ASYMPTOTIC DISTRIBUTION OF EIGENVALUES OF SCHRÖDINGER OPERATORS WITH NONCLASSICAL POTENTIALS

Kazuya Tachizawa

(Received August 17, 1989, revised September 8, 1989)

1. Introduction. Let Δ be the Laplacian in the Euclidean space \boldsymbol{R}^{n}, that is, $\Delta=\sum_{i=1}^{n} \partial^{2} / \partial z_{i}^{2}$. Let $V(z)$ be a nonnegative function defined on R^{n}. Suppose that the set $\left\{z \in \boldsymbol{R}^{n} ; V(z)=0\right\}$ is an unbounded subset of \boldsymbol{R}^{n}. Our aim is to give an estimate for the asymptotic distribution of eigenvalues of the Schrödinger operator $-\Delta+V(z)$. Several results on this problem are known (cf. for example, Robert [8], Simon [10] and Solomyak [12]).

In this paper we restrict our attention to the potential of the form

$$
\begin{equation*}
V(x, y)=C \prod_{i=1}^{p} f_{i}(|x|)^{\alpha_{i}} \cdot \prod_{j=1}^{q} g_{j}(|y|)^{\beta_{j}}|x|^{\nu}|y|^{\delta}, \tag{1.1}
\end{equation*}
$$

where $\quad x=\left(x_{1}, \cdots, x_{m_{1}}\right) \in \boldsymbol{R}^{m_{1}}, y=\left(y_{1}, \cdots, y_{m_{2}}\right) \in \boldsymbol{R}^{m_{2}}, \quad|x|=\left(\sum_{i=1}^{m_{1}} x_{i}^{2}\right)^{1 / 2}, \quad|y|=$ $\left(\sum_{j=1}^{m_{2}} y_{j}^{2}\right)^{1 / 2}$ and $m_{1}+m_{2}=n$ with some conditions on $f_{i}, g_{j}, \alpha_{i}, \beta_{j}, \gamma$ and δ.

Our main result is given in Section 3. Special cases of our estimates are closely related to some results studied by Robert, Simon and others.

The case $V(x, y)=C \prod_{i=1}^{p} f_{i}(|x|)^{\alpha_{i}} \cdot \prod_{j=1}^{q} g_{j}(|y|)^{\beta_{j}}$ is a classical one and the asymptotic distribution of eigenvalues is given by the well-known formula (cf. Rozenbljum [9]).

The case $V(x, y)=\left(1+|x|^{2}\right)^{\alpha}|y|^{2 \beta}$ is studied by Robert [8] by means of pseudo-differential operator calculus with operator symbols. Our method is quite different from his. The results will be given as corollaries when $\alpha m_{2} \geq \beta m_{1}$ in Section 3.

The case $V(x, y)=|x|^{\alpha}|y|^{\beta}$ is studied by Simon [10] when $m_{1}=m_{2}=1$. The case $m_{1} m_{2} \geq 2$ is included in the results of Solomyak [12]. Our method gives another proof of their results when $\alpha m_{2}=\beta m_{1}$. The result is given in Corollary 3.1.

In order to prove the main theorem we shall use classical Dirichlet-Neumann bracketing method formulated by Edmunds and Evans [2]. We shall also apply a simple modification of Theorem 2 of Fefferman [3; p. 144], where he gives several estimates for the eigenvalues of Schrödinger operators with polynomial potentials. We shall apply Fefferman's theorem to operators with A_{∞}-weight potentials and use it in the proof of Lemmas 3.2 and 3.2'.

In Section 2 we shall show some properties of A_{∞}-weights. These properties will be used in Sections 3 and 4. In Section 3 we shall state our main theorem and give the
proof assuming several lemmas. In Sections 4 and 5 we shall prove these lemmas in Section 3.

Acknowledgement. The author would like to thank Professor Satoru Igari for his constant encouragement.
2. A_{∞}-weight potentials. Let Ω be an open set in \boldsymbol{R}^{n}. By $L^{2}(\Omega)$ we shall denote the Lebesgue space of all square integrable functions in Ω. By $H^{1}(\Omega)$ we shall denote the Sobolev space

$$
H^{1}(\Omega)=\left\{u \in L^{2}(\Omega) ; \frac{\partial u}{\partial x_{i}} \in L^{2}(\Omega), i=1, \cdots, n\right\}
$$

where $\partial / \partial x_{i}$ denote distributional derivatives. We put

$$
|\nabla u(z)|^{2}=\sum_{i=1}^{n}\left|\frac{\partial u}{\partial x_{i}}(z)\right|^{2}
$$

for $u \in H^{1}(\Omega)$ and $z \in \Omega$. By $C_{0}^{\infty}(\Omega)$ we shall denote the space of all infinitely differentiable functions with compact support in Ω. For a set S in $R^{n},|S|$ denotes the Lebesgue measure of S. By cubes in R^{n} we shall mean closed cubes whose sides are parallel to the coordinate axes.

Let us recall the definition of A_{∞}-weights.
Definition. A nonnegative locally integrable function $w(z)$ on \boldsymbol{R}^{n} is called an A_{∞}-weight on $\boldsymbol{R}^{\boldsymbol{n}}$ if there exist positive constants C and δ such that

$$
\begin{equation*}
\frac{\int_{S} w(z) d z}{\int_{Q} w(z) d z} \leq C\left(\frac{|S|}{|Q|}\right)^{\delta} \tag{2.1}
\end{equation*}
$$

for all cubes Q in \boldsymbol{R}^{n} and for all measurable subsets S of Q. We call the pair (C, δ) of constants A_{∞}-constants of w. We denote the space of all A_{∞}-weights on \boldsymbol{R}^{n} by $A_{\infty}\left(\boldsymbol{R}^{n}\right)$ or A_{∞}.

We now mention some properties of A_{∞}-weights which are useful in proving that our potential V belongs to A_{∞}. For the proof we refer to [4; Chap. IV].

Lemma 2.1. Let $w(z) \geq 0$ be locally integrable on \boldsymbol{R}^{n}. Then the following conditions are equivalent:
(1) $w \in A_{\infty}$.
(2) There exist $0<C_{1}, C_{2}<1$ such that

$$
\left|\left\{z \in Q ; w(z) \leq C_{1} \frac{1}{|Q|} \int_{Q} w(y) d y\right\}\right| \leq C_{2}|Q|
$$

for every cube Q.
(3) There exists $C>0$ such that

$$
\frac{1}{|Q|} \int_{Q} w(z) d z \leq C \exp \left(\frac{1}{|Q|} \int_{Q} \log w(z) d z\right)
$$

for every cube Q.
(4) There exist $C>0$ and $\varepsilon>0$ such that

$$
\left(\frac{1}{|Q|} \int_{Q} w(z)^{1+\varepsilon} d z\right)^{1 /(1+\varepsilon)} \leq \frac{C}{|Q|} \int_{Q} w(z) d z
$$

for every cube Q.
Remark 2.1. By Hölder's and Jensen's inequalities, $w \in A_{\infty}$ is equivalent to saying that

$$
\frac{1}{|Q|} \int_{Q} w(z) d z \sim\left(\frac{1}{|Q|} \int_{Q} w(z)^{1+\varepsilon} d z\right)^{1 /(1+\varepsilon)} \sim \exp \left(\frac{1}{|Q|} \int_{Q} \log w(z) d z\right)
$$

for every Q, where the bounds are independent of Q.
Lemma 2.2. Let u and v be A_{∞}-weights. Then we have the following:
(1) If $\alpha, \beta>0$, then $\alpha u+\beta v \in A_{\infty}$.
(2) If $0<\alpha<1$, then $u^{\alpha} \in A_{\infty}$.
(3) If $u^{2}, v^{2} \in A_{\infty}$, then $u v \in A_{\infty}$.

Lemma 2.2 is a direct consequence of Lemma 2.1 but we give a proof for convenience.

Proof. (1) follows from the Hardy-Littlewood maximal theorem with weights, but follows directly from the definition of A_{∞}-weights. Let ($C^{\prime}, \delta^{\prime}$) and ($C^{\prime \prime}, \delta^{\prime \prime}$) be A_{∞}-constants of u and v, respectively. Then $C^{\prime}|S|^{\delta^{\prime}} \int_{Q} u d z \geq|Q|^{\delta^{\prime}} \int_{S} u d z$ for every subset S of a cube Q and a similar inequality holds for v with constants ($C^{\prime \prime}, \delta^{\prime \prime}$). Thus, adding both sides, we get (2.1) for $\alpha u+\beta v$ with constants $C=\max \left(C^{\prime}, C^{\prime \prime}\right)$ and $\delta=\min \left(\delta^{\prime}, \delta^{\prime \prime}\right)$.
(2) Assume $0<\alpha<1$. Fix a cube Q. By Hölder's inequality

$$
\frac{1}{|Q|} \int_{Q} u(z)^{\alpha} d z \leq\left(\frac{1}{|Q|} \int_{Q} u(z) d z\right)^{\alpha}
$$

which, by Lemma 2.1 (3), does not exceed

$$
\left(C \exp \left(\frac{1}{|Q|} \int_{Q} \log u(z) d z\right)\right)^{\alpha}=C^{\alpha} \exp \left(\frac{1}{|Q|} \int_{Q} \log u(z)^{\alpha} d z\right)
$$

Thus $u^{\alpha} \in A_{\infty}$.
(3) By Schwartz's inequality

$$
\frac{1}{|Q|} \int_{Q} u(z) v(z) d z \leq\left(\frac{1}{|Q|} \int_{Q} u(z)^{2} d z\right)^{1 / 2}\left(\frac{1}{|Q|} \int_{Q} v(z)^{2} d z\right)^{1 / 2}
$$

Applying Lemma 2.1 (3) to each term on the right hand side, we get

$$
\begin{aligned}
\frac{1}{|Q|} \int_{Q} u(z) v(z) d z & \leq C \exp \left(\frac{1}{2|Q|} \int_{Q}\left(\log u(z)^{2}+\log v(z)^{2}\right) d z\right) \\
& =C \exp \left(\frac{1}{|Q|} \int_{Q} \log u(z) v(z) d s\right),
\end{aligned}
$$

which proves (3).
q.e.d.

Lemma 2.3. Let $P_{i j}(z)$ be polynomials on \boldsymbol{R}^{n} of degrees $d_{i j}$, where $i=1, \cdots, q$ and $j=1, \cdots, r$. Let $\alpha_{i j}, \beta_{i j}$ and $\gamma_{i j}$ be positive numbers. Let

$$
f_{i}(z)=\sum_{j=1}^{r} \alpha_{i j}\left|P_{i j}(z)\right|^{\beta_{i j}}, \quad i=1, \cdots, q
$$

and

$$
w(z)=\prod_{i=1}^{q} f_{i}(z)^{\gamma_{i}} .
$$

Then $w(z)$ is an A_{∞}-weight on \boldsymbol{R}^{n} and the A_{∞}-constants depend only on $n, d_{i j}, \beta_{i j}, \gamma_{i j}$ and q.
Proof. First we observe the following: if $P(z)$ is a polynomial on R^{n} and $\alpha>0$, then $|P(z)|^{\alpha} \in A_{\infty}$. Indeed, we have

$$
\begin{equation*}
\frac{1}{|Q|} \int_{Q}|P(z)| d z \leq \max _{z \in Q}|P(z)| \leq \frac{C}{|Q|} \int_{Q}|P(z)| d z \tag{2.2}
\end{equation*}
$$

for every cube Q, where C is a constant depending only on n and the degree of P (cf. [3; p. 146]). Thus Lemma 2.1 (4) holds for every $\varepsilon>0$. Thus $|P(z)|^{\alpha} \in A_{\infty}$ for $\alpha=1,2, \cdots$. By Lemma 2.2 (2), this holds for every $\alpha>0$.

Next we observe the following: if $P_{j}(z), j=1, \cdots, h$ are polynomials on \boldsymbol{R}^{n}, then $\prod_{j=1}^{h}\left|P_{j}(z)\right|^{\alpha_{j}} \in A_{\infty}$ for every $\alpha_{j}>0$. Since $\left|P_{1}(z)\right|^{2 \alpha_{1}} \in A_{\infty}$ and $\left|P_{2}(z)\right|^{2 \alpha_{2}} \in A_{\infty}$, we have $\left|P_{1}(z)\right|^{\alpha_{1}}\left|P_{2}(z)\right|^{\alpha_{2}} \in A_{\infty}$ by Lemma 2.2 (3). The case $h>2$ is shown similarly.

