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Abstract. In this paper we introduce the term "perfect graph" to refer to those
graphs which characterize resolutions of certain isolated singular points of complex
surfaces. Using techniques for graphical evaluation of determinants, we reduce questions
about perfect graphs to problems involving partial fraction representations of positive
integers; the solutions to those Diophantine problems thus have interesting geometric
interpretations.

1. Introduction and statement of results. In [5] Brieskorn gave the first examples

of isolated singularities of complex n- varieties, n> 3, that are topologically non-singular
(locally homeomorphic to the 2/2-ball) but analytically singular. Earlier Mumford [16]
had shown that this is impossible in dimension 2. In this paper we pursue the natural
analogue of the Brieskorn singularities for complex surfaces, namely those singular
points xeX which are homologically non-singular in the sense of being locally
homeomorphic to the cone on a homology 3-sphere. (The rational double point E8 is
the most familiar example.) This condition is equivalent to the requirement that the
local fundamental group of x in X be a perfect group (cf., for example, [16], [17], and
[19], where the topic of classifying isolated two-dimensional singularities by the
group-theoretic properties of the local fundamental group is introduced and developed).

Let x be an isolated singularity of a normal complex surface X, and let p: X^>X
be the minimal resolution of singularities. We will assume that the exceptional curve
C=p~1(x)=\Jn

i = 1Ci is contractible, that each component Cf is non-singular rational,
and that the components meet transversally with no triple intersections. In this case
the topology of the singularity is completely determined by the weighted dual intersection
graph Gp of the exceptional curve. In particular, the local fundamental group πx(x) can
be computed directly from Gp in terms of generators and relations, by the technique
of Mumford [16]. Using this method it can be shown that πx(x) is perfect exactly when
the intersection matrix { — Ci'C^ has determinant 1. Indeed, the following are necessary
and sufficient conditions for a weighted graph G to be the dual graph of the minimal
resolution of a normal complex surface singularity whose minimal resolution is normal
("good") and whose local fundamental group is perfect:

(a) G is a tree (a connected graph with no circuits).
(b) Each weight wt is an integer >2.
(c) The associated intersection matrix is positive definite with determinant 1.

(Section 1 of [4] gives an elementary expository review of the geometry of complex surface
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singularities as reflected by their resolutions, graphs, and local fundamental groups; [1]

investigates and classifies some of the global settings in which such "perfect" singular

points occur.)

These considerations motivate the following:

(1.1) DEFINITIONS. A weighted graph G is perfect if it satisfies conditions (a),

(b), and (c) above. A graph G is perfectable if there exist integer weights wt for its

vertices such that the resulting weighted graph G(wu , wn) is perfect. Such a set of

weights is called a set of perfect weights. A minimal perfectable graph is a perfectable

graph none of whose proper subgraphs is perfectable.

The goal of this paper is to find perfect graphs and to point out connections between

perfect graphs and solutions of certain Diophantine equations of interest in number

theory. Our results can be summarized as follows:

(1.2) MAIN THEOREM. Let G be any graph which is not of the form shown in Figure

1 for n = 0, 1, or 2. Then G is perfectable if and only if G is a tree that contains one of

the 25 minimal perfectable graphs listed in Table I at the end of this paper.

In consequence we obtain the following results for particular kinds of graphs.

(1.3) THEOREM. There is no perfect weighted graph on 7 or fewer vertices. The

perfect weighted graphs on 8 vertices appear in Figure 2. Of the 47 trees on 9 vertices

exactly 30 are perfectable {most with several sets of perfect weights). In fact, "almost

alΓ trees with sufficiently many vertices are perfectable', that is,

. number of perfectable trees on n vertices _

n^ oo total number of trees onn vertices

The distance between two points of a graph G is the number of edges in the shortest

path joining them. The diameter of a graph G is the maximum of the distances between
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pairs of points in G. In the case of a tree it is the number of edges in the longest "chain"

(tree without branch points) contained in G.

(1.4) THEOREM, (a) Among ordinary and extended Dynkin diagrams of types A, D,

and E, only E8 and E8 are perfectable, and each of these graphs has only one set of perfect

weights.

(b) Every tree of diameter d>29 is perfectable except those isomorphic to An, Dn9

and Dn.

