}_{1}\right)_{E_{4}}=1,\left(\sigma^{*}\left(3 l_{1}\right) \cdot \tilde{l}_{1}\right)_{E_{4}}=-1$, we have $\operatorname{Ext}_{\tilde{1}_{1}}^{1}\left(\sigma^{*} \mathcal{O}_{\Sigma}\left(-3 l_{1}+l\right) \otimes \mathcal{O}_{\tilde{l}_{1}}, \sigma^{*} \mathcal{O}_{\Sigma}\left(3 l_{1}\right) \otimes \mathcal{O}_{\tilde{l}_{1}}\right) \cong \operatorname{Ext}_{\mathbf{P}_{1}}^{1}(\mathcal{O}(1), \mathcal{O}(-1)) \cong H^{1}\left(\boldsymbol{P}^{1}, \mathcal{O}(-2)\right) \cong C$.
Finally, we prove that $H^{1}\left(E_{4}, \mathcal{O}_{E_{4}}\left(2 K_{E_{4}}+5 \sigma^{*} l\right)\right) \cong C^{3}$. By Lemma 5.1, we have

$$
2 K_{E_{4}}+5 \sigma^{*} l=-\sigma^{*} l+2 \tilde{f}_{1}+4 \tilde{f}_{2}+6 \tilde{l}_{1} .
$$

Since $\tilde{f}_{1} \cup \tilde{f}_{2} \cup \tilde{l}_{1}$ can be contracted to a smooth point, we have

$$
\begin{gathered}
H^{0}\left(E_{4}, \mathcal{O}_{E_{4}}\left(-\sigma^{*} l+2 \widetilde{f}_{1}+4 \widetilde{f}_{2}+6 \tilde{l}_{1}\right)\right)=0, \\
H^{2}\left(E_{4}, \mathcal{O}_{E_{4}}\left(-\sigma^{*} l+2 \widetilde{f}_{1}+4 \widetilde{f}_{2}+6 \tilde{l}_{1}\right)\right) \cong H^{0}\left(E_{4}, \mathcal{O}_{E_{4}}\left(-2 \sigma^{*} l-\tilde{f}_{1}-2 \widetilde{f}_{2}-3 \tilde{l}_{1}\right)\right)=0 .
\end{gathered}
$$

By the Riemann-Roch theorem, we have easily

$$
\operatorname{dim} H^{1}\left(E_{4}, \mathcal{O}_{E_{4}}\left(-\sigma^{*} l+2 \tilde{f}_{1}+4 \tilde{f}_{2}+6 \tilde{\tau}_{1}\right)\right)=3
$$

hence, $H^{1}\left(E_{4}, \mathcal{O}_{E_{4}}\left(2 K_{E_{4}}+5 \sigma^{*} l\right)\right) \cong C^{3}$.
q.e.d.

The following is well-known (cf. [8]):
Lemma 5.3. Let $v: S \rightarrow T$ be the blowing up at the point $p$ on a smooth surface $T$, and put $v^{-1}(p)=C$. Then a vector bundle $\mathscr{E}$ on $S$ is the pull back of a vector bundle
on $T$ if and only if

$$
\left.\mathscr{E}\right|_{C} \cong \mathcal{O}_{C}^{\otimes r}
$$

where $r=\operatorname{rank} \mathscr{E}$.
Let $\mathscr{E}:=\mathscr{E}_{\xi}$ be the vector bundle on $E_{4}$ determined by an element $\xi \in \operatorname{Ext}_{E_{4}}^{1}\left(\sigma^{*} \mathcal{O}_{\Sigma}\left(-3 l_{1}+l\right), \sigma^{*} \mathcal{O}_{\Sigma}\left(3 l_{1}\right)\right)$, where the image of $\xi$ by the surjection in Lemma 5.2, (2) is not zero. Then $\mathscr{E} \otimes \mathcal{O}_{\Gamma_{1}}$ induces a non-split exact sequence

