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1. Introduction. Let A be the Laplacian in the Euclidean space Rn, that is,
A = £"=1d2/3z?. Let V(z) be a nonnegative function defined on Rn. Suppose that the
set {zeRn; V(z) = 0} is an unbounded subset of if". Our aim is to give an estimate
for the asymptotic distribution of eigenvalues of the Schrddinger operator — A 4- V(z).
Several results on this problem are known (cf. for example, Robert [8], Simon [10]
and Solomyak [12]).

In this paper we restrict our attention to the potential of the form

where x = (xx, • • •, xmi)eRm\y = (yu • • •, ym2)eRm\ | x | = &r=i*?)1/2> 1*1 =
(Z7=i yfi112 anc* W1+AW2 = « with some conditions on fi9 gj9 ai? fij, y and 5.

Our main result is given in Section 3. Special cases of our estimates are closely
related to some results studied by Robert, Simon and others.

The case V(x,y) = CY\UiMx\fi-]\q
j=1gJ{\y\yi is a classical one and the

asymptotic distribution of eigenvalues is given by the well-known formula (cf.
Rozenbljum [9]).

The case V(x,y) = (\+\x\2)a\y\2fi is studied by Robert [8] by means of
pseudo-differential operator calculus with operator symbols. Our method is quite
different from his. The results will be given as corollaries when <xm2>f}m1 in Section 3.

The case V(x,y) = \x\a\y\f* is studied by Simon [10] when mi = m2 = l. The case
mlm2>2 is included in the results of Solomyak [12]. Our method gives another proof
of their results when (xm2 = pml. The result is given in Corollary 3.1.

In order to prove the main theorem we shall use classical Dirichlet-Neumann
bracketing method formulated by Edmunds and Evans [2]. We shall also apply a simple
modification of Theorem 2 of Fefferman [3; p. 144], where he gives several estimates
for the eigenvalues of Schrodinger operators with polynomial potentials. We shall apply
Fefferman's theorem to operators with ^-weight potentials and use it in the proof of
Lemmas 3.2 and 3.2'.

In Section 2 we shall show some properties of ^-weights. These properties will
be used in Sections 3 and 4. In Section 3 we shall state our main theorem and give the
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proof assuming several lemmas. In Sections 4 and 5 we shall prove these lemmas in
Section 3.

ACKNOWLEDGEMENT. The author would like to thank Professor Satoru Igari for
his constant encouragement.

2. yl̂ -weight potentials. Let Q be an open set in Rn. By L2(Q) we shall denote
the Lebesgue space of all square integrable functions in Q. By H1^) we shall denote
the Sobolev space

H1(Q) = \ueL2(Q); — G L 2 ( Q ) , i=\, • ,n

where d/dxt denote distributional derivatives. We put

I1(Q) and z eQ. By Cg(Q) we shall denote the space of all infinitely differentiable
functions with compact support in Q. For a set S in Rn, \ S | denotes the Lebesgue
measure of S. By cubes in Rn we shall mean closed cubes whose sides are parallel to
the coordinate axes.

Let us recall the definition of ^-weights.

DEFINITION. A nonnegative locally integrable function w(z) on Rn is called an
^-weight on Rn if there exist positive constants C and 3 such that

r<21) tri^'
w(z)dz

JQ

for all cubes Q in Rn and for all measurable subsets S of Q. We call the pair (C, 3) of
constants A^-constants of w. We denote the space of all A^-weights on Rn by A^(R11)
or A^.

We now mention some properties of A ̂ -weights which are useful in proving that
our potential V belongs to A^. For the proof we refer to [4; Chap. IV].

LEMMA 2.1. Let w(z)>0 be locally integrable on Rn. Then the following conditions
are equivalent:

(1) weA^.
(2) There exist 0 < Cu C2 < 1 such that
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for every cube Q.
(3) There exists C>0 such that

w(z)dz < C exp( log w(z)dz )

for every cube Q.
(4) There exist C>0 and e>0 such that

\l/(l+e) r< r

w(z)dz
1 f

_ w(z)1+i

Q\JQ
Q\JQ )

for every cube Q.

REMARK 2.1. By Holder's and Jensen's inequalities, w e A m is equivalent to saying
that

i f / i f y/<!+«> / i

iciJ."w*~(iciJ."w'*1*) ~exp(ie
for every g, where the bounds are independent of Q.

LEMMA 2.2. Let u and v be A ̂ -weights. Then we have the following:
(1) If<x.,P>O,thenc
(2) IfO<oc<l,then
(3) Ifu\v2eA^then

Lemma 2.2 is a direct consequence of Lemma 2.1 but we give a proof for
convenience.

PROOF. (1) follows from the Hardy-Littlewood maximal theorem with weights,
but follows directly from the definition of ̂ -weights. Let (C\5f) and (C", 5") be
A ̂ -constants of u and v9 respectively. Then C'\S\5'\Qudz>\ Q\b'\sudz for every subset
S of a cube Q and a similar inequality holds for v with constants (C", <5"). Thus, adding
both sides, we get (2.1) for au + pv with constants C=max(C", C") and (5 = min(<5', 5").