Therefore, by Lemma 2.2 (1), $f_{i}(z)^{\gamma} \in A_{\infty}$ for $\gamma=1,2, \cdots$. By Lemma 2.2 (2),
$f_{i}(z)^{\gamma} \in A_{\infty}$ for every $\gamma>0$. Applying the preceding argument, we can show $w(z) \in A_{\infty}$. q.e.d.

Corollary to Lemma 2.3. Let $w(z)$ be the function given in Lemma 2.3. Then there exists a positive constant C depending only on $n, d_{i j}, \beta_{i j}, \gamma_{i}$ and q such that

$$
\frac{1}{|Q|} \int_{Q} w(z) d z \leq \max _{z \in Q} w(z) \leq C \frac{1}{|Q|} \int_{Q} w(z) d z
$$

for all cubes Q in $\boldsymbol{R}^{\boldsymbol{n}}$.
Proof. It suffices to show the second inequality. By the definition of w we have

$$
\max _{z \in Q} w(z) \leq \prod_{i=1}^{q}\left(\sum_{j=1}^{r} \alpha_{i j}\left(\max _{z \in Q}\left|P_{i j}(z)\right|\right)^{\beta_{i j}}\right)^{\gamma_{i}}
$$

Since $\left|P_{i j}\right|$ are A_{∞}-weights, by (2.2) and Lemma 2.1 (3), the last term does not exceed

$$
\begin{aligned}
& \prod_{i=1}^{q}\left(\sum_{j=1}^{r} \alpha_{i j}\left(C_{1 i j} \frac{1}{|Q|} \int_{Q}\left|P_{i j}(z)\right| d z\right)^{\beta_{i j}}\right)^{\gamma_{i}} \\
& \quad \leq \prod_{i=1}^{q}\left(\sum_{j=1}^{r} \alpha_{i j}\left(C_{1 i j} C_{2 i j} \exp \left(\frac{1}{|Q|} \int_{Q} \log \left|P_{i j}(z)\right| d z\right)\right)^{\beta_{i j}}\right)^{\gamma_{i}} \\
& \quad \leq C_{3} \prod_{i=1}^{q}\left(\sum_{j=1}^{r} \alpha_{i j}\left(\exp \left(\frac{1}{|Q|} \int_{Q} \log \left|P_{i j}(z)\right| d z\right)\right)^{\beta_{i j}}\right)^{\gamma_{i}}
\end{aligned}
$$

where $C_{1 i j}$ depend only on n and $d_{i j}$, while $C_{3}=\prod_{i=1}^{q}\left(\max _{j}\left(C_{1 i j} C_{2 i j}\right)^{\beta_{i j}}\right)^{\gamma_{i}}$. By Jensen's inequality the last term does not exceed

$$
C_{3} \prod_{i=1}^{q}\left(\frac{1}{|Q|} \int_{Q} \sum_{j=1}^{r} \alpha_{i j}\left|P_{i j}(z)\right|^{\beta_{i j}} d z\right)^{\gamma_{i}}=C_{3} \prod_{i=1}^{q}\left(\frac{1}{|Q|} \int_{Q} f_{i}(z) d z\right)^{\gamma_{i}}
$$

Note that f_{i} are A_{∞}-weights. Applying Lemma 2.1 (3) again to the last term and arguing similarly as above, we get an estimate

$$
\max _{z \in Q} w(z) \leq C_{4} \frac{1}{|Q|} \int_{Q} \prod_{i=1}^{q} f_{i}(z)^{\gamma_{i}} d z \leq C_{4} \frac{1}{|Q|} \int_{Q} w(z) d z
$$

where C_{4} depends only on $n, d_{i j}, \beta_{i j}, \gamma_{i}$ and q.
q.e.d.

The following Lemmas 2.4 and 2.6 are modifications of Theorems 2 and 3 in Fefferman [3; p. 144], respectively.

Lemma 2.4. Let $U(z)$ be an A_{∞}-weight on \boldsymbol{R}^{n}. Put

$$
\lambda_{1}=\inf _{\substack{a>0 \\ \xi \in R^{n}}}\left(a^{-2}+a^{-n} \int_{|z-\xi|<a / 2} U(z) d z\right)
$$

Suppose that $\lambda_{1}>0$. Then

$$
C \lambda_{1} \int_{Q}|v(z)|^{2} d z \leq \int_{Q}\left(|\nabla v(z)|^{2}+U(z)|v(z)|^{2}\right) d z
$$

for all cubes Q in R^{n} with side length $2\left(\lambda_{1}\right)^{-1 / 2}$ and for all $v \in H^{1}(Q)$, where C is a positive constant depending only on n and the A_{∞}-constants for $U(z)$, and Q denotes the interior of Q.

To prove Lemma 2.4 we use the following lemma.
Lemma 2.5 (Morimoto [6]). Let Q be a cube in \boldsymbol{R}^{n} and let $U(z)$ be a nonnegative measurable function on Q. Suppose that there exist positive constants C_{1} and C_{2} such that

$$
\begin{equation*}
C_{1}|Q| \leq\left|\left\{z \in Q ; C_{2} l(Q)^{-2} \leq U(z)\right\}\right|, \tag{2.3}
\end{equation*}
$$

where $l(Q)$ denotes the side length of Q. Then we have

$$
C l(Q)^{-2} \int_{Q}|v(z)|^{2} d z \leq \int_{Q}\left(|\nabla v(z)|^{2}+U(z)|v(z)|^{2}\right) d z
$$

for all $v \in H^{1}(\ell)$, where C is a positive constant depending only on n, C_{1} and C_{2}.
Proof of Lemma 2.4. Let Q be a cube in \boldsymbol{R}^{n} with $l(Q)=2\left(\lambda_{1}\right)^{-1 / 2}$ and center z^{0}. Put $a=2 \lambda_{1}^{-1 / 2}$ and $\xi=z^{0}$. Then, by the definition of λ_{1}, we get

$$
\lambda_{1} \leq \frac{1}{4} \lambda_{1}+\frac{1}{|Q|} \int_{Q} U d z
$$

Therefore

$$
\frac{3}{4} \lambda_{1} \leq \frac{1}{|Q|} \int_{Q} U d z
$$

Thus

$$
\begin{equation*}
3 l(Q)^{-2} \leq \frac{1}{|Q|} \int_{Q} U d z \tag{2.4}
\end{equation*}
$$

Since U is an A_{∞}-weight in $\boldsymbol{R}^{\boldsymbol{n}}$, we have, by Lemma 2.1 (2),

$$
C_{1}|Q| \leq\left|\left\{z \in Q ; C_{2} \frac{1}{|Q|} \int_{Q} U d z \leq U(z)\right\}\right|
$$

where C_{1} and C_{2} are positive constants depending only on n and the A_{∞}-constants of U. Combining this with (2.4), we have

$$
C_{1}|Q| \leq\left|\left\{z \in Q ; 3 C_{2} l(Q)^{-2} \leq U(z)\right\}\right|
$$

Therefore U and Q satisfy the inequality (2.3). Thus Lemma 2.4 follows from Lemma 2.5.

Now, in order to consider the distribution of the eigenvalues of Schrödinger operators with A_{∞}-weight potentials, we introduce some notation.

Let U be an A_{∞}-weight. Suppose that an operator $-\Delta+U$ which is defined on $C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ is essentially selfadjoint in $L^{2}\left(\boldsymbol{R}^{n}\right)$ and L is a selfadjoint realization of $-\Delta+U$. Assume that L has only discrete spectrum. Let λ be a positive number and let $N(\lambda, U)$ be the number of eigenvalues of L less than λ. Let \mathscr{F}_{λ} be a tesselation of \boldsymbol{R}^{n} by cubes whose side length is $\lambda^{-1 / 2}$ and whose vertices are points in $\lambda^{-1 / 2} \boldsymbol{Z}^{n}$ where \boldsymbol{Z} is the set of integers. Let $N_{1}(\lambda, U)$ be the number of cubes Q in \mathscr{F}_{λ} such that

$$
\frac{1}{|Q|} \int_{Q} U(z) d z<\lambda
$$

Lemma 2.6. Assume that U satisfies the above conditions. Then we have

$$
N_{1}\left(C_{1} \lambda, U\right) \leq N(\lambda, U) \leq N_{1}\left(C_{2} \lambda, U\right)
$$

for every positive number λ, where C_{1} is a constant depending only on n, while C_{2} is a constant depending only on n and the A_{∞}-constants of U.

We omit the proof of Lemma 2.6. The reader may follow the arguments of the proof of Theorem 3 in [3; p. 148] if he applies Lemma 2.5 in place of Main Lemma in [3; p. 146].

Remark 2.2. Lemma 2.4 shows that Theorem 2 in [3; p. 144] is also valid for A_{∞}-weight potentials. This follows easily from the proof of Theorem 2 in [3].

Remark 2.3. Let $U(z)$ be an A_{∞}-weight on \boldsymbol{R}^{n}. Suppose that $-\Delta+U$ defined on $C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ is essentially selfadjoint in $L^{2}\left(\boldsymbol{R}^{n}\right)$ and L is a selfadjoint realization of $-\Delta+U$. If $N_{1}(\lambda, U)<\infty$ for all $\lambda>0$, then L has only discrete spectrum. This fact is verified in a manner similar to the proof for Remark 4 in Simon [11; p. 215].

Remark 2.4. Let $w(z)$ be the function given in Lemma 2.3. Let $N_{2}(\lambda, w)$ be the number of cubes in \mathscr{F}_{λ} such that

$$
\max _{z \in Q} w(z)<\lambda .
$$

for $\lambda>0$. Then

$$
N_{2}(\lambda, w) \leq N_{1}(\lambda, w) \leq N_{2}(C \lambda, w)
$$

for every positive number λ, where C is a constant independent of λ. The first inequality is obvious and the second inequality follows from Corollary to Lemma 2.3.
3. Main theorem. Let p and q be positive integers. Let

$$
\begin{aligned}
& f_{i}(t)=\sum_{k=0}^{d_{i}} a_{i k} k^{k}, \quad(i=1, \cdots, p), \\
& g_{j}(t)=\sum_{s=0}^{h_{j}} b_{j s} t^{s}, \quad(j=1, \cdots, q),
\end{aligned}
$$

where d_{i} and h_{j} are nonnegative integers. We assume that $a_{i k}, b_{j s} \geq 0,\left(0<k<d_{i}, 0<s<h_{j}\right.$; $1 \leq i \leq p, 1 \leq j \leq q) a_{i 0}, b_{j 0}>0$ and $a_{i d_{i}}=b_{j h_{j}}=1$. We put

$$
\begin{equation*}
V(z)=V(x, y)=C \prod_{i=1}^{p} f_{i}(|x|)^{\alpha_{i}} \cdot \prod_{j=1}^{q} g_{j}(|y|)^{\beta_{j}} \cdot|x|^{\nu}|y|^{\delta}, \tag{3.1}
\end{equation*}
$$

where $z=(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}}=\boldsymbol{R}^{n}, m_{1}>0, m_{2}>0$, and $\alpha_{i}, \beta_{j}, \gamma$ and δ are nonnegative numbers and $C>0$ is a constant. To avoid trivial cases, we assume $\sum_{i=1}^{p} \alpha_{i} d_{i}+\gamma \neq 0$ and $\sum_{j=1}^{q} \beta_{j} h_{j}+\delta \neq 0$.

By Lemma $2.3 V$ is an A_{∞}-weight on \boldsymbol{R}^{n}. The operator $-\Delta+V$ defined on $C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ is essentially selfadjoint in $L^{2}\left(\boldsymbol{R}^{n}\right)$, since $V \geq 0$ and $V \in L_{\mathrm{loc}}^{2}\left(\boldsymbol{R}^{n}\right)$ (cf. Kato [5]), where $L_{\text {loc }}^{2}\left(\boldsymbol{R}^{n}\right)$ denotes the set of all functions square integrable on every compact subset of \boldsymbol{R}^{n}. Let L be a selfadjoint realization of $-\Delta+V$. Then L has only discrete spectrum. Indeed, we can show easily that $N_{2}(\lambda, V)<\infty$ for all $\lambda>0$ where $N_{2}(\lambda, V)$ is the quantity defined in Remark 2.4. Thus, by Remarks 2.3 and 2.4, the assertion follows.

