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Abstract. Atiyah-Hirzebruch's rigidity theorem is derived from the index theorem
for families of elliptic operators and vanishing theorem of Lichnerowicz type. Using this
method we show the relative version of the rigidity of the Dirac operators.

Introduction. It is well-known that the Dirac operator plays an important role in
the geometry of spin manifolds. For example, we can deduce the ,4-genus vanishing
theorem from the vanishing of the index of Dirac operators. Using the Bochner technique
Lichnerowicz [L] proved that the J-genus of a closed spin manifold M vanishes if M
carries a metric of positive scalar curvature. On the other hand, Atiyah and Hirzebruch
[A-H] proved that the J-genus of a closed spin manifold M vanishes if M admits a
non-trivial 5x-action. In fact, Atiyah and Hirzebruch proved that the equivariant index
of the Dirac operator is identically zero as a virtual character of S1 using the
Atiyah-Singer equivariant index theorem. There seem to be no direct relations between
these two theorems. But there is a result of Lawson and Yau [L-Y] which says that a
closed manifold M carries a metric of positive scalar curvature if M admits an effective
action of a compact non-abelian Lie group.

In this paper we observe that the rigidity of the Dirac operators on spin manifolds
can be obtained from the index theorem for families of elliptic operators and the
vanishing theorem of Lichnerowicz type. Here "rigidity" means the constancy of the
equivariant index as virtual characters. Recently Witten [W-l], Bott and Taubes [B-T]
discussed the rigidity of Dirac operators twisted by certain vector bundles. Our method
does not seem to deduce such a result. But it can be applied to twisted Dirac operators
on spinc manifolds (§4) and families of Dirac operators (§5).

The author would like to express deep appreciation to Professor Akio Hattori for
encouragement. After finishing the first manuscript of this paper, Witten kindly informed
him of the existence of the paper [W-2].

1. Borel Construction. £S1-*BS1 denotes the universal S1-bundle. For an
S^-manifold X, we define the Borel construction to be Xsi = ES1 xsiX. We have the
following diagram.
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ESlxX x X
sl

r —> BS1

The cohomology group of the space Xsi is called the equivariant cohomology group
of the S1 -manifold X and the de Rham model of this cohomology theory is discussed
by Atiyah and Bott [A-B] and Berline and Vergne [B-V]. The universal S ̂ bundle
ES1-^BS1 is the inductive limit of the Hopf fibrations S2k+1-*CPk. Hence Xsi is the
inductive limit of Xf) = S2k+1xsl X.

2k+1
xX

CPkxX

s1

CPk

Fixing a connection on the principal S1 -bundle S2k+1^CPk with a connection
form tj, we can define a degree preserving algebra homomorphism

where

Q fny(X) = {Sx-invariant differential forms on A"} and

Q*(X§) = {differential forms on X§} .

Let 3fot(S2k+1) denote the horizontal distribution with respect to the connection
.̂ Then the tangent space at [/, x~]eS2k+1 xsiX decomposes as

(1.1) T[ux]X$ = p^tS2k+1)®PittTxX,

which induces a decomposition for the tangent bundle

(1.2) TXf) = J^4Xf})®TfXf},

where TfX%} is the tangent bundle along the fibres of n: X%}-*CPk.

DEFINITION (1.3). For <xeQ\ny(X) and ul9 • -, ureT[t X]X$, we define ^a = ̂ ^a
by

where Wj is the second component of Uj in the decomposition (1.1).

Note that ij/oc is well defined because a is S1 -invariant.
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PROPOSITION (1.4).

d(ij/(x) = {//(da) — \lt(i(vx)aL) A n*co

where vx is the vector field on X determined by the Sx-action and co is the curvature form
for the connection rj, where i{vx) denotes the interior product by vx.

PROOF. Since p: S2k+1 x X^Xf} is a submersion it suffices to prove that

(1.5) p*d(il/(x) = p*{il/{daL)-il/(i(vx)0LAK*CO} .

