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0. Introduction.

0.1. Koecher [KO] introduced Dirichlet series corresponding to SiegeΓs modular
forms and presented explicit formulas for the Dirichlet series which express the location
of the poles and the residues in a satisfactory manner, but did not succeed in proving
them. Maass in his lecture notes [MA, § 15] studied those Dirichlet series in full generality
and obtained the analytic continuation and the functional equations for them. His
method is based upon the theory of invariant differential operators acting on real
symmetric matrices, which gives a powerful tool in investigating those Dirichlet series
and their functional equations. However one cannot have precise information on the
residues of the poles by his method. In [AR] we have proved Koecher's explicit formulas
by using Klingen's Eisenstein series and the structure theorem for the space of SiegeΓs
modular forms due to Klingen [KL1]. Recently Weissauer [WE] studied Koecher-Maass
Dirichlet series corresponding to SiegeΓs cusp forms with level N and solved a certain
converse problem concerning the correspondence between those Dirichlet series with
grόssen characters and SiegeΓs cusp forms.

Our aim of the present paper is to prove Koecher's explicit formulas for the Dirichlet
series corresponding to SiegeΓs modular forms (not necessarily cusp forms) with level
N without using Klingen's Eisenstein series (Klingen in [KL2, p. 235] suggested the
problem of obtaining Koecher's formulas without the help of Klingen's Eisenstein
series). We also obtain an explicit formula for the Epstein-Koecher zeta function.

Another more arithmetic aspect of Koecher-Maass Dirichlet series is discussed in
Bόcherer [BO].

0.2. We summarize our results.
Let §„ be the Siegel upper half plane of degree n, on which the Siegel modular

group Γ{n) = Sp(n, Z) of degree n acts in a usual manner. Let Γ(

O

Π)(7V) be the congruence
subgroup of Γ(n) with level N given by

(0.1) Γ{S\N) = \MUΛ jeΓ ( π ) |C=0mod7vl.

For a Dirichlet character ε mod N and a positive integer k, denote by Mfc(Γ
(

o

π)(ΛΓ), ε)
the space of all holomorphic functions / on § π satisfying
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(i) y(M<Z» = ε(detφ))det(CZ+Z))fcy(Z) for any M=(A j

(ii) if n = 1,/is holomorphic at all cusps of Γ{Q\N).

Each fe Mk(Γ
(

o

π)(Λ0, ε) has a Fourier expansion of the form

(0.2) /(Z)= Σ a/(7>[tr(rZ)],
Γ=Γ<">>0

where T runs over all half-integral semi-positive definite symmetric matrices of size n.
Assume that ε( -1) = ( - If. Koecher [KO], Maass [MA], and Weissauer [WE] introduced
the Dirichlet series Dn(f s) associated with fe Mk(Γ

(

o

π)(7V), ε):

(0.3) Dn{fs) = Σ
m>oe

where the summation indicates that Γruns over the /^-equivalence classes of half-integral
positive definite symmetric matrices of size n and e(T) denotes the order of the unit
group {UeGLn(Z)\ T[U]=T) of T. Let Q be a positive definite symmetric matrix of
size m. We define the Epstein-Koecher zeta function Dn(Q; s) to be the sum

Σdet (Q[G\y\
G

where G = G(m>n) runs through a complete set of non-associated integral m x n matrices
with rank(G) = n, G and G1 being said to be associated if Gx = GU with some Ue GLn(Z).
The Dirichlet series Dn(f9s) (resp. Dn(Q\s)) is absolutely convergent for Re(s)>
k + (n+1)/2 (resp. Re(^)>m/2). Set

(0.4) ξn(f, s) = 2Nns'2(2πyns

(0.5) ξn(Q;s) = 2π-nsΓn(s)Dn(Q;s),

where

μ = l

Let Φ be the Φ-operator of Siegel giving a linear map from Mk(Γ(o\N), ε) to
Mk(Γ%~U(N), ε). For each/of M^\N), ε), we set

/ | ωJ?(Z) = N"k<2 det(ΛΓZ) "*/( - (iVZ) " x ) (Z e £„),

which is an element of Mk(Γ$XN), έ). Set, for any positive integer r,

(0.6) t>(r) =
Ππ-v/2C(v)Γ(v/2) r>2,

v = 2

r = l
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We obtain the following theorem.

THEOREM, (i) Suppose k>n-\ and ε(-1) = (-1)\ Let feMk(Γ(

o

n)(7V), ε) and set

g=f\ ωjj*. Then the function ζn(f s) can be continued analytically to a meromorphic func-

tion in the whole s-plane. Moreover the following formula holds:

'?*ajβ)

s-k

in%(<p--"g,n/2)

where In(f s) is a certain entire function of s.

(ii) Suppose m>2n — 2. Then the function ξn(Q'9s) can be analytically continued to

a meromorphic function in the whole s-plane and has the expression:

UQ; s)=UQ
s—m/2

μ =i \s-(m-μ)/2 s-μ/2

where In(Q; s) is a certain entire function of s.

As an immediate corollary to the above theorem we obtain the functional equations

for ξn(f s) and ξn(Q; s) (see, for the explicit forms, Corollary 2.3 in §2).

Bόcherer in his private letter suggested a possibility of obtaining some explicit

formula of ξn(Q; s) in the case of m<2n — 2. At the end of §2 we shall discuss that case

a little further following his suggestion.

The present paper was written while the author was in Gόttingen. He would like

to express his gratitude to Sonderforschungsbereich 170 "Geometrie und Analysis" for

supporting him financially. He also would like to thank Professor Bόcherer for his kind

advice.

