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1. Introduction. Hale gave a representation theorem for the solution operator

generated by a neutral functional differential equation (NFDE) with finite delay, which

represents the solution operator as the sum of a bounded linear operator with zero

spectrum and a conditionally completely continuous operator (cf. [1]). This result proved

to be very useful in studying the existence of periodic solutions of NFDE, and has been

generalized to functional differential equations (FDE) with infinite delay (cf. [2]). In

this paper, we generalize the latter result to NFDE with infinite delay, and give some

applications to the existence of periodic solutions.

In the present paper, we denote the segment of a function x(s) for — oo <s^ί by

xv and let X be a Banach space of some real functions φ: (— oo, 0]->i?" with the norm

|| 0| | having the following properties:

(H t ) Ifx: (— oo, σ + A)->Rtt, A >0, σ^O, is continuous for te[σ, σ + A) and xσeX,

then xteX and xt is continuous for te[σ, σ + A).

(H 2) There is a positive constant k0 such that |</>(0)|^&0||</>||, for φeX, where

I I stands for a norm in Rn.

(H 3) There are positive constants K and M such that if x satisfies (H t ) then

\\xt\\^Ksup\x(u)\+M\\xJ, t^σ.
ue[σ,t]

A continuous functional D: [0, oo)x X-±Rn is said to be atomic (cf. [3]), if it can

be represented as

= A(ήφ(O)-L(t)φ, ί>0, φeX,

with a continuous nonsingular nxn matrix A(t) and a bounded linear operator

L(t): X^Rn which satisfy sup,^0 | L(t)| ̂ L , sup,^0(| A(t)\ +1A'\ t ) \ )<A and | L(t)φ \ ̂

y(β)\\φ\\ for t^Q, β^O and φeX with compact support contained in (— oo, 0], where

L and A are positive constants and y is a nonnegative continuous function on [0, oo)

with y(0) = 0. Here and hereafter, | L(t) \ and | A(t) | stand for the operator norms of L(t)

and A(t), respectively.

For any atomic D and any He C([σ, oo), Rn), the equation

(1.1) D(ήzt = H(ή9 ί^σ^O, zσ = φeX, H(σ) = D(σ)φ,
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has a unique solution. Henceforth, we will denote the solution by z(σ, φ, H). If the

zero solution of (1.1) with H = 0 is uniformly asymptotically stable in the usual sense,

then D is said to be stable. The following estimate for \\zt(σ, φ, H)\\ plays an important

role in this paper:

LEMMA 1.1. (cf. [4]). If D is table, then there exist positive constants a andb such that

\\zσ+t(σ,φ,H)\\<be-at\\φ\\+b sup \H(u)\.
ue[σ,σ + t]

2. The representation theorem. In this paper, we consider the NFDE with infinite

delay:

(2.1) ^-(D(t)xt)=f(t,xt), t^σ^O, xσ = φeX,
at

where / : [0, oo) x X->Rn is completely continuous and D is stable. Throughout this

paper, we assume that the solution x(σ, φ) of the initial value problem for (2.1) is

unique. Now, define the operators Γ, TD and To as

Γ(σ, t)φ : = * σ + ί ( σ , φ),

(2.2) TD(σ, t)φ :=zσ+t(σ, φ, D(σ)φ) ,

Γ0(σ, t)φ:=zσ+t(σ9 0, hφ) ,

where hφ(u): = $u

σf(s9 Γ(σ, s — σ)φ)ds, u^σ. From the uniqueness of the solution of the

initial value problem for (1.1), we have that, for all σ^O, t^O and φeX,

(2.3) Γ(σ, 0 0 = ^ ( σ , t)φ + Γ0(σ, /)0

and that ^ ( σ , /)</) is linear in φeX. Moreover, by Lemma 1.1, we get

\\TD(σ,ήφ\\^be-at\\φ\\9 t>09 σ^0, 0eX, D(σ)φ = 09

\\T0(σ,ήφ\\^b sup |A^(iι)|, ί>0, σ^0, 06JΓ.
«e[σ,σ + ί]

LEMMA 2.1. IfBaXis bounded with the property that Uo^M^ί^(σ> w ) ^ ̂  bounded,

then T0(σ, t)B is a precompact subset of X.