(2) Assume 0 < a < 1. Fix a cube Q. By Holder's inequality

which, by Lemma 2.1 (3), does not exceed



384 K. TACHIZAWA

j - f logu(z)dz))*=C'exp(-L f log u{zfdz\
\Q\jQ / / \\Q\jQ /JQ

Thus Mae^Q0.
(3) By Schwartz's inequality

I r / i f \1/2f 1 f Y /2

\Q\]QUZ Z Z VICIJQ" 2 / vieiJo^2 /
Applying Lemma 2.1 (3) to each term on the right hand side, we get

\Q\jQ \*\\£\JQ
L f «(zMZ)<fe<Cexp(-L f (logu(z)2+logv(z)2)dz)
\1\JQ \A\l\JQ /

= C expf - 1 - log W(z)t;(z)d5 J ,

which proves (3). q.e.d.

LEMMA 2.3. Lef i^/z) be polynomials on Rn of degrees dij9 where /= 1, • • •, q and
7=1 , • • •, r. Ler al7, J?o- and y{j be positive numbers. Let

)= n /<z)y< •
Then w(z) is an A ̂ -weight on Rn and the A ̂ -constants depend only on n, dtj, Pij9 ytj and q.

PROOF. First we observe the following: if P(z) is a polynomial on Rn and a>0 ,
then \P{Z)\<XEAO0. Indeed, we have

(2.2) - 1 - f |P(z)\dz<max\P(z)\<£- \ \P(z)\dz
\Q\JQ z*Q \Q\JQ

for every cube Q, where C is a constant depending only on n and the degree of P (cf.
[3; p. 146]). Thus Lemma 2.1 (4) holds for every a>0. Thus | P(z)\aeAO0 for <x= 1, 2,
By Lemma 2.2 (2), this holds for every a>0 .

Next we observe the following: if Pfz\ 7=1 , • • *, h are polynomials on Rn, then
n j - J ^ J r ^ ^ o o for every a,.>0. Since \Pl(z)\2^eAao and \P2(z)\2a2eAo0, we have
\P1(z)\ai\P2(z)\a2eAO0 by Lemma 2.2 (3). The case h>2 is shown similarly.

Therefore, by Lemma 2.2 (1), fizfsA^ for y = l, 2, • •. By Lemma 2.2 (2),
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A^ for every y>0. Applying the preceding argument, we can show w(z)eAoo.

q.e.d.

COROLLARY TO LEMMA 2.3. Let w(z) be the function given in Lemma 2.3. Then
there exists a positive constant C depending only on n, d{j, jSfj, yt and q such that

— w(z)dz< max w ( z ) < C - - w{z)dz
\Q\JQ z*Q \Q\JQJQ

for all cubes Q in Rn.

PROOF. It suffices to show the second inequality. By the definition of w we have

maxvv(z)<__ _

Since |P t j\ are ̂ -weights , by (2.2) and Lemma 2.1 (3), the last term does not exceed

where CUJ depend only on n and dij9 while C3 = ]^[?=1(max/C10.C20/u)Vi- By Jensen's
inequality the last term does not exceed

Note that fx are ,4^-weights. Applying Lemma 2.1 (3) again to the last term and arguing
similarly as above, we get an estimate

max w(z) < C4 - j - f fl f ^ d z < C4 -L f w(z)dz ,

where C4 depends only on n, dtji jSfj-, y£ and q. q.e.d.

The following Lemmas 2.4 and 2.6 are modifications of Theorems 2 and 3 in
Fefferman [3; p. 144], respectively.

LEMMA 2.4. Let U(z) be an A ̂ -weight on Rn. Put

x= inf (a U(z)dz).
-SI<a/2 /
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Suppose that 11>O. Then

x [ \v(z)\2dz< f
JQ JQ
[ \v(z)\2dz< f (\Vv(z)\2 + U(z)\v(z)\2)dz
Q JQ

for all cubes Q in Rn with side length 2(A1)~1/2 and for allveH1^), where C is a positive
constant depending only on n and the A ̂ -constants for U(z), and (5 denotes the interior ofQ.

To prove Lemma 2.4 we use the following lemma.

LEMMA 2.5 (Morimoto [6]). Let Q be a cube in Rn and let U(z) be a nonnegative
measurable function on Q. Suppose that there exist positive constants Cx and C2 such that

(2.3)

where l(Q) denotes the side length of Q. Then we have

Cl(Q)-2 \ \v(z)\2dz< f QVv(z)\2 + U(z)\v(z)\2)dz
JQ JQ

for all vsH1^), where C is a positive constant depending only on n, Cx and C2>

PROOF OF LEMMA 2.4. Let Q be a cube in Rn with / ( 0 = 2( i 1 )" 1 / 2 and center z°.
Put a = 2Xi1/2 and £ = z°. Then, by the definition of Al9 we get

Udz .