(c) Every tree of diameter d>l is perfectable except An, Dn, Dn, and the graphs in

Figure 3.

DEFINITION. Let px<p2< * * * <pr be positive integers. A graph G is of type

Epw-.Pr tf & ̂ a s a v e r t e x vo s u c h that G — {v0} is the disjoint union of r graphs of types

Apw..Pr, each joined to υ0 only at a terminal vertex (cf. Figure 4).

(1.5) THEOREM, (a) There is a one-to-one correspondence between perfect weighted

graphs of type Epu...Pr and solutions in reduced proper fractions sjti of the equation

with n an integer >2 and sh tt positive integers for i= 1, * , r.

(b) A graph G of type Epu...tPr, with r>3 and pr_t>2, is perfectable if and only if

G contains one of the following:

^1,2,4 I ̂ 2,2,3 I ̂ 1,2,2,2 ? ̂ 1,1,1,2,3 » ̂ 1,1,1,1,1,2,2

This last result shows one of the connections of this topic with certain problems

of independent interest in number theory. For instance, putting each st= 1 above leads

to the following unresolved question in the theory of Egyptian fractions (Paul Erdόs

offers $100 for a solution): Given positive integers tl9 , t^ relatively prime in pairs

and all >2, do there always exist integers n, tk+u , tr, all >2, such that

1/ί)? Connections with number theory will be discussed more

for «<28

T

FIGURE 4
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fully in Section 4.

As noted above, finding perfect weighted graphs is equivalent to finding symmetric

bilinear forms φ:ZnxZn-+Z of determinant 1, corresponding to the intersection

matrices ( — Ci'Cj). In Section 2 we present techniques for quickly calculating the

determinant of the intersection matrix associated to a weighted graph directly from the

graph. The results are stated in sufficient generality to apply in a wide range of settings.

2. Graphical evaluation of determinants. In this section, we describe methods of

evaluating the determinant of a matrix by use of an associated graph. The initial results

are useful for general sparse matrices, but do not seem to be well known. The more

specialized versions are useful in our classification of perfectable graphs. (See also

references [1], [4], [7], and [8].)

Let M= (rriij) be an n x n matrix with entries in a commutative ring A with identity

element 1 different from 0. The determinant of M is given by the formula

(2.1) \M\=Σ (sgnσ)m1,σ ( 1 )m2 > σ ( 2 ) mnMn),
σeSn

where Sn is the set of all permutations of {1, 2, ,«}. Let c = [iί9 , ik] (\<k<ή)

denote the A -cycle in Sn that cyclically permutes the distinct indices iί9 , ik. (When

k = 1, c is the identity permutation of a singleton set.) c is even if k is even. The weight

of c is the ring element w(c) = mfl i 2 wlk_1>iίcraίk ί V (w(c) = m ί l f i l if k= 1.) The signed

weight of c is the ring element w(c) = (sgnc)w(c) = (— l ) * " ^ ^ ) . More generally, if

σ = c1 ••• cs is a product of disjoint cycles, we define w(σ) = w(cί) ••• w(cs) and

w(σ) = vvίcj w(cs) = (sgn σ)w(σ) = (— \)e(σ)w(σ\ where e{σ) is the number of even cycles

among cί9 , cs. Then (2.1) can be rewritten as

(2.2) IMI = Σ w(σ) = Σ ( " l)eiMσ).
σeSn σeSn

Define the associated graph of M to be the directed graph G = G(M) with n vertices

(labelled 1,2, , ή) that has a directed edge (i,j) from the vertex i to the vertex j

precisely when w o ^ 0 . (i=j is allowed.) A circuit of length k (1 <k<ή) in G is a Λ -cycle
c = Lh, "'•>**] s u c h that (ϊr, ir+ί) (for 1 <r<k) and (ιfc, ix) are directed edges of G. A

product p = cx cs of circuits of G will be called a circuit partition of G if the domains

of cl9 - - -, cs form a partition of {1, 2, •*,«}. The set of all circuit partitions of G will

be denoted P. Formula (2.2) implies that

peP

This means that we can calculate \M\ just by looking at the graph G with its directed

edges labelled by the ring elements mi}. The labelled graph G uniquely determines the

matrix M, so we can write | G \ for | M\ and obtain the graph-theoretic formula
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(2.3) | G |
peP peP