PROOF. From the complete continuity of /, we can find c > 0 such that

\f(s, T(σ, s — σ)φ) K c for {s, φ) e [σ, σ +1] x B. Then, we see easily that {hφ\ φeB) is a

precompact subset in C([σ, σ + t], Rn). Now, (H 2) and Lemma 1.1 imply that

(2.5) \z(σ909hφ)(u)\^ko\\zu(σ909hφ)\\^kob[ \f(s9 T(σ, s-σ)φ)\ds^k0bct
J σ

for φ e B and u e [σ, σ + ί], and that
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(2.6) \z{σ,O,hί){uί)-z{σ,Q,

I z(σ, 0, Ax -* 2 )(« i ) I +1 z(σ, 0, h2)(Ul)-z(σ, 0, h2){u2) \

^kob sup \h1(u)-h2(u)\ + \z(σ,0,h2)(u1)-z(σ,0,h2){u2)\
ue[σ,σ + t]

for ^eC([σ, σ + t], Rn) with Aj(σ) = 0 and ute[σ,σ + tl i=l,2. The inequality (2.6)

implies that z(σ, 0, h){u) is continuous in (w, h) e[σ,σ + t]x{he C([σ, σ + /], Rn)\ h(σ) = 0};

hence z(σ, 0, /z)(w) is continuous uniformly in (w, /ι)e [σ, σ +1] x {/zφ: φeB}. Therefore,

the inequality (2.5) implies that {z(σ, 0, hφ)( ): φeB} is uniformly bounded and

equicontinuous in [σ,σ + t]. Then, the compactness of the closure of the set

Γ0(σ, t)B = {zσ+t(σ, 0, hφ):φe B] follows from the same argument as in [2, Lemma 2.1].

According to [4], for each σ ^ 0 , there is an nxn matrix of functions

Φσ = {Φu •' ,φn}9φJeX,*nd

(2.7) \\Φj\\<Ml9

for 7 = 1 , * , n, such that A~1(σ)D(σ)Φσ = I, where M1 is a positive constant

independent of σ and / is the n x n unit matrix.

THEOREM 2.2. The solution operator T(σ, t) of (2.1) can be written as

Γ(σ, 0 = Tx(σ, t) + T2(σ, t\

Γ^σ, ί): = ΓD(σ, ί)(/ - ΦσA ' \σ)D{σ)).

Γ2(σ, t): = ΓD(σ, ί ) ( * σ ^ " \σ)D(σ)) + Γ0(σ,

and TD, To are the same as in (2.2). Furthermore, T1 is a linear, bounded operator and

is a contraction for large t; T2 has the property that T2(σ, t)B is precompact for a

bounded BczXif\J 0^s^tT(σ, s)B is bounded.

PROOF. Since

Λσ + ί

D(σ + t)xa + t(σ, φ) = D(σ)φ + f(s, T{σ, s - σ)φ)ds ,
J σ

we have

T(σ, t)φ = xβ + t(σ, φ) = zσ+t(σ, φ, D(σ)φ + hφ) = zσ+t(σ, φ, D(σ)φ) + zσ+t(σ, 0, hφ)

= zσ+t(σ, (I-Φ"A-1(σ)D(σ))φ, 0) + za+t(σ, Φ°A-\σ)D(σ)φ, D(σ)φ) + zσ+t(σ, 0, hφ)

= TD(σ, / )(/- ΦΆ -\σ)D{σ))φ + TD(σ, t){ΦaA -\σ)D{σ))φ + T0(σ, t)φ .

Then, from (2.4), we get

| |Γp(σ, t){I-Φ°A-\σ)D(σ))φ\\ ^be-°tW-ΦσA-ί{σ)D{σ))φ\\

^be-a'(l+Mίl+M1lLA)\\φ\\ ,
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where a, b are as given in Lemma 1.1, Mx is given in (2.7) and />0 is a constant such
that X"= 1 | Wj|</| w| for all u = (ux, , un)eRn. This means that 7\(σ, t) is a linear,
bounded operator and is a contraction for large t. Since

i)Φσ){A~ \σ)D{σ)φ),

the operator TD(σ, i)(ΦσA~ι{σ)D{σ)) is an operator from X to a subset of X, which is
spanned by {TD(σ, t)φfj= 1, ••*,«} and is bounded on bounded subsets of X. Hence,
TD(σ, t)(ΦσA~1(σ)D(σ)) takes bounded subsets of X into precompact sets. The last
assertion then follows from Lemma 2.1.