NOTATION. Let, N, Z, /?, and C denote the set of positive integers, the ring of

rational integers, the real number field, and the complex number field, respectively. For

any commutative ring S, M(m, n; S), Mn(S\ and GLn(S) denote the set ofmxn matrices

with entries in 5, the ring of matrices of size n with entries in 5, and the group of

invertible elements in Mn(S), respectively. For any element A of Mn(S), let *A, tr(A),

det(A) denote the transposed matrix of A, the trace of A, and the determinant of A,

respectively. We denote by En the identity matrix of Mn(S). For A of M(m, n; S) and

B of Afm(S), B[A] denotes the matrix XABA. For square matrices Au , Ar, we write

D(AU , Ar) for the matrix

Άlm 0

0 'Ά,
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For a real symmetric matrix T, T>0 (resp. Γ>0) means that Γis positive definite (resp.
semi-positive definite). Let Γ(s) and ζ(s) be the gamma function and the Riemann zeta
function, respectively. The symbol e[w] (w e C) is used as an abbreviation for exp(2π/w).

1. SiegePs modular forms and theta series. Let GSp(n, R) be the real symplectic
group of degree n with similitudes:

GSp(n, R)={Me M2n(R) \ MJJM = v{M)Jn with v(M) > 0} ,

where

j o -EΛ
1 U o )•

The group GSp(n, R) acts on the Siegel upper half plane §„ = {Z='Ze Mn(C) \ Im(Z) > 0}
in a usual manner. Set

M(Z}=(AZ+B)(CZ+D)-1 and J(M,z)=det(CZ+D)

for

( ) Λ > a n d

Denote by Γ(Π) the Siegel modular group Sp(n, Z) of degree n and for a positive integer
N let Γ(S\N) be the congruence subgroup of Γ(n)given by (0.1) in the introduction. Let
ε be a Dirichlet character mod N. Then, ε gives rise to a character of the group Γ(Q\N ) by

(M)= (det(Z))) for M=(* ζ\eΓ%\N).

Let A: be a positive integer. We set, for any function/(Z) on 9)n and MeGSp(n, /?),

(f\kM)(Z) = J(M, Zyk det(M)fc'2/(M<Z>),

which is often written/] M if there is no fear of confusion. Denote by Mk(Γ
(

o

w)(Λ^), ε)
the space of all holomorphic functions/(Z) on §„ which satisfy the following conditions:

(i) f\kM=ε(MV forallMeΓ(oπ)(iV),
(ii) if n = 1, / is holomorphic at all cusps of Γ(

o

υ(iV).
Then, Mk(Γ(o\N), ε) is a C- vector space of finite dimension. We take a particular element

NEn 0

of GSp(n, R) which normalizes the group Γ(

0

B)(N): α#>Γf^JVXωjft"x = r(

o

n)(N). It is easily
verified from the above property (i) that, if/is an element of Mk(Γ(o\N), ε), then/| ωjy*
belongs to Mt(Γ

(

o

n)(Λί), έ), ε being the complex conjugate of ε. We denote by Mk(Γin))
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the space Mfc(Γ
(

o

π)(l), 1), the usual space of SiegeΓs modular forms of degree n and weight
k with respect to Γ(n). Each/e Mk(Γ

(

o

π)(Λ0, ε) satisfies the transformation formula

(1.1) /|ω<J>|ω<J> = ( - l ) ^

Moreover,/e Mk(Γ
(

o

n)(iV), ε) has a Fourier expansion of the form (0.2) in the introduction.
By virtue of Theorem 2.3.4 of Andrianov [AN], the Fourier coefficients af(T) have the
estimates

(1.2) \af(T)\<C1det(T)k if 7>0

with a certain positive constant Cγ independent of T. For each integer μ with 0<μ<n,
we define fμ(Z) to be the subseries of (0.2) given by

(1.3) Σ

where T is taken over all n x n half-integral semi-positive definite symmetric matrices
with rank(Γ) = μ. Obviously,

f(Z)=Σfμ(Z).
μ = O

We write especially/*(Z) instead of /n(Z):

f*(Z)= Σ<>f(T)e[tr(TZ)].

The Φ-operator of Siegel given by

Φf{Zx) = lim f(Zl °\ (Zx eSn_l9/€Mk(Γ<gXN), ε))
λ-̂  + oo \ 0 d/

defines a linear map from Mk(Γ
(

o

n)(iV), ε) to Λf^Γj" 1 ^), ε). For each interger μ
(1 <μ<n\ ΦμfsMk{Γ{S~μ\N\ ε) has the Fourier expansion

ΦμAZ,)= Σ af(
T

Γ=Γ(M)>O \ 0 0

Denote by Γn the group GLn(Z) of unimodular matrices of size n. For r+1 positive
integers Al5 , Ar+1 with /ix+ +Λ r + 1 = «, we set

RμveM(hμ,hv;Z) for l<μ,v<r+l

which is a subgroup of Γn. For instance, Γ^Λ 2 is a subgroup of Γπ consisting of
unimodular matrices whose lower left h2xhί blocks are zero. Denote by ΓJΓj?ίt...thr+i

a complete set of representatives of the left cosets of Γn modulo Γj?u...thr+1. Let Sβn be
the symmetric space of positive definite symmetric matrices of size «, on which the
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general linear group GL(n, R) acts via Y-*Y[g\ (geGL(n, R)). We define 9ln to be the
set of all reduced matrices in φπ. Then, 9in is a fundamental domain of tyn by the above
action of Γn (see [MA, §9] for reduced matrices).

For/eMk(Γ(S\Nl ε) and an integer μ(\<μ<n- l)9fμ(iY) in (1.3) has the following
expression

(1.4) fμ(iY)= Σ (Φn-μf)*(κY{U])\E

ί!'Ί) (see[KO]).

The Fourier coefficients of/e Mk(Γ%\N), ε) have the property

(1.5) af(UrU) = ε(det(U))det(U)kaf(T) for any UeΓn.

Since/satisfies/=ε(—1)"(— 1)"*/, one necessarily has

ε(-l)"=(-ir*.

In the sequel we assume that

ε ( - l ) = ( - l ) » .