Now we give an asymptotic formula for $N(\lambda, V)$ which, by definition, is the number of eigenvalues of L less than λ and denoted simply by $N(\lambda)$. Our main result is the following:

Theorem. Let V be the potential given by (3.1). Suppose that $\gamma m_{2} \leq\left(\sum_{j=1}^{q} \beta_{j} h_{j}+\right.$ $\delta) m_{1}$ and $\delta m_{1} \leq\left(\sum_{i=1}^{p} \alpha_{i} d_{i}+\gamma\right) m_{2}$. Set $\mu_{1}=2^{-1}(2+\delta)\left(\sum_{i=1}^{p} \alpha_{i} d_{i}+\gamma\right)^{-1}$ and $\mu_{2}=$ $2^{-1}(2+\gamma)\left(\sum_{j=1}^{q} \beta_{j} h_{j}+\delta\right)^{-1}$. Then

$$
N(\lambda) \sim \frac{\omega_{n}}{(2 \pi)^{n}} \int_{A}(\lambda-V)^{n / 2} d x d y \quad \text { as } \quad \lambda \rightarrow \infty
$$

where ω_{n} is the volume of the unit ball in \boldsymbol{R}^{n} and the set A is defined as follows:
(1) If $\gamma \neq 0$ and $\delta \neq 0$, then

$$
A=\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ; V(x, y) \leq \lambda,|x| \leq C_{1} \lambda^{\mu_{1}},|y| \leq C_{2} \lambda^{\mu_{2}}\right\}
$$

where C_{1} is a positive constant depending only on $m_{2}, C, d_{i}, \alpha_{i}, b_{j 0}, \beta_{j}, \gamma$ and δ, while C_{2} is a positive constant depending only on $m_{1}, C, h_{j}, \beta_{j}, a_{i 0}, \alpha_{i}, \gamma$ and δ.
(2) If $\gamma=0$ and $\delta \neq 0$, then

$$
A=\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ; V(x, y) \leq \lambda,|x| \leq C_{3} \lambda^{\mu_{1}}\right\}
$$

where C_{3} is a positive constant depending only on $m_{2}, C, d_{i}, \alpha_{i}, b_{j 0}, \beta_{j}$ and δ.
(3) If $\gamma \neq 0$ and $\delta=0$, then

$$
A=\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ; V(x, y) \leq \lambda,|y| \leq C_{4} \lambda^{\mu_{2}}\right\}
$$

where C_{4} is a positive constant depending only on $m_{1}, C, h_{j}, \beta_{j}, a_{i 0}, \alpha_{i}$ and γ.
(4) If $\gamma=0$ and $\delta=0$, then

$$
A=\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ; V(x, y) \leq \lambda\right\} .
$$

Corollary 3.1. Let $\alpha, \beta>0$ and $\alpha m_{2}=\beta m_{1}$. Let

$$
V(x, y)=|x|^{\alpha}|y|^{\beta}
$$

for $(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}}$. Then

$$
N(\lambda) \sim a \lambda^{\theta} \log \lambda \quad \text { as } \quad \lambda \rightarrow \infty,
$$

where $\theta=n / 2+m_{1} / \alpha$ and

$$
a=\frac{(2+\alpha+\beta) \Gamma\left(m_{1} / \alpha\right)}{2^{n-1} \alpha \beta \Gamma\left(m_{1} / 2\right) \Gamma\left(m_{2} / 2\right) \Gamma\left(n / 2+m_{1} / \alpha+1\right)} .
$$

Corollary 3.2 ([8; Theorem 3.2 (i)]). Let $\alpha, \beta>0$ and $\alpha m_{2}>\beta m_{1}$. Let

$$
V(x, y)=\left(1+|x|^{2}\right)^{\alpha}|y|^{2 \beta}
$$

for $(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}}=\boldsymbol{R}^{n}$. Then

$$
N(\lambda) \sim a \lambda^{\theta} \quad \text { as } \quad \lambda \rightarrow \infty,
$$

where $\theta=n / 2+m_{2} /(2 \beta)$ and

$$
a=\frac{\Gamma\left(m_{2} /(2 \beta)\right)}{2^{n} \pi^{m_{1} / 2} \beta \Gamma\left(m_{2} / 2\right) \Gamma(\theta+1)} \int_{R^{m_{1}}}\left(1+|x|^{2}\right)^{-\alpha m_{2} /(2 \beta)} d x .
$$

Corollary 3.3 ([8; Theorem 3.2 (ii)]). Let $\alpha, \beta>0$ and $\alpha m_{2}=\beta m_{1}$. Let

$$
V(x, y)=\left(1+|x|^{2}\right)^{\alpha}|y|^{2 \beta}
$$

for $(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{\dot{m_{2}}}=\boldsymbol{R}^{n}$. Then

$$
N(\lambda) \sim a \lambda^{\theta} \log \lambda \quad \text { as } \quad \lambda \rightarrow \infty,
$$

where $\theta=n / 2+m_{2} /(2 \beta)$ and

$$
a=\frac{(1+\beta) \Gamma\left(m_{2} /(2 \beta)\right)}{2^{n} \alpha \beta \Gamma\left(m_{1} / 2\right) \Gamma\left(m_{2} / 2\right) \Gamma(\theta+1)} .
$$

Remark. Our constants in the corollaries are different from those in Robert [8]. A careful calculation will lead to our constants.

Let Ω be an open set in R^{n} and V be the function given by (3.1). Define

$$
t[u, v]=\int_{\Omega}(\nabla u \cdot \overline{\nabla v}+V u \bar{v}) d x d y
$$

and

$$
\|u\|_{t, \Omega}^{2}=t[u, u]+\int_{\Omega}|u|^{2} d x d y
$$

for appropriate functions u and v. By $D_{\mathscr{Q}, \Omega}$ and $D_{\mathcal{N}, \Omega}$ we denote the completions with respect to the norm $\left\|\|_{t, \Omega}\right.$ of $C_{0}^{\infty}(\Omega)$ and the restriction of $C_{0}^{\infty}\left(R^{n}\right)$ to Ω, respectively. Let $t_{\mathscr{D}}$ and $t_{\mathcal{N}}$ be sesquilinear extensions of t to $D_{\mathscr{Q}, \Omega}$ and $D_{\mathscr{N}, \Omega}$, respectively. Then $t_{\mathscr{O}}$ and $t_{\mathcal{N}}$ are closed and semibounded forms. Let $T_{\mathscr{Q}, \Omega}$ and $T_{\mathcal{N}, \Omega}$ be associated selfadjoint operators with respect to $t_{\mathscr{D}}$ and $t_{\mathcal{N}}$, respectively (cf. [2; p. 139]). Let $\Delta_{\mathscr{Q}, \Omega}$ and $\Delta_{\mathcal{N}, \Omega}$ be the Dirichlet and Neumann Laplacian on Ω, respectively. If there is no confusion, we drop the notation Ω, for example, and we denote $T_{\mathscr{D}}$ instead of $T_{\mathscr{D}, \Omega}$.

Let T be a selfadjoint operator in $L^{2}(\Omega)$. For $\lambda>0$ let

$$
N(\lambda, T, \Omega)=\operatorname{rank} \int_{-\infty}^{\lambda} d E_{\mu}(T),
$$

where $E_{\mu}(T)$ is the resolution of the identity corresponding to T.
In this notation we prove the theorem.
Proof of Theorem. First we prove (1). Let λ be a large positive number. Let $\mathscr{F}_{\lambda}^{\prime}$ be a tesselation of \boldsymbol{R}^{n} by cubes Q whose side length is $\lambda^{-1 / 2}(\log \lambda)^{1 / n}$ and whose vertices are points in $\lambda^{-1 / 2}(\log \lambda)^{1 / n} Z^{n}$.

Let $B^{i}=\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ; x_{i}=0\right\} \quad\left(i=1, \cdots, m_{1}\right), \quad B_{j}=\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ; y_{j}=0\right\}$ $\left(j=1, \cdots, m_{2}\right)$ and $B=\left(\bigcup_{i=1}^{m_{1}} B^{i}\right) \cup\left(\bigcup_{j=1}^{m_{2}} B_{j}\right)$. Let \mathscr{I}_{1} be all cubes Q in $\mathscr{F}_{\lambda}^{\prime}$ such that $\min _{z \in Q} V(z) \leq \lambda$ and $Q \cap B=\varnothing$. Let \mathscr{I}_{2} be all cubes in $\mathscr{F}_{\lambda}^{\prime}$ such that $\max _{z \in Q} V(z) \leq \lambda$. Let K_{1} and K_{2} be positive constants which will be determined later. Let \mathscr{F}_{3} be all cubes Q in $\mathscr{F}_{\lambda}^{\prime} \backslash \mathscr{I}_{1}$ such that $\min _{z \in Q} V(z) \leq \lambda$ and

$$
Q \subset\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ;|x| \leq K_{1} \lambda^{\mu_{1}},|y| \leq K_{2} \lambda^{\mu_{2}}\right\},
$$

where μ_{1} and μ_{2} are constants defined in the theorem.
Let K_{3} and K_{4} be positive constants which will be determined later and put

$$
\begin{aligned}
& F_{1}=\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ;(x, y) \notin \bigcup_{Q \in \mathcal{S}_{1} \cup \mathcal{S}_{3}} Q,\left|x_{i}\right|<K_{3} \lambda^{-1 / 2}, i=1, \cdots, m_{1}\right\}, \\
& F_{2}=\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ;(x, y) \notin \bigcup_{Q \in \mathcal{F}_{1} \cup \mathscr{S}_{3}} Q,\left|y_{j}\right|<K_{4} \lambda^{-1 / 2}, j=1, \cdots, m_{2}\right\},
\end{aligned}
$$

and

$$
F_{3}=R^{n} \backslash \text { the closure of }\left(\left(\bigcup_{Q \in \mathscr{S}_{1} \cup \mathcal{S}_{3}} Q\right) \cup F_{1} \cup F_{2}\right) .
$$

Note that if λ is sufficiently large, then $F_{1} \cap F_{2}=\varnothing$.
Now we estimate $N(\lambda)$. Remark that $N(\lambda)=N\left(\lambda, L, \boldsymbol{R}^{n}\right)$ by definition. We have $L=T_{\mathscr{Q}, \mathbb{R}^{n}}=T_{\mathcal{N}, \mathbf{R}^{n}}$ since $-\Delta+V$ defined on $C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ is essentially selfadjoint in $L^{2}\left(\boldsymbol{R}^{n}\right)$. Therefore

$$
\begin{equation*}
N(\lambda)=N\left(\lambda, T_{\mathcal{N}}, \boldsymbol{R}^{n}\right)=N\left(\lambda, T_{\mathscr{G}}, \boldsymbol{R}^{n}\right) . \tag{3.2}
\end{equation*}
$$

Let $\Omega_{1}, \Omega_{2}, \Omega_{3}$ and Ω_{4} be open sets in R^{n} and let Ω be the interior of the closure of $\Omega_{1} \cup \Omega_{2}$. Suppose that $\Omega_{1} \cap \Omega_{2}=\varnothing,\left|\Omega \backslash\left(\Omega_{1} \cup \Omega_{2}\right)\right|=0$ and $\Omega_{3} \subset \Omega_{4}$. By an argument similar to that in Edmunds and Evans [2; p. 143], we get

$$
\begin{aligned}
& N\left(\lambda, T_{\mathscr{N}}, \Omega\right) \leq N\left(\lambda, T_{\mathscr{N}}, \Omega_{1}\right)+N\left(\lambda, T_{\mathscr{N}}, \Omega_{2}\right), \\
& N\left(\lambda, T_{\mathscr{D}}, \Omega\right) \geq N\left(\lambda, T_{\mathscr{G}}, \Omega_{1}\right)+N\left(\lambda, T_{\mathscr{G}}, \Omega_{2}\right),
\end{aligned}
$$

and

$$
N\left(\lambda, T_{\mathscr{T}}, \Omega_{3}\right) \leq N\left(\lambda, T_{\mathscr{S}}, \Omega_{4}\right)
$$

Therefore, by (3.2),
(3.3) $\sum_{Q \in \mathcal{G}_{2}} N\left(\lambda, T_{\mathscr{Q}}, \mathscr{Q}\right) \leq N(\lambda) \leq \sum_{Q \in \mathcal{S}_{1}} N\left(\lambda, T_{\mathcal{N}}, \mathscr{Q}\right)+\sum_{Q \in \mathcal{S}_{3}} N\left(\lambda, T_{\mathcal{N}}, \mathscr{Q}\right)+\sum_{i=1}^{3} N\left(\lambda, T_{\mathcal{N}}, F_{i}\right)$.

