FINITENESS OF A COHOMOLOGY ASSOCIATED WITH CERTAIN JACKSON INTEGRALS

Каzuніко Аомото

(Received December 20, 1989)

Abstract. A structure theorem on q-analogues of b-functions is stated. Basic properties for Jackson integrals of associated q-multiplicative functions are given. Finiteness of cohomology group attached to them is proved for arrangement of A-type root system. Some problems about the derived q-difference systems are posed. An example of basic hypergeometric functions are given.

1. Let $E_n := E^n$ be the direct product of n copies of an elliptic curve E of modulus $q = e^{2\pi\sqrt{-1}\tau}$ for $\text{Im } \tau > 0$. The first cohomology group $H^1(E_n, \mathbb{C})$ has the Hodge decomposition $H^1(E_n, \mathbb{C}) = H^{1,0}(E_n) + H^{0,1}(E_n)$, where $H^{1,0}(E_n)$ is isomorphic to the direct sum of n copies of $H^{1,0}(E)$, the space of holomorphic 1-forms on E. Let $\{3, \dots, 3_n; 3_{n+1}, \dots, 3_{2n}\}$ be a basis of the first homology group $H_1(E_n, \mathbb{Z})$ such that each pair $\{3_j, 3_{n+j}\}$ represents a pair of canonical loops in E. There exists a system of holomorphic 1-forms $\theta_1, \dots, \theta_n$ on E_n such that

(1.1)
$$\int_{\mathfrak{J}_{j}} \theta_{k} = 2\pi \sqrt{-1} \, \delta_{j,k}$$

$$\int_{\mathfrak{J}_{n+1}} \theta_{k} = 2\pi \sqrt{-1} \, \tau \delta_{j,k} \,, \quad \text{Im} \quad \tau > 0 \,.$$

We denote by \overline{X} the factor space of the dual $H^{1,0}(E_n)^*$ of $H^{1,0}(E_n)$ with respect to the abelian subgroup $A = \langle \mathfrak{z}_1, \cdots, \mathfrak{z}_n \rangle$ of $H_1(E_n, \mathbb{Z})$ generated by \mathfrak{z}_j , $1 \le j \le n$. This is possible because $H_1(E_n, \mathbb{Z})$ can be contained in $H^{1,0}(E_n, \mathbb{C})^*$. In the same way we denote by X the factor space $H_1(E_n, \mathbb{Z})/A$. X can be assumed to be a submodule of \overline{X} and has a basis $\chi_j = \mathfrak{z}_{n+j} \mod A$. An arbitrary $\chi \in X$ is written uniquely as

(1.2)
$$\chi = \sum_{j=1}^{n} v_{j} \chi_{j} \quad \text{for} \quad v_{j} \in \mathbf{Z}.$$

The quotient \bar{X}/X is canonically isomorphic to E_n . By the map

(1.3)
$$\bar{X} \ni \omega \mapsto x = (x_1 = \exp((\theta_1, \omega)), \dots, x_n = \exp((\theta_n, \omega))) \in (\mathbb{C}^*)^n$$

for $\omega \in \overline{X}$, \overline{X} is isomorphic to the algebraic torus $q^{\overline{X}} = (C^*)^n$ and X is isomorphic to the discrete subgroup q^X generated by $q^{\chi_1} = (q, 1, \dots, 1), \dots, q^{\chi_n} = (1, 1, \dots, q)$. Here (θ, ω) denotes the canonical bilinear form on $H^{1,0}(E_n, C)$ and its dual.

We denote by $R(\bar{X})$ the field of rational functions on $q^{\bar{X}}$ and by $R^{\times}(\bar{X})$ the

multiplicative group $R(\bar{X}) - \{0\}$. Then X acts on \bar{X} and also on $R(\bar{X})$ or $R^{\times}(\bar{X})$ in a natural manner. We denote these operations by \hat{Q}_i and Q_i as follows:

$$(1.4) \hat{Q}_{i}(x_{1}, \dots, x_{i}, \dots, x_{n}) \mapsto (x_{1}, \dots, x_{i-1}, qx_{i}, x_{i+1}, \dots, x_{n})$$

$$(1.5) Q_i \varphi(x) = \varphi(\hat{Q}_i(x)),$$

for $x = (x_1, \dots, x_n) \in q^{\bar{X}}$ and $\varphi \in R(\bar{X})$, respectively.