Let Q be a positive definite symmetric matrix of size m (i.e., Qetym). We define
the theta series Θn(Q; Y) (YeSβn) by the equality:

Θn(Q; Y)= Σ exp(-πtr(r β[G])).
GeM(m,n;Z)

We set, for each integer μ (0<μ<ή),

On,μ(Q; Y)= Σ exp(-πtr(r β[G])).
G e Aί(m,n;Z),rank(G) = μ

We understand Θn0(Q, Y)= 1, if μ = 0. We see easily that

6U<2,*0= Σ

The theta function Θn(Q; Y) satisfies the well-known theta transformation formula

(1.6) Θn(Q-\; r - ^ d e t ί G ) " / 2 det(Y)m'2Θn(Q; Y).

To prove Koecher's formulas for ξn(f9s) (/eMk(Γ
(

0

Π)(iV),ε)) and ξn(Q;s) in the
introduction we would like to define the functions Pn(f, Y) and Pn(Q; Y) on the space
?βn by induction on n as follows:

(1.7) PΛ(f9 r )=/*(/Γ)-c

i μ=ll/eΓn/Cμ,μ \ \_EμJ/J

where c = Nk/2Γk, g=f\ ω{S\eMk(Γ^\N)9 ε)), and ag(0) is the first Fourier coefficient of
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g in (0.2) corresponding to 0. Moreover, we define

(1.8) Pn(Q\ Y) = Θnn(Q; 7 )-det(0

f n~ί

x i + Σ Σ
C μ=ll/6Γn/C-μ,μ \ L^μ_

The proof for the well-definedness of Pn(f Y)9 Pn(Q> Y) (especially the convergence

of them) is complicated and will be postponed until the last section. However we state

here the explicit assertions concerning the well-definedness.

THOREM 1.1. (i) Suppose ε( - 1 ) = ( - If and k>n-l.Letfe Mk(Γ(

o

n)(Λ0, ε) and set

g=f\co(β\ Then the infinite series on the right hand side 0/(1.7) is absolutely convergent

and hence the function Pn(f Y) can be defined inductively by the equality (1.7). Moreover,

Pn(f Y) satisfies

(1.9) PΛ(g, (7V7)-1) = cw det(Y)kPn(f Y)

and

(1.10) Pn(f Y[U]) = Pn(f9 Y) for any UeΓn,

(ii) Suppose m>2n — 2. Then the function Pn(Q; Y) can be defined inductively with

respect to n by the equality (1.8) and the infinite series on the right hand side o/(1.8) is

absolutely convergent for any Yeψn. Moreover, Pn(Q; Y) satisfies

( l . i i ) i > π ( ρ - 1

; r - 1 )

and

(1.12) Pn(Q; Y[U]) = Pn(Q; Y) for any UeΓn,

We shall prove Theorem 1.1 in §3.

REMARK 1.1. If n = 1, one immediately has

and the properties (1.9), (1.11) are verified from the transformation formulas (1.1), (1.6),

respectively. Suppose n = 2. Since the real analytic Eisenstein series

( J ^ Σ
UsΓ2/ΓTΛ | _ 1 J / UeΓ2/Γ?ti

on φ 2 is absolutely convergent for Re(s)> 1, the functions P2(f, Y) (/e Mk(Γ(

0

2)(ΛΓ), ε))

and P2(Q; Y) are well-defined by (1.7), (1.8), respectively. Further, it is not difficult to

prove the identities (1.9), (1.11) from the transformation formulas (1.1), (1.6).
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REMARK 1.2. Suppose N=l. Then f\off =f for each feMk(Γin)). Denote by
Sk(Γ{n)) the space of cusp forms of degree n and weight k with respect to Γ(n\ i.e.,
Sk(Γ{n)) = {feMk(Γ{n)) I Φ/=0}. For any integer r with 0 < r < « - 1 , let £π*r(Z, φ) be the
Klingen Eisenstein series associated with φeSk(Γir)) (see [KL1]). It is not difficult to
see from [AR, Main Lemma] that if f[z) = E*r(Z, φ),

(see [AR, p. 159] for the function Pπ*,r(Z, φ) (Ze §„)).

2. Explicit formulas for the Koecher-Maass Dirichlet series. We assume that, for

a Dirichlet character ε defined mod N and a positive integer k,

Let feMk(Γ(o\N), ε). In view of (1.5) the Dirichlet series /)„(/, s) associated with/is
defined by the equality (0.3) in the introduction. By virtue of the estimates (1.2) for
af{T), Dn(f,s) is absolutely convergent for Re(.s)>A;+(« + l)/2. Suppose that m>n.
Two matrices G^and G2 of M(m, n; Z) are said to be associated if G2 = GγU with some
UeΓn. Let Q be a positive definite symmetric matrix of size m. Koecher [KO] studied
the zeta function

where G is taken over a complete set of non-associated matrices of M(m, n; Z) with
rank(G) = /i. The zeta function Dn(Q; s) is absolutely convergent for Re(^)>m/2. We
define the functions ξn(f, s) and ξn(Q; s) by the equalities (0.4) and (0.5) in the
introduction. Then the functions £„(/, s), ξn(Q; s) have the integral expressions:

{.</,s)= f(2.1) . < / ) ( ) r ( ^
J n \y/N

(2.2) ξn(Q; s) = ί det( Y)sΘnfn(Q; Y)dvn( Y),

where dvn( Y) = det( Y)~{n+1)/2Πi<j^ϋ f o r γ = (^y) τ h e integral on the right hand side of
(2.1) (resp. (2.2)) is absolutely convergent for Re(s)>k + (n+ l)/2 (resp. ReC?)>m/2).

Assuming Theorem 1.1 in § 1, we shall prove the following theorems including the
explicit formulas for ξn(f, s) and ξn(Q; s) in the introduction. The constant v(r) for a
positive integer r is given by (0.6) in the introduction.

THEOREM 2.1. Assume k>n-\ and ε(-1) = (-1)*. Let feMk{r{S\N), ε) and set
g —f\ ωff. Then the function ξn(f s) can be analytically continued to a meromorphic
function in the whole s-plane and has the integral expression in the vertical strip
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(2.3) ξH(f,

where the integral is absolutely convergent in the same strip of s. Moreover, the residue

formula for ξn(f s) holds:

(2.4) ξn(f s)
s — k s

cξu(Φn~μg,n/2) ξJΦn-μfn/2)

s-k + μ/2

where we put

= [
J det(y)>l

an entire function of s.