Decomposition of a determinant relative to components of the associated graph. If

G has connected components Gl9 , Gt, and if Pi9 , Pt are the corresponding sets

of circuit partitions, then P = P1 Pt, so

(2.4) | G I = Σ * ( P I P.)= Π( Σ w(pf))=
i = 1 peP i
Π
i = 1

where the first sum is taken over all (pί9 , pt) e Pι x x Pv A directed graph is said

to be strongly connected if there is a directed path from each vertex to every other

vertex. Equivalently, each pair of distinct vertices can be joined by a circuit. A strongly

connected component is a maximal strongly connected subgraph. Each connected

component of a directed graph contains one or more strongly connected components.

The strongly connected components partition the vertices of the graph, but edges that

do not belong to any circuit of the graph are not in any of the strongly connected

components. If G has strongly connected components Gu , Gs, and if P\, -—9P'S
are the corresponding sets of circuit partitions, then P = P\ ••• P's as before, so

Expansion of a determinant relative to a vertex of the associated graph. Let C(i)

denote the collection of all circuits of G passing through vertex i. Since every circuit

partition of G must have one factor which is a circuit passing through i, we have

P(G) = {c p:ceC(i),peP(G — c)}, where G — c is obtained from G by deleting all the

vertices of the circuit c and all the edges of G incident with those vertices. By (2.3),

I<?I=Σ Σ MΦKP)= Σ Mcί Σ «(p)l; i.e.,
ceC{i) peP(G-c) ceC(i) LpeP(G-c) J

(2.5) \G\= ΣMc)\G-c\.
ceC(i)

Let Ck(i) denote the set of circuits of length k passing through vertex L Then it follows

that

(2.6) \G\= Σ ("I)""1 Σ w(c)|G-c|=ma.|G-{/}|- Σ (-1)" Σ w(c)|G-c|.
1 < k < n ceCk(i) 2<k<n ceCk(i)

In the important special case where G has no circuits of length > 2,

(2.7) |G |=m i £ |G-{/} | - Σ w(c)|G-c|.
ceC2(0

Expansion of a determinant relative to an exclusive circuit of the associated graph. A
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circuit c of a graph G is exclusive if none of its directed edges belongs to another circuit.

Let G — E(c) denote the graph obtained from G by deleting the directed edges (but not

the vertices) of c. Then P(G) = cP{G-c)uP(G-E(c)l so (2.3) implies

(2.8) |G| = Σ
peP(G-c) qeP(G-E(c))

When G has more than one exclusive circuit, successive applications of (2.8) with

different exclusive circuits can be used to expand | G | in terms of determinants of smaller

subgraphs of G.

Associated graphs and determinants for a special class of symmetric matrices. We

will need to compute determinants of matrices representing intersection forms, which

are symmetric bilinear forms associated to resolutions of singularities of complex

surfaces. In our applications, the symmetric matrices for these forms have integral entries

greater than 1 along the diagonal, and nothing but O's and - Γs off the diagonal.

Let M b e a n « x n symmetric matrix of the type just described. We represent M

by a graph on n vertices, each labelled with the corresponding diagonal entry of M.

The /-th such entry is the weight of the circuit of length 1 at the /-th vertex, so we

denote it wf and call it the weight of the ί-th vertex. Note: To simplify the labelling of

our graphs, we omit the label w( when wt = 2. For distinct i and j in {1, 2, , «}, either

mVj = wj7 = 0 or mij = mji= — 1. In the second case, we join the z-th andy-th vertices with

a single unlabelled, undirected edge. This yields an undirected graph G = G(M), some

of whose vertices may be labelled with a positive integer (not 2). Conversely, any such

graph G together with an ordering of the vertices uniquely determines a symmetric

matrix M with positive integers > 1 along its diagonal and with O's and — Γs elsewhere.

For such a graph G, the terms "connected" and "strongly connected" are

synonymous. Every circuit of length > 1 has signed weight — 1, so (2.6) and (2.8) become

(2.9) | G | = M Ί | G - { i } | - Σ Σ \G~c\
k>lceCk(i)

and

(2.10) \G\ = \G-E(c)\-\G-c\.

EXAMPLE. We compute the determinant of the graph G in Figure 5.

