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TRANSVERSALLY SYMMETRIC RIEMANNIAN FOLIATIONS
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Summary. We discuss Riemannian foliations which are transversally modeled on
a Riemannian symmetric space. In particular we investigate how the transversal symmetry
influences other geometric properties of the foliation and the geometry of the ambient
space.

1. Introduction. A Riemannian foliation 3F is transversally symmetric if its
transversal geometry is locally modeled on a Riemannian symmetric space. The first
topic of this paper is a characterization of transversal symmetry by a condition on the
canonical Levi-Civita connection V of the normal bundle (Theorem 1). For a totally
geodesic foliation ^ this characterization can be sharpened in the analytic case (Theorem
3), using the results of [26], [27], [28].

Next we examine the influence of the geometry of the ambient space M on the
properties discussed above. A typical illustration is the following. For a space of constant
curvature the total geodesic property for the leaves of 3F implies the transversal symmetry
of ^ (Theorem 4). Related results are Theorem 5, Corollary 6 and Theorem 7.

Conversely, the existence of a transversally symmetric foliation has strong
implications for the geometry of the ambient space (Af, g). Note that throughout this
paper we assume the metric g to be bundle-like for $F. A typical result is that the
transversal symmetry of the foliation defined by a Killing vector field of unit length on
a complete, simply connected (M, g) implies that (M, g) is a naturally reductive space
(Theorem 10).
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2. Transversal symmetry. Let 3F be a Riemannian foliation on a Riemannian
manifold (M, g). It is given by an exact sequence of vector bundles

n
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where L is the tangent bundle and Q the normal bundle of #'. The tangent bundle TM
decomposes as an orthogonal direct sum L®LL^TM. The assumption on g to be a
bundle-like metric means that the induced metric gQ on the normal bundle Q = LL satis-
fies the (infinitesimal) holonomy in variance condition 0(X)gQ = 0 for all XeFL, where
9(X) denotes the Lie derivative with respect to X [21].

For a distinguished chart U^M the leaves of IF in U are given as the fibers of a
Riemannian submersion f: U-> Fez N onto an open subset V of a model Riemannian
manifold iV. If /? = dimL, # = dimg and «=/? + # = dim M, then dimAT=#. For
overlapping charts t/a n Up the corresponding local transition functions ypa

=fpofa1

on TV are isometries. !F is said to be transversally symmetric if N is a locally symmetric
Riemannian space.

We wish to express this in terms of the canonical Levi-Civita connection V of the
normal bundle Q and its curvature Rv. The connection V is the unique metric and
torsion free connection in Q (see e.g. [13], [15], [16], [25]). Let further D and R denote
the Levi-Civita connection and curvature of the metric g on M. Finally, let A denote
the O'Neill integrability tensor of type (1,2) for L 1 [10], [19], [2], defined for a
Riemannian foliation !F by

(2.2) AY Y' = nD^n1 Y' + nLDnYii Y'

for arbitrary vector fields Y, Y' and orthogonal projections n\ TM^Q, nL: TM->L.
For U, VeTLL we have then [2, (9.24)]

(2.3) AuV=n±DuV^^-n1lU, F] .

With these notations we have then the following result.

THEOREM 1. Let !F be a Riemannian foliation on (M, g), and g a bundle-like metric.
The following conditions are equivalent:

(i) $F is transversally symmetric,
(ii) the local geodesic symmetries (geodesic reflections) on the model space are

isometries;
(iii) VuRlvuv = 0 for all U, Ve TLL\
(iv) DuRuvuv + 2RUAvVUV= -egdDvA^V, AvV)for all U, VeTL1.

All these conditions are purely local and they are automatically satisfied for a
Riemannian foliation of codimension 1. Hence a Riemannian foliation of codimension
one is always transversally symmetric. The conditions above seem to be weaker than the
condition

(2.4) V/?v = 0

discussed in [6], since nothing is said about the vanishing of VxR
y and ix^u^ f°r

XeTLand UeTL1.
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Note that we use the sign convention

and we put

W, Z) , R IJVWZ = Qqffi UV W9 Z) ,

the latter being defined for W, ZeFQ. In the arguments below we make extensive use
of the fact that V is a basic connection. This is expressed by the property [12, (2.30)]

(2.5) 1 ^ = 0 for all XeFL.