$$
0 \longrightarrow \mathcal{O}_{\tilde{l}_{1}}(-1) \longrightarrow \mathscr{E} \otimes \mathcal{O}_{\tilde{l}_{1}} \longrightarrow \mathcal{O}_{\tilde{l}_{1}}(1) \longrightarrow 0,
$$

hence, $\mathscr{E} \otimes \mathcal{O}_{\tilde{l}_{1}} \cong \mathcal{O}_{\tau_{1}} \oplus \mathcal{O}_{\tilde{l}_{1}}$.
On the other hand, we have

$$
\sigma^{*} \mathcal{O}_{\Sigma}\left(-3 l_{1}+l\right) \otimes \mathcal{O}_{f_{i}} \cong \mathcal{O}_{f_{i}}, \sigma^{*} \mathcal{O}_{\Sigma}\left(3 l_{1}\right) \otimes \mathcal{O}_{f_{i}} \cong \mathcal{O}_{f_{i}}
$$

for $i=1,2$. Thus $\mathscr{E} \otimes \mathcal{O}_{f_{i}} \cong \mathcal{O}_{f_{i}}^{\oplus 2}$ for $i=1,2$.
By Lemma 5.3, there exists a vector bundle $\mathscr{E}$ on $\boldsymbol{P}^{2}$ such that $\mathscr{E}=\mu^{*} \mathscr{E}$, and then we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow \sigma^{*} \mathcal{O}_{\Sigma}\left(3 l_{1}\right) \longrightarrow \mu^{*} \mathscr{E} \longrightarrow \sigma^{*} \mathcal{O}_{\Sigma}\left(-3 l_{1}+l\right) \longrightarrow 0 . \tag{5.3}
\end{equation*}
$$

Taking $\sigma_{*}$, we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{\Sigma}\left(3 l_{1}\right) \longrightarrow \lambda^{*} \mathscr{E} \longrightarrow \mathcal{O}_{\Sigma}\left(-3 l_{1}+l\right) \longrightarrow 0 \tag{5.4}
\end{equation*}
$$

Further, taking $\lambda_{*}$, we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{\mathbf{P}^{2}} \longrightarrow \mathscr{E} \longrightarrow \lambda_{*} \mathcal{O}_{\Sigma}\left(-3 l_{1}\right) \otimes \mathcal{O}_{\mathbf{P}^{2}( }(1) \longrightarrow 0, \tag{5.5}
\end{equation*}
$$

since $R^{1} \lambda_{*} \mathcal{O}_{\Sigma}\left(3 l_{1}\right)=0$ by the Grauert-Riemenschneider vanishing theorem.
We remark that $\lambda: \Sigma \rightarrow \boldsymbol{P}^{2}$ is the blowing up of $\boldsymbol{P}^{2}$ along the ideal $\mathscr{J}:=\lambda_{*} \mathcal{O}_{\Sigma}\left(-3 l_{1}\right)$. By (5.4), we have a $\boldsymbol{P}^{1}$-bundle $V:=\boldsymbol{P}(\mathscr{E}) \xrightarrow{\boldsymbol{\pi}} \boldsymbol{P}^{2}$ and a rational section $\Sigma \varsigma V$.

Lemma 5.4. $\mathscr{E} \otimes \mathcal{O}_{L_{t}} \cong \mathcal{O}_{L_{t}}(1) \oplus \mathcal{O}_{L_{t}}$.
Proof. Let us consider the exact sequence

$$
0 \longrightarrow \mathcal{O}_{\Sigma}\left(3 l_{1}\right) \otimes \mathcal{O}_{l_{2}} \longrightarrow \lambda^{*} \mathscr{E} \otimes \mathcal{O}_{l_{2}} \longrightarrow \mathcal{O}_{\Sigma}\left(-3 l_{1}+l\right) \otimes \mathcal{O}_{l_{2}} \longrightarrow 0 .
$$

Since $\left(3 l_{1} \cdot l_{2}\right)_{\Sigma}=\left(l \cdot l_{2}\right)_{\Sigma}=1$, we have an exact sequence

$$
0 \longrightarrow \mathcal{O}_{\mathbf{P}^{1}}(1) \longrightarrow \lambda^{*} \mathscr{E} \otimes \mathcal{O}_{\mathbf{P}^{1}} \longrightarrow \mathcal{O}_{\mathbf{P}^{1}} \longrightarrow 0 .
$$

Therefore, $\lambda^{*} \mathscr{E} \otimes \mathcal{O}_{l_{2}} \cong \mathcal{O}_{\mathbf{P}^{1}}(1) \oplus \mathcal{O}_{\mathbf{P}^{1}}$.
q.e.d.