Using (2.3) is impractical because the number of circuit partitions is too large. It

is better to break up the calculation into several easier calculations by use of (2.9)

FIGURE 5
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G-E(c) G-c

FIGURE 6

and/or (2.10) in combination with (2.4).

First note that recursive use of (2.9) shows that a chain of A: vertices has determinant

k+ 1. Now it follows from (2.9) that the cyclic graph or "necklace" formed by joining

a vertex to the two ends of a chain of k vertices (with k>2) has determinant 0.

If we apply (2.9) and (2.4) to the original graph G at v, we get | G | =

2 8 4 - 4 4 4 - 8 3-8 3 - 8 - 8 = - 6 4 . The last two terms arise from deletion of the

two circuits of length 4 through v.

A better method is to apply (2.10) to the exclusive circuit of length 2 represented

by the undirected edge e of G. There are only two terms, as pictured in Figure 6. Thus

|G | = 8 0 - 4 4 4 = - 6 4 .

When G is a tree, (2.9) and (2.10) become

(2.11) |G | = W i | G - { / } | - Σ \G-c\
ceC2(i)

and

(2.12) \G\ = \G1\\G2\-\G'1\\G'2\,

where G-E(c) = GίuG2 and G — c = G\uG2 (canonical disjoint unions).

It is useful to recast (2.11) in notation that emphasizes what remains of the graph

rather than what was deleted. For clarity, we now use subscripted t 's rather than integers

to name vertices.

PROPOSITION. Let v0 be a vertex with weight w0 in a weighted tree G, and set

G = G — {v0}. Let vl9 - , vr be the vertices joined to v0 in G. For i = 1, -,r,let Gt denote

the component ofG that contains vh and put G ' ^ G j —{ι?f}. Then

(2.13) \G\~WoU\Gi\- Σ l
ί = l i = l

SO

(2 14) ">-*ίfτ + fΓ
|G| H(2.15) APPLICATION. Say that v0 is a terminal vertex if exactly one other vertex

of G is joined to v0. In that case GX = G, so we write G' for G\ and (2.13) becomes

(2.16) \G\ = wo\G\-\Gf\.
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In practice, we start with a tree G and join a new vertex v0 to a vertex υt of G to form

a larger tree G. We try to choose w0 so that 1 < | G | < | G | . Repetition of the process

often produces a graph with determinant 1.

We also note for later use that if G is positive definite (that is, if the associated

matrix of G is positive definite) and | G \ > 0, then G is positive definite. This follows

from the fact [18, p. 250] that a symmetric nxn matrix M is positive definite if and

only if the upper left k x k submatrix of M has positive determinant for k— 1,2, , n.

3. Perfect graphs. We will now apply these ideas to the special graphs under

consideration in this paper.

(3.1) LEMMA. If G is a perfectable graph, then any tree containing G is also

perfectable.

PROOF. Every tree G containing G can be constructed from G by successively

adjoining vertices vn + l9 , vm to G , each by means of a single edge. In this way we

obtain a chain of trees G = Gn <=Gn + 1c= czGm = G. For fc = « + l , ,m, let uk be the

vertex of G fc_1? to which vk was joined in forming Gk. Set G'k = Gk-ί — {uk}.

If G is perfectable, fix a set of perfect weights wu , wn. Assign weights wk to the

vertices vk (k = n + 1, , m) by defining wk = | Gk | + 1. Then repeated use of Application

(2.15) above shows that each weighted tree Gk is positive definite with determinant 1.

Hence each Gk is perfect. In particular, G = Gm is perfect.

In view of Lemma (3.1), finding all perfectable graphs is equivalent to finding all

minimal perfectable graphs. Our main result is that the graphs of Table I are minimal

perfectable. To show this we must first check that each of these trees G is positive

definite and has determinant 1. These properties can easily be verified recursively by

use of (2.16). For example, consider entry (13) of Table I. We construct this weighted

graph one vertex at a time, using the formula | Gk+ x | =wk+1\Gk\ — \Gk-ι\ to compute

the determinants. (See Figure 7.) Gk is the subgraph spanned by υl9 '-',vk. The

determinants | Gγ |, , | G9\ are 12, 23, 34, 45, 179, 1381, 692, 3, and 1. Since each

determinant is positive and the last determinant is 1, the graph is perfect. The other 24

examples are checked similarly.
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To show that each of these perfectable graphs G is minimally perfectable we must

show that for each proper subgraph G' of G there do not exist weights w f >2 for which

G' is perfect. On the integer lattice Z", write (xί9 ,x n)<(y l 9 - —,yn) if Xi<yι for all

/ and xio<yio for at least one index /0. If G is any graph on vertices vί9 • , vn, we have

the mapping \G\: Zn^>Z whose value at (w1? , wn) is the determinant of the weighted

graph G(w1? '-,wn).