3. Application. In this section, we suppose that D and/in (2.1) are ω-periodic in
t and ω>0 is a constant. In this case, the set {f(t, φ)\ t^0,φeB} is bounded for any
bounded set BaX; hence \Jt^0T(σ, t)B is bounded if B is bounded and the solutions of
(2.1) are uniformly bounded. In the same way as in [4], one can show the following:

LEMMA 3.1. If D() is ω-periodic, then A( ) is ω-periodic and there is an nxn

matrix Φσ = {φί, -- ,φn}, φjSX, \\φj\\<M, Φσ+ω = Φσ,for σ^0,j= 1, ---,n,such that

A~ 1(σ)D(σ)Φσ = /, for σ ^ 0.

For the statement below, some definitions and notation are needed. The
^-neighborhood of a set KaX will be denoted by 0{K, δ) or O(K). Let oc(K) be the
Kuratowski measure of noncompactness of a bounded set KczX. For fixed σ^O, a
family {T(σ, t), t^O} of mappings from X to X is an ω-periodic flow, if Γ(σ, t)x is
continuous in (/, x), T(σ, 0)x = x and Γ(σ, t + ω) = T(σ,t)T(σ, ω). If the system (2.1) is
ω-periodic, then so is the solution operator T(σ, •)• {T(σ, t), t^O} is point (resp.
compact, resp. locally) dissipative if there is a bounded set BaX of attracting each
point x (resp. each compact set //, resp. a neighborhood O(x) of each point x) in X, by
which we mean that for each x (resp. each H, resp. a neighborhood O(x) of each x),
there is an N>0 such that Γ(σ, ήxeB (resp. Γ(σ, ήHaB, resp. T(σ, t)O(x)czB) for
t^N.{ T(σ, t), t^ 0} is said to be conditionally completely continuous, if for any bounded
set BdX with the property that [j 0^s^tT(σ, s)B is bounded, the set T(σ,t)B is
precompact. (Γ(σ,/), ί^O} is a conditional α-contraction if there is a constant A;e[0, 1)
such that (x(T(σ, t)B)^koί(B) for any bounded set BczX with the property that
\J0^s^tT(σ,s)B is bounded. If T(σ, •)(') takes bounded subsets of [0, oo)xX into
bounded sets, then a conditional α-contraction is an α-contraction. The same definitions
can be given for a continuous function T: X->X.

LEMMA 3.2 (cf. [7]). Let {T(σ, t\ t>0} be an ω-periodic flow. IfT(σf t) = S(σ, t) +
U(σ, t), where S(σ, t) is a bounded linear operator such that ιS"(σ, ω) = S(σ, nώ) for any
integer n>0, S(σ,ω) has the spectral radius less than one, and {U(σ, t), t^O} is
conditionally completely continuous, then T(σ,ω) has a fixed point if {T(σ, t),
is compact dissipative.
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THEOREM 3.3. If the solution operator {T(σ, t), t^O} of (2 A) is compact dissipative,
the operator T(σ, ω) has a fixed point.

PROOF. For each σ^O, let S(σ, t)=T1(σ, t). Then

S2(σ, ω)φ = T2(σ, ω)φ = TD(σ, ω)(/- ΦσA " \σ)D(σ))(TD(σ, ω)(I- ΦσA " \σ)D{σ)))φ

= T2

D(σ, ω)(I- ΦσA " \σ)D{σ))φ

- TD(σ, ω)(Φ°A ~ \σ)D{σ)){TD{σ, ω)(I- ΦσA " \σ)D(σ))φ)

= TD(σ, 2ω)(/- ΦσA ' \σ)D(σ))φ

-(TD(σ, ώ)Φσ){A~ \σ)D{σ)TD(σ, ω)(I- ΦσA" ^^^(σ))^)

= S(σ, 2ω)φ - (TD(σ, ω)Φσ)(A ~ \σ)D{σ\I- ΦσA ~ \σ)D(σ))φ) = S(σ, 2ω)φ ,

and in general, we have Sn(σ, ω) = S(σ, nω) for any integer n>0. The assertion now
follows from Theorem 2.2 and Lemma 3.2.