We have the following three estimates for $N(\cdot, \cdot, \cdot)$.
Lemma 3.1. $\quad N\left(\lambda, T_{\mathcal{N}}, F_{3}\right)=0$.
Lemma 3.2. $N\left(\lambda, T_{\mathcal{N}}, F_{1}\right)=N\left(\lambda, T_{\mathcal{N}}, F_{2}\right)=0$.
Lemma 3.3.

$$
\begin{aligned}
\sum_{Q \in \mathcal{F}_{2}} N\left(\lambda, T_{\mathscr{G}}, \mathscr{Q}\right) & \sim \sum_{Q \in \mathcal{S}_{1}} N\left(\lambda, T_{\mathscr{N}}, \mathscr{Q}\right)+\sum_{Q \in \mathcal{S}_{3}} N\left(\lambda, T_{\mathscr{N}}, \mathscr{Q}\right) \\
& \sim \frac{\omega_{n}}{(2 \pi)^{n}} \int_{A}(\lambda-V)^{n / 2} d x d y \quad \text { as } \quad \lambda \rightarrow \infty
\end{aligned}
$$

where

$$
A=\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ; V(x, y) \leq \lambda,|x| \leq K_{1} \lambda^{\mu_{1}},|y| \leq K_{2} \lambda^{\mu_{2}}\right\} .
$$

We shall postpone the proof of these three lemmas to the following sections. By (3.3), Lemmas 3.1, 3.2 and 3.3

$$
N(\lambda) \sim \frac{\omega_{n}}{(2 \pi)^{n}} \int_{A}(\lambda-V)^{n / 2} d x d y \quad \text { as } \quad \lambda \rightarrow \infty
$$

Thus the proof of (1) is complete.
We prove (2). Let \mathscr{I}_{1} and \mathscr{I}_{2} be the subsets of $\mathscr{F}_{\lambda}^{\prime}$ defined in the proof of (1). Let K_{1}^{\prime} be a positive constant which will be determined later. Let \mathscr{I}_{3}^{\prime} be the set of all cubes Q in $\mathscr{F}_{\lambda}^{\prime} \backslash \mathscr{I}_{1}$ such that $\min _{z \in Q} V(z) \leq \lambda$ and

$$
Q \subset\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ;|x| \leq K_{1}^{\prime} \lambda^{\mu_{1}}\right\},
$$

where μ_{1} is a constant defined in the theorem. Let K_{4}^{\prime} be a positive constant which will be determined later and put

$$
F_{2}^{\prime}=\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ;(x, y) \notin \bigcup_{Q \in \mathscr{S}_{1} \cup \mathcal{G}_{3}^{\prime}} Q,\left|y_{j}\right|<K_{4}^{\prime} \lambda^{-1 / 2}, j=1, \cdots, m_{2}\right\},
$$

and

$$
F_{3}^{\prime}=\boldsymbol{R}^{n} \backslash \text { the closure of }\left(\left(\bigcup_{\underline{Q} \in \mathscr{S}_{1} \cup \mathcal{G}_{3}^{\prime}} Q\right) \cup F_{2}^{\prime}\right) .
$$

An argument similar to that in the proof of (1) shows that

$$
\begin{align*}
\sum_{Q \in \mathcal{G}_{2}} N\left(\lambda, T_{\mathscr{Q}}, \mathscr{Q}\right) & \leq N(\lambda) \tag{3.4}\\
& \leq \sum_{Q \in \mathcal{G}_{1}} N\left(\lambda, T_{\mathcal{N}}, \mathscr{Q}\right)+\sum_{Q \in \mathcal{S}_{3}^{\prime}} N\left(\lambda, T_{\mathcal{N}}, \mathscr{Q}\right)+\sum_{i=2}^{3} N\left(\lambda, T_{\mathcal{N}}, F_{i}^{\prime}\right)
\end{align*}
$$

As before we have:
Lemma 3.1'.

$$
N\left(\lambda, T_{\mathscr{N}}, F_{3}^{\prime}\right)=0
$$

Lemma 3.2'.

$$
N\left(\lambda, T_{\mathscr{N}}, F_{2}^{\prime}\right)=0 .
$$

Lemma 3.3'.

$$
\begin{aligned}
\sum_{Q \in \mathcal{G}_{2}} N\left(\lambda, T_{\mathscr{G}}, Q\right) & \sim \sum_{Q \in \mathcal{S}_{1}} N\left(\lambda, T_{\mathcal{N}}, Q\right)+\sum_{Q \in \mathscr{F}_{3}^{\prime}} N\left(\lambda, T_{\mathscr{N}}, Q(Q)\right. \\
& \sim \frac{\omega_{n}}{(2 \pi)^{n}} \int_{A^{\prime}}(\lambda-V)^{n / 2} d x d y \quad \text { as } \lambda \rightarrow \infty
\end{aligned}
$$

where

$$
A^{\prime}=\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ; V(x, y) \leq \lambda,|x| \leq K_{1}^{\prime} \lambda^{\mu_{1}}\right\}
$$

We shall postpone the proof of these three lemmas again to the following sections. By (3.4), Lemmas 3.1', 3.2' and 3.3'

$$
N(\lambda) \sim \frac{\omega_{n}}{(2 \pi)^{n}} \int_{A^{\prime}}(\lambda-V)^{n / 2} d x d y \quad \text { as } \quad \lambda \rightarrow \infty
$$

Thus the proof of (2) is complete.
We get the proof for (3) if we interchange x and y in the definition of $V(x, y)$.
We now prove (4). Let \mathscr{I}_{1} and \mathscr{I}_{2} be the subsets of $\mathscr{F}_{\lambda}^{\prime}$ defined in the proof of
(1). Let $\mathscr{I}_{3}^{\prime \prime}$ be the set of all cubes Q in $\mathscr{F}_{\lambda}^{\prime} \backslash \mathscr{I}_{1}$ such that $\min _{z \in Q} V(z) \leq \lambda$. Let

$$
F_{3}^{\prime \prime}=R^{n} \backslash \text { the closure of } \bigcup_{Q \in \mathscr{S}_{1} \cup \mathscr{S}_{3}^{\prime \prime}} Q
$$

An argument similar to that in the proof of (1) shows that

$$
\begin{equation*}
\sum_{Q \in \mathscr{S}_{2}} N\left(\lambda, T_{\mathscr{D}}, \not \subset\right) \leq N(\lambda) \leq \sum_{Q \in \mathscr{F}_{1}} N\left(\lambda, T_{\mathscr{N}}, \not \subset\right)+\sum_{Q \in \mathscr{S}_{3}^{\prime \prime}} N\left(\lambda, T_{\mathcal{N}}, \not \subset\right) \tag{3.5}
\end{equation*}
$$

Lemma 3.3".

$$
\begin{aligned}
\sum_{Q \in \mathcal{S}_{2}} N\left(\lambda, T_{\mathscr{G}}, \underline{Q}\right) & \sim \sum_{Q \in \mathcal{S}_{1}} N\left(\lambda, T_{\mathcal{N}}, \mathscr{Q}\right)+\sum_{Q \in \mathcal{S}_{3}^{\prime \prime}} N\left(\lambda, T_{\mathscr{N}}, \mathscr{Q}\right) \\
& \sim \frac{\omega_{n}}{(2 \pi)^{n}} \int_{A^{\prime \prime}}(\lambda-V)^{n / 2} d x d y \quad \text { as } \quad \lambda \rightarrow \infty
\end{aligned}
$$

where

$$
A^{\prime \prime}=\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ; V(x, y) \leq \lambda\right\} .
$$

This lemma is proved in Section 5. By (3.5) and Lemma 3.3"

$$
N(\lambda) \sim \frac{\omega_{n}}{(2 \pi)^{n}} \int_{A^{\prime \prime}}(\lambda-V)^{n / 2} d x d y \quad \text { as } \quad \lambda \rightarrow \infty
$$

Thus the proof of (4) is complete.
q.e.d.
4. Proof of Lemmas 3.1, 3.2, 3.1' and 3.2'.

Proof of Lemma 3.1. First we assume that

$$
\begin{equation*}
V(x, y)>\lambda \quad \text { for all } \quad(x, y) \in F_{3} \tag{4.1}
\end{equation*}
$$

Then we obviously have

$$
\int_{F_{3}}\left(|\nabla u|^{2}+\eta|u|^{2}\right) d x d y>\lambda \int_{F_{3}}|u|^{2} d x d y,
$$

for all $u \in H^{1}\left(F_{3}\right), u \neq 0$. This proves Lemma 3.1.
Now we prove (4.1). Suppose contrarily that there exists a point (x_{0}, y_{0}) in F_{3} such that

$$
\begin{equation*}
V\left(x_{0}, y_{0}\right) \leq \lambda . \tag{4.2}
\end{equation*}
$$

Then there exists a cube Q in $\mathscr{F}_{\lambda}^{\prime}$ such that $\left(x_{0}, y_{0}\right) \in Q$ and $\min _{z \in Q} V(z) \leq \lambda$. By the definition of F_{3} this cube Q does not belong to $\mathscr{I}_{1} \cup \mathscr{I}_{3}$. Therefore, there exists a point $\left(x_{1}, y_{1}\right) \in Q$ such that $\left|x_{1}\right|>K_{1} \lambda^{\mu_{1}}$ or $\left|y_{1}\right|>K_{2} \lambda^{\mu_{2}}$, where K_{1}, K_{2}, μ_{1} and μ_{2} are constants given in the definition of \mathscr{I}_{3}.

Suppose $\left|x_{1}\right|>K_{1} \lambda^{\mu_{1}}$. Since the side length of Q is $\lambda^{-1 / 2}(\log \lambda)^{1 / n}$,

$$
\inf \{|x| ;(x, y) \in Q\} \geq\left|x_{1}\right|-m_{1}^{1 / 2} \lambda^{-1 / 2}(\log \lambda)^{1 / n} .
$$

Observe that the right hand side is not less than

$$
K_{1} \lambda^{\mu_{1}}-m_{1}^{1 / 2} \lambda^{-1 / 2}(\log \lambda)^{1 / n}>\left(K_{1} / 2\right) \lambda^{\mu_{1}}
$$

if λ is sufficiently large. Therefore

$$
\begin{equation*}
\inf \{|x| ;(x, y) \in Q\} \geq\left(K_{1} / 2\right) \lambda^{\mu_{1}} \tag{4.3}
\end{equation*}
$$

Thus, by (4.2) and the assumptions on f_{i} and g_{j},

$$
\lambda \geq V\left(x_{0}, y_{0}\right)=C \prod_{i=1}^{p} f_{i}\left(\left|x_{0}\right|\right)^{\alpha_{i}} \prod_{j=1}^{q} g_{j}\left(\left|y_{0}\right|\right)^{\beta_{j}} \cdot\left|x_{0}\right|^{\mid \nu}\left|y_{0}\right|^{\delta} \geq C \prod_{j=1}^{q} b_{j 0}^{\beta_{j}} \cdot\left|x_{0}\right|^{\sum \alpha_{i} d_{i}+\eta}\left|y_{0}\right|^{\delta}
$$

By (4.3) the last term is not less than

$$
C \prod_{j=1}^{q} b_{j 0}^{\beta_{j}} \cdot\left(\left(K_{1} / 2\right) \lambda^{\mu_{1}}\right)^{\sum a_{i} d_{i}+\gamma}\left|y_{0}\right|^{\delta}=C_{1} K_{1} \sum^{\alpha_{i} d_{i}+\gamma} \lambda^{1+\delta / 2}\left|y_{0}\right|^{\delta},
$$

where $C_{1}=C \prod_{j=1}^{q} b_{j 0}^{\beta_{j}} \cdot 2^{-\left(\sum \alpha_{i} d_{i}+\gamma\right)}$. Therefore

$$
\left|y_{0}\right| \leq C_{2} K_{1}^{-\left(\sum \alpha_{i} d_{i}+\gamma\right) / \delta} \lambda^{-1 / 2}
$$

where $C_{2}=C_{1}^{-1 / \delta}$.
If we choose K_{1} and K_{4} so that

$$
\begin{equation*}
C_{2} K_{1}^{-\left(\sum \alpha_{i} d_{i}+y\right) / \delta}<K_{4}, \tag{4.4}
\end{equation*}
$$

then

$$
\left|y_{0}\right|<K_{4} \lambda^{-1 / 2} .
$$

Thus, for all components $y_{0 j}\left(j=1, \cdots, m_{2}\right)$ of y_{0} we have $\left|y_{0_{j}}\right|<K_{4} \lambda^{-1 / 2}$. Hence $\left(x_{0}, y_{0}\right) \in F_{2}$. This contradicts $\left(x_{0}, y_{0}\right) \in F_{3}$.