(3.2) LEMMA. Let G be a tree on vertices vl9 ,vn and let vv = (w1, , wn) be a

point of Zn at which G(wu , wn) is positive definite. Then if y = (yl9 * ,yM)>w,

G(yu ' , yn) is also positive definite and \ G(yu , yn) \ > |G(w1? , wn) |.

PROOF. The first assertion is obvious, since the intersection matrix of G(y) is the

sum of the intersection matrix of G(w) and the diagonal matrix D(y — w) whose diagonal

entries are the non-negative integers y( — wt and whose off-diagonal entries are zero.

Since G(w) is positive definite and D(y — w) is positive semi-definite, G(y) is positive

definite.

As for the determinant, (2.13) implies that, for each /,

I G |(Wi, , wj = wf I G - fa} \(wl9 , wf, , wπ) — (terms that do not involve wt),

where Λ means "omit this entry". Since G - j y J is positive definite at

(wl9 , wh - , wn), \G\ is a strictly increasing linear function of wt. Hence

\G\(y)>\G\(w) as claimed.

In fact, more is true.

(3.3) LEMMA. Let v0 be a vertex in a weighted tree G and set G = G— {v0}. Then

the ratio \G\/\G\ strictly decreases as (w0, wί, , wn) increases with respect to < inZn+ί.

PROOF (induction on n). If n = 0 the claim is just that l/w0 > l/y0 whenever w0 <y0.

Now let n>0 and suppose the assertion to be true for all smaller trees. Let vl9 , vr

be the vertices joined to v0 in G, and for i= 1, , r, let Gf be the component of G that

contains vt. By (2.14),

\G\ Ά\Gt\'

where G\ = Gt — {vt}. \G\/\G\ clearly increases as a function of w0, and by the induction

hypothesis, each term IGJI/IGjI strictly decreases as a function of (wl9 , wn). Thus

IG I/I GI strictly increases as a function of (w0, wl9 , wn).

To determine whether any particular graph is perfectable or not is now a finite

calculation (perhaps a lengthy one if G is complicated). If G, υθ9 Gh and G[ are defined

as above, then it is clear from Lemma (3.3) that for each i the function IGJI/IGJ

achieves a maximum value Mt on the part of Zn where Gf is positive definite. Hence

we have the bound
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for the weight wQ on v0. Since there is a similar bound for each weight, only finitely
many choices of weights w0, , wn need be checked. In practice it may not be easy
to determine the maxima Mt if G, is a large and complicated graph, but shortcuts of a
number-theoretic nature are often available. For example, for most of the graphs in
question, judicious use of (2.14) shows that many of the weights must be quite small
(often 2 is the only possibility), and must be chosen such that, for all choices of v0 and
of components Gh Gj of G — {v0}, the determinants \Gt\ and \Gj\ are coprime. If all
but two weights have been determined, the last two weights must satisfy a quadratic
equation whose coefficients are the determinants of various subgraphs and which has
at most finitely many solutions (often none) in integers.

We have carried out these calculations for each of the graphs in Table II at the
end of this paper, with this result:

(3.4) PROPOSITION. None of the graphs in Table II is perfectable.

It is now easy to complete the proof of the minimal perfectability of the graphs
in Table I: each proper subgraph of a graph in Table I is contained in one of the
non-perfectable graphs in Table II, so by Lemma (3.1) it must also be non-perfectable.

Likewise the proofs of Theorems (1.2), (1.3), (1.4), and part (b) of (1.5) are completed
by verifying that every graph described in these theorems either contains a graph from
Table I, and so is perfectable, or else is contained in a graph from Table II, and so is
not perfectable. In particular, every tree not of the type shown in Figure 1 with « = 0, 1,
or 2, is accounted for. Also, for any perfectable graph G, a finite computational search
suffices to find all sets of perfect weights. This was done, for instance, for the 8-vertex
graphs listed in Theorem (1.3). (The first part of Theorem (1.5) will be proved in the
next section.)