As a consequence it suffices to evaluate RveQ2(M, End(0) on U9 VeFQ. Since locally
Q is framed by projectable normal vector fields, denoted FQLc=FQ, it is often enough
to consider R*(U, V) for U, VeFQL. For given UeFQL there is a unique projectable
vector field UeFL1 with n(U)=0 under the projection n\ TM-+Q. We will identify
U and D.

PROOF OF THEOREM 1. The proof is based on the relationship

(2.6) f+R\U9 V) JV= **(/;U, / , V)fn W

between Rv and the curvature RN of the local model in a distinguished chart, where 3F
is defined via the local submersion / and U, V, WE FQL. This is a consequence of the
definition of V [13, (1.3)].

Now it is classical that the local symmetry of the model space is characterized by
(ii) or equivalently (see [11], [31]) by

for vector fields £7, V in the model space, and where

For U9 VeFL1 which are /-related to f7, F, we have then

(2.7) f*VuKZvuv = VNuKNuvor.

This follows from the fact that DVV in each argument of R* can be replaced in view
of (2.5) by 7r(Z)l/K) = V t /F([13, (1.3)]).

It remains to prove the equivalence (iii)o(iv). First we note that by [2, (9.28f)]
for U, VeFQL

(2.8) Ruvuv = *uvuv-MAVV9 AVV) .

By [22, p. 156] we may assume DvU=0. Then

) — 2RUDuVUV
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and similarly

Further, it follows then by (2.8) that

^u^uvuv~^u^uvuv= —^Ug^AuV, AVV) — 2RUDuVUV + 2Rirs7uVUV .

Now using again [2, (9.28f)] yields

Ruvuvuv — R%vvvvv= — i0(AvVvV9 AvV)

and thus

(2.9) DVRUVUV-WvRlvuv-{-2RUAuVUV= -6g(PdAvV)9 i , F ) + 6 ^ , V , K , AVV)

In the last equality we have used

vV9 AVV),

which is a consequence of definition (2.2). (2.9) establishes the equivalence of (iii) and
(iv), and completes the proof of Theorem 1.

Similar properties hold for Kdhler foliations. The Riemannian foliation IF is
(transversally) Kahler (see e.g. [18]), if there exists a holonomy invariant almost complex
structure J: Q-+Q, where dim Q = q = 2m, satisfying the following two conditions:

gQ(JU,JV) = g(U,V), V/=0

for U, Ve FLL. The basic two-form <P(U, V) = gQ(U, JV) is then closed. Using the result
in [23] one proves then similarly as above the following result.

THEOREM 2. Let 3Fbe a Kdhler foliation on (M, g\ and g a bundle-like metric. The
following conditions are equivalent:

(i) 3F is transversally symmetric,
(ii) the geodesic reflections on the model Kdhler manifold preserve the Kdhler form,

i.e. are symplectic;
(iii) the geodesic reflections on the model Kdhler manifold preserve J, i.e. are

holomorphic;
(iv) VURIJWJV = 0 for all UeTLL.

Sasakian manifolds (M, g) provide examples of Kahler foliations with one-
dimensional leaves. In this case the leaves are geodesies. The geodesic reflections on
the model space correspond to the (^-geodesic symmetries on the ambient space (M, g)
(see e.g. [3], [4], [7], [24]). These examples and the so called ^-symmetric spaces [24]
may serve as a model for the theory we develop in the next section.

We finish this section by recalling that for complete and simply connected (M, g),
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a transversally symmetric foliation is globally given by the fibers of the developing map,
a submersion to the simply connected symmetric model space [5].

3. Totally geodesic foliations. In this section we assume the foliation !F to be
in addition totally geodesic, i.e. all leaves are totally geodesic submanifolds with respect
to a bundle-like metric g. The {local) reflection (p# in each leaf if (or relative to J&?) is
denned as the local geodesic symmetry for normal geodesies to if in a sufficiently small
tubular neighborhood of if. For meS£ and p on a sufficiently short normal geodesic
y emanating from m, and parametrized by arc length, i.e. p — expm(ru) = y(r) for some
unit vector ueFL^, we have <p̂ (p) = expm(—ru) = y(—r). (For more details about
reflections see e.g. [8], [26], [30].)

For a Riemannian foliation it is immediate that the reflection q># sends leaves into
leaves, and corresponds to a geodesic symmetry on the (local) model space for the
transversal geometry at the point corresponding to the leaf if.