Similarly, the following theorem for the function ξn(Q; s) holds.

THEOREM 2.2 Suppose m>2n — 2 and let Q e Sβm. Then the function ξn(Q; s) can be

continued analytically to a meromorphic function in the whole s-plane and has the integral

expression in the vertical strip (n— l)/2<Re(1?)<m/2 — (n—1)/2:

ξn(Q;s)=\ det(YyPn(Q;Y)dvn(Y),

where the integral is absolutely convergent in the same strip. Moreover,

(2.5) ζn(Qls) = In(Q
s — m/2

where we set

; s)= ί
n

det(Γ)>l

In(Q; s) being an entire function of s.

The proofs of Theorems 2.1 and 2.2 are similar to that of Proposition 2 in [AR].

We prove only Theorem 2.1 by induction on n by using Theorem 1.1 in §1, since

Theorem 2.2 is quite similarly verified.
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PROOF OF THEOREM 2.1. If n=l, the assertion of Theorem 2.1 is immediately
verified. Suppose n>\. We assume that the assertion of Theorem 2.1 is valid for any
modular forms of Mk(Γ^\N), ε) with degree μ less than n. We see easily from the
integral expression (2.1) that, if Rφ)>k + (n+l)/2,

(2.6) ξn(f, *) = /„(/, s)+ f ί / * ( ~ ) -/wfcdet(r)V(-^)}det(Yysdvn(Y).

det(r)>l

The integral In(f, s) is absolutely convergent for any s e Cand indicates an entire function
of s. Substituting Y~1ly[N for Fin (1.7), we have

(2.7)
N

μ=lUεΓn/ΓZn-μ \ ^/N

Replacing / by g =f\ ωjj> and Y by Y/jN in (1.7), we get

(2.8) PnL

Π Σ Σ
μ=ll/efn/Cμ,μ

By virtue of Theorem 1.1, the infinite series on the right hand sides of (2.7), (2.8) are
absolutely convergent under the assumption k>n— 1. The identity (1.9) in Theorem
1.1 implies that

(2.9)
NJ \ yJN.

With the help of (2.7), (2.8) and (2.9), the function £„(/, s) in (2.6) turns out to be of
the following form if Re(s) > k + (n +1)/2:

n Σ Σ ^ f ^ ^
μ=lUeΓn/rZn-μ \ \JN

1 Γ!
By the inductive assumption, the integral
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ί,
for each integer μ (l<μ<w—1) is absolutely convergent for (μ— l)/2<Re(j)<
k—(μ—1)/2 and coincides with ξμ(Φ"~μf, s). An easy calculation as in Lemma 5 of [AR]
shows that, if Re(s)>fc+(n +1)/2,

(2.10) ξJJ,s) = IJJ,s)

which gives the meromorphic continuation of ξn(f, s) to the whole 5-plane. On the other
hand, again with the use of (2.9), we have

(2.11) ί
jίRn

- J
det(Y)>l

Thus in a manner similar to that in the proof of Proposition 3 of [AR] (especially (2.6),
(2.7) in [AR]), we see easily that the integral on the left hand side of (2.11) is absolutely
convergent for (n — l)/2<Re(s)<fe — (n-l)/2 and coincides with the right hand side of
the identity (2.10). Hence the identity (2.3) holds for (n- l)/2<Re(s)<fc-(n-1)/2. The
proof of Theorem 2.1 is now completed.

As an application of Theorems 2.1 and 2.2 we obtain the functional equations of
the zeta functions Dn(f, s) and Dn(Q; s).

COROLLARY 2.3. Let the notation and the assumption be the same as in Theorems

2.1 and 2.2. Then we have

The proof is immediate from (2.4) and (2.5) in Theorems 2.1 and 2.2.

REMARK 2.1. The functional equation for ξn(f, s) was obtained by Maass [MA,
§ 15] in the case of N= 1 and by Weissauer in the case of/ being a cusp form with level
N>1. The functional equation for ξn(Q;s) has been known by Maass [MA, §17, p.
284, p. 285].
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Now we consider the zeta function ξn(Q; s) for n<m<2n — 2 following Bόcherer's

suggestion. He suggested that ξn(Q; s) is related to ξm-n(Q; s) in a simple manner and

that one can get some information on the poles of ξn(Q; s) from that on ξm-n(Q; s).

Suppose n<m. For Qetym, we define the Eisenstein series En(Q; s) by

En(Q;s)=

which converges absolutely for Rφ)>m/2. Then an easy calculation shows that

v = l

Set

η(s) = π-°'2Γ(s/2)ζ(s).

It follows from (0.5) that

(2.12) ξn(Q; ί) = 2 Π φs - v +1) En(Q; s).
v = l

On the other hand, the easily verified identity

^ 0 ]) ' (UeΓJ

implies that

(2.13) En(Q; s) = dQt(Q)-sEm.n(Q-1; s).

Now suppose that n<m<2n—2. Therefore one can derive from (2.12) and (2.13) a

simple relation between ξn(Q; s) and ξm_n(Q~ι\ s)\

(2.14) ξn(Q; s)= f l η{2s-v+l)'dQt(Qysξm.n(Q-1; s),
v=m—n+1

where ξo(Q~1ls)=l if m = n. We note here that m>2(m — ri) — 2 and n>m — n+\.