As for the last assertion of Theorem (1.3), the existence of a single perfectable
graph is sufficient to prove that

. number of perfectable graphs on n vertices

Λ- Qo total number of trees on n vertices

since for any given tree Go, almost all trees with sufficiently many vertices contain Go.
Indeed, our results show that for each n>3\, all but at most 5 trees on n vertices are

FIGURE 8
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perfectable, the 5 exceptions being the Dynkin diagrams An and Dn9 the extended Dynkin

diagram Dn_u and possibly one or both of the graphs in Figure 8.

4. Open questions and connections with number theory. The equation wo =

ΣflG'il/IGiD+l/dllGjI) makes it clear that finding perfect graphs is equivalent to

finding solutions of certain Diophantine equations. As a particularly interesting example,

we now give a proof of part (a) of Theorem (1.5).

(4.1) PROPOSITION. There is a one-to-one correspondence between perfect weighted

graphs of the form Epu...Pr and solutions in integers of the equation

f At 1

with wo>2, Bi>2, 0<Ai<Bi, and{AbB^)=\.

First we need a lemma.

(4.2) LEMMA. Given relatively prime positive integers A<B, there is a unique

weighted chain G (cf Figure 9) such that \G\ = B9\G'\ = A, and w( > 2 for all i.

PROOF (induction on B). If 5 = 2 , then A = l, and the unique solution is that G

consists of one vertex of weight 2 and G' is empty. Now let B>2 and assume that the

result is true for all smaller numbers. Given 0<A<B with (A, B)=l, if A = l, then

again one solution is for G to be a vertex of weight B and G' an empty graph. This

solution is unique since no non-empty chain G' with all weights > 2 can have determinant

1.

If A>\, let w0 be the unique integer > 2 for which B<w0A<A + B. Put

A' = w0A — B. Then 0 < A < A < B, and (A', A) = 1, so by the induction hypothesis there

is a unique weighted chain G' (cf. Figure 10) with \G'\=A and | G"\ =A\ But then for

this choice of weights the graph G in Figure 9 has | G' | = A and | G | = wo| G' \ - \G" \ = B

as required. G is unique since if G, Gf is another solution, with weights vP0, ', H^,

then B = | G \ = wo\ G'\ -1 G"\ = w0A - \ G"\. But w2, , wn > 2 implies that \G"\<A. (To

see this, note that the chain An(wu , wn) is positive definite if vPt > 2 for all /, so by

LenmM(33)9\G"\/A = ̂ ^^
IG" \ = A' and VP0 = H>0, SO uniqueness of the solution for A, A' implies that G = G.

REMARK. The proof shows that the unique solution {wu , wn} is just the set of

integers that appear in the continued fraction expansion

G'

FIGURE 9 FIGURE 10
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1

1

i ; 1 _

for 2ί/Λ (cf. Brieskorn [6, Section 2.4] for example).

We now prove Proposition (4.1). Let G be a perfect weighted graph of type Epu...tPr

whose central vertex v0 is joined to terminal vertices υl9 " ,vr of graphs Gu , GΓ of
types Λpi, , ΛPr respectively. Then by (2.14) the weight of vΌ satisfies

where ^ = 1^1 and ^ H ^ - f u J I . Clearly ( 4 ^ = 1 , as is seen by clearing
denominators. Also AJB^l since if all weights on Gf are 2 then ̂ A = / ? i / ( A + l ) < l ,
and AJBi is a decreasing function of its weights by Lemma (3.3).

Conversely, let ^o = ΣUi(Λi/Bi) + ιl(YlUiBd b e a solution to this Diophantine
equation, with wo>2, Bi>2, and A{<B{ for all i. By Lemma (4.2), for each / there
exists a unique weighted chain Gx as in Figure 9 with | Gf | =Λ, and | G\ \ = At. Then the
graph G of type Epu...tPr whose central vertex t;0 has weight w0 and whose arms are
Gl9 , Gr, with v0 joined to Gt at the vertex of Gi-fy, is the required perfect graph.
This completes the proof.