Corollary 5.5. $\pi^{-1}\left(L_{t}\right)=: A$ is the $\boldsymbol{P}^{1}$-bundle $\boldsymbol{F}_{1}$ over $L_{t} \cong \boldsymbol{P}^{1}$.
Lemma 5.6. $\quad N_{f \mid V} \cong \mathcal{O}_{P^{1}}(-2) \oplus \mathcal{O}$, where $N_{f \mid V}$ is the normal bundle off $(\varsigma \Sigma)$ in $V$.
Proof. Let $K_{V}$ be a canonical divisor on $V$. Then we have

$$
K_{V}=\pi^{*}\left(K_{\boldsymbol{P}^{2}}+\operatorname{det} \mathscr{E}\right)-2 \Sigma \doteq-2 A-2 \Sigma .
$$

Since $\mathcal{O}_{\Sigma}(\Sigma)=\mathcal{O}_{\Sigma}\left(-3 l_{1}+l\right)$, we have $\left(K_{V} \cdot f\right)=\left(-4 l+6 l_{1} \cdot f\right)_{\Sigma}=-4+4=0$. Thus, by Lemma 3.1, we have the claim.
q.e.d.

Lemma 5.7. $\quad V-(\Sigma \cup A)$ is algebraically isomorphic to $C^{3}$.
Proof. Since $\Sigma-\pi^{-1}(p) \longrightarrow \boldsymbol{P}^{2}-\{p\}$ and $p \in L_{t}$, the morphism $\left.\pi\right|_{\boldsymbol{P}(\varepsilon)-(\Sigma \cup A)}$ : $\boldsymbol{P}(\mathscr{E})-(\Sigma \cup A) \rightarrow \boldsymbol{P}^{2}-L_{t}$ gives an algebraic $\boldsymbol{C}$-bundle structure on $\boldsymbol{P}^{2}-L_{t} \cong \boldsymbol{C}^{2}$. Therefore, by Quillen [10], we have $\boldsymbol{P}(\mathscr{E})-(\Sigma \cup A) \cong C^{3}$.
q.e.d.

Let $\phi_{1}: V_{1} \rightarrow V:=\boldsymbol{P}(\mathscr{E})$ be the blowing up along $f$ and put $C_{1}^{\prime}=\phi_{1}^{-1}(f)$. Then $C_{1}^{\prime} \cong F_{2}$ by Lemma 5.6. Let $\Sigma_{1}$ be the proper transform of $\Sigma$ in $V_{1}$. Then $\Sigma_{1}$ has the singularity $q_{1}$ of $A_{1}$-type, and there exists a birational morphism $v_{1}: E_{4} \rightarrow \Sigma_{1}$ such that $v_{1}^{-1}\left(q_{1}\right)=\tilde{f}_{2}$ and $E_{4}-\tilde{f}_{2} \stackrel{v_{1}}{\cong} \Sigma_{1}-\left\{q_{1}\right\}$. We put $f_{1}^{(1)}:=v_{1}\left(\tilde{f_{1}}\right)$ and $f^{(1)}:=v_{1}(\tilde{f})$. Then $\Sigma_{1} \cdot C_{1}^{\prime}=f_{1}^{(1)}+f^{(1)}$. In particular, $f_{1}^{(1)}$ is a fiber and $f^{(1)}$ is the negative section of $C_{1}^{\prime} \cong F_{2}$. Since $q_{1} \in f^{(1)}$ and $\left(K_{V_{1}} \cdot f^{(1)}\right)=\left(K_{V} \cdot f\right)=0$, by Lemma 3.1, we have