PROPOSITION 2.4. Suppose n<m<2n — 2. The function ξn(Q;s) has poles at

s = 0,1/2, ,m/2, of which 5 = 0,1/2, , ( m - n - l ) / 2 and s = (w+l)/2, ,m/2 are

simple poles derived from the poles ofξm.n(Q~1; s). The residue ofξn(Q; s) at the simple

pole s — {m — μ)/2 (resp. s = μ/2) for each integer μ with 0<μ<m — n—l is given by

(2.15) Ress=(m_μ)l2ξn(Q;s)=εμv(n-μ)det(Q)-»l%(Q;n/2)

(resp. Ress=μ/2ξn(Q; s)= -εμφ-μ)ξμ(Q; n/2)),

where εμ is 1 or 1/2 according as μ = 0 or μ>0. The poles s='(m — n)/2,

(m—n +1)/2, ,(n—1)/2, π/2 of ξn(Q;s) are derived from those of the product
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). Among those poles, s = (m-n+\)/2, ,(n-l)/2 yield double
poles of ξn(Q; s).

PROOF. We see from (2.14) and Theorem 2.2 that ξn(Q;s) has simple poles at

s = 0, 1/2, •• ,(m — n—1)/2; s = (n+1)/2, * ,m/2, and, moreover, that the residue of

ζn(Q; s) at s = (m — μ)/2 for each μ (0<μ<m — n—\) is given by

v=m—n+1

Thus the identity (2.15) follows from the functional equation of ξμ(Q; s) (Corollary 2.3)

and (0.6). The residue of ξn(Q; s) at s = μ/2 (0 < μ < m - « - 1 ) is similarly calculated with

the help of the functional equation η(l—s) = η(s) of the Riemann zeta function. Since

η(s) has simple poles only at s = 0, 1, the other assertions of Proposition 2.4 easily follows.

q.e.d.

3. Proof of Theorem 1.1. Let the notation be the same as in § 1 and §2. Before

giving the proof of Theorem 1.1, we describe some preparatory lemmas.

LEMMA 3.1. (i) Let fe Mk(Γ(

o

π)(7V), ε) and let λ be a positive constant. Then there

exists a positive constant C2 depending only onfandλ such that, ifYetyn and det( Y) > λn,

|/*0Ύ)|<C2det(rΓ*.

(ii) Suppose m>n. Let Q e tym. Then there exists a positive constant C 3 independent

of Y such that, if Ye φ π and det(7)> 1,

PROOF. Since \f*(iY[U])\ = \f*(iY)\ for any ί7eΓπ, Ymay be assumed to be a

reduced matrix of size n. The estimates (1.2) for the Fourier coefficients af(T) imply that

IF*(iY)\<C t Σ det(Γ)" exp(-2π tr (TY)).
Γ > 0

It is not difficult to see that there exists a positive constant C 4 independent of Y with

the inequality

det( Y)k exp( - π tr( Y)) < C 4 for any Ye S$n.

By the reduction theory of positive quadratic forms (see for instance [MA, § 9]), there

exists a positive constant C 5 such that, if Ye 5RΠ,

r>c5r0,
where 70 = (δμvyμv) for Y=(yμv). As is shown in [MA, p. 191], for Ye9ln,
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where T=(tμv). Thus if det(Y)>λn and Ye9in, then,

Σ exp(-πtr(7Ύ))
Γ > 0

<C1C4det(F)"k Σ e χ p( -nnλcj f[ tv
Γ>0 \ \v=l

where the last infinite series is convergent (see [MA, p. 192]). The proof of the assertion
(ii) is reduced to the case of Q = λEm (λ>0). For a positive definite integral matrix T
of size «, the cardinality of the set {GeM(m, n; Z)\tGG=T} is at most a constant
multiple of det(Γ)m/2. Therefore the assertion (ii) is similarly verified. q.e.d

Let hί9 , Ar+! (r> 1) be positive integers with hί + hr+1 —n and set

v = l

Selberg [SE] introduced the following real analytic Eisenstein series for Γn\GLn(R)
associated with complex numbers sί9 * , sr:

E(Y;hu"-,hr+1;su

LEMMA 3.2. The Eisenstein series E(Y; hί9 , Ar+1; sί9 -9sr) is absolutely
convergent if Re(sj)>(hj + AJ+1)/2 (1 <j<r).

For the proof see, for instance, [MA, § 17].

We use the following notation later. Let Al5 , Ar+1 be the same as above. For
Yetyn and UeΓn, the positive definite symmetric matrices Wf(U; Y)eSβhj (1 <j<r+1)
are determined by the relation

(3.1)

where A = (A1? , Ar+1), and det(w}(£/; F)) for each7 ( l < 7 < r + l ) depends only on

thecoset£//χ.. ,/,r+1.
Now we start the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Assume that k>n — 1, ε(-1) = (— 1)* and that m>2n-2.
We shall prove the theorem by induction on n. For «=1, the assertions of Theorem
1.1 are valid. Let n>\. We assume that, for any modular forms fλ of Mfc(Γ

(

o

v)(7V), ε) of
degree v less than «, the functions Pv(fl9 W) (We^βv) are defined recurrently by (1.7)
and satisfy the assertion (i) of Theorem 1.1 with n replaced by v. Moreover, we assume
that, for each positive integer v less than n, the function PV(Q; W) (Wetyv) is defined
recurrently by (1.8) and satisfies the assertion (ii) of Theorem 1.1 with n replaced by v.
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Let feMk (Γ$\N)9 ε). Recall that g=f\ω(S) and c = Nk/2Γk. We calculate, at first

in a formal manner, Pn(g, (NY)'1) (resp. PH(Q~U

9 Y'1)) by the equality (1.7) (resp.

(1.8)). Taking (1.1) into account, we have, formally,

"Σ Σ
μ=lUeΓn/ΓZ,n-μ

Using (1.4) and the equality (1.7) for Pμ(Φn~μf, ), we see that

Pn(g, (NYy^g^KNY)-1)-^ det( Yf ^μ = 0

If ί/ runs over Γn/Γ™n_μ and F runs over Γμ/Γ^_VfV, then, ί/ί ) runs over

Γ π /Γ*_ v v π _ μ . Thus the above identity becomes

(3.2) />„(,

+ cndet(Y)k{En(f, Y) + Mn(f, Y)} ,

where

M = 1 U e Γn/Γμ0,

and

( ( j 1 + » 2 ) ) ^ ( Λ Γ F t [ / ] )