If $\left|y_{1}\right|>K_{2} \lambda^{\mu_{2}}$, then a similar argument shows that

$$
\left|x_{0 i}\right|<K_{3} \lambda^{-1 / 2}, \quad x_{0}=\left(x_{01}, \cdots, x_{0 m_{1}}\right)
$$

under the condition

$$
\begin{equation*}
C_{3} K_{2}^{-}\left(\Sigma \beta_{j} h_{j}+\delta\right) / \gamma<K_{3}, \tag{4.5}
\end{equation*}
$$

where $C_{3}=\left(C \prod_{i=1}^{p} a_{i 0}^{\alpha_{j}} \cdot 2^{-\left(\Sigma \beta_{j} h_{j}+\delta\right)}\right)^{-1 / \gamma}$. Therefore $\left(x_{0}, y_{0}\right) \in F_{1}$ and this contradicts (x_{0}, y_{0}) $\in F_{3}$. Thus (4.1) holds under the conditions (4.4) and (4.5). We shall give exact values of K_{1}, K_{2}, K_{3} and K_{4} satisfying (4.4) and (4.5) later.
q.e.d.

Proof of Lemma 3.2. We prove $N\left(\lambda, T_{N}, F_{2}\right)=0$. First we show

$$
\begin{equation*}
\inf \left\{|x| ;(x, y) \in F_{2}\right\}>\left(K_{1} / 2\right) \lambda^{\mu_{1}} \tag{4.6}
\end{equation*}
$$

Let $(x, y) \in F_{2}$. Choose Q in $\mathscr{F}_{\lambda}^{\prime}$ so that $(x, y) \in Q$. Since

$$
\left|y_{j}\right|<K_{4} \lambda^{-1 / 2}, \quad y=\left(y_{1}, \cdots, y_{m_{2}}\right)
$$

by the definition of F_{2} and since the side length of Q is $\lambda^{-1 / 2}(\log \lambda)^{1 / n}$, we have $(x, 0) \in Q$ if λ is sufficiently large. Therefore $0=\min _{z \in Q} V(z) \leq \lambda$. Since $Q \notin \mathscr{I}_{1} \cup \mathscr{I}_{3}$, there exists a point $\left(x_{0}, y_{0}\right) \in Q$ such that

$$
\begin{equation*}
\left|x_{0}\right|>K_{1} \lambda^{\mu_{1}} \tag{4.7}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|y_{0}\right|>K_{2} \lambda^{\mu_{2}} \tag{4.8}
\end{equation*}
$$

(4.8) is impossible if λ is sufficiently large. Therefore (4.7) holds and

$$
|x| \geq\left|x_{0}\right|-m_{1}^{1 / 2} \lambda^{-1 / 2}(\log \lambda)^{1 / n}>\left(K_{1} / 2\right) \lambda^{\mu_{1}}
$$

if λ is sufficiently large. Thus we have (4.6).
Applying arguments similar to those in the proof of Lemma 3.1, we have, by (4.6),

$$
\begin{aligned}
V(x, y) & =C \prod_{i=1}^{p} f_{i}(|x|)^{\alpha_{i}} \cdot \prod_{j=1}^{q} g_{j}(|y|)^{\beta_{j}} \cdot|x|^{\eta}|y|^{\delta} \geq C \prod_{j=1}^{q} b_{j 0}^{\beta_{j}} \cdot|x|^{\sum \alpha_{i} d_{i}+\gamma} \cdot|y|^{\delta} \\
& \geq C \prod_{j=1}^{q} b_{j 0}^{\beta_{j}} \cdot\left(\left(K_{1} / 2\right) \lambda^{\mu_{1}}\right)^{\sum \alpha_{i} d_{i}+\gamma}|y|^{\delta}=C_{4} K_{1}^{\sum \alpha_{i} d_{i}+\gamma} \lambda^{1+\delta / 2}|y|^{\delta},
\end{aligned}
$$

for all $(x, y) \in F_{2}$, where $C_{4}=C \prod_{j=1}^{q} b_{j 0}^{\beta_{j}} \cdot 2^{-\left(\sum \alpha_{i} d_{i}+\gamma\right)}$. Therefore

$$
\begin{gather*}
\int_{F_{2}}\left(|\nabla u|^{2}+V|u|^{2}\right) d x d y \geq \int_{F_{2}}\left(|\nabla u|^{2}+C_{4} K_{1} \sum^{\alpha_{i} d_{i}+\gamma} \lambda^{1+\delta / 2}|y|^{\delta}|u|^{2}\right) d x d y \tag{4.9}\\
\geq \int_{F_{2 x}}\left(\int_{G}\left(\left|\nabla_{y} u\right|^{2}+C_{4} K_{1}^{\sum \alpha_{i} d_{i}+\gamma} \lambda^{1+\delta / 2}|y|^{\delta}|u|^{2}\right) d y\right) d x
\end{gather*}
$$

for all $u \in H^{1}\left(F_{2}\right)$ where $\left|\nabla_{y} u\right|^{2}=\sum_{j=1}^{m_{2}}\left|\partial u / \partial y_{j}\right|^{2}, \quad F_{2 x}=\left\{x \in \boldsymbol{R}^{m_{1}} ;(x, y) \in F_{2}\right\}$ and $G=\left\{y \in \boldsymbol{R}^{m_{2}} ;\left|y_{j}\right|<K_{4} \lambda^{-1 / 2}, j=1, \cdots, m_{2}\right\}$.

Remark that the function $C_{4} K_{1}^{\sum_{i} d_{i}+\gamma} \lambda^{1+\delta / 2}|y|^{\delta}$ is an A_{∞}-weight on $\boldsymbol{R}^{m_{2}}$ by Lemma 2.3. Set

$$
\lambda_{1}=\inf _{\substack{a>0 \\ \xi \in \mathbb{R}^{m_{2}}}}\left(a^{-2}+a^{-m_{2}} \int_{|x-\xi|<a / 2} C_{4} K_{1}^{\sum a_{i} d_{i}+\gamma} \lambda^{1+\delta / 2}|y|^{\delta} d y\right) .
$$

Then, by elementary calculus,

$$
\begin{equation*}
\lambda_{1}=C_{5} K_{1}^{1 / \mu_{1}} \lambda, \tag{4.10}
\end{equation*}
$$

where

$$
C_{5}=2^{-2 /(2+\delta)}(2+\delta) \delta^{-\delta /(2+\delta)}\left\{2^{-\left(\delta+m_{2}\right)} C_{4} m_{2}\left(\delta+m_{2}\right)^{-1} \omega_{m_{2}}\right\}^{2 /(2+\delta)}
$$

and $\omega_{m_{2}}$ is the volume of the unit ball in $\boldsymbol{R}^{\boldsymbol{m}_{\mathbf{2}}}$.
By Lemma 2.4

$$
\begin{equation*}
\int_{G^{\prime}}\left(\left|\nabla_{y} v\right|^{2}+C_{4} K_{1}^{\sum \alpha_{i} d_{i}+\gamma} \lambda^{1+\delta / 2}|y|^{\delta}|v|^{2}\right) d y \geq C_{6} \lambda_{1} \int_{G^{\prime}}|v|^{2} d y \tag{4.11}
\end{equation*}
$$

for all $v \in H^{1}\left(G^{\prime}\right)$, where C_{6} is a constant depending only on m_{2} and δ, while $G^{\prime}=\left\{y \in \boldsymbol{R}^{m_{2}} ;\left|y_{j}\right|<\lambda_{1}^{-1 / 2}, j=1, \cdots, m_{2}\right\}$.

Choosing K_{1} and K_{4} so that

$$
\begin{equation*}
C_{5} K_{1}^{1 / \mu_{1}}=K_{4}^{-2}, \tag{4.12}
\end{equation*}
$$

we get $G=G^{\prime}$ by (4.10). Therefore we have

$$
\begin{equation*}
\int_{F_{2}}\left(|\nabla u|^{2}+V|u|^{2}\right) d x d y \geq C_{5} C_{6} K_{1}^{1 / \mu_{1}} \lambda \int_{F_{2}}|u|^{2} d x d y \tag{4.13}
\end{equation*}
$$

for all $u \in H^{1}\left(F_{2}\right)$. Choose K_{1} so that

$$
\begin{equation*}
C_{5} C_{6} K_{1}^{1 / \mu_{1}}>1 \tag{4.14}
\end{equation*}
$$

Then we have

$$
\int_{F_{2}}\left(|\nabla u|^{2}+V|u|^{2}\right) d x d y>\lambda \int_{F_{2}}|u|^{2} d x d y
$$

for all $u \in H^{1}\left(F_{2}\right), u \neq 0$. Hence $N\left(\lambda, T_{\mathcal{N}}, F_{2}\right)=0$.
Similar arguments show that $N\left(\lambda, T_{\mathcal{N}}, F_{1}\right)=0$ if we choose K_{2} and K_{3} so that

$$
\begin{equation*}
C_{7} K_{2}^{1 / \mu_{2}}=K_{3}^{-2} \tag{4.15}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{7} C_{8} K_{2}^{1 / \mu_{2}}>1 \tag{4.16}
\end{equation*}
$$

where C_{7} is a positive constant depending only on $m_{1}, \gamma, C, \beta_{j}, h_{j}, \alpha_{i}$ and $a_{i 0}$, while C_{8} is the constant given in Lemma 2.4 for the function $|x|^{\gamma}$.

Now we choose K_{1}, K_{2}, K_{3} and K_{4} so that they satisfy (4.4), (4.5), (4.12), (4.14),
(4.15) and (4.16). We may put

$$
\begin{align*}
& K_{1}=\max \left\{\left(C_{2} C_{5}^{1 / 2}\right)^{\delta \mu_{1}},\left(C_{5} C_{6}\right)^{-\mu_{1}}\right\}+1, \tag{4.17}\\
& K_{2}=\max \left\{\left(C_{3} C_{7}^{1 / 2}\right)^{\gamma \mu_{2}},\left(C_{7} C_{8}\right)^{-\mu_{2}}\right\}+1, \tag{4.18}
\end{align*}
$$

and define K_{3} and K_{4} so that they satisfy (4.12) and (4.15), respectively. Then all conditions in the proofs of Lemmas 3.1 and 3.2 are satisfied.
q.e.d.

Proof of Lemma 3.1'. If we set $\gamma=0$ and replace $F_{2}, F_{3}, \mathscr{I}_{3}, K_{1}, K_{4}$ in the proof of Lemma 3.1 by $F_{2}^{\prime}, F_{3}^{\prime}, \mathscr{I}_{3}^{\prime}, K_{1}^{\prime}, K_{4}^{\prime}$, respectively, then we get the proof of Lemma 3.1'. The different point is that the argument on the inequality $\left|y_{1}\right|>K_{2} \lambda^{\mu_{2}}$ does not occur. The condition on K_{1}^{\prime} and K_{4}^{\prime} is

$$
\begin{equation*}
C_{9} K_{1}^{\prime-\left(\sum a_{i} d_{i}\right) / \delta}<K_{4}^{\prime}, \tag{4.4}
\end{equation*}
$$

where C_{9} is a positive constant corresponding to C_{2}. We shall give exact values of K_{1}^{\prime} and K_{4}^{\prime} later.
q.e.d.