It is well-known that when all the reflections are isometries, then the leaves S£ are
necessarily totally geodesic. We discussed in [27] conditions to impose on the reflections
in a totally geodesic submanifold, so as to guarantee that they are isometries. They
involve the shape operator Tp(m): TmGp-+TmGp of the geodesic sphere GpczM with
center p = y(r) and radius r. We have then Lm a TmGp, the inclusion being an identity
only for q — 1. In [28] we discussed similar conditions using the Ricci operator
Qp(m): TmGp-+TmGp of Gp. Both results rely on a criterion, determined in [8], using
the curvature R and its covariant derivatives along the submanifold.

The characterizations for transversal symmetry in Theorem 1 can be sharpened as
follows.

THEOREM 3. Let 3F be a totally geodesic and Riemannian foliation on (M, g) of
codimension q>\, andg a bundle-like metric. Assume all data to be analytic. The follow-
ing conditions are equivalent:

(i) & is transversally symmetric,
(ii) VuRlvuv = 0 for all U, Ve TL1;

(iii) Ruvux = 0 and DVRUVUV = 0 for all U, Ve TLL and Xe TL\
(iv) the reflections cp in the leaves are isometries',
(v) ^Jim)°Tp(m)=Tv{pjm)o(pJm) for all meM, all unit ueL^, and all /? =

expm(ru)for all sufficiently small r;
(vi) same condition as in (v), but applied only to normal vectors veL^n TmGp;

(vii) <P*(m)°Qp(m) = Qyip)(m)o(p^(m) for all meM9 all unit ueL^, and all p —
expm(rw) for all sufficiently small r, if dim M> 3 and 2 dim M= In # 3(« — q +1).

PROOF. The equivalence of (i) and (ii) was proved above. Further, the equivalence
of (iv) and (v) has been proved in [27], and the equivalence of (iv) and (vii) in [28].
These proofs use the analyticity assumption made.

Next, assuming totally geodesic leaves, the reflection in the leaves are isometric if
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and only if the geodesic reflections on the model space are (local) isometries, as is clear
in a distinguished chart. This proves the equivalence of (i) and (iv).

The implication (vi) => (iii) follows at once from the detailed computations in [27].
Now we prove the implication (iii) => (ii). For totally geodesic & we have to put

F=0 (see (4.2) below for the definition of T) in [2, (9.28e)], and this yields

By assumption this term vanishes for all Xs FL. In particular

for U, VeFL1. Thus condition (iv) of Theorem 1 is satisfied. This completes the proof
of the theorem.

4. Consequences of constant ambient curvature. In this section we apply the
previous considerations to a manifold (M, g) of constant sectional curvature, and to a
Kahler manifold (M, g, J) of constant holomorphic sectional curvature, i.e. to real and
to complex space forms.

As already observed in [8], [26], in a space of constant curvature the reflections
in totally geodesic submanifolds are isometries. Hence from this and Theorem 3 we
have the following fact.

THEOREM 4. Let ^ be a Riemannian foliation on a space (M, g) of constant
curvature, and g a bundle-like metric. If ^ is totally geodesic, it is necessarily transversally
symmetric.

More generally we have the following result.

THEOREM 5. Let 3F be a Riemannian foliation on a space (M, g) of constant
curvature, and g a bundle-like metric. Then 3F is transversally symmetric if and only if

(4.1) g(AvV9TAvVU) = 0 for all U,VeFLL.

Here T is the O'Neill tensor of type (1,2) defined for a Riemannian foliation by

(4.2) TY F = nDn,Y K1 F + n1 Dn,Yn Y'

for arbitrary vector fields Y, Y'. Note that in particular for XeFL, UeFL1 we get
from (4.2)

TxU=nLDxU= - W(U)X,

where W(U)\ L^L denotes the Weingarten map of IF given for U. Thus for totally
geodesic &, condition (4.1) is satisfied, and thus Theorem 4 follows from Theorem 5.

PROOF OF THEOREM 5. By assumption DR = 0 and for U, VeFL1 we have
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RuvU=c{g(U, U)V-g(U, V)U) ,

where c is the constant curvature of (M, g). Thus for XsTL it follows
particular

By [2, (9.28e)] we have on the other hand

RVVUAUV = 9(LDVA)VV, AvV) + 2g(AvV, TAuVU).

Then (2.9) implies

-Vu*Zvuv= -6gi(DvA)vV, AvV)=\2g(AvV, TAuVU).