It is easy to see that

(1.6) P*M = pr*2£-prtriApr*2(i(vx)0,

where prt is the /-th projection of S2k+1 xX. Thus we have

d(p*i//(x) = pr%d(x - prfdrj A pr%(i(vx)(x) + prfrj A pr$(di(vx)ot)

= pr%da-prfri A pr%{i{vx)du)-prXdY\ A pr$(i{vx)(x)

= p*(i//d(x) - prfdtj A pr%(i(vx)ot)

with the second equality by the SMnvariance of a, and

P*W(vx)x) = Pr2(i(vx)ot) -prXn A pr\(i(vx)i(vx)cc) = pr%(i(vx)oc),

the first equality being a consequence of (1.6). Therefore we get

p*(d\l/<x)=p*{\l/d<x — n*(o A i(vx)a} .

Since co is a 2-form, we obtain (1.5). •

If we choose a connection rj on S2k+1-+CPk as the one determined by the horizontal
distribution orthogonal to the vertical distribution with respect to the standard
Riemannian metric on the unit sphere, the curvature form co is — 2 times the Kahler
form of the Fubini-Study metric, i.e.

- 2 if {ij} = { 2 / - 1 , 21} for some /
0-7) H, „ , _

otherwise,

where {e^ is an orthonormal basis of TCPk such that

Je2i-i=e2i, for the complex structure / on CPk .

From now on, we assume that rj is this canonical connection.

REMARK (1.8). [A-B] and [B-V] consider the operators

dx = d + i(vx) ® u and dx — d — i(vx),

respectively, for constructing the de Rham model of the equivariant cohomology
theory.
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In particular, we can treat the Borel construction of invariant connections on
S1-equi variant bundles.

Let P->X be an S 1-equivariant principal G-bundle with an invariant connection
and with a connection form 9. Then the 1-form i//(9) defines a connection on the principal
G-bundle Pf} = S2k+1xsl P->*g? = S2k+1xsl X. The curvature form for the connection
i//(9) is

d(il/(9))+—• \//(9) A \jj{9) = il/(d9 + — - 9 A 9) - il/(i(vP)9) AU*(O.

Thus we get:

LEMMA (1.9). The curvature form of the connection \j/(9) is given by ij/(£2) —
il/(i(vP)9)An*(o, where Q is the curvature form for the connection 9 on P-+X.

REMARK (1.10). The horizontal distribution determined by the connection \j/(9)
is given by

where q: S2k+1 x P-*P%} is the projection and Jfot(P) is the horizontal distribution on
P determined by the connection 9.

Now we recall the definition of the moment maps for equivariant bundles [B-V].

DEFINITION (1.11). Let P-*X be an Sl-equivariant principal G-bundle with an
invariant connection 9. The map 9{vP): P-^g is called the moment map. For an
S * -equivariant vector bundle E-+X with an invariant connection, the moment map of
the frame bundle U(E) of E with the induced connection is also called the moment map
of E. When P is a principal Sx-bundle (or E is a complex line bundle), its moment map
can be regarded as a real valued function on X.

2. Calculation of the scalar curvature. Let g be an S1 -invariant Riemannian
metric on X and h the standard Riemannian metric on the unit sphere S2k+1. We
define a Riemannian metric gik) on X$ which makes p: (S2k+1 x X, h®g)-+(X{£), gik))
a Riemannian submersion. Namely, g(k) is induced from the isomorphism

where J^(p\ttX) is the orthocomplement of the tangent space along the fibre.
The goal of this section is the following:

LEMMA (2.1). The scalar curvature K of(X$), g{k)) satisfies

K^2k(2k+1) + C(g),

where C{g) is a constant depending on g such that lim,.^^ C(r • #) = 0.
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First of all, we recall O'Neill's formula. Let Z->7be a Riemannian submersion.
KY(u, v) is the sectional curvature of the plane spanned by mutually orthogonal unit
vectors u and v9 while u and v denote local horizontal vector fields which are lifts of u
and v respectively. Then the vertical component [u, v]yer of the Lie bracket [u, v] depends
only on u and v.

LEMMA (2.2) (O'Neill's formula). The sectional curvatures of Z and Y satisfy the
equality

\ \ l ] \ \ 2

REMARK (2.3). For a principal G-bundle P-> Ywith a connection 6, the curvature
Q for 0 is a tensorial 2-form such that

Q(u, v)=- 0([u, v]) (see [K-N] Chap 2).