Proof of Lemma 3.2'. If we set $\gamma=0$ and replace $F_{2}, \mathscr{I}_{3}, K_{1}, K_{4}$ in the proof of $N\left(\lambda, T_{\mathcal{N}}, F_{2}\right)=0$ in Lemma 3.2 by $F_{2}^{\prime}, \mathscr{I}_{3}^{\prime}, K_{1}^{\prime}, K_{4}^{\prime}$, respectively, then we get the proof of Lemma 3.2'. The different point is that the inequality (4.8) does not occur. The conditions on K_{1}^{\prime} and K_{4}^{\prime} are

$$
\begin{equation*}
C_{10} K_{1}^{\prime 1 / \mu_{1}}=K_{4}^{\prime-2} \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{10} C_{11} K_{1}^{\prime 1 / \mu_{1}}>1 \tag{4.14}
\end{equation*}
$$

where C_{10} and C_{11} are positive constants corresponding to C_{5} and C_{6}. If we put

$$
\begin{equation*}
K_{1}^{\prime}=\max \left\{\left(C_{9} C_{10}^{1 / 2}\right)^{\delta \mu_{1}},\left(C_{10} C_{11}\right)^{-\mu_{1}}\right\}+1, \tag{4.17}
\end{equation*}
$$

then all conditions (4.4)', (4.12)' and (4.14)' are satisfied.
q.e.d.
5. Proof of Lemmas $\mathbf{3 . 3}, \mathbf{3 . 3}$ ' and $\mathbf{3 . 3} \mathbf{3}^{\prime \prime}$. First we prove Lemma 3.3. Let l be the side length of cubes in $\mathscr{F}_{\lambda}^{\prime}$, that is, $l=\lambda^{-1 / 2}(\log \lambda)^{1 / n}$. In order to prove Lemma 3.3, we show the following three inequalities:
(1) $\sum_{Q \in \mathcal{G}_{1}} N\left(\lambda, T_{\mathscr{H}}, \mathscr{Q}\right) \leq \frac{\omega_{n}}{(2 \pi)^{n}} \int_{A}(\lambda-V)^{n / 2} d x d y+O\left(M_{1}(\log \lambda)^{1-1 / n}\right)$
as $\lambda \rightarrow \infty$, where $M_{1}=\# \mathscr{I}_{1}$.

$$
\begin{equation*}
\sum_{Q \in \mathcal{A}_{3}} N\left(\lambda, T_{\mathcal{N}}, \mathscr{Q}\right) \leq O\left(M_{3} \log \lambda\right) \tag{2}
\end{equation*}
$$

as $\lambda \rightarrow \infty$, where $M_{3}=\# \mathscr{I}_{3}$.

$$
\begin{align*}
& \sum_{Q \in \mathscr{G}_{2}} N\left(\lambda, T_{\mathscr{D}}, Q(Q) \geq \frac{\omega_{n}}{(2 \pi)^{n}} \int_{A}(\lambda-V)^{n / 2} d x d y-m_{1} \lambda^{n / 2}\left|S^{1}\right|\right. \tag{3}\\
& -m_{2} \lambda^{n / 2}\left|S_{1}\right|-O\left(M_{2}(\log \lambda)^{1-1 / n}\right)
\end{align*}
$$

as $\lambda \rightarrow \infty$, where $M_{2}=\# \mathscr{I}_{2}, S^{1}=\left\{(x, y) \in A ;\left|x_{1}\right|<l\right\}$ and $S_{1}=\left\{(x, y) \in A ;\left|y_{1}\right|<l\right\}$.
Proof of (1). Let Q be a cube in \mathscr{I}_{1}. Since

$$
\int_{Q}\left(|\nabla u|^{2}+V|u|^{2}\right) d x d y \geq \int_{Q}\left(|\nabla u|^{2}+\min _{Q} V \cdot|u|^{2}\right) d x d y
$$

for all $u \in H^{1}(Q)$,

$$
N\left(\lambda, T_{\mathscr{N}}, \mathscr{Q}\right) \leq N\left(\lambda-\min _{Q} V,-\Delta_{\mathcal{N}}, \mathscr{Q}\right)
$$

by the min-max principle in Reed-Simon [7; p. 78]. Following Edmunds and Evans [2; p. 143], we get

$$
N\left(\lambda-\min _{Q} V,-\Delta_{\mathcal{N}}, Q\right) \leq \frac{\omega_{n}}{(2 \pi)^{n}}|Q|\left(\lambda-\min _{Q} V\right)^{n / 2}+C_{1}\left\{1+\left(|Q| \lambda^{n / 2}\right)^{1-1 / n}\right\}
$$

where C_{1} is a positive constant depending only on m_{1} and m_{2}. Therefore

$$
\begin{equation*}
\sum_{Q \in \mathcal{G}_{1}} N\left(\lambda, T_{\mathcal{N}}, Q\right) \leq \frac{\omega_{n}}{(2 \pi)^{n}} \sum_{Q \in \mathcal{F}_{1}}|Q|\left(\lambda-\min _{Q} V\right)^{n / 2}+C_{1}\left\{M_{1}+M_{1}(\log \lambda)^{1-1 / n}\right\}, \tag{5.1}
\end{equation*}
$$

since the side length of Q is $l=\lambda^{-1 / 2}(\log \lambda)^{1 / n}$.
Let ξ_{1}, \cdots, ξ_{n} be positive integers. Let Q be a cube in \mathscr{I}_{1} with center $\left(l\left(\xi_{1}+1 / 2\right), \cdots, l\left(\xi_{n}+1 / 2\right)\right)$ and let Q^{\prime} be a cube in $\mathscr{F}_{\lambda}^{\prime}$ with center $\left(l\left(\xi_{1}-1 / 2\right), \cdots\right.$, $\left.l\left(\xi_{n}-1 / 2\right)\right)$. Then

$$
V(x, y)=C \prod_{i=1}^{p} f_{i}(|x|)^{\alpha_{i}} . \prod_{j=1}^{q} g_{j}(|y|)^{\beta_{j}} \cdot|x|^{\gamma}|y|^{\delta} \leq \min _{Q} V \leq \lambda
$$

for all $(x, y) \in Q^{\prime}$. Therefore $Q^{\prime} \in \mathscr{I}_{2}$ and

$$
|Q|\left(\lambda-\min _{Q} V\right)^{n / 2} \leq \int_{Q^{\prime}}(\lambda-V)^{n / 2} d x d y
$$

Note that $Q \rightarrow Q^{\prime}$ is a one-to-one correspondence from cubes in \mathscr{I}_{1} with centers in the first orthant to cubes in \mathscr{I}_{2} with centers in the first orthant. Then we get, by the symmetry property of V,

$$
\begin{equation*}
\sum_{Q \in \mathscr{S}_{1}}|Q|\left(\lambda-\min _{Q} V\right)^{n / 2} \leq \int_{I}(\lambda-V)^{n / 2} d x d y \tag{5.2}
\end{equation*}
$$

where $I=\bigcup_{Q \in \mathcal{G}_{2}} Q$. Note that

$$
\begin{equation*}
I \subset A \tag{5.3}
\end{equation*}
$$

Indeed, by the definition of \mathscr{I}_{2},

$$
I \subset\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ; V(x, y) \leq \lambda\right\}
$$

Furthermore, following the argument in the proof of Lemma 3.1, we get $\mathscr{I}_{2} \subset \mathscr{I}_{1} \cup \mathscr{I}_{3}$. Thus we get (5.3). Hence

$$
\sum_{Q \in \xi_{1}}|Q|\left(\lambda-\min _{Q} V\right)^{n / 2} \leq \int_{A}(\lambda-V)^{n / 2} d x d y
$$

Applying this to (5.1), we get

$$
\sum_{Q \in \mathscr{S}_{1}} N\left(\lambda, T_{\mathcal{N}}, \varrho() \leq \frac{\omega_{n}}{(2 \pi)^{n}} \int_{A}(\lambda-V)^{n / 2} d x d y+O\left(M_{1}(\log \lambda)^{1-1 / n}\right),\right.
$$

where the bound of the error term is independent of λ.
Proof of (2). Applying the argument in the proof of (1), we get

$$
\begin{gather*}
\sum_{Q \in \mathcal{G}_{3}} N\left(\lambda, T_{\mathscr{N}}, \ell\right) \leq \sum_{Q \in \mathcal{G}_{3}} N\left(\lambda,-\Delta_{\mathcal{N}}, \ell\right) \leq \frac{\omega_{n}}{(2 \pi)^{n}} \sum_{Q \in \mathcal{S}_{3}}|Q| \lambda^{n / 2}+C_{1}\left\{M_{3}+M_{3}(\log \lambda)^{1-1 / n}\right\} \\
=O\left(M_{3} \log \lambda\right)
\end{gather*}
$$

Proof of (3). Let Q be a cube in \mathscr{I}_{2}. Since

$$
\int_{Q}\left(|\nabla u|^{2}+V|u|^{2}\right) d x d y \leq \int_{Q}\left(|\nabla u|^{2}+\max _{Q} V \cdot|u|^{2}\right) d x d y
$$

for all $u \in H^{1}(Q)$,

$$
N\left(\lambda, T_{\mathscr{G}}, \mathscr{Q}\right) \geq N\left(\lambda-\max _{Q} V,-\Delta_{\mathscr{G}}, \mathscr{Q}\right)
$$

by the min-max principle. Following Edmunds and Evans [2; p. 143] as before, we get

$$
N\left(\lambda-\max _{Q} V,-\Delta_{\mathscr{G}}, Q\right) \geq \frac{\omega_{n}}{(2 \pi)^{n}}|Q|\left(\lambda-\max _{Q} V\right)^{n / 2}-C_{2}\left\{1+\left(|Q| \lambda^{n / 2}\right)^{1-1 / n}\right\},
$$

where C_{2} is a positive constant depending only on m_{1} and m_{2}. Therefore

$$
\begin{equation*}
\sum_{Q \in \mathscr{\mathscr { G }}_{2}} N\left(\lambda, T_{\mathscr{P}}, Q\right) \geq \frac{\omega_{n}}{(2 \pi)^{n}} \sum_{Q \in \mathcal{I}_{2}}|Q|\left(\lambda-\max _{Q} V\right)^{n / 2}-C_{2}\left\{M_{2}+M_{2}(\log \lambda)^{1-1 / n}\right\} . \tag{5.4}
\end{equation*}
$$

Applying an argument similar to that in the proof of (1), we get

$$
\begin{equation*}
\sum_{Q \in \mathcal{S}_{2}}|Q|\left(\lambda-\max _{Q} V\right)^{n / 2} \geq \int_{J}(\lambda-V)^{n / 2} d x d y \tag{5.5}
\end{equation*}
$$

where $J=\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ;(x, y) \in \bigcup_{Q \in \mathcal{I}_{1}} Q, V(x, y) \leq \lambda\right\}$. Recall the definition of \mathscr{I}_{1} and apply the argument in the proof of Lemma 3.1. Then we get

$$
\left(\bigcup_{Q \in \mathcal{S}_{1}} Q\right) \cap\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ;|x|>K_{1} \lambda^{\mu_{1}} \text { or }|y|>K_{2} \lambda^{\mu_{2}}\right\}=\varnothing .
$$

Therefore, by the definition of A,

$$
\begin{aligned}
J & =\left\{(x, y) \in A ;\left|x_{i}\right| \geq l, i=1, \cdots, m_{1},\left|y_{j}\right| \geq l, j=1, \cdots, m_{2}\right\} \\
& =A \backslash\left(\bigcup_{i=1}^{m_{1}}\left\{(x, y) \in A ;\left|x_{i}\right|<l\right\} \cup \bigcup_{j=1}^{m_{2}}\left\{(x, y) \in A ;\left|y_{j}\right|<l\right\}\right) \\
& =A \backslash\left(\bigcup_{i=1}^{m_{1}} S^{i} \cup \bigcup_{j=1}^{m_{2}} S_{j}\right), \text { say } .
\end{aligned}
$$

Thus by (5.5)

$$
\begin{aligned}
& \sum_{Q \in \mathcal{S}_{2}}|Q|(\lambda-\underset{Q}{\max } V)^{n / 2} \geq \int_{A}(\lambda-V)^{n / 2} d x d y-\sum_{i=1}^{m_{1}} \int_{S^{i}}(\lambda-V)^{n / 2} d x d y- \\
& \sum_{j=1}^{m_{2}} \int_{S_{j}}(\lambda-V)^{n / 2} d x d y \geq \int_{A}(\lambda-V)^{n / 2} d x d y-\lambda^{n / 2} \sum_{i=1}^{m_{1}}\left|S^{i}\right|-\lambda^{n / 2} \sum_{j=1}^{m_{2}}\left|S_{j}\right| \\
& \geq \int_{A}(\lambda-V)^{n / 2} d x d y-\lambda^{n / 2} m_{1}\left|S^{1}\right|-\lambda^{n / 2} m_{2}\left|S_{1}\right|
\end{aligned}
$$

where we used the symmetry property of V. Therefore, by (5.4),

$$
\begin{aligned}
\sum_{Q \in \mathscr{G}_{2}} N(\lambda, & T_{\mathscr{Q}}, \ell(Q) \geq \frac{\omega_{n}}{(2 \pi)^{n}} \int_{A}(\lambda-V)^{n / 2} d x d y \\
& \quad-m_{1} \lambda^{n / 2}\left|S^{1}\right|-m_{2} \lambda^{n / 2}\left|S_{1}\right|-O\left(M_{2}(\log \lambda)^{1-1 / n}\right)
\end{aligned}
$$

q.e.d.