COROLLARY 3.4. If the equation (2.1) has a bounded solution x(φ)( ), which is
uniformly stable and asymptotically stable in the large, then (2.1) has an ω-periodic solution.

PROOF. Under the conditions in the corollary, the closure of the set {xt(φ)\ t^O}
is a compact set and it attracts each compact subset of X, since it is uniformly stable
and asymptotically stable in the large (for the details, we refer to [6, pp. 95-98]).

LEMMA 3.5 (cf. [5]). Suppose T: X^X is point dissipative, is a conditional
a-contraction, and satisfies the condition that for any xeX, there is a neighborhood O(x)
such that (J j=1T

jO(x) is bounded. Then T is locally dissipative.

THEOREM 3.6. If the solutions of(2λ) are uniformly bounded and ultimately bounded
for a boundb, i.e., for any A>0 there is a β(A)>0 such that \\T(σ, t)φ\\ *ζβ(A),for t^O
and φeX with \\φ\\^A, and for each (σ, φ)e[0, co)xX there is an n(σ, φ)>0 such that
\\T(σ, t)φ\\ ^b for t^n(σ, φ), then (2.1) has an ω-periodic solution.

PROOF. For the ω-periodic flow {T{σ, i), t^O} generated by (2.1), there is an
equivalent norm || || x in X,

\\Φ\\<\\Φ\\i<K\\Φ\\, for φeX

such that || ̂ (σ, ω) | | 1 <l (cf. [6, p. 92]). The assumptions on the solutions of (2.1)
imply that {T(σ, t), t^0} is point dissipative with B\ = {φeX\\\φ\\1^ίb} attracting points
of X, and for any φeX there is a neighborhood O(φ) such that (J JLίT(σ, t)O{φ) is
bounded. Furthermore, T(σ,ω) is an α-contraction, since Uo^ί< ω ^( σ ' ^ *s a l w a v s

bounded for bounded subsets HczX and {T(σ, t), ί^O} is a conditional α-contraction
with respect to the new norm || 1̂ . Then by Lemma 3.5, T(σ, ω) is locally dissipative.
Thus the existence of an ω-periodic solution follows from Theorem 4.4 in [6, p. 92].

The following theorem is a generalization of Theorem 6.4 in [6, p. 98].
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THEOREM 3.7. For an ω-periodic linear nonhomogeneous NFDE with infinite delay,

the existence of a solution bounded for t^σ implies the existence of an ω-periodic solution.

PROOF. For a linear NFDE

(N) ^-(D(t)xt) = F{t)Xt + h(t),
dt

we have T(σ9 t)φ = L(σ, t)φ + xσ+t(σ, 0, h), where L is the solution operator generated

by the equation

(H) -^-(D(t)xt) = F{t)xt

dt

and x(σ, 0, h) is the solution of (N) with xσ = 0. Since each solution x(σ, φ) of (N) is the

solution of (1.1) with

) = D(σ)φ+ I F(s)xsds+ \ h{s)ds,

it follows from Lemma 1.1 that

- F{s)xjs+
v σ J

sup

\\xs\\ds+\ \h(s)\ds,
J σ

hence

II / J M I ^ I I / Λ , T . - Λ ί ί - f f W l l 111 . I 1 7 / \ 1 J \ .1 Λ II ^ ί 5 ) II ^ S

\\xt(σ, <

D(σ)φ+ \ F[s)xjs+ \ h(s)ds

ί ||^S)|| \\xs\\ds+ \\
J σ J σ

ί l

which implies that Γ(σ, ί) takes bounded subsets of [0, o o ) x J into bounded sets in X.

In particular, L(σ, t) has this property. Therefore, Theorem 2.2 implies that

L(σ, ή=Uί(σ, ή+U2(σ, t\ where U2(σ, t) takes bounded subsets of X into precompact

sets, ί/^σ, «ω)= ί/" (σ, ω) and Ux(σ, t) is linear, bounded and || U^σ, t)\\ ^cxe~at. Then,

as in the proof of Theorem 3.6, we can find an equivalent norm | | . | |x such that

||ί/i(σ, ω)\\1<l. Since T(σ, ω) is only a translation of L(σ, ω), it follows that Γ(σ, ω)

is an α-contraction. Repeating the same reasoning as in [6, p. 98], one can complete the

proof.