Therefore

4 I 01J

Thus

(2.4) 3 / ( 0 - 2 < — I Udz.

Since U is an ^-weight in /?", we have, by Lemma 2.1 (2),

where Cx and C2 are positive constants depending only on n and the A^ -constants of
U. Combining this with (2.4), we have

Cje i< |{zeG;3C 2 / (0 - 2 <l / (z )} | .

Therefore U and Q satisfy the inequality (2.3). Thus Lemma 2.4 follows from Lemma
2.5. q.e.d.
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Now, in order to consider the distribution of the eigenvalues of Schrodinger
operators with A ̂ -weight potentials, we introduce some notation.

Let U be an A^-weight. Suppose that an operator — A+C/ which is defined on
Co(Rn) is essentially selfadjoint in L2(Rn) and L is a selfadjoint realization of — A+ U.
Assume that L has only discrete spectrum. Let A be a positive number and let N(A, U)
be the number of eigenvalues of L less than L Let 3FX be a tesselation of Rn by cubes
whose side length is >l~1/2 and whose vertices are points in l~ll2Zn where Z i s the set
of integers. Let N^A, U) be the number of cubes Q in !Fk such that

_Lf
i e i J <

U(z)dz<A.
Q

LEMMA 2.6. Assume that U satisfies the above conditions. Then we have

for every positive number X, where Cl is a constant depending only on n, while C2 is a
constant depending only on n and the A ̂ -constants of U.

We omit the proof of Lemma 2.6. The reader may follow the arguments of the
proof of Theorem 3 in [3; p. 148] if he applies Lemma 2.5 in place of Main Lemma
in [3; p. 146].

REMARK 2.2. Lemma 2.4 shows that Theorem 2 in [3; p. 144] is also valid for
^ -we igh t potentials. This follows easily from the proof of Theorem 2 in [3].

REMARK 2.3. Let U(z) be an ^ -we igh t on Rn. Suppose that — A+ U defined on
CQ(R") is essentially selfadjoint in L2(Rn) and L is a selfadjoint realization of — A+ U.
If Nx(k9 U)<co for all A>0, then L has only discrete spectrum. This fact is verified in
a manner similar to the proof for Remark 4 in Simon [11; p. 215].

REMARK 2.4. Let w(z) be the function given in Lemma 2.3. Let N2(A, w) be the
number of cubes in ^ such that

max w(z) < X .

zeQ

for ^>0. Then

N2(X, w)<N1(A, w)<N2(CA, w)
for every positive number A, where C is a constant independent of A. The first inequality
is obvious and the second inequality follows from Corollary to Lemma 2.3.

3. Main theorem. Let p and q be positive integers. Let
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I (1=1,
k = 0

s = 0

where rff and hj are nonnegative integers. We assume that aik, bjs>0,(0<k<dhQ<s<hy,
1 <i<p, 1 <j<q) ai0, bj0>0 and aidi = bjhj=l. We put

(3.1) K(Z) = v{x, y)=cf[ Mx \ r - f l gf\ y \YJ -\x\y\y\d>
i l j

where z = (x9y)eRmi xRm2 = Rn, mi>0, m2>0, and och fip y and S are nonnegative
numbers and C>0 is a constant. To avoid trivial cases, we assume £f=1 a ^ + y^O and

By Lemma 2.3 Kis an A ̂ -weight on Rn. The operator - A + K defined on C£(Rn)
is essentially selfadjoint in L2(Rn), since V>0 and VeL?oc(R

n) (cf. Kato [5]), where
Lfoc(R

n) denotes the set of all functions square integrable on every compact subset of
Rn. Let L be a selfadjoint realization of — A+ V. Then L has only discrete spectrum.
Indeed, we can show easily that N2{X, V) < oo for all X > 0 where AT2(A, F) is the quantity
defined in Remark 2.4. Thus, by Remarks 2.3 and 2.4, the assertion follows.

Now we give an asymptotic formula for N(X, V) which, by definition, is the number
of eigenvalues of L less than X and denoted simply by N(X). Our main result is the
following:

THEOREM. Let V be the potential given by (3.1). Suppose that ym2<(s£J
q
j=1f}jhj +

S)m1 and Sm^i^i^A + y)^. Set //1 = 2-1(2 + 5)(Xf=1af4 + y)"1 and JI2 =

N(X) — — I (X - V)nl2 dxdy as X-+ oo ,
(2*)"J/

where con is the volume of the unit ball in Rn and the set A is defined as follows:
(1)

where Cx is a positive constant depending only on m2, C, dh (xh bj0, Pj9 y and 5, while C2

is a positive constant depending only on ml9 C, hj9 ftp ai0, och y and S.
(2) If y = 0 and d^O, then

A = {(x, y)eRm*x Rm>; V(x, y) < X9 \

where C3 is a positive constant depending only on m2, C, dh aLi9 bj0, fij and 8.
(3) Ify^O and<5 = 0, then
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A = {(x, y) e Rm> x JT2; V(x,y) < X, \ y \ < C^}

where C4 is a positive constant depending only on ml9 C, hp ftp ai0, 0Lt andy.
(4) Ify = 0andS = 0, then

A = {(x, y) E Rmi x Rm2; V(x, y) < X) .