$$
N_{f^{(1)} \mid V_{1}} \cong \mathcal{O} \oplus \mathcal{O}(-2) .
$$

Let $\phi_{2}: V_{2} \rightarrow V_{1}$ be the blowing up along the curve $f^{(1)}$ and put $C_{2}^{\prime}=\phi_{2}^{-1}\left(f^{(1)}\right) \cong F_{2}$. Let $\Sigma_{2}$ be the proper transform of $\Sigma_{1}$ in $V_{2}$. Then $\Sigma_{2}$ is a smooth surface and there is an isomorphism $v_{2}: E_{4} \xrightarrow{\sim} \Sigma_{2}$. We put $f_{i}^{(2)}:=v_{2}\left(\tilde{f}_{i}\right)(i=1,2)$ and $f^{(2)}=v_{2}(\tilde{f})$. Then we have $\Sigma_{2} \cdot C_{2}^{\prime}=f_{2}^{(2)}+f^{(2)}$. In particular, $f_{2}^{(2)}$ is a fiber and $f^{(2)}$ is the negative section of $C_{2}^{\prime}=F_{2}$. Since $\left(K_{V_{2}} \cdot f^{(2)}\right)=\left(K_{V_{1}} \cdot f^{(1)}\right)=0$ and $\Sigma_{2}$ is smooth, by Lemma 3.1, we have

$$
N_{f^{(2)} \mid V_{2}} \cong \mathcal{O}(-1) \oplus \mathcal{O}(-1)
$$

Let $\phi_{3}: V_{3} \rightarrow V_{2}$ be the blowing up along $f^{(2)}$ and put $C_{3}^{\prime}=\phi_{3}^{-1}\left(f^{(2)}\right) \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. Let $\tilde{C}$ be a fiber of the ruled surface $\left.\phi_{3}\right|_{C_{3}^{\prime}}: C_{3}^{\prime} \rightarrow f^{(2)}$, and $\Sigma_{3}$ be the proper transform of $\Sigma_{2}$ in $V_{3}$. Then $\Sigma_{3}$ is a smooth surface and there exists an isomorphism $v_{3}: E_{4} \xrightarrow{\sim} \Sigma_{3}$. We put $\tilde{f}_{i}:=v_{3}\left(\tilde{f}_{i}\right)(i=1,2), \tilde{f}=v_{3}(\tilde{f}), \tilde{l}_{i}:=v_{3}\left(\tilde{l_{i}}\right)(i=1,2)$. Then, $\Sigma_{3} \cdot C_{3}^{\prime}=\tilde{f}$. In particular, $(\tilde{f} \cdot \tilde{f})_{C_{3}^{\prime}}=0$ and $\left(\tilde{f} \cdot \tilde{C}_{C_{3}^{\prime}}=1\right.$ (see Step IV and Figure 2 in §4).