This formula is different from the one in [K-N], since we use the convention such as
dxAdy (d/dx, d/dy)=\. Thus the formula (1.7) is a consequence of Lemma (2.2).

PROOF OF LEMMA (2.1). We first calculate the curvatures at [£, x] eXg) such that
vx(x)*0.

Let {et} be a local orthonormal frame field of 3tf#t(S 2k+1) around teS2k+1 such that

where T is the projection S2k+1-+CPk and J is the complex structure on CPk.
Let {/i, • • • , /m_i} be a local orthonormal system of TX around xeX such that

every/j is orthogonal to vx. Let

p.= } (-s2vs + vx)eTS2k+1x IX,

where vs is the vector field on S2k+1 determined by the S ̂ action, and the function 5
on X is the norm of vx.

Notice that Jfot(S2k+1) defined in §1 in terms of the canonical connection rj is the
orthocomplement of the tangent bundle along the fibres with respect to h. Thus
{P*eu ' ' ' 9 P*e2k> P*fi> '' ' 9 P+fm-u P*e} is a local orthonormal frame field of X$),
while {ex, • • •, e2k,fi, '' ',/m-i> e) ^s a local orthonormal frame field of J^(p). Using
O'Neill's formula and comparing our case with the case of S2k+1->CP*, we have

1+—^-2 if 0,7'} = {2/-1 ,2/} for some/
1 ~r S

.1 otherwise,

since {1 + s 2 } ~ 1 / 2 equals the inner product of vs and {1 +s2}~1/2(vs + vx),
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s2

l+s2

and

Therefore, the scalar curvature K of X$ satisfies

6k 4fc<?
+(2.4) +

1+S2 1+S2

where

C(g) = m(m— 1) • min{sectional curvatures on X] .

It is obvious that lim,..^ C(r g) = 0.
If the S ̂ action is non-trivial, then the set {xeX; vx(x)^0} is dense in X. Therefore

we obtain (2.4) on X. If the S ̂ action is trivial, then (X$9g
ik)) is the Riemannian

product of (CPk
9 Fubini-Study) and (X, g). Thus (2.4) holds. •

3. Rigidity of Atiyah and Hirzebruch. In this section we give a new proof for the
rigidity of the Dirac operators on spin manifolds. Atiyah and Hirzebruch has proved
the vanishing of equivariant indices of Dirac operators on spin manifolds by means of
the Atiyah-Singer equivariant index formula. Here "rigidity" means the constancy of
the equivariant indices as virtual character. If the S1 -action is not lifted to the spin
structure P, then we consider the double covering action, which is lifted to P. Thus we
may assume that the S ̂ action is lifted to the spin structure. More precisely, we prove
the following:

PROPOSITION (3.1) (cf. [A-H]). Let M be a closed spin manifold with an S^-action.
Then the S1-equivariant index SMnd D e RiS1) of the Dirac operator D on M is constant.

Before proving this proposition, we review the definition of twisted Dirac operators
on spinc manifolds. The details can be found in [Hi], which treats the Dirac operators
on spinc manifolds, and [G-L], which treats the twisted Dirac operators.

A manifold X is called a spinc manifold if the second Stiefel-Whitney class w2(X)
is contained in the image of the Bockstein homomorphism /?: H2(X; Z)-+H2(X; Z/2).
This condition is equivalent to the following:
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CONDITION (3.2). There is a Spinc(m)-principal bundle Q-+X such that
Q x pi SO(m)-+X is the oriented frame bundle of X, where m is the dimension of X and
pt is the natural homomorphism Spinc(w) = Spin(w) x z/2S

1-+SO(m).