COROLLARY 3.1. Let a, ft>0 and <xm2 = ^ml. Let

for (x, y) e Rmi x Rmi. Then

N(X)~ake logX as X-+ oo ,

where 6 = n/2 + m1/<x, and

a—-

COROLLARY 3.2 ([8; Theorem 3.2 (i)]). Let a, /?>0 and<xm2>f}m1. Let

for (x, y) 6 i?mi x #m 2 = i?w.

N{X)~ak9 as A-oo ,

= n/2 + m2/(2f}) and

COROLLARY 3.3 ([8; Theorem 3.2 (ii)]). L^/ a, 0>O a«rf (xm2 = pm1. Let

(x, y) e Rmi x /?m2 = i?n. Then

N(X)~aXe log X as A-+ oo ,

= n/2 + m2/(2(i) and

REMARK. Our constants in the corollaries are different from those in Robert [8].
A careful calculation will lead to our constants.

Let Q be an open set in Rn and V be the function given by (3.1). Define
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VwVv+Vuv)dxdy

and

IMI?,fl==*[M>M]+I \u\2dxdy
in

for appropriate functions u and v. By D® Q and D^ Q we denote the completions with
respect to the norm || \\uQ of C£(Q) and the restriction of Co(Rn) to Q, respectively. Let
tg and tjr be sesquilinear extensions of / to D& Q and Djr Q, respectively. Then t® and
tjr are closed and semibounded forms. Let T& Q and T^ Q be associated selfadjoint
operators with respect to t2 and /^, respectively (cf. [2; p. 139]). Let A2 Q and A^Q be
the Dirichlet and Neumann Laplacian on Q, respectively. If there is no confusion, we
drop the notation Q, for example, and we denote Ts instead of T2Q.

Let T be a selfadjoint operator in L2{Q). For X>0 let

N(A,T,Q) = rank dEJJ),
J -oo

where 2 (̂7") is the resolution of the identity corresponding to T.
In this notation we prove the theorem.

PROOF OF THEOREM. First we prove (1). Let A be a large positive number. Let
&\ be a tesselation of Rn by cubes Q whose side length is X~1/2(\ogX)1/n and whose
vertices are points in >l~1/2(log X)llnZn.

Let Bi = {(x,y)eRm*xRm>;xi = O} (/=1, • • •, mx\ Bj={(x,y)eRm* xRm2;yj = 0}
(j= 1, • •, m2) and B=(\JTllB

i)\j(\J^1Bj). Let Jx be all cubes Q in &\ such that
minZ6Q V{z)<X and QnB=0. Let , / 2 be all cubes in &\ such that maxzeQ V(z)<L
Let ^ and K2 be positive constants which will be determined later. Let Jz be all cubes
Q in &\\A such ^at minzeQ V(z)<X and

where fix and //2 are constants defined in the theorem.
Let K3 and K± be positive constants which will be determined later and put

\J Q, \

Qe/iU/3

and
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(( |JF3 = Rn\the closure of (( |J Q)VF1UF2).

Note that if X is sufficiently large, then Flr\F2 = 0.
Now we estimate N(k). Remark that N(k) = N(k9 L, Rn) by definition. We have

L= TgtRn=TJr,Rn since -A + Vdefined on C$(Rn) is essentially selfadjoint in L\Rn).
Therefore

(3.2) N(k) = N{X9 Tjr, Rn) = N(k9 T29 Rn).

Let Ql9 Q29 Q$ and O4 be open sets in Rn and let Q be the interior of the closure of
Q1uQ2. Suppose that QxnQ2 = 0, \Q\(Q1uQ2)\ = O and Q3czQ^. By an argument
similar to that in Edmunds and Evans [2; p. 143], we get

^ fl2) ,

29 fl2) ,

and

Therefore, by (3.2),

(3 .3)1 N(l,T09$)<N(X)< X N(X,Tjr,<})+ £ N(X, T*, & + t N(X9 TX9 Ft).

W e have the fo l lowing three est imates for N(•,%•)•

L E M M A 3 .1 . N(k9 7 > , F3) = 0.

LEMMA 3.2. N(k9 7>, Fx) = N(k9 T^9 F2) = 0.

LEMMA 3.3.

(X-Vy2dxdy as A->oo

^ = {(x, y)e /?"" x Rm>, V(x, y) <X, \x \ <> K,A"', | y | < K2X»>} .

We shall postpone the proof of these three lemmas to the following sections. By
(3.3), Lemmas 3.1, 3.2 and 3.3

N(X) — ^ - I (A - V)"12 dxdy as X-* oo .
(2)"J/
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Thus the proof of (1) is complete.
We prove (2). Let J\ and J2 be the subsets of &\ defined in the proof of (1). Let

K\ be a positive constant which will be determined later. Let </'3 be the set of all cubes
Q in &\ \S1 such that minz6Q V{z)<X and

where fix is a constant defined in the theorem. Let K'4 be a positive constant which will
be determined later and put

and

F'3 = Rn \ t h e closure of (( U Q)u Fi) •

An argument similar to that in the proof of (1) shows that

(3.4) I

As before we have:

LEMMA 3.1'.