Ai, 2̂? ^3 running over all positive integers with h1+h2 + h3 = n. With the help of the

notation (3.1), we set, for a triple h = (hϊ,h2, h3) of positive integers with h1+h2 + h3 = n,

(3.3) Mn(hu h29 h3;f9 Y) = (Nk/c)h>+h2 Σ
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Then,

(3.4) Mn(f, Y) = Σ Mn{hl9 h29 h3;f, Y).
hi +Λ2 + Λ3 —n

If/is replaced by/ | ω%\ then, g is replaced by ( - \)nkf (see (1.1)). We replace/by f\ ωff

and 7 by (NYy1 in (3.2). Then,

(3.5) Pn(f, Y ) = f * ( i Y ) - c - n

The identity (1.1) implies that

(3.6) g*{i{NY)~x) + HΣβMNY)~X) = cn d e t ( r ) f c

μ=O

Similarly, we have, in a formal manner,

(3.7) Pn(Q-\ γ-') = Θn^Q-\ r - 1 ) - d e t ( 0 - / {

^ ( 2 ; Y) + Mn(Q; Y)} ,

where

(3.8)

and

(3.9)

En(Q; 1

M.< e ,

Mn{hu h2,

0=

n-

h3;

Σ

β;

>t(β)"

F)=det

Replacing β by β " 1 and Y by F " 1 in (3.7), we get

(3.10) Pn(Q; Y) = Θn,n(Q; r )

Q-1; F" 1 )} .

LEMMA 3.3. The Eisenstein series En(f, Y) (resp. En(Q; Y)) is absolutely convergent

and satisfies
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EH(g, (NY)-1) = Λίet(TfEJJ, Y)

.EJίQ-1; Y~1) = dQt(Qr2dct(Y)^2En(Q; Y)).

The proof of Lemma 3.3 will be postponed until a little later. Now what we have to

prove is the following.

PROPOSITION 3.4. (I) The infinite series Mn(hl9 h29 h3;f9 Y) and Mn(hί9 h2, h3; Q; Y)

are absolutely convergent.

(II) The identities

Mn(hl9 h29 h3; g, (7V7)-1) = cMet(7)fcMn(/z3, Λ2, Λi;/, Y),

Mn{hu h29 h3; Q-1; γ-1) = det(Q)n'2 dct(Y)^2Mn(h3, h2, hx; Q; Y)

hold.

If we succeed in proving Lemma 3.3 and the assertions (I), (II) of Proposition 3.4

under the inductive assumption, we see immediately from (3.5) (resp. (3.10)) that the

right hand side of (1.7) (resp. (1.8)) is absolutely convergent and, moreover from (3.2),

(3.5), (3.6) (resp. (3.7), (3.10), (1.6)), that the transformation law (1.9) (resp. (1.11))

holds. The identities (1.10), (1.12) are easily seen from the definition of Pn(f, Y\ Pn(Q; Y).

First we shall prove the assertion (II) of Proposition 3.4, assuming the validity of

the assertion (I). Next we shall give a proof of Lemma 3.3. Our final goal is to prove

the assertion (I) of Proposition 3.4 under the inductive assumption on n.

Set, for positive integers /?, q with

(eSp(n,R)).

Έp 0 0 0

0 0 0 -Eq

0 0 Ep 0

. 0 Eπ 0 0

LEMMA 3.5 Let hl9 h2, h3 be positive integers with hx+h2 + h3 = n. Then,

(i) Φh*(Φh%f\ ω»>)Iωfr+h*) = Nh>kl2(- i r i + * 2 ) ^ +hKf\ JH1+H2M) ,

(ii) Φ |

PROOF. It follows by definition that, for any Zxeξ>hι+h2,

- k Urn
0 ~(ιλEh3)

 x

Hence,

Replacing Zx by —{NZJ'1 in the above expression for Φh3(f\ ωjj*), we get the identity
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(i). Similarly for Z2eξ>h2+h3,

•*««,)-'.*»„ β

0

Therefore we have, for Z3eξ>h2,

3y
k lim

A-+ + oo
μ-+ + oo

0 0

x/j 0 -(iVZj)"1 0

0 0

q.e.d.

PROOF OF THE ASSERTION (II) OF PROPOSITION 3.4. Substituting f\ ωjj* for / and

(NY)-1 for Y in (3.3), we have

(3.11) MJhl9h29h3;g9(NY)-ι) = {Nklcγ*+h> Σ f\det(Wf(U; F"1))^

It is not difficult to see from the notation (3.1) that, for Yetyn and UeΓn,

rj/"(A3,/i2>Λi)//'7'3|e. v \ ΛΆ/^\ M2 M~s)ίTT V ~ ^Λ ~ 1 ί 4 1 O 'IΛ
r r y ^ C ^ , ^ ^ — rr 4 _ ^ C / , J ^ ^/ — 1 , Z>, J ^ ,

where we put

c/*=('t/-1)ί 0 £ A 2 0 j .
\ £ * 3 0 0 /

We note here that if ί/ runs over ΓnIΓ£uhlM, then i/* runs over ΓJΓ^MM. Thus

the identity (3.11) with the help of (i) of Lemma 3.5 becomes

(3.12) Mn(huh2,h3ig,\

where we put A'=(Λ3, h2, h^. On the other hand, by using (3.3) and (ii) of Lemma 3.5,
we get
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ffXU, Y))~k

C 7 e Γ n / Γ ^ 3 , h 2 > h i J = l

Ph2(Φhί+h3(f\ Jhι +h2,h3) I ω%*\ {NWh

2{U,

Thus,

(3.13) Mn(h3, h29 hx;f9 Y) = Nh>kf2c-h> £ det(tff (£/, Y))~k

UeΓn/Γ^,h2,hί

xPh2(Φh>+h>(f\jhι+h2Ml (WΪ(U, Y)).

The first identity in the assertion (II) follows from (3.12), (3.13). The second one is also

proved in a similar manner. Thus we have completed the proof of the assertion (II) of

Proposition 3.4 assuming the validity of (I).