In a similar fashion, given any special type of graph we can identify the Diophantine
equation that must be solved to produce the perfect weights. In particular, we will do
this for the graphs of the type shown in Figure 1 (with no restrictions on ή) for which
we do not know all minimal solutions.

Given a rational number A/B9 and Egyptian fraction expansion for A/B is a
decomposition of the form

A- y λ
B i=iwt

with the Wj's distinct positive integers. It is well known that every positive rational
number can be so expressed, and in many different ways. Indeed, papers such as [10],
[11], [2], and [3] either prove this fact in an especially nice way or give algorithms for
producing such expansions with particular features, such as a minimal number of
summands.
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(4.3) LEMMA. Let G be the weighted graph in Figure 11 with all weights >2. Then

IGI = 1 if and only if the following equation is satisfied.

where AjB has the "continuedfraction" expansion

wo, w l 5 •• ,wn,wH+1- Σ — •
LL J-iyjli

PROOF. Expand \G\ about the vertex w0 and apply (2.14) to obtain

w - y ι i | G z l i | G |

W° kXi \GX\ I G x l Π ^ ^ '
where Gx and G2 are the graphs in Figure 12. As in the remark following Lemma (4.2),

it is easy to check by induction that

\G2\ IT ^ Π Ί
— - = w l 9 ' " 9 w n 9 w n + 1 - Σ — \ \
I Gil LL j-iyjjj

The assertion now follows by putting B=\G1\ and 4̂ = w0B—\ G21.

For « > 3 a complete set of minimal solutions to this equation is represented by

graphs (20), (22), (23), (24), and (25) of Table I. For instance, the example (22)

corresponds to the solution

[[2,2,2,2,2,3D = l + l l l i i l

2 3 5 7 179 24323 11 2 3 5 7 179-24323

To complete our analysis of perfectable graphs, then, we must find all minimal solutions

for « = 0, 1, and 2. Some solutions that may be minimal are represented by the seven

* 2

FIGURE 11

JΊ

FIGURE 12
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TABLE I. Minimal Perfectable Graphs.

Each graph is pictured with a set of perfect weights. (Unlabelled vertices have weight 2.) The choice of

perfect weights is not unique in general.

(1) • • I . . . . (2) . . -•—4

(3) (4)

(5)

(7)

• — —<>— — —

- — —#
17

(6)

11

(8) - —
(9) . I I . . . 3 3

(10)

19

(Π)

5

• <>—ψ— —
29 I I 3

1233 3

(12)



(13)
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TABLE I. (Continued).

* - • (14)

521

921

9

(15)

201

(17)
6 / ^ 1501212

9 1733

(19)

11

67

(16)

A

(18)

• l l

(20) • —•-
(21)

25

(23) 5 •X ! 1811

7 179 4287055

(22) - — —•— —
24323 3

(24)

22

28

(25) 3
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TABLE II. Examples of Non-perfectable Graphs.

* >̂ I II• j « l> * >̂ I II

27 vertices

n vertices n vertices,
22#A7<26 58 arms a n y Λ

weighted graphs of Table III.
To illustrate the role of Egyptian fractions in problems of this kind we will show

how we determined the weights for the fourth example of Table III. (Examples 1, 2, 3,
and 7 are similar.) Suppose that we wish to find perfect weights for the graph in Figure
13. By (4.4) we have

with

x2

FIGURE 13
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TABLE III. Some Special Perfect Graphs.

(Unlabelled vertices have weight 2).

(1)

3559 3667

127526515252229407

(2)

v 965242693857409
4398619

157 961

(3)

17

» 965242693857409

398619 * 1677048224481193064065349690497
157 961

(4) - 8385241122405949876443646733953

8687184244716671

398619

(5)

3

11

25

1097
2753

-•3
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P2580074191509526602878760930107

ll ΛI/>
(7)

•8687184244716683

9 6 1 '4398619

B 3y — 2 3

Thus if one of the xh say xN, is equal to 3, we have

" - 1 ! 1
1 =

That is, we seek a solution to the unit fraction equation

J V + l 1

(4.5) 1 = Σ -
i = i nt

with the additional constraints that nN = 3(3y — 2) = 3 mod 9 and that nN+ί= PJf= ^ For

then the perfect weights are JC—J^ for ι'= 1, , N— 1, xN = 3, and y = (nN + 6)/9.