A cocycle $b_{\chi}(\omega)$ on X with values in $R^{\times}(\bar{X})$ is defined by the cocycle condition

$$(1.6) b_{\chi+\chi'}(\omega) = b_{\chi}(\omega) \cdot b_{\chi'}(\omega+\chi)$$

for any χ , $\chi' \in X$ and $\omega \in \overline{X}$. A coboundary $b_{\chi}(\omega)$ is defined as $\varphi(\omega + \chi)/\varphi(\omega)$ for a certain $\varphi \in R^{\times}(\overline{X})$. The quotient space of the space $Z^{1}(X, R^{\times}(\overline{X}))$ of all cocycles with respect to the space $B^{1}(X, R^{\times}(\overline{X}))$ of all coboundaries defines the first cohomology group of X with values in $R^{\times}(\overline{X})$:

(1.7)
$$H^{1}(X, R^{\times}(\bar{X})) \simeq Z^{1}(X, R^{\times}(\bar{X}))/B^{1}(X, R^{\times}(\bar{X})).$$

 $H^1(X, R^{\times}(\bar{X}))$ has a multiplicative group structure.

An arbitrary element $\mu \in \text{Hom}(X, \mathbb{Z})$ can be uniquely extended to $\overline{\mu} \in \text{Hom}_{X}(\overline{X}, \mathbb{C}/(\mathbb{Z}(2\pi\sqrt{-1}\tau)^{-1}))$ and to $q^{\mu} \in \text{Hom}(\overline{X}, \mathbb{C}^{*})$ by

(1.8)
$$\bar{\mu}\left(\sum_{j=1}^{n}\omega_{j}\chi_{j}\right) = \sum_{j=1}^{n}\omega_{j}\mu(\chi_{j}), \qquad \omega_{j} \in \mathbb{C}.$$

Then the following important result holds.

PROPOSITION 1. $H^1(X, R^{\times}(\overline{X}))$ is represented by cocycles of the following form:

(1.9)
$$b_{\chi}(\omega) = a_{\chi} \prod_{\nu=0}^{\mu_{0}(\chi)-1} q^{\bar{\mu}_{0}(\omega)+\nu} \cdot \prod_{i=1}^{k} \left\{ (q^{\gamma_{i}+\bar{\mu}_{i}(\omega)})_{\mu_{i}(\chi)} \right\}^{\pm 1}$$

for μ_0 , $\mu_i \in \text{Hom}(X, \mathbb{Z})$ and $\gamma_i \in \mathbb{C}$. Here $(a_{\chi})_{\chi \in X}$ denotes an element of $\text{Hom}(X, \mathbb{C}^*)$. $(a)_n$ means $\prod_{j=0}^{n-1} (1-aq^j)$ or $\prod_{j=1}^{-n} (1-aq^{-j})^{-1}$ according as $n \ge 0$ or n < 0. The expression (1.9) is not unique.

This result is a q-analogue of a result of M. Sato which was proved as early as in 1970. He called the functions $b_{\chi}(\omega)$ "b-functions" and made use of them for the theory of prehomogeneous spaces and classical hypergeometric functions of Mellin-Ore type (see [S1], [S2] and also the classical papers [B] and [O2]).

The proof can be carried out in a way completely parallel to his. (See [S2] for the English version recently elaborated by M. Muro from Sato-Shintani's original [S1].)

We denote by $\Theta(t)$ the theta function on C^* defined as the triple product $\Theta(t) = (t)_{\infty} (q/t)_{\infty} (q)_{\infty}$ where $(t)_{\infty} = \prod_{n=0}^{\infty} (1 - tq^n)$. This is a meromorphic function on C^* .

DEFINITION 1. A function φ on \overline{X} is said to be quasi-meromorphic if there exist $\rho_1, \dots, \rho_n \in C$ such that $\varphi x_1^{-\rho_1} \dots x_n^{-\rho_n}$ is meromorphic on $q^{\overline{X}}$.

Since

$$Q_{j}q^{\alpha_{1}\omega_{1}+\cdots+\alpha_{n}\omega_{n}}=q^{\alpha_{j}}q^{\alpha_{1}\omega_{1}+\cdots+\alpha_{n}\omega_{n}},$$

$$(1.11) Q_{i}(q^{\bar{\mu}_{i}(\omega)+\beta_{i}})_{\infty}/(q^{\bar{\mu}_{i}(\omega)+\beta_{i}})_{\infty} = (1-q^{\bar{\mu}_{i}(\omega)+\beta_{i}})_{\mu_{i}(\gamma_{i})}^{-1},$$

$$(1.12) Q_{i}(\Theta(q^{\mu_{0}(\omega)+\beta_{0}})) = (-1)^{\mu_{0}(\chi_{j})}q^{-\mu_{0}(\chi_{j})(\mu_{0}(\omega)+\beta_{0})}q^{-\mu_{0}(\chi_{j})(\mu_{0}(\chi_{j})-1)/2} \cdot \Theta(q^{\mu_{0}(\omega)+\beta_{0}}),$$

for $\alpha_1, \dots, \alpha_n, \beta_0, \beta_1, \dots, \beta_n \in \mathbb{C}$, we can solve the functional equation