LEMMA 3.2'.

LEMMA 3.3'.

Z A/Yvl T fVl~ V A/Yvl

l-F)" / 2^rfy OJ A-»oo

x JI"1; F(x,

We shall postpone the proof of these three lemmas again to the following sections.
By (3.4), Lemmas 3.1', 3.2' and 3.3'
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N(X)——I (X-V)n/2dxdy as A-̂ oo .
(2)"J/

Thus the proof of (2) is complete.
We get the proof for (3) if we interchange x and y in the definition of V(x, y).
We now prove (4). Let J1 and J2 be the subsets of &\ defined in the proof of

(1). Let J\ be the set of all cubes Q in &'x\Si s u c h t h a t minzeQ V(z)<X. Let

Fl = Rn \ t h e closure of |J Q .

An argument similar to that in the proof of (1) shows that

LEMMA 3.3".

(2*)
{,X-V)nl2dxdy as X-+ao

A " = {(x, y) e Rmi x R->; V(x, y) < X} .

This lemma is proved in Section 5. By (3.5) and Lemma 3.3"

(X-V)nlldxdy as A-

Thus the proof of (4) is complete. q.e.d.

4. Proof of Lemmas 3.1, 3.2, 3.1' and 3.2'.

PROOF OF LEMMA 3.1. First we assume that

(4.1) V{x,y)>k for all ( x j ) e F 3 .

Then we obviously have

I {\Vu\2+V\u\2)dxdy>k\ \u\2dxdy,
JF3 JF3

for all ueHx(F3)9 w/0. This proves Lemma 3.1.
Now we prove (4.1). Suppose contrarily that there exists a point (x0, y0) in F3 such

that
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(4.2) V{x09y0)<X.

Then there exists a cube Q in &\ such that (xo,yo)eQ and minzeQV(z)<L By the
definition of F3 this cube Q does not belong t o / j U ^ . Therefore, there exists a point
(*i9 yi)e 2 s u c h ^at | JCX | > ^A"1 or | y1 \ > K2W

2, where Kl9 K2, iix and \x2 are constants
given in the definition of «/3.

Suppose |jc1|>AT1A
#il. Since the side length of Q is A~1/2(log/l)1/w,

Observe that the right hand side is not less than

* ! A" - m \/2X~ 1/2(log A)1

if A is sufficiently large. Therefore

(4.3) inf{|x|;(x,;y)

Thus, by (4.2) and the assumptions on ft and gj9

j l j l

By (4.3) the last term is not less than

where C1 = cn*-i*J^2- (2>A+ ' ) . Therefore

where C2 = Cr1/a.

If we choose A:x and K+ so that

(4.4) C2/

then

Thus, for all components yoj (j=\, • • *, w2) of j 0 we have \yoj\<K^~112. Hence
(̂ o? ̂ o) e ^2. This contradicts (x0, .y0) e F3.

If |y t \>K2^
2
9 then a similar argument shows that

under the condition

(4.5) C3K
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where C3 = (Cn?=i<6-2~(Z*A+a))~1/v- Therefore (xo,yo)eFl and this contradicts
(JC0, yo)eF3. Thus (4.1) holds under the conditions (4.4) and (4.5). We shall give exact
values of Kl9 K2, K3 and K± satisfying (4.4) and (4.5) later. q.e.d.

PROOF OF LEMMA 3.2. We prove N(X, T^, F2) = 0. First we show

(4.6) in{{\x\;{x9y)eF2}>(K1/2)X^.

Let (x, y)sF2. Choose Q in &\ so that (x, y)eQ. Since

by the definition of F2 and since the side length of Q is X~1/2(logX)1/n, we have (x, 0)eQ
if X is sufficiently large. Therefore 0 = minZ€Q V(z)<L Since Q$Ji u / 3 , there exists a
point (x0, y0) e Q such that

(4.7)

or

(4.8)

(4.8) is impossible if X is sufficiently large. Therefore (4.7) holds and

I x | > | x01 - m \'2X

if X is sufficiently large. Thus we have (4.6).
Applying arguments similar to those in the proof of Lemma 3.1, we have, by (4.6),

v(x,y)=cf\Mx\r- n 0/I.H/'-|*ri.H'>c ft ^ •
> = 1 7 = 1 J = l

^C ft b%-((K

for all (x,y)eF2, where Q = c n , ' = i ' l ' o ' r ( & * + 7 ) ' Therefore

(4.9)

> I ( I
for all ueH\F2) where | V,,M|2=X7=I |5M/^- | 2 , F j ^ l x e ^ ' U ^ ^ e ^ } and

Remark that the function C4K^aidi+yXl +d/2\y\d is an ̂ -weight on Rm2 by Lemma
2.3. Set
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x= inf (a