We call Q^X a spinc structure on X and the line bundle LQ = QxP2C->X the
associated complex line bundle, where p2 is the natural homomorphism Spinc(Aw)->
S1/{±1} = U(l). It is well known that P(cl(LQ)) = w2(X). Fixing a connection on LQ and
a Riemannian metric on X, we can define a connection on Q. If dimX=2n, then
Spinc(2w) has ± half spinor representations V+ and V~. We define the Dirac op-
erator on X by

(3.3) D = Y,e% • Vei: I\X; S+)^r(X; S"),
i

where S± =QxSpinC(2n)V
± is the ± half spinor bundles, {ej is a local oriented

orthonormal frame field on X and V is the covariant differentiation with respect to the
connection on Q. The Weitzenbock formula for D (cf. [Hi]) is given by

(3.4) D*D = V*V + - i • K + ±- • X eiej®QL(ei9 es),
4 2 KJ

where QL is the curvature form of L=LQ.
The Dirac operator DE twisted by a vector bundle E with a connection is defined by

(3.5) £ £ = 5 > f ' Ve,:Tpr; S + ® £ H F ( X ; S " ® £ ) ,
i

where V is the covariant differentiation defined by connections on Q and E. The
Weitzenbock formula for DE (cf. [G-L]) is given by

(3.6) D%DE = V*V + — • fc + — • Ya eiei®QL(eh ej)+ X efi&Q^e* ej),
4 2 i<j i<j

where O£ is the curvature form of E.

PROOF OF PROPOSITION (3.1). We consider a family 3 of Dirac operators along
the fibres of the fibre bundle n: M$}-+CPk.

Claim 1. ind^ = y(k)(51-indD) holds in K(CP% where y(k): JR(51)-^K(CPk) is
defined by y(fc)(F) = 52fc+1 x s l Kfor an ^-module V.

ind(p*@>)€Ksi(S
2k+1) for the family p*@ of Dirac operators on the fibre bundle

S 2 * + 1 xM->S 2 k + 1 is represented by S2k+1 x k e r D - 5 2 k + 1 xcokerD. Since ind^> is

the image of ind(p*@) by the isomorphism Ksi(S
2k+1)—^-»K(CPk)9 we have ind^ =

As we mentioned above, a Dirac operator on a spinc manifold is determined by a
complex line bundle Lwith a connection which satisfies j9(Ci(L)) = w2(M). On CPk with
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k even, we use the Dirac operator Dcpk with the hyperplane section bundle Lwith the
canonical connection. On CPk with k odd, we use the usual Dirac operator. We choose
a spinc structure on Mg? as follows: Let Q = A*(Qf} x n*PCpk), where A : Mg?->Mg? x Mg?
is the diagonal inclusion map, Q->M is the spin structure on M, and PCPk is the spinc

structure mentioned above. Q is a principal Spin(m) x Spinc(2fc)-bundle. The spin0

structure on Mf} which we use is Qx tSpmG(m + 2k)9 where i is the homomorphism
Spin(m)xSpinc(2fe) = Spin(m)x(Spin(2fe)xz/251)-^Spinc(m + 2fc). Then the associated
complex line bundle of this spinc structure is n*L. The Dirac operator DM<k> is defined
by the pull-back of the canonical connection on the hyperplane section bundle. When
k is odd, M$? is a spin manifold and we use the usual Dirac operator. We also use the
notation Dcpk®ind^ for the Dirac operator twisted by i

Claim 2. ind(DCpk®ind 9) = ind DM™ .

This is a special case of the multiplicative axiom of the index in [A-S I]. Claim 2
is also derived from the index formula for a family of elliptic operators in [A-S IV]
and the index formula in [A-S III].

Claim 3. ind DM <*>=0 for every k ̂  1.

Indeed, we use the vanishing theorem of Lichnerowicz [L] and Hitchin [Hi] (cf.
(3.4)). For odd fe, Lichnerowicz's vanishing theorem and Lemma (2.1) insures that
indDM<« = 0. Then k is even, let {p*eu • • , p*e2k, p^fu • • • , pjm-u p*e} denote an
orthonormal basis as in the proof of Lemma (2.1). Since the curvature form Qn*L

equals —n*co, only the terms ^n*L(p^ehp^ej) do not vanish. Lemma (3.1), Formula
(1.7), and Hitchin's vanishing theorem insures that ind DMw=0.

Claim 4.

(3.7) ch(2°(ind0) = O in H2\CPk; Q) for Z^l

where ch(2° denotes the 2/ degree component of ch.

We show this by induction on /.

Suppose /= 1. By Claims 1, 2 and 3, we have

ind(DCpl(g)/1)(S1-indD)) = O.