Now the problem (4.5) of expressing 1 as the sum of unit fractions has been much

studied and has a substantial literature. (See for example the bibliographies in [9] and

[12].) In particular, in [4] we considered the condition nN+1=Y[1*=ίni in some detail,

and, by computer search techniques, obtained a list of solutions for small N. N=9 is

the smallest value of TV for which we have a solution (nί9 * , nN+1) that satisfies the

extra condition nN = 3 mod9 (but nN>3 so that y = (nN + 6)/9>2). The solution is

(4.6) 2, 5, 7, 11, 17, 157, 961, 4398619, 8687184244716671,

75467170101653548887992820605571,

5695293763151911320400374304363730155668749225304912374335630470.

These numbers give the perfect weights for the graph of Example 4.



COMPLEX SURFACE SINGULARITIES 525

FIGURE 14

It is worth noting that from a purely number-theoretic viewpoint the most interest-
ing of our unsolved cases is the star-shaped graph in Figure 14. For this graph, Equa-
tion (4.4) is simply

(4-7) W o = Σ - + - _ L _

(cf. (4.5)), which we wish to solve in integers vv0, xh all >2. In [4] we show that there
is no solution for 7V<58. No solution to (4.7) is known for any N.

REFERENCES

[ 1 ] D. BINDSCHADLER AND L. BRENTON, On singular 4-manifolds of the homology type of C P 2 , J. Math.

Kyoto Univ. 24 (1984), 67-81.

[ 2 ] M. BLEICHER AND P. ERDOS, Denominators of Egyptian fractions, J. Number Theory 8 (1976), 157-168.

[ 3 ] M. BLEICHER AND P. ERDOS, Denominators of Egyptian fractions II, Illinois J. Math. 20 (1976), 598-613.

[ 4 ] L. BRENTON AND R. HILL, On the Diophantine equation 1 = £(l//i f) + l / ( Π w ί ) a n c * a class of homologically

trivial complex surface singularities, Pac. J. Math. 133 (1988), 41-67.

[ 5 ] E. BRIESKORN, Beispiele zur Differential topologie von singularitaten, Invent, Math. 2 (1966), 1^44.

[ 6 ] E. BRIESKORN, Rational Singularitaten komplexer Flachen, Invent. Math. 4 (1967), 336-358.

[ 7 ] M. DOOB, Applications of graph theory in linear algebra, Math. Mag. 57 (1984), 67-76.

[ 8 ] D. DRUCKER AND D. GOLDSCHMIDT, Graphical evaluation of sparse determinants, Proc. A.M.S. 77

(1979), 35-39.

[ 9 ] P. ERDOS AND R. GRAHAM, "Unit Fractions", Old and New Problems and Results in Combinatorial

Number Theory, Monographic No. 28, LΈnseign. Math. Univ. de Geneve (1980), 30-44.

[10] P. ERDOS AND S. STEIN, Sums of distinct unit fractions, Proc. A.M.S. 14 (1963), 125-131.

[11] R. GRAHAM, On finite sums of unit fractions, Proc. London Math. Soc. (3) 14 (1964), 193-207.

[12] R. GUY, Unsolved Problems in Number Theory, Springer-Verlag, N. Y., 1981.

[13] F. HARARY, The determinant of the adjacency matrix of a graph, SIAM Review 4 (1962), 202-210.

[14] F. HARARY, A graph theoretic method for the complete reduction of a matrix with a view toward

finding its eigenvalues, J. Math. Physics 38 (1959), 104-111.

[15] F. HARARY, Graph Theory, Addison-Wesley, Reading, Mass., 1969.

[16] D. MUMFORD, The topology of normal singularities of an algebraic surface and a criterion for simplicity,

Publ. Math. I.H.E.S. 9 (1961), 5-22.

[17] P. ORLIK, Weighted homogeneous polynomials and fundamental groups, Topology 9 (1970), 267-273.

[18] G. STRANG, Linear Algebra and Its Applications (2nd ed.), Academic Press, New York, 1980.

[19] P. WAGREICH, Singularities of complex surfaces with solvable local fundamental group, Topology 11

(1972), 51-72.

MATHEMATICS DEPARTMENT

WAYNE STATE UNIVERSITY

DETROIT, MI 48202

U.S.A.