Therefore, by (1), (2) and (3), Lemma 3.3 follows from the following three lemmas.
Lemma 5.1.

$$
M_{1}(\log \lambda)^{1-1 / n}=M_{2}(\log \lambda)^{1-1 / n}=o\left(\int_{A}(\lambda-V)^{n / 2} d x d y\right) \quad \text { as } \quad \lambda \rightarrow \infty
$$

Lemma 5.2.

$$
\lambda^{n / 2}\left|S^{1}\right|=o\left(\int_{A}(\lambda-V)^{n / 2} d x d y\right) \quad \text { as } \quad \lambda \rightarrow \infty
$$

and

$$
\lambda^{n / 2}\left|S_{1}\right|=o\left(\int_{A}(\lambda-V)^{n / 2} d x d y\right) \quad \text { as } \quad \lambda \rightarrow \infty .
$$

Lemma 5.3.

$$
M_{3}(\log \lambda)=o\left(\int_{A}(\lambda-V)^{n / 2} d x d y\right) \quad \text { as } \lambda \rightarrow \infty
$$

To prove Lemmas 5.1, 5.2 and 5.3, we use the following lemma, where $f(\lambda) \approx g(\lambda)$ means that $f(\lambda)=O(g(\lambda))$ and $g(\lambda)=O(f(\lambda))$ as $\lambda \rightarrow \infty$.

Lemma 5.4. Let V be the function defined by (3.1). Set $v_{1}=n / 2+m_{1}\left(\sum_{i=1}^{p} \alpha_{i} d_{i}+\right.$ $\gamma)^{-1}, \quad v_{2}=n / 2+m_{2}\left(\sum_{j=1}^{q} \beta_{j} h_{j}+\delta\right)^{-1}, \quad v_{3}=m_{1} / 2+2^{-1}(2+\delta) m_{1}\left(\sum_{i=1}^{p} \alpha_{i} d_{i}+\gamma\right)^{-1}, \quad$ and $v_{4}=m_{2} / 2+2^{-1}(2+\gamma) m_{2}\left(\sum_{j=1}^{q} \beta_{j} h_{j}+\delta\right)^{-1}$.
(1) If $\gamma m_{2}<\left(\sum_{i=1}^{q} \beta_{j} h_{j}+\delta\right) m_{1}, \delta m_{1}<\left(\sum_{i=1}^{p} \alpha_{i} d_{i}+\gamma\right) m_{2}$ and $v_{1} \neq v_{2}$, then

$$
\int_{A}(\lambda-V)^{n / 2} d x d y \approx \lambda^{\nu_{1}}+\lambda^{v_{2}}
$$

(2) If $\delta m_{1}>\left(\sum_{i=1}^{p} \alpha_{i} d_{i}+\gamma\right) m_{2}$, then

$$
\int_{A}(\lambda-V)^{n / 2} d x d y \approx \lambda^{v_{3}}
$$

(3) If $\gamma m_{2}>\left(\sum_{j=1}^{q} \beta_{j} h_{j}+\delta\right) m_{1}$, then

$$
\int_{A}(\lambda-V)^{n / 2} d x d y \approx \lambda^{v_{4}}
$$

(4) In the other cases,

$$
\int_{A}(\lambda-V)^{n / 2} d x d y \approx\left(\lambda^{v_{1}}+\lambda^{v_{2}}\right) \log \lambda .
$$

These estimates are given by elementary calculus, so we omit the proof of Lemma 5.4.

As a consequence of Lemma 5.4, we get

$$
\begin{equation*}
\int_{A}(\lambda-V)^{n / 2} d x d y=O\left(\left(\lambda^{v_{1}}+\lambda^{v_{2}}\right) \log \lambda+\lambda^{v_{3}}+\lambda^{v_{4}}\right) . \tag{5.6}
\end{equation*}
$$

Remark that an easy calculation shows that the order of $\int_{A}(\lambda-V)^{n / 2} d x d y$ is the same as that of $\lambda^{n / 2}|A|$.

Proof of Lemma 5.1. Since the argument before (5.2) shows that $M_{1}=M_{2}$, it suffices to estimate $M_{2}(\log \lambda)^{1-1 / n}$.

Since the side length of $Q \in \mathscr{I}_{2}$ is $l=\lambda^{-1 / 2}(\log \lambda)^{1 / n}$,

$$
M_{2}(\log \lambda)^{1-1 / n}=l^{-n}(\log \lambda)^{1-1 / n}\left|\bigcup_{Q \in G_{2}} Q\right|=(\log \lambda)^{-1 / n} \lambda^{n / 2}|I|
$$

By (5.3) the term on the right hand side does not exceed $(\log \lambda)^{-1 / n} \lambda^{n / 2}|A|$. Since $\lambda^{n / 2}|A|=O\left(\int_{A}(\lambda-V)^{n / 2} d x d y\right)$, the assertion of Lemma 5.1 is valid. q.e.d.

Proof of Lemma 5.2. First we prove

$$
\begin{equation*}
\lambda^{n / 2}\left|S^{1}\right|=o\left(\int_{A}(\lambda-V)^{n / 2} d x d y\right) \tag{5.7}
\end{equation*}
$$

If $m_{1}>1$, then

$$
\lambda^{n / 2}\left|S^{1}\right| \leq 2 \lambda^{n / 2} l\left|S^{\prime}\right|=2(\log \lambda)^{1 / n} \lambda^{(n-1) / 2}\left|S^{\prime}\right|
$$

where S^{\prime} is the set of all points $\left(x^{\prime}, y\right) \in \boldsymbol{R}^{m_{1}-1} \times \boldsymbol{R}^{m_{2}}$ such that

$$
\begin{gathered}
C \prod_{i=1}^{p} f_{i}\left(\left|x^{\prime}\right|\right)^{\alpha_{i}} \prod_{j=1}^{q} g_{j}(|y|)^{\beta_{j}}\left|x^{\prime}\right|^{y}|y|^{\delta} \leq \lambda \\
\quad\left|x^{\prime}\right| \leq K_{1} \lambda^{\mu_{1}} \quad \text { and } \quad|y| \leq K_{2} \lambda^{\mu_{2}}
\end{gathered}
$$

where K_{1}, K_{2}, μ_{1} and μ_{2} are constants given in the definition of \mathscr{I}_{3}. By an argument similar to that in the note after Lemma 5.4, we can show that the order of $\lambda^{(n-1) / 2}\left|S^{\prime}\right|$ is the same as that of $\int_{S^{\prime}}\left(\lambda-V^{\prime}\left(x^{\prime}, y\right)\right)^{(n-1) / 2} d x^{\prime} d y$, where $V^{\prime}\left(x^{\prime}, y\right)=V\left(0, x^{\prime}, y\right)$. If we replace m_{1} by $m_{1}-1$ in Lemma 5.4, we get the order of $\int_{S^{\prime}}\left(\lambda-V^{\prime}\right)^{(n-1) / 2} d x^{\prime} d y$. Thus, replacing m_{1} by $m_{1}-1$ in (5.6), we get

$$
\begin{equation*}
(\log \lambda)^{1 / n} \int_{S^{\prime}}(\lambda-V)^{(n-1) / 2} d x^{\prime} d y=O\left(\left(\lambda^{\nu_{1}^{\prime}}+\lambda^{v^{\prime}}\right)(\log \lambda)^{1+1 / n}+\left(\lambda^{v_{3}^{\prime}}+\lambda^{v_{4}^{\prime}}\right)(\log \lambda)^{1 / n}\right) \tag{5.8}
\end{equation*}
$$

where $\quad v_{1}^{\prime}=(n-1) / 2+\left(m_{1}-1\right)\left(\sum_{i=1}^{p} \alpha_{i} d_{i}+\gamma\right)^{-1}, \quad v_{2}^{\prime}=(n-1) / 2+m_{2}\left(\sum_{j=1}^{q} \beta_{j} h_{j}+\delta\right)^{-1}$, $v_{3}^{\prime}=\left(m_{1}-1\right) / 2+2^{-1}(2+\delta)\left(m_{1}-1\right)\left(\sum_{i=1}^{p} \alpha_{i} d_{i}+\gamma\right)^{-1}$, and $v_{4}^{\prime}=m_{2} / 2+2^{-1}(2+$ $\gamma) m_{2}\left(\sum_{j=1}^{q} \beta_{j} h_{j}+\delta\right)^{-1}$. If we compare the order of $\int_{A}(\lambda-V)^{n / 2} d x d y$ in Lemma 5.4 with the one on the right hand side of (5.8), then we get

$$
\lambda^{n / 2}\left|S^{1}\right|=o\left(\int_{A}(\lambda-V)^{n / 2} d x d y\right) \quad \text { as } \quad \lambda \rightarrow \infty
$$

If $m_{1}=1$, then, by the definition of S^{1},

$$
\lambda^{\left(1+m_{2}\right) / 2}\left|S^{1}\right| \leq C \lambda^{\left(1+m_{2}\right) / 2} l \lambda^{m_{2} \mu_{2}}=C \lambda^{m_{2} / 2+m_{2} \mu_{2}}(\log \lambda)^{1 / n}
$$

where C is a constant independent of λ. Therefore, by Lemma 5.4 , we can show

$$
\lambda^{n / 2}\left|S^{1}\right|=o\left(\int_{A}(\lambda-V)^{n / 2} d x d y\right)
$$

Thus we get (5.7).
Similarly, we can prove

$$
\lambda^{n / 2}\left|S_{1}\right|=o\left(\int_{A}(\lambda-V)^{n / 2} d x d y\right)
$$

q.e.d.

Proof of Lemma 5.3. Let B^{i} and B_{j} be the subsets of \boldsymbol{R}^{n} and \mathscr{I}_{3} be the set of cubes as defined in the proof of the Theorem. Let $\left\{i_{1}, \cdots, i_{s}\right\}$ and $\left\{j_{1}, \cdots, j_{t}\right\}$ be subsets of $\left\{1, \cdots, m_{1}\right\}$ and $\left\{1, \cdots, m_{2}\right\}$, respectively. For $\left\{i_{1}, \cdots, i_{s}\right\}$ and $\left\{j_{1}, \cdots, j_{t}\right\}$, denote

$$
\begin{aligned}
& \mathscr{Q}^{i_{1}, \cdots, i_{s}}=\left\{Q \in \mathscr{I}_{3} ;\right. Q \cap B^{i} \neq \varnothing, i=i_{1}, \cdots, i_{s}, Q \cap B^{i}=\varnothing, i \neq i_{1}, \cdots, i_{s}, \\
&\left.Q \cap B_{j}=\varnothing, j=1, \cdots, m_{2}\right\}, \\
& \mathscr{Q}_{j_{1}, \cdots, j_{t}}=\left\{Q \in \mathscr{I}_{3} ;\right. Q \cap B_{j} \neq \varnothing, j=j_{1}, \cdots, j_{t}, Q \cap B_{j}=\varnothing, j \neq j_{1}, \cdots, j_{t}, \\
&\left.Q \cap B^{i}=\varnothing, i=1, \cdots, m_{1}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathscr{Q}_{j_{1}, \cdots, \cdots, j_{t}}^{i_{1}, \cdots, i_{s}}= & \left\{Q \in \mathscr{I}_{3} ; Q \cap B^{i} \neq \varnothing, i=i_{1}, \cdots, i_{s}, Q \cap B^{i}=\varnothing, i \neq i_{1}, \cdots, i_{s},\right. \\
& \left.Q \cap B_{j} \neq \varnothing, j=j_{1}, \cdots, j_{t}, Q \cap B_{j}=\varnothing, j \neq j_{1}, \cdots, j_{t}\right\} .
\end{aligned}
$$