Since $C_{3}^{\prime} \cong \boldsymbol{P}(\mathcal{O}-1) \oplus \mathcal{O}(-1)$ ), by Corollary 5.6 in [10], $C_{3}^{\prime}$ can be blown down along the fiber $\tilde{f}$. After step by step blowing down, we finally have a smooth 3 -fold $X_{1}$ with $b_{2}\left(X_{1}\right)=2$ and the contraction morphism $\delta: V_{3} \rightarrow X_{1}$. We put $C_{1}:=\delta\left(C_{3}^{\prime} \cup \bar{C}_{2}^{\prime} \cup \bar{C}_{1}^{\prime}\right)$, $E_{1}:=\delta\left(\Sigma_{3}\right)$, and $Y_{1}:=\delta\left(A_{3}\right)$, where $\bar{C}_{j}^{\prime}(j=1,2), A_{3}$ are the proper transforms of $C_{j}^{\prime}$ $(j=1,2), A=\pi^{-1}\left(L_{t}\right)$ in $V_{3}$, respectively. Then, by construction, one can easily see that $C_{1}$ is a smooth rational curve in $X_{1}$ with $C_{1} \subset Y_{1}, E_{1} \cong \boldsymbol{P}^{2}$, and $Y_{1}$ is a singular del Pezzo surface with a singularity of $A_{2}$-type. We put $\rho^{\prime}:=\left(\phi_{1} \circ \phi_{2}{ }^{\circ} \phi_{3}\right)^{-1} \circ \delta$. Then $\rho^{\prime}$ is a birational map of $V$ onto $X_{1}$ such that $\rho^{\prime}: V-f \cong X_{1}-C$ (isomorphic). Since $K_{V}=-2 A-2 \Sigma$, we have $K_{X_{1}}=-2 Y_{1}-2 E_{1}$. Since $E_{1} \cdot Y_{1}=l_{1}^{(1)}+l_{2}^{(1)}$, by the adjunction formula, $\mathcal{O}_{E_{1}}\left(E_{1}\right)=\mathcal{O}_{E_{1}}\left(-l_{j}^{(1)}\right)$ for $j=1,2$, where $l_{j}^{(1)}:=\delta\left(\tilde{l}_{j}\right)$ is a line in $E_{1} \cong \boldsymbol{P}^{2}$. Thus $E_{1}$ can be blown down to a point $x$ of a smooth projective 3 -fold $X$.

Let $\delta_{1}: X_{1} \rightarrow X$ be the contraction morphism. Then $Y:=\delta_{1}\left(Y_{1}\right)$ has a singularity of $A_{4}$-type at $x=\delta_{1}\left(E_{1}\right)$. Since all the transformations above are performed on the divisor $\Sigma \varsigma V$, we have $X-Y \simeq V-(\Sigma \cup A) \cong C^{3}$ (by Lemma 5.7). Thus, $(X, Y)$ is a smooth projective compactification of $C^{3}$ such that $Y$ is a singular del Pezzo surface with a singularity of $A_{4}$-type. This implies that $X$ is a Fano 3 -fold of index 2 with $\operatorname{Pic} X \cong \boldsymbol{Z} \mathcal{O}_{X}(Y)$. Since $Y$ has a singularity of $A_{4}$-type, we have $\operatorname{deg} N_{Y}=\operatorname{deg}\left(-K_{Y}\right)=5$, where $N_{Y}:=\left.[Y]\right|_{Y}$ (resp. $K_{Y}$ ) is the normal bundle of $Y$ in $X$ (resp. a canonical divisor on $Y$ ). Thus, $X$ is a Fano 3-fold $V_{5}$ of degree 5 in $\boldsymbol{P}^{6}$ by the anti-canonical embedding. In particular, $C:=\delta_{1}\left(C_{1}\right)$ is a unique line in $X$ through the point $x=\delta_{1}\left(E_{1}\right)$ on $X$. Thus we have the following:

Proposition 5.8. (1) $\delta_{1}\left(E_{1}\right)=: x \in \mathfrak{A} \neq \varnothing$.
(2) There is a birational map $\rho^{\prime}: \boldsymbol{P}(\mathscr{E}) \longrightarrow V_{5}^{\prime}=: X_{1}$ such that

$$
P(\mathscr{E})-f \stackrel{\rho_{\prime}^{\prime}}{\sim} X_{1}-C_{1}(\text { isomorphic }),
$$

where $V_{5}^{\prime}$ is the blowing up of $V_{5}$ at the point $\delta_{1}\left(E_{1}\right)=x \in V_{5}$.
(3) $H_{5}^{t}:=\delta_{1}\left(\rho^{\prime}\left(\Sigma \cup \pi^{-1}\left(L_{t}\right)\right)\right.$ is a singular del Pezzo surface with singularity of $A_{4}$-type. In particular, $V_{5}-H_{5}^{t} \cong C^{3}$.