EXAMPLE. Consider the neutral integrodifferential equation

(3.1) — ί x(ί) - Ci(ί, ί + s)x,(s)rfs j = Ax(t) + c2(ί, t + s)xt(s)ds +f(t),
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where xeRn, A is an nxn matrix, and / : R+-+R, ct: R+xR^>R"2 0=1,2) are
continuous. (3.1) has at least one Γ-periodic solution, if the following conditions are
satisfied:

(i) There is a positive constant Γ>0 such that -f(t+T)=f(t) and
φ+T, t+T+s) = Ci(t, t + s), for all ί>0, s^O;

(ii) There are an nxn positive definite symmetric matrix B and positive constant
w( (/=1,2) such that

ATB + BA=-I,

for aΆxeR";
(iii) There are constants y>0 and me(0, 1) such that

"0

Γ
2\AτB\mw2 2\B\w2 f°

1 - ' 2 \c2(t,t + s)\ds^u>0,

(l-m)wί ( l - m ) w j _ o o

and that J° J cf(ί, ί+ s) \e~ysds 0 = 1 , 2) are convergent uniformly for tl

PROOF. Denote

f°
J -

F(ί, 0) = Aφ(0) + c2(ί, ί + s)φ(s)ds
* — oo

For the space Cy of the continuous functions φ: (—oo, 0]-+Rn with the property
that lim^.^e^l^sjl exists, the hypotheses (H1)-(H3) are satisfied and K=l,
M(ί)->0 (ί-> + oo) (cf. [2]). One can prove that D and F are continuous o n i ? + x C r

Γ-periodic in /, and linear bounded in φ, and that D is stable. Moreover, we have

(3.2) \\Φ,Φ)\\^(\\Φ\\+ sup |iϊ(M)|

for the solution z(σ, φ) of (1.1) with zσ = φ and H(σ) = D(σ, φ).
Now, take F(ί, x) = xτBx. We will prove that

(3.3) F(ί, D(/, xt(0, 0)))<M, /^0 ,

where M>(2f\B\wj/uwί)
2J: = suρt>0\f(ή |. Indeed, if (3.3) is not true, then there are a

number to>0 and a sequence {/„}, ίM->/0 + («^oo), such that
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( 3 4 ) V(s, D(s, xs)) < M = V(t0, D(t0, xj) ,

V(tn,D(tn,xtn))>M, n = l , 2 ,

Then, we have

(3.5) Vi3Λ)(to,D(to,xJ)>0,

and

(3.6) ID(s, xs) I < ^ = — {V(t0, D(t0, xt0))}1

w1 wγ

From (3.2) and (3.6), we have

(3.7) | x ί s ) |< | | x ,K sup l ^ ' ^ l ^ l {V(to,D(to,x,o))y<2

o^u^to \—m ( 1 — m)w1

(l-m)wί

It follows that

VOΛ)(t0, D(ί0, xt0)) =

ί Γ° V / Γ° \
= I Ax + c2xtods \ BD +fτBD + DτBl AX + c 2 x ί o ώ j + DτBf

/»0 /»0

= x Γ ^ TBD + xJac
τ

2dsBD +fτBD + DτBAx + DTB\ c2xtods + DτBf
J - o o J - oo

ΛO ΛO

= DTATBD+ xJoc\dsAτdsAτBD+ xJoc
τ

2dsBD+fτ BD
* — oo J — oo

,4 CiX ί̂fc + Z)T5 c2xtQds + DΓi?/
J — oo J — oo

V
where D9 ct (i= 1, 2),/, x and xto stand for D(ί0, χtQ)9 φθ9 to + s) ( ι= 1, 2),/(ί 0), χ(ί0)

and xf0(s), respectively. Hence

w 2f|5|
ί̂ ,-, 4χ^Λ D(t~ x \)<C V(t T)(t v Y>4- -f Γ/Y/ Π/> v ̂ H 1 / 2
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= - uM/wl + 2/1B \y/M/w1 < 0 ,

which is contrary to (3.5). Therefore, the solution xt(0, 0) of (N) is bounded. The
assertion now follows from Theorem 3.7.

The author would like to thank Professors Junji Kato and Satoru Murakami for
their valuable suggestions. Thanks are also due to the referee for helpful advice.
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