This, together with Theorem 1, completes the proof.

For a Riemannian foliation with integrable L1, we have A = 0 and hence (4.1)
implies the following fact.

COROLLARY 6. Let 3F be a Riemannian foliation on a space of constant curvature,
and g a bundle-like metric. If L1 is integrable, then & is transversally symmetric.

Next, we combine Theorem 4 with the following recent result of Nakagawa and
Takagi [17].

PROPOSITION 7. Let 3F be a Riemannian and harmonic foliation on a compact
manifold (Mn, g), n>2, of constant sectional curvature c^.0. Then $F is totally geodesic.

The harmonicity condition means that all leaves are minimal submanifolds [13]. For
codimension q= 1 this result is a consequence of the sharper results in [14], [20] based
on Ricci curvature hypotheses.

Combining this with Theorem 4 we get the following result.

THEOREM 8. Let (Mn,g), n>2 be a compact Riemannian manifold of constant
sectional curvature c^.0, IF a Riemannian foliation on M, and g a bundle-like metric. If
^ is harmonic, then 3F is transversally symmetric.

This applies in particular to the spheres Sn, n>2. These foliations have been
classified in [9].

Proceeding as above we finally get from Theorem 3 and the result in [8], [26] the
following conclusion.

THEOREM 9. Let (M, g, J) be a Kdhler manifold of constant holomorphic sectional
curvature, & a Riemannian and totally geodesic foliation, and g a bundle-like metric.
Then the following conditions are equivalent'.

(i) !F is transversally symmetric,
(ii) Ruvux = 0 far all U,Ve TLL and all Xe TL\
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(iii) every leaf S£ is either a holomorphic submanifold or a totally real submanifold
<£ with dim <£ = (1/2) dim M.

5. Effect on the ambient metric. In this final section we will treat some aspects
of the following question. How does the existence of a transversally symmetric foliation
influence the geometry of the ambient space?

We consider a Riemannian flow (a Riemannian foliation with one-dimensional
leaves), and we assume moreover & to be generated by the flow lines of a Killing vector
field £ of unit length. The leaves are then necessarily geodesies. We prove the following
result.

THEOREM 10. Let 3F be the Riemannian flow defined by a unit Killing vector field
£ on (Af, Q). If 3F is transversally symmetric, the space (M, g) is locally homogeneous. If
moreover (M, g) is complete and simply connected, it is a naturally reductive homogeneous
space.

PROOF. By [1] and [29] we have to prove the existence of a (1, 2)-tensor field T
(unrelated to O'Neill's tensor in section 4), such that for the new connection D = D—T
we have

(5.1) Dg = DT=DR = 0

and

(5.2) TxX=0

for all tangent vector fields X. (5.1) guarantees the local homogeneity, while (5.2)
guarantees that the homogeneous structure T is of natural reductive type. A complete
and simply connected manifold with such a Tis a natural reductive homogeneous space.

To prove the existence of such a T, let A* be a tensor field defined by

(5.3) A$£ = 0, Ai£ = AtU9 A$U=AV£9 A*V=0

for U, VeTL1. Then let

(5.4) T=A-A*

and define D by

D = D-T.

Note that the properties of the O'Neill tensors imply (see [2, (9.21)])
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Av is alternating,

AVV=-AVU,

(5.5)

AuV=n1DuV

and hence AVV~£. Hence, from (5.3), (5.4) and (5.5) we get

(5.6) 7^ = 0, TV^AV^ TsU=-AuZ, TVV=AVV.

Now, from this we see at once that (5.2) is satisfied. Further, Dg = 0 is equivalent to

and we see easily that this condition is also satisfied.
Further, when 3F is transversally symmetric and £ is Killing, we get (see Theorem

3) first

and then, using also the properties of the O'Neill tensors, a lengthy but straightforward
computation shows that DR = DT=09 which completes the proof.

Finally we mention the following result of Chen and the second author (see e.g.
[30, p. 83]):

PROPOSITION 11. Let (Af, g) be a locally irreducible symmetric space. Then (M, g)
is a space of constant curvature if it admits a curve a such that the reflection in the curve
is an isometry.

From this, together with Theorem 4, we get at once the following property.

THEOREM 12. Let (M,g) be a locally irreducible symmetric space, and &* a
Riemannian flow with geodesic leaves. If 3F is transversally symmetric, then (M, g) is a
space of constant curvature, and conversely.
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