(1.13)
$$\Phi(\omega + \chi) = b_{\chi}(\omega)\Phi(\omega)$$

in the space of quasi-meromorphic functions on \bar{X} :

PROPOSITION 2. There exists a quasi-meromorphic function $\Phi(\omega)$ satisfying (1.13). The quotient $\Phi_1(\omega)/\Phi_2(\omega)$ of any two solutions $\Phi_1(\omega)$ and $\Phi_2(\omega)$ of (1.13) is doubly periodic on $q^{\bar{\chi}}$ and hence meromorphic on E_n .

 $\Phi(\omega)$ has an expression as follows:

(1.14)
$$x_1^{\alpha_1} \cdots x_n^{\alpha_n} \frac{\prod_{i=1}^{k'} (v_i' x^{\mu_i'})_{\infty}}{\prod_{i=1}^{k} (v_i x^{\mu_i})_{\infty}}$$

for some $\alpha_j \in C$, v_i , $v_i' \in C^*$ and μ_i , $\mu_i' \in \text{Hom}(X, \mathbb{Z})$, where x^{μ_i} and $x^{\mu_i'}$ denote $q^{\bar{\mu}_i(\omega)}$ and $q^{\bar{\mu}_i(\omega)}$, respectively.

DEFINITION 2. A function $b_{\chi}(\omega)$ is called a *b*-function while a function $\Phi(\omega)$ of type (1.14) is called a *q*-multiplicative function.

2. u_j will denote q^{α_j} . For a function of u_j , v_i and v_i' we denote by $\tilde{Q}_j^{\pm 1}$, $\tilde{Q}_{v_i}^{\pm 1}$ and $\tilde{Q}_{v_i}^{\pm 1}$ the q-difference operators corresponding to the displacements $u_j \mapsto u_j q^{\pm 1}$, $v_i \mapsto v_i q^{\pm 1}$ and $v_i' \mapsto v_i' q^{\pm 1}$, respectively. Then we have

(2.1)
$$\tilde{Q}_{j}^{\pm \nu} \Phi = x_{j}^{\pm \nu} \Phi , \quad \tilde{Q}_{v_{i}}^{\pm \nu} \Phi = (v_{i} x^{\mu_{i}})_{\nu}^{\pm 1} \Phi , \quad \tilde{Q}_{v_{i}}^{\pm \nu} \Phi = (v_{i}' x^{\mu'_{i}})_{\nu}^{\mp 1} ,$$

respectively. Consider the operator algebra \mathscr{A} over C generated by $\widetilde{Q}_{j}^{\pm 1}$, $\widetilde{Q}_{v_{i}}^{\pm 1}$ and $\widetilde{Q}_{v_{i}}^{\pm 1}$ for all i, j. \mathscr{A} acts on $R(\overline{X})$. We denote by V the subspace of $R(\overline{X})$ spanned by $(\kappa \cdot \Phi)/\Phi$ for all $\kappa \in \mathscr{A}$. Then $\Phi \cdot V$ is the smallest \mathscr{A} -module in $\Phi \cdot R(\overline{X})$ containing Φ .

For an arbitrary point $\xi = (\xi_1, \dots, \xi_n)$ of $q^{\bar{X}}$ the X-orbit $X \cdot \xi$

(2.2)
$$X \cdot \xi = \{ (q^{v_1} \xi_1, \dots, q^{v_n} \xi_n) | v_1, \dots, v_n \in \mathbb{Z} \}$$

will be denoted by $[0, \xi \infty]_q$ and called an *n*-dimensional "*q*-cycle". This terminology may be justified by the following.

DEFINITION 3. The Jackson integral of a function on $q^{\bar{\chi}}$ over the q-cycle $[0, \xi \infty]_q$

(2.3)
$$\widetilde{f} = \int_{[0, \, \varepsilon \infty]_n} f(x_1, \, \cdots, \, x_n) \cdot \Omega$$

for $\Omega = (d_q x_1/x_1) \wedge \cdots \wedge (d_q x_n/x_n)$ is defined to be the sum

$$(2.4) \qquad \qquad (1-q)^n \sum_{-\infty < \nu_1, \cdots, \nu_n < \infty} f(q^{\nu_1} \xi_1, \cdots, q^{\nu_n} \xi_n)$$

if it exists.