Then, by elementary calculus,

(4.10)

where

and com2 is the volume of the unit ball in Rm2.
By Lemma 2.4

(4.11) f (|Vyt;|
2 + C4^p^+U1+^|>;nt;|2)rfv>C^i f \v\2dy

JG' JGr

for all veH1(G% where C6 is a constant depending only on m2 and <5, while

Choosing Kl and K^ so that

(4.12)

we get G — G' by (4.10). Therefore we have

(4.13) f (\Vu\2+V\u\2)dxdy>C5C6K\/fl>l\ \u\2dxdy
JF2 JF2

for all ueHl(F2). Choose Kx so that

(4.14) \^

Then we have

I (\Vu\2 + V\u\2)dxdy>U \u\2dxdy
JF2 JF2

for all ueH\F2l M^O. Hence N(k, 7>, F2) = 0.

Similar arguments show that N(A, T^9 Fl) = 0 if we choose K2 and ^ 3 so that

(4.15) CJKI^^K;2

and

(4.16) C 7 C 8 ^ 2 > 1 ,
where C7 is a positive constant depending only on /n1} y, C, jSj, A,-, a,- and a/0, while C8

is the constant given in Lemma 2.4 for the function \x\y.
Now we choose Kl9 K2, K3 and K^ so that they satisfy (4.4), (4.5), (4.12), (4.14),
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(4.15) and (4.16). We may put

(4.17) Kt =max{(C2Cy2)d»\ (C5C6)

(4.18) K2

and define K3 and K4 so that they satisfy (4.12) and (4.15), respectively. Then all
conditions in the proofs of Lemmas 3.1 and 3.2 are satisfied. q.e.d.

PROOF OF LEMMA 3.1'. If we set y = 0 and replace F2, F3, J'3, Kl9 K^ in the proof

of Lemma 3.1 by F'2, F'3, «/'3, K'u K\, respectively, then we get the proof of Lemma
3.T. The different point is that the argument on the inequality \yx \>K2^

2 does not
occur. The condition on K\ and K\ is

(4.4)'

where C9 is a positive constant corresponding to C2. We shall give exact values of K\
and K\ later. q.e.d.

PROOF OF LEMMA 3.2'. If we set y = 0 and replace F2, e/3, Ku K^ in the proof of

N(X, Tjr, F2) — 0 in Lemma 3.2 by F'2, «/3, K\, K\, respectively, then we get the proof
of Lemma 3.2'. The different point is that the inequality (4.8) does not occur. The
conditions on K\ and K\ are

(4.12)' C10K'^ = K'i2

and

(4.14)' C i o C n A T i ^ ^ l ,

where C l o and C n are positive constants corresponding to C5 and C6. If we put

(4.17)' ^ ' ^ m a x ^ C i i ^ ^ Q o Q O - ^ + l ,

then all conditions (4.4)', (4.12)' and (4.14)' are satisfied. q.e.d.

5. Proof of Lemmas 3.3, 3.3' and 3.3". First we prove Lemma 3.3. Let / be the
side length of cubes in J2^, that is, l=X~1/2(logX)1/n. In order to prove Lemma 3.3, we
show the following three inequalities:

^ f (^- Vy
2n)n JA

as A^oo, where Mx=

(2)

as A->oo, where M 3 =

(1) £ {9 j , <2)
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- f ( A -(3) £ N(X, T9, &)>-^- f (A- Vrl2dxdy-m^2\ S1

-m2X
nl2\ Sx | - O(M2(log X)1 -lln)

as A->oo, where M2= #./2, S^f t jc jOe^; \xl\<l} and 51 = {(jc,

PROOF OF (1). Let Q be a cube in J x. Since

Q

for all ueH\£),

I ( |VM| 2+F|w| 2)rf^>| (|VM
JQ JQ

Q

by the min-max principle in Reed-Simon [7; p. 78]. Following Edmunds and Evans
[2; p. 143], we get

Q (2n)n \ Q

where Cx is a positive constant depending only on m1 and w2. Therefore

m / \w/2

(5.1) £ & I
since the side length of Q is /=A"1/2(log A)1/w.

Let £l9'—9€n be positive integers. Let Q be a cube in ^ with center
^ +1/2), • • •, /({„ +1/2)) and let Q' be a cube in ^ i with center (/(^ -1/2),

). Then

for all (x, y)eQ'. Therefore Q'e/2 and

| Q \U - min V J < (X - V)nl2dxdy .

Note that Q-+Q' is a one-to-one correspondence from cubes in Jx with centers in the
first orthant to cubes in J2 with centers in the first orthant. Then we get, by the
symmetry property of V,

(5.2) £ leiU-minK) <(A-min K Y ^ < f (A- K)w/2

\ Q J J/
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where / = \JQej2 Q. Note that

(5.3) I en A .

Indeed, by the definition of «/2>

la {(x, y)eRmix Rm>; V(x, y) < X} .