By Propositions 4.4 and 5.8, we have the proof of the assertions (1), (2) and a half part of (3) in our main theorem. The rest can be proved as follows:

For any fiber $\pi^{-1}\left(p^{\prime}\right)\left(p \neq p^{\prime} \in L_{\infty}\right)$, let $l_{p}$, be the proper transform of $\pi^{-1}\left(p^{\prime}\right) \subseteq \boldsymbol{P}(\mathscr{E})$ in $V_{5}^{\prime}=X_{1}$. By construction, $l_{p^{\prime}} \cap C_{1} \neq \varnothing, \quad\left(l_{p^{\prime}} \cdot Y_{1}\right)=1$, and $\left(l_{p^{\prime}} \cdot E_{1}\right)=0$. Thus $H_{5}^{\infty}:=\delta_{1}\left(\rho^{\prime}\left(\Sigma \cup \pi^{-1}\left(L_{\infty}\right)\right)\right)$ is a ruled variety swept out by lines which intersect the line $C$.

We also have $V_{5}-H_{5}^{\infty} \cong C^{3}$. By Lemma 1.1, $H_{5}^{\infty}$ cannot be normal. This completes the proof of the theorem.

Finally, we will prove the corollary. Let $L$ be any line in $\boldsymbol{P}^{2}$ which does not pass through the point $p \in \boldsymbol{P}^{2}$. We put $H_{5}:=\delta_{1}\left(\rho^{\prime}\left(\Sigma \cup \pi^{-1}(L)\right)\right)$. Then, $H_{5}$ is a member of the linear system $\left|\mathcal{O}_{V_{5}}(1) \otimes \mathscr{M}_{x}^{2}\right|$. Thus, $H_{5}$ contains a unique line $C$ through the point $x$. We can see that

$$
V_{5}-H_{5} \stackrel{\delta_{1}}{\cong} V_{5}^{\prime}-\delta_{1}^{-1}\left(H_{5}\right) \stackrel{\rho}{\cong} \boldsymbol{P}(\mathscr{E})-\left(\Sigma \cup \pi^{-1}(L)\right)
$$

Since $\boldsymbol{P}(\mathscr{E})-\left(\Sigma \cup \pi^{-1}(L)\right)$ is a $\boldsymbol{C}$-bundle over $\boldsymbol{C}^{2}-\{0\}, V_{5}-H_{5} \not \approx C^{3}$. Therefore we have the corollary.

## References

[1] M. Furushima, Singular del Pezzo surfaces and analytic compactifications of 3-dimensional complex affine space $C^{3}$, Nagoya Math. J. 104 (1986), 1-28.
[2] M. Furushima, On complex analytic compactifications of $\boldsymbol{C}^{3}$, preprint Max-Planck-Institut für

Mathematik, Bonn, 87-19 (1987).
[3] M. Furushima, On complex analytic compactifications of $\boldsymbol{C}^{3}$ (II), preprint Max-Planck-Institut für Mathematik, Bonn, 87-45 (1987).
[4] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 49, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
[5] V. A. Iskovskin, Anticanonical models of three dimensional algebraic varieties, J. Soviet Math. 13-14 (1980), 745-814.
[6] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, in Algebraic Geometry, Sendai, (T. Oda, ed.) Advanced Studies in Pure Math. 10 (1987), Kinokuniya, Tokyo and North-Holland, Amsterdam, 551-590.
[7] D. Morrison, The birational geometry of surfaces with rational double points, Math. Ann. 271 (1985), 415-438.
[8] C. Okonek, M. Schneider and H. Spindler, Vector bundles on complex projective spaces, Progress in Math. 3, Birkhäuser, Boston, Basel, Stuttgart, 1980.
[9] T. Peternell and M. Schneider, Compactifications of $\boldsymbol{C}^{3}$ (I), Math. Ann. 280 (1988), 129-146.
[10] D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167-171.
[11] M. Reid, Minimal models of canonical 3-folds, in Algebraic Varieties and Analytic Varieties (S. Iitaka, ed.), Advanced Studies in Pure Math. 1 (1983), Kinokuniya, Tokyo and North-Holland, Amsterdam, 131-180.

## Department of Mathematics and Department of Mathematics

College of Education
Ryukyu University
Nishihara-cho, Okinawa, 903-01
Japan
Faculty of Science
University of Tokyo
Hongo, Tokyo, 113
Japan