PROOF OF LEMMA 3.3. Since k>n — ί>n/2 (resp. m/2>n — l>n/2), the abolute

convergence of £„(/, Y) (resp. En(Q; Y)) follows from Lemma 3.2. It is immediate to

see from the definition of En(f, Y) that

En(f,Y)= Σ c~hl

where h = (hl9 h3) runs over all pairs of positive integers with h1+h3 = n. Since Lemma

3.5 holds also for Λ2 = 0, we have, in a manner similar to that for the proof of the

assertion (II) of Proposition 3.4,

En(f\ω%\(NYΓ1)= Σ

= det(7)k Σ chι Σ d e t

hi+h3=n U*eΓn/Γ%3,hι

= cndet(Y)kEn(f,Y).

Another identity for En(Q; Y) is similarly verified. q.e.d.

Finally we shall prove the assertion (I) of Proposition 3.4 under the inductive

assumption.

PROOF OF THE ASSERTION (I). Suppose n>3 (if n = 2, the infinite series Mn{f9 Y)9

Mn(Q; Y) do not occur). For a positive integer r with r > 2 , we consider the following

equation with indeterminates pί9 9pd, qί9 , qd, with d also being regarded as

an indeterminate,

(EQ) Σ Λ + Σ ^ = r » PU '",Pά^N9 ql9 - 9qd_1eN, and qdεZ,qd>0.
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The number of the solutions (pl9 "m

9pdiqu '"> <ld) of the equation (EQ) is 2Γ~1. Let

hl9 - - *,Λr+i b e r + 1 positive integers with hx + * + A r + 1 = n a n d ( j p 1 , ',pd',qu '' '*

qd) a solution of the equation (EQ). Set

(3.14) Mj)=Pi+ ' " +Pj, P(j) = <li+ ' " +9] ( l <

We write, for simplicity,

(3.15) * = (*i, '-,

We set, for YeSβH and Γ>0,

(3.16)

where U runs over a complete set of respresentatives of Γ π / Γ ^ ...Λ r + 1 satisfying the

following condition A(p, q; h; Y):

Condition A(p, q; h; Y)

Πdet(W}(U; Y))> 1 for every v with 2<v<p u

(if/?! = 1, we begin with the next condition)

r+1-μ

Π det(W*(U; Y))<1 for every μ with 1 <μ<qu

for each / ( )

r-p(0

Π det(W)(U\ Y)> 1 for every v with λ(i) +l<v<A(/+l),

Γ μ det(Wf(U; Y))<\ for every μ with p(0+1 <μ<p(i+1).

1
The condition y4(/ι, #; Λ; 7) depends only on the coset £/Γ^t...tΛr+1. In the case of qd

the last condition for i=d— 1 does not occur, since p(d— l) = ρ(d). Set

We note that, if t>n-1, then, since H<2n-2,

The following lemma plays a key role in the proof of the assertion (I) of Proposition 3.4.

LEMMA 3.6. Suppose t>n—\. Then,

I?p;q)(Y; t)<E(Y; hu * , AΓ+1; tel5 • , tzr).
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Hence the infinite series I*p;q)(Y; t) is convergent.

PROOF OF LEMMA 3.6. By virtue of Lemma 3.2, we have only to verify the following

inequality.

LEMMA 3.7. Let YeS$n and let UeΓn satisfy the condition A(p, q\ A; Y). Then, for

t>0,

Π

PROOF. Let UeΓn satisfy the condition A(p, q; A; Y). First we observe that

r-p(i)

(3.17) Π det(Wf(U; 7))>1 for 0 < i < d - l and λ(0+l<v<Λ,(/+l),
J = v

and that

r-p(ΐ)

(3.18) Π det(Wf(U; Y))<\ for 0<i<d-l,

where we may assume that p(0) = 0 and λ(0)=l . If qd = 0, the inequality (3.18) for

i = d—l does not occur since λ(d) + p(d— l) = r. Dividing (3.17) by (3.18), we get the

inequalities

λ(i+l)

Π dct(Wf(U; Y))>\ for 0<i<d-l and A(i)+l<v<λ(i+1),
j = v

which further imply that

λ(d)

(3.19) Πdet(^(t/; 7))>1 for 2<

Suppose d > 1. We see from the condition ^4(/ι, r̂; A; Y) that

d-l p(i+l) Γ r+l-μ

1<Π Π \ Π

where, if ^d = 0, the index / in the first product actually ranges from 0 to d — 2, since

p(d -1) = p(d). Thus with the help of (3.19),

P(d) ( μ ^ μ p ( ) (

Π i Π det(Wf(U; Y))\ xΠ Π ] Π

Π \ Π det(H^(ί/;r))[ xf] Π deWfrU; Y))\
v = l U = v + 1 J μ = l L 7 = 1 J

d - 1 p ( i + l ) C λ(d)

Π Π ]Π
U=l
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λ(d)-l

v = l

Zv + Σ S ^

r v

U=i '
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1 _ μ = l , we have

Ί - ί Z v p(d) (

£/; Y))r xfj
r+l-μ

Π c

ί-ίZλ(d)

Consequently,

7 j
J=l v=l 0 = 1

The above argument is applicable to the case of d= 1, q1 >0. If ί/= 1 and qx = 0, then
/?! = r and 2(1) = r. It is easy to see from (3.19) that

λ(l) r - 1 C r

Πdet(^(ί/;r))-'<Π^ Π
v=l U =

= lί
v=l U = l

q.e.d.

We define certain infinite series to reduce the proof of the assertion (I) to Lemma

3.6. Let hu —-,hr+1 (r>2) be positive integers with hx+ ••• + Λ Γ + 1 = « and let

(Pu " ΊPdlQii ' "9 Qd) be a solution of the equation (EQ). Let λ(J), p(j), h, p, q be the

same as in (3.14) and (3.15). We simply denote the group Γ™ίt...thr+ί by Γ£\ We divide

into two cases according as whether qd = 0 or qd>0.