Furthermore, fo l lowing the argument in the proof o f Lemma 3.1 , w e get J 2<=iJ X\*J z.
Thus we get (5.3). H e n c e

Q

Applying this to (5.1), we get

Z I g |U ~ min V) < I (1 - V)nl2dxdy .

JV
where the bound of the error term is independent of A. q.e.d.

PROOF OF (2). Applying the argument in the proof of (1), we get

(2n)n

= O(M3logX).

PROOF OF (3). Let Q be a cube in J2. Since

I (\Vu\2+V\u\2)dxdy<\ (

for all w e ^ ( ^ X

1-maxK, - A * , .

by the min-max principle. Following Edmunds and Evans [2; p. 143] as before, we get

N\ A —max V, -A&, 6]>——|Q|( A —max
\ Q / (2n)n \ Q

where C2 is a positive constant depending only on ml and w2. Therefore

(5.4) Z N(X9Tg,&>^ Z l e i ( A - m a x K ) -<
Q /

Applying an argument similar to that in the proof of (1), we get
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(5.5) X IQ \(k - max V) > \ (X - V)n/2dxdy,
QeS2 \ Q ) Jj

where J={(x,y)eRmi xRm>; (x9y)e\JQeJi Q, V(x,y)<l}. Recall the definition of Sx

and apply the argument in the proof of Lemma 3.1. Then we get

(U eW,
Therefore, by the definition of A,

;\Xi\>l, i = l , • • •, m l 9 \yj\>l, 7 = 1 , • • • ,

U {(x,y)G^;|xJ</}u U {(x,y)eA;\yj\<l})

/mi m2 \

= A\( \JSlu\J Sj), say.

Thus by (5.5)

Z IGII >l—max Kj > (X-VY^dxdy-Y, (X-V)nl2dxdy-
QeSi \ Q / JA *=lJs'

m 2 f* p m m

V (} — VYl2drdv> (2— VY/2/JY/]V—2n/2 V I & I jl"/2 V I C
/ t I IA r I WA,14y ^Z. I IA — r I (AJIUy — A / ^ O — A / I O i

J=lJSj JA * = 1 7 = 1

where we used the symmetry property of V. Therefore, by (5.4),

Z AT(Af T99 &>^n f (A- Vr2dxdy
Qe'2 (2n))nJA

-m^2\S1 \-m2^
2\Sx |-O(M2(logX)1"1/n).

Q.e.Q.

Therefore, by (1), (2) and (3), Lemma 3.3 follows from the following three lemmas.

LEMMA 5.1.

LEMMA 5.2.

)1-1/ ' I = / I (A-V)n/2dxdy) as A-oo .
V JA /

Xn/2\ S11 = </ I (A- V)nl2dxdy\ as /l-oo ,
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and

Xnf2\ Sl I = o( \ (X- V)nl2dxdy) as X->oo .

LEMMA 5.3.

M3(log X) = o( I (X- V)tt/2dxdy] as X^>oo .

To prove Lemmas 5.1, 5.2 and 5.3, we use the following lemma, where f(X)&g(X)
means that f(X) = O(g(X)) and g(X) = O(f(X)) as >l->oo.

LEMMA 5.4. Let V be the function defined by (3.1). Set v1=/i
y) - \
v4=m2

(1)

(2)

(3) Zj1jj

\(k-V)nl2dxdyKXy>.
JA

(4) /n the other cases,

( A - Vflld3afy«(/lVl + AV2) log /I.L
These estimates are given by elementary calculus, so we omit the proof of Lemma

5.4.
As a consequence of Lemma 5.4, we get

(5.6) I (X - V)nl2dxdy = O((XVi + XV2) log X + Xv> + Xv<).

Remark that an easy calculation shows that the order of Ĵ (A— V)n/2dxdy is the same
as that of Xn/2\ A | .

PROOF OF LEMMA 5.1. Since the argument before (5.2) shows that M1=M2, it
suffices to estimate M2(logX)l~lln.
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Since the side length of Qe J2 is /=k~ 1/2(log X)1/m,

U Q

By (5.3) the term on the right hand side does not exceed QogX)~1/nAHl2\A\. Since
knl2\ A | = O([A(k- V)n/2dxdy), the assertion of Lemma 5.1 is valid. q.e.d.

PROOF OF LEMMA 5.2. First we prove

(5.7) Xnl2\ Sx | = o( I (X - V)nl2dxdy\.