Then we get a disjoint decomposition of \mathscr{I}_{3} :

$$
\begin{equation*}
\mathscr{I}_{3}=\left(\bigcup_{i_{1}<\cdots<i_{s}} \mathscr{P}^{i_{1}, \cdots, i_{s}}\right) \cup\left(\bigcup_{j_{1}<\cdots<j_{t}} \mathscr{Q}_{j_{1}, \cdots, j_{t}}\right) \cup\left(\bigcup_{\substack{i_{1}<\cdots<i_{s} \\ j_{1}<\cdots<j_{t}}} \mathscr{Q}_{j_{1}, \cdots, j_{t}}^{i_{1}, \cdots, i_{s_{t}}}\right) . \tag{5.9}
\end{equation*}
$$

Now we show that

$$
\begin{equation*}
\left(\# \mathscr{2}^{i_{1}, \cdots, i_{s}}\right) \log \lambda=o\left(\int_{A}(\lambda-V)^{n / 2} d x d y\right) \tag{5.10}
\end{equation*}
$$

for any $i_{1}<\cdots<i_{s}$ in $\left\{1, \cdots, m_{1}\right\}$.
Fix $i_{1}<\cdots<i_{s}$ and simply denote \mathscr{Q} instead of $\mathscr{Q}^{i_{1}, \cdots, i_{s}}$.
First suppose $s<m_{1}$. Let \mathscr{Q}^{\prime} be the set of Q in \mathscr{Q} which are contained in the first orthant. Let R be the set of all points $(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}}$ such that

$$
\begin{array}{ll}
0 \leq x_{i} \leq l, & i=i_{1}, \cdots, i_{s} \\
l \leq x_{i}, & i \neq i_{1}, \cdots, i_{s} \\
l \leq y_{j}, & j=1, \cdots, m_{2} \\
\left|x^{*}\right| \leq K_{1} \lambda^{\mu_{1}}, & |y| \leq K_{2} \lambda^{\mu_{2}}
\end{array}
$$

and

$$
C \prod_{i=1}^{p} f_{i}\left(\left|x^{*}-l e_{1}\right|\right)^{\alpha_{i}} \cdot \prod_{j=1}^{q} g_{j}\left(\left|y-l e_{2}\right|\right)^{\beta_{j}} \cdot\left|x^{*}-l e_{1}\right|^{y}\left|y-l e_{2}\right|^{\delta} \leq \lambda
$$

where $x^{*}=\left(x_{\tau_{1}}, \cdots, x_{\tau_{m_{1}-s}}\right), \tau_{1}<\cdots<\tau_{m_{1}-s},\left\{\tau_{1}, \cdots, \tau_{m_{1}-s}\right\}=\left\{1, \cdots, m_{1}\right\} \backslash\left\{i_{1}, \cdots\right.$, $\left.i_{s}\right\}, e_{1}=(1, \cdots, 1) \in R^{m_{1}-\frac{1}{s}}, e_{2}=(1, \cdots, 1) \in R^{m_{2}}$ and $K_{1}, K_{2}, \mu_{1}, \mu_{2}$ are constants given in the definition of \mathscr{I}_{3}. Then, by the definitions of \mathscr{I}_{3} and \mathscr{Q}^{\prime},

$$
\bigcup_{Q \subset Q^{\prime}} Q \subset R .
$$

Therefore

$$
\# \mathscr{Q}^{\prime}=l^{-n}\left|\bigcup_{Q \in \mathscr{Q}^{\prime}} Q\right| \leq l^{-n}|R| \leq l^{-n+s}\left|R^{\prime}\right|
$$

where R^{\prime} is the set of all points $\left(x^{*}, y\right)$ in $\boldsymbol{R}^{m_{1}-s} \times \boldsymbol{R}^{m_{2}}$ such that

$$
\begin{gathered}
0 \leq x_{i}^{*}, \quad i=1, \cdots, m_{1}-s, \quad x^{*}=\left(x_{1}^{*}, \cdots, x_{m_{1}-s}^{*}\right), \\
0 \leq y_{j}, \quad j=1, \cdots, m_{2}, \quad y=\left(y_{1}, \cdots, y_{m_{2}}\right), \\
\left|x^{*}\right| \leq K_{1} \lambda^{\mu_{1}}, \quad|y| \leq K_{2} \lambda^{\mu_{2}}
\end{gathered}
$$

and

$$
C \prod_{i=1}^{p} f_{i}\left(\left|x^{*}\right|\right)^{\alpha_{i}} \prod_{j=1}^{q} g_{j}(|y|)^{\beta_{j}}\left|x^{*}\right|^{\gamma}|y|^{\delta} \leq \lambda .
$$

Therefore, since $l=\lambda^{-1 / 2}(\log \lambda)^{1 / n}$,

$$
\begin{equation*}
\# \mathscr{Q}^{\prime} \leq l^{-n+s}\left|R^{\prime}\right|=(\log \lambda)^{s / n-1} \lambda^{(n-s) / 2}\left|R^{\prime}\right| \tag{5.11}
\end{equation*}
$$

By an argument similar to that in the proof of Lemma 5.2, we get

$$
\lambda^{(n-s) / 2}\left|R^{\prime}\right|=\boldsymbol{O}\left(\left(\lambda^{\eta_{1}}+\lambda^{\eta_{2}}\right) \log \lambda+\lambda^{\eta_{3}}+\lambda^{\eta_{4}}\right),
$$

where $\quad \eta_{1}=(n-s) / 2+\left(m_{1}-s\right)\left(\sum_{i=1}^{p} \alpha_{i} d_{i}+\gamma\right)^{-1}, \quad \eta_{2}=(n-s) / 2+m_{2}\left(\sum_{j=1}^{q} \beta_{j} h_{j}+\delta\right)^{-1}$, $\eta_{3}=\left(m_{1}-s\right) / 2+2^{-1}(2+\delta)\left(m_{1}-s\right)\left(\sum_{i=1}^{p} \alpha_{i} d_{i}+\gamma\right)^{-1} \quad$ and $\quad \eta_{4}=m_{2} / 2+2^{-1}(2+\gamma) m_{2}$ $\times\left(\sum_{j=1}^{q} \beta_{j} h_{j}+\delta\right)^{-1}$. Therefore, by (5.11), we get

$$
\begin{equation*}
(\# \mathscr{Q}) \log \lambda=2^{n}\left(\# \mathscr{Q}^{\prime}\right) \log \lambda=O\left(\left(\lambda^{\eta_{1}}+\lambda^{\eta_{2}}\right)(\log \lambda)^{1+s / n}+\left(\lambda^{\eta_{3}}+\lambda^{\eta_{4}}\right)(\log \lambda)^{s / n}\right) . \tag{5.12}
\end{equation*}
$$

If we compare the orders in Lemma 5.4 with the one in (5.12), then we get

$$
\text { (\#2) } \log \lambda=o\left(\int_{A}(\lambda-V)^{n / 2} d x d y\right) .
$$

Suppose $s=m_{1}$. Then, by the definition of \mathscr{I}_{3} and \mathscr{Q}, we get

$$
\bigcup_{Q \in Q} Q \subset\left\{(x, y) \in \boldsymbol{R}^{m_{1}} \times \boldsymbol{R}^{m_{2}} ;\left|x_{i}\right| \leq l, i=1, \cdots, m_{1},|y| \leq K_{2} \lambda^{\mu_{2}}\right\} .
$$

Therefore, by Lemma 5.4,

$$
\text { (\#2) } \begin{aligned}
\log \lambda & =l^{-n}|\mathscr{Q}| \log \lambda \leq C l^{-n+m_{1}} \lambda^{m_{2} \mu_{2}} \log \lambda \\
& =C \lambda^{-m_{2} / 2+m_{2} \mu_{2}}(\log \lambda)^{m_{1} / n}=o\left(\int_{A}(\lambda-V)^{n / 2} d x d y\right),
\end{aligned}
$$

where C is a constnt independent of λ. Therefore (5.10) holds.
Similarly, we can show that

$$
\left(\# \mathscr{Q}_{j_{1}, \cdots, j_{t}}\right) \log \lambda=o\left(\int_{A}(\lambda-V)^{n / 2} d x d y\right)
$$

and

$$
\left(\# \mathscr{2}_{j_{1}, \cdots, \cdots, j_{t}}^{i_{1}, \cdots, i_{s}}\right) \log \lambda=o\left(\int_{A}(\lambda-V)^{n / 2} d x d y\right) .
$$

Therefore, Lemma 5.3 follows from (5.9).
q.e.d.

Thus we proved Lemma 3.3. If we set $\gamma=0$ and replace $A, \mathscr{I}_{3}, K_{1}$ in the proof of Lemma 3.3 by $A^{\prime}, \mathscr{I}_{3}^{\prime}, K_{1}^{\prime}$, respectively, then we get the proof of Lemma 3.3^{\prime} after simple modification. If we set $\gamma=\delta=0$ and replace A, \mathscr{I}_{3} in the proof of Lemma 3.3 by $A^{\prime \prime}, \mathscr{I}_{3}^{\prime \prime}$, respectively, then we get the proof of Lemma 3.3". The differences caused by these modifications are inessential.

Remark 5.1. The above method does not give an asymptotic estimate for $N(\lambda)$ when $\gamma m_{2}>\left(\sum_{j=1}^{q} \beta_{j} h_{j}+\delta\right) m_{1}$ or $\delta m_{1}>\left(\sum_{i=1}^{p} \alpha_{i} d_{i}+\gamma\right) m_{2}$. Indeed, we cannot get good estimates for error terms in that case.

Remark 5.2. We also have the asymptotic formula for the potential

$$
V(x, y)=|x|^{\alpha}|y|^{\beta}|y-1|^{\gamma}
$$

where $(x, y) \in \boldsymbol{R} \times \boldsymbol{R}, \alpha, \beta, \gamma>0, \beta \leq \alpha, \gamma \leq \alpha$ and $\alpha \leq \beta+\gamma$. Let $\mu_{1}=\max \left\{(2+\beta)(2 \alpha)^{-1}\right.$, $\left.(2+\gamma)(2 \alpha)^{-1}\right\}$ and $\mu_{2}=(2+\alpha) 2^{-1}(\beta+\gamma)^{-1}$. Then

$$
N(\lambda) \sim \frac{\omega_{n}}{(2 \pi)^{n}} \int_{A}(\lambda-V) d x d y \quad \text { as } \quad \lambda \rightarrow \infty
$$

where

$$
A=\left\{(x, y) \in \boldsymbol{R} \times \boldsymbol{R} ; V(x, y) \leq \lambda,|x| \leq C_{1} \lambda^{\mu_{1}},|y| \leq C_{2} \lambda^{\mu_{2}}\right\}
$$

and C_{1}, C_{2} are positive constants depending only on α, β and γ. The proof of this result is a modification of the proof of the Theorem.

References

[1] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250.
[2] D. E. Edmunds and W. D. Evans, On the distribution of eigenvalues of Schrödinger operators, Arch. Rational Mech. Anal. 89 (1985), 135-167.
[3] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206.
[4] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985.
[5] T. Kato, Schrödinger operators with singular potentials, Israel J. Math. 13 (1972), 135-148.
[6] Y. Morimoto, The uncertainty principle and hypoelliptic operators, Publ. Res. Inst. Math. Sci. 23 (1987), 955-964.
[7] M. Reed and B. Simon, Method of modern mathematical physics, vol. IV, Academic Press, New York, 1978.
[8] D. Robert, Comportement asymptotique des valeurs propres d'opérateurs du type Schrödinger à potential «dégénéré», J. Math. Pures Appl. 61 (1982), 275-300.
[9] G. V. Rozenblum, Asymptotics of the eigenvalues of the Schrödinger operator, Math. USSR-Sb. 22 (1974), 349-371.
[10] B. Simon, Nonclassical eigenvalue asymptotics, J. Funct. Anal. 53 (1983), 84-98.
[11] B. Simon, Some quantum operators with discrete spectrum but classically continuous spectrum, Ann. Physics. 146 (1983), 209-220.
[12] M. Z. Solomyak, Asymptotics of the spectrum of the Schrödinger operator with nonregular homogeneous potential, Math. USSR-Sb. 55 (1986), 19-37.

Mathematical Institute
Faculty of Science
Tôhoku University
Sendai 980
Japan