The Atiyah-Singer index formula says

Since S(CP 1 )=1, we get ch(2)(y(1)(51-indD)) = 0. Let i\\ CP1-^CPk be the inclusion
map. Then ^1ch(2)(y(k)(S1-indD)) = ch(2)(/1)(S:1-indD)) holds. Since ***: H2(CPk)-+
H\CPl) is injective, we get

ch(2)(/k)(S1-indD)) = 0 for
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Suppose that (3.7) holds for Z^/o. Since indjDCPio+i®y(lo+1)(SMnd/)) = 0, the
Atiyah-Singer index formula says

ch(yilo+1\S1'indD)) • ch(L) • &(CP'o+1)[CP'o+1] = 0 (/0: odd)

chC/o+^SMndD)) • #(CP / o + 1 ) [CP / o + 1 ]=0 (/0: even).

By the induction assumption,

It is well-known that

ch(L) • <&(CPl°+^[CP1*+ x] = 0 (Jo: odd)

&(CP'o + 1)[CP'o + 1] = 0 (Z0: even),

for instance, as a consequence of the vanishing theorem of Lichnerowicz and Hitchin.
Thus we have ch(2lo+2)(y( lo+1)(SMndD) = 0, which implies ch(2/o+2)(y(fc)(S1-ind2))) = 0
forfc^l .

Claim 5. S Mnd D e R(S*) is constant.

Claim 5 is derived from Claim 4 and the following:

LEMMA (3.8). Let £ be a virtual S1-module, i.e., a formal difference of S1-modules.
If ch(y(k)(£)) has only the zero degree component, the virtual character of ^ is constant in

1), i.e., £ is a virtual vector space with a trivial S1-action.

PROOF OF LEMMA (3.8). {y(fc)} induces a map y: /^(S^-^projlim, K(CPl) and the

following commutative diagram.

R(SX) -*-> proj limlC(CP') — p r o j lim if(CP'; Q)

jfC(CP*) » H{CPk; Q)

It is easy to see that ch o y is injective. By the assumption of Lemma (3.8), ch o y(£) has
only the zero component, which implies the conclusion. •

Thus Claim 5 is proved and the proof of Proposition (3.1) is completed. •

REMARK (3.9). For even fe, we can also use complex quadrics instead of complex
projective spaces, which are spin, since BS1 is also the inductive limit of complex
quadrics. Then we need not consider Dirac operators on spinc manifolds.

4. Equivariant index of twisted Dirac operators. Let M be a closed manifold with
an S1-equivariant spinc structure Q-+M, H^M the complex line bundle associated to
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Q, i.e. H = Qx P2C, and E-*M an S^equivariant vector bundle with an invariant
unitary connection. We consider the Dirac operator DM®E twisted by E. Then
S1-ind(DM®E) is a virtual character of S1. Identifying the character ring R(SX) with
Z[t, f 1 ] , we can write S1-ind(DM®£) = ]^m/ /- We shall give a restriction to possible
weights appearing in S1-ind(DM®E).

THEOREM (4.1).

(4.2) mj=0 if i J l ^ m a x ^ - i - l ^ l + H^

where fiE: l/(£)->u(r), r = rank£, and fiH: M->/? are the moment maps of E and H,
respectively, and \\ \\ denotes the operator norm on u(r).

LEMMA (4.3). Let Z^^nf* be a virtual S1 module, and assume that

Then we have

(4.4) only if

for fel.

< / < and I is odd,
2 2

<j<— and I iseven .J~2

PROOF OF LEMMA (4.3). We shall prove (4.4) by induction on /. We have nothing
to prove in the case /= 1 (see Lemma (3.8) and the proof of Claim 4 in §3). We recall
the following fact.

LEMMA (4.5) (Hattori [Ha], Kawakubo [K]). Let F^CPk be the tautological line
bundle. Then the following hold:

fc-1 .. k-\

if
2

k-2

and k is odd

indDCPK<g)Fj=\ if

k
<j^— and k is even

2 ~ 2

j= and k is odd

j— and k is even

indDcpk®FJ = (-l)k if
j =

2
k + 2

and k is odd

and k is even .
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Listed in Table are values of indDCFic(g)F7 for several pairs of j and k.

TABLE.