If m1>\, then

Xn/2\ Sx\<2Xnl2l\ S' | = 2( log X)llnXin-1)/2\ S' | ,

where S' is the set of all points (x\ y) e Rmi ~x x Rm2 such that

" and \y\<K2k*\

where Kl9 K2, fit and \i2 are constants given in the definition of Jz- By an argument
similar to that in the note after Lemma 5.4, we can show that the order of k(n~1)/2\ S' \
is the same as that of $s.(JL-V'(x'9y))iH-1)/2dx'dy9 where V'(x'9y)=V{09 x\y). If we
replace wx by mx -1 in Lemma 5.4, we get the order of JV(/l- V'){n~l)l2dxfdy. Thus,
replacing ml by m1 — 1 in (5.6), we get

(5.8) (log^)1/w (X-V)in-1)/2dx'dy = O((r'i + ky'2)(\ogk)1 + 1/n + (k^
Js>

where v\=(n— ]
1, and vi =

i)m2lC£J)=i Pjhj + S)"1. If we compare the order of Ĵ (A— V)n/2dxdy in Lemma 5.4 with
the one on the right hand side of (5.8), then we get

11 = o( I {k- V)n/2dxdy) as

If mx = 1, then, by the definition of S1,

where C is a constant independent of L Therefore, by Lemma 5.4, we can show
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Xnl2\ S11 = o( I ( A - V)n/2dxdy\.

Thus we get (5.7).
Similarly, we can prove

Xnl2\ S11 = ol \ (k- V)nl2dxdy) .
\JA ) q.e.d.

PROOF OF LEMMA 5.3. Let Bl and Bj be the subsets of Rn and Jz be the set of

cubes as defined in the proof of the Theorem. Let {il9 • •, Q and {j\, • • • ,jt} be subsets
of {1, • • •, m^ and {1, • • •, m2}, respectively. For {il9 ••-, is} and {jl9 • • -Jt}9 denote

QnBj=0J=l, •••,

and

Then we get a disjoint decomposition of ^ 3 :

(5.9) • , = ( U J"--'fc)u( U ^,.:.j,)u( U aji'^i).

Now we show that

(5.10) = < / I ( A -
for any *!<••• </ s in {1, • • •, wx}.

Fix ix<"' <is and simply denote 1 instead of J£iu'"*ia.
First suppose sKm^ Let J' be the set of g in J which are contained in the first

orthant. Let R be the set of all points (x, y)sRmi x Rm2 such that

0<xt<l, i=iu -',ia9

l<xi9 i^iu - - -9is9

7 = 1 , ",m2,
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and

w h e r e x * = (xXl, • • • , \ ) J , T 1 < - - < T m r s , {xl9 • • •, t m i _ s } = { l , • • • , « 1 } \ { i 1 , • • • ,
is},e1=(l, • • *, l)eRmi~s,e2 = (l, • • •, l)eRm2andKu K2,fiu \i2 are constants given in
the definition of «/3. Then, by the definitions of </3 and 3!9

Therefore

^- I—n + si n ' I

<l \R I,u <?

where J?; is the set of all points (x*, y) in Rmi~s x Rm2 such that

and

c n y;<i x* ir fi 0/i y i/'i x* n ̂  ia < A .

Therefore, since /= A'1/2(log A)1/n ,

(5.11) * ^ ^ / - " + ' | J«/| = OogA)^"-1Ac"-')/2|If'l.

By an argument similar to that in the proof of Lemma 5.2, we get

where ^ ( n - J ^ K X X f ^ ^ y) ^2
1(2 + 5)(m1-^)(Xf==1Mi + 7)"1 and

1- Therefore, by (5.11), we get

(5.12) (# J2) log A =

If we compare the orders in Lemma 5.4 with the one in (5.12), then we get

i = </ (k-V)nl2dxdy\.
\JA )

Suppose s = m^ Then, by the definition of «/3 and J2, we get

Xi\^l9i=\9 • • -, ml9
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Therefore, by Lemma 5.4,

(# J) log A = r n | J | log X<Crn+mXm2fl2 log A

= Crm*/2+m2fl\logA)mi/n = o( f (X-V)n/2dxdy),

where C is a constnt independent of A. Therefore (5.10) holds.
Similarly, we can show that

2h,...Jt)logX=

and

(#4;;:::;^) log A = < / f (A- vy2dxdy\.

Therefore, Lemma 5.3 follows from (5.9). q.e.d.

Thus we proved Lemma 3.3. If we set y = 0 and replace A, Jz, Kx in the proof of
Lemma 3.3 by A\ J'^ K\, respectively, then we get the proof of Lemma 3.3' after
simple modification. If we set y = 3 = 0 and replace A, f$ in the proof of Lemma 3.3
by A", 1/3, respectively, then we get the proof of Lemma 3.3". The differences caused
by these modifications are inessential.

REMARK 5.1. The above method does not give an asymptotic estimate for N(X)
when ym2>(£4

q
j=1fijhj + 8)m1 or 5m1>C£i

p
i=l0Lidi + y)m2. Indeed, we cannot get good

estimates for error terms in that case.

REMARK 5.2. We also have the asymptotic formula for the potential

where (x ,y)eRxR, a, )?, y>0, j8<a, y<a and <x<jff + y. Let / i ^
(2 + y)(2a)-1} and ^2 = (2 + a)2-1(j3 + y)-1 . Then

(A- V)dxdy as A-00 ,

where

A = {(x, y) e R x R; V(x9 y) < A, | x \ < Cx X",\ y \ < C2^}

and Ci9 C2 are positive constants depending only on a, j? and y. The proof of this result
is a modification of the proof of the Theorem.
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