(a) The case of qd = 0: Let F be an element of Mk(Γ(

0

Λλ(d))(7V), ε*), ε* being ε or ε.

We define the infinite series Jfc;q)(F9 Y) and J*pιq)(Q; Y) (Yeφn) by

J(P,q){t\ Y) = Σ Π dtt(W}(U; Y))~k ~ ' "

and

^(p;g)(β; Ό = Σ ΓΊ det(^(ί/; r))- m / 2 |P Λ λ ( d ) (ρ; ^ί ( d )(t/; F ) ) | ,

where in the summations U runs over Γn/ Γ£ satisfying the condition A(p, q; h; Y). In

the case of qd = 0, putting i = d—\ and v = λ(d) in the condition A(p, q; h; Y), we get the

inequality

(3.20) άei{Wh

m{U\ Y))>\.

(b) The case of qd>0: Let F be an element of Mk(Γ$Md)+ί)(N)9 ε*), ε* being ε or

έ. We set
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Jh

p;q)(F,Y) = Σ Π
N

and

J(Pqj(Q; Y)=Σ Π

where in the summations U runs over Γn/Γ^ satisfying the condition A(p,q;h; Y).

In this case (qd > 0), by putting i = d — 1 and μ = p(d) in the condition A(p, q; Λ; Y), we get

It is not difficult to see from the identity (3.3) that

. , , Y
rh ( f \ (fp12^ Y\(3.21)

where h = (hu h2, h3) and/ f c = Φ/ll(Φ/l3/|ω5J1+'l2))GMk(Γ(

0'
l2)(7V), έ). Moreover the infinite

series on the right hand side of (3.21) gives a dominant series for Mn(hu h2, h3;f, Y\ y/N).

To obtain (3.21) from (3.3) we note that \c\ = Nk'2. We see from (3.9) in a similar

manner that

(3.22) \Mn(hl9h29h3;Q; Y)\<C6{J?ί;ί)(Q; Y)+J{2;0)(Q; Y)}

with a certain positive constant C 6 independent of YeS$n. In view of (3.21), (3.22), the

final task we have to do is to estimate the infinite series J*p.q)(F, Y), J(P;q)(Q', Y) from

the above.

LEMMA 3.8. Let A, p, q be the same as in (3.15).

(a) The case of qd = 0: Let F be an element of Mk(Γh

o

λ(d)(N), ε*). Set, for simplicity,

h* = h m and G = F\ ωjj*}. Then there exist positive constants C 7, C 8 independent of Ye tyn

such that

Jh

p.,q)(F, , Y)

and that

Λ*p;,)(β; Y)^CJl*p;q)(Y;ml2) +
h*-i
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where we put, for each μ(l < μ < A* — 1),

(Al9 -,hm-u h*-μ, μ,

(b) The case of qd > 0: Let F be an element of Mk(Γ$Md>+ ύ(N), ε*). Set h* = h m + x and

G = F\ω%*). Then there exist positive constants C9, C 1 0 independent of YeSβn such that

\

and that

Jh

p;q)(Q;

w^ /?w/, /or ^αcΛ μ (1 < μ < h* — 1),

REMARK 3.1. If h* = l (hλ(d)=l or hm+1 = \ according as qd = 0 or qd>0), then

the summation Σhμ=i ^ o e s n o t o c c u r i n (a)» (b) of Lemma 3.8.

PROOF OF LEMMA 3.8. Only the assertion (a) will be proved. The proof of (b) is

quite similar to that of (a).

Suppose qd = 0. Let FeMk(Γf\N), ε*). We can replace n,f and Y by h*, F, and

W%id)(U; Y)/y/N, respectively, in the equality (1.7) under the inductive assumption.

Taking the inequality (3.20) into account, we see easily from Lemma 3.1 and the

definition of J\p. q)(F, Y) that, with a certain positive constant C'η independent of Ye Sβn,

(3.23) J*!f)(F, Y)<CΊ[ I?p;q)(Y; k) + ΣU^t(Wf(U; Y))~k

where in the first summation U runs over ΓnjΓ£ satisfying the condition A(p, q, h\ Y).

Similarly, there exists a positive constant C'8 independent of Y such that
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(3.24) ./£.„(& 10 £ Q ^ i t ) ( r ; ι

h*-l

v V V
* Z J Z-ί

μ=l KeJ>/Γ£-M>μ

where in the first summation U also runs over ΓnjΓ^ satisfying the condition
A(p, q\ Λ; Y). For each £/eΓπ and VeΓh*, let ί/*(K) denote the matrix

U D(E ' ' E V E - - - E }

Let /z*>l and μ an integer with \<μ<h* — 1. If t/ runs over Γn/Γ^ and K over
ΓΛ*/Γ^Ϊ_μμ, then, (7* = f/*(K) runs over a complete set of representatives of Γn/ Γ^(μ).
It follows from the notation (3.1) that

Wf(U; Y) = Wfifi)(U*; Y) (1 <j<λ(d)-1),

Γ/R* *
(£/•; F),

and

^*(ί/; F) = WftkU*; Y) (λ(d) +1 <j<

Then

If t/ satisfies the condition A(p, q; h; Y) and V satisfies

(resp. det((Wk

m(U;

then U* = U*(V) satisfies the condition

Therefore if we observe (3.23) and (3.24) carefully and choose positive constants C7

and C8 suitably large compared with C'η and C's, then we obtain the assertion (a)
(actually we may take C7 = C7). q.e.d.

Let Al5 Λ2, h3 be positive integers with h1+h2 + h3=n. Let h and/fcbe the same as
in (3.21). By virtue of Lemma 3.6 and recurrent use of Lemma 3.8, the infinite series
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are convergent. Therefore in view of the inequalities (3.21) and (3.22), the infinite series
MH(hl9 h2, h3;f, Y) and Mn(hu h2, h3; Q; Y) are absolutely convergent. Thus we obtain
the assertion (I) of Proposition 3.4.

Now we have completed the proof of Theorem 1.1.
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