329

3
2
1
0

- 1
- 2
- 3

1

- 3
2

- 1
0
1
2
3

2

3
1
0
0
1
3
6

k

3

- 4
- 1

0
0
0
1
4

4

1
0
0
0
0
1
5

5

- 1
0
0
0
0
0
1

REMARK (4.6). (1) The Hopf fibration S2k+1-+CPk can be regarded as a prin-
cipal S^bundle, i.e., S1 c C acts on S2k+1 cz Ck+1 from the right by complex multi-
plication. Thus the line bundle y{k)(t) is the tautological line bundle F->CPk.

(2) Lemma (4.5) can be seen to be a consequence of the relation between the
Dirac operators and the Dolbeault operators on Kahler manifolds (cf. [Hi]).

Next we show (4.4) for / = /0+ 1 under the assumption that (4.4) holds for / ^

Suppose l0 is odd. Set £ = d • t(h+1)/2 and £' = £-£• Lemma (4.5) says
indDCpk( ,(*)(£ ') = Q for fe^/0. By the induction assumption, we have an expression

do-D/2

7=-(lo-D/2

which implies (4.4) for <̂.

The proof in the case /0 even is similar with £= —dtlo/2. •

PROOF OF THEOREM (4.1). From Lemma (4.3), it is sufficient to prove that

(4.7) ind Dcpk® y{k\S 1-ind(DM® £)) = 0

for k ̂  max( | \P \ + 2 • || \iE ||) +1 . As in the proof of Proposition (3.1), we have

ind DCPu®yik\S M n d ^ ® £ ) ) = ind Dcpk®(ind ®®E§) = ind DM™®E§ .
Let {el9 * • •, e2k,fi, ' ' ' >/m-i> e} be as in §2. By Lemma (1.9), the curvature form
on Ef} is given by

Q = A7t*co9

where 9 is the given connection on the frame bundle P of E and Q is its curvature form.
This implies that
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and

(f,)
v 1 + s 5

If we change a Riemannian metric g on M with rg for r>0, we can easily see that

=0 and li

Then (4.7) is derived from the standard Bochner technique and Formulas (1.7) and
(3.6). •

5. Family of Dirac operators. Let X be a compact space and N^X a
Riemannian submersion whose tangent bundle along the fibres has a spin structure.
We denote by @N-+X the family of Dirac operators associated to the spin structure.
If S1 acts on N preserving the fibres and the spin structure, then the equivariant
index of Sl-ind3>N^xeKsi(X) = K{X)®R{S1) of @N_X is defined.

We can show the following:

THEOREM (5.1). S M n d ^ y ^ lies in the image lm{K(X)^K{X)®R(S1)}, i.e. the
virtual S1-vector bundle SMnd^jy.+x is a virtual vector bundle with trivial S1-action.

The proof goes as follows:
Step 1. Let N$ = S2k+1xslN-+CPkxX be the Borel construction of the

Riemannian submersion N^X. Then we see that

ind D c p k ® ( i n d @N<ki^Cpk xX) = ind @N™->X •

Since X is compact, @N™^X is a family of invertible operators for some Riemannian
metric along the fibres of N^X. Hence its index is zero.

Step 2. As in the proof of Proposition (3.1), there exists a homomorphism
y$):K(X)(g)R(S1)-+K(X)®K(CPk)-+K(XxCPk). It is easy to see that y^S 1 -
ind^N^x) = ind îV<k

1>_x. By the Kiinneth formula and the fact that K(CPk) is free, the
homomorphism K(X)®K(CPk)^>K(X x CPk) is an isomorphism and there is the
following diagram.
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0 • K(X)®K(S2k) > K{X)®K(CPk) > K(X)^K(CPk'1) • 0

K{X x CPk) > K{X x CPk~l)

Since K(X)®K(S2k)^K(X x CPk)J^K(X) is an isomorphism, we obtain ^ ( S 1 -

ind @N->x)E lTti{K(X)——+K(X x CPk)}9 where p denotes the projection to the first factor

and pl is the Gysin map.
Step 3. It can be seen that proj limfc # : K(X)®R(S1)^projlimkK(J!fx CPk) is

injective, which implies the conclusion. •
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