It is obvious that

(2.5)
$$\int_{[0,\xi\infty]_a} Q_j f \cdot \Omega = \int_{[0,\xi\infty]_a} f \cdot \Omega ,$$

for each j, and hence

(2.6)
$$\int_{[0,\xi\infty]_a} Q^{\chi} f \cdot \Omega = \int_{[0,\xi\infty]_a} f \cdot \Omega ,$$

for $Q^{\chi} = Q_1^{\nu_1} \cdots Q_n^{\nu_n}$.

We are particularly interested in the Jackson integral for Φ :

(2.7)
$$\tilde{\Phi} = \int_{[0,\xi\infty]_a} \Phi \cdot \Omega ,$$

which depends analytically on α_i , v_i , v_i' and ξ .

If Φ has a pole at a point of $[0, \xi \infty]_q$ then (2.7) does not make sense. In this case the q-cycle $[0, \xi \infty]_q$ should be regularized as follows.

First we note:

LEMMA 2.1. For each i, the function

$$(2.8) U_i(\omega) = q^{\mu_i(\omega)^2/2} x_1^{\rho_1} \cdots x_n^{\rho_n} \Theta(v_i x^{\mu_i})$$

is invariant under the displacements Q_1, \dots, Q_n , where q^{ρ_j} denotes $(-1)^{\mu_i(\chi_j)} \cdot v_i^{\mu_i(\chi_j)} \cdot q^{-\mu_i(\chi_j)/2}$.

PROOF. This follows from (1.12) and the formula $q^{\mu_i(\omega+\chi_j)^2/2} = q^{\mu_i(\omega)^2/2 + \mu_i(\chi_j)\mu_i(\omega) + \mu_i(\chi_j)^2/2}$.

Suppose a factor $(v_i x^{\mu_i})_{\infty}$ of the denominator vanishes at a point of $[0, \xi \infty]_q$ so that Φ has a pole at a point of $[0, \xi \infty]_q$. Since $\Theta(v_i x^{\mu_i}) = (v_i x^{\mu_i})_{\infty} (q v_i^{-1} x^{-\mu_i})_{\infty} (q)_{\infty}$, $\Phi U_i(x)$ no longer has the factor $(v_i x^{\mu_i})_{\infty}$ in the denominator. Moreover it satisfies the same system of difference equations (1.13) as Φ . In this way, the integral $\tilde{\Phi}$ may be replaced by $\Phi \tilde{U}_i$ so that the zeros of $(v_i x^{\mu_i})_{\infty}$ are avoided.

This regularization is equivalent to taking the residues of Φ at each pole lying in $[0, \xi \infty]_q$. We call this procedure the regularization of integration and the corresponding cycle the regularized cycle of $[0, \xi \infty]_q$ which will be denoted by reg $[0, \xi \infty]_q$.

By substitution of integration $x_j \mapsto x_j q$ $(1 \le j \le n)$ and by (2.5), we have a formal system of q-difference equations:

(2.9)
$$\prod_{i=1}^{k} (v_i' \tilde{Q}_1^{\mu_i'(\chi_1)} \cdots \tilde{Q}_n^{\mu_i'(\chi_n)})_{\mu_i'(\chi_j)} \tilde{\Phi} = \prod_{i=1}^{k} (v_i \tilde{Q}_1^{\mu_i(\chi_1)} \cdots \tilde{Q}_n^{\mu_i(\chi_n)})_{\mu_i(\chi_j)} u_j^{-1} \tilde{\Phi}$$

for each j, $1 \le j \le n$ and

$$(2.10) \widetilde{Q}_{v_i}^{\pm 1} \widetilde{\Phi} = (1 - v_i \widetilde{Q}_1^{\mu_i(\chi_1)} \cdots \widetilde{Q}_n^{\mu_i(\chi_n)})^{\pm 1} \widetilde{\Phi}$$

(2.11)
$$\tilde{Q}_{v_i}^{\pm 1} \tilde{\Phi} = (1 - v_i' \tilde{Q}_{n}^{\mu_i(\chi_1)} \cdots \tilde{Q}_{n}^{\mu_i(\chi_n)})^{\mp 1} \tilde{\Phi}.$$

One may naturally ask the following questions:

QUESTION 1. Do (2.9)–(2.11) really define a holonomic q-difference system in the variables u_j, v_j and v_j' in the sense of [A4]? Namely, do there exist a finite number of elements $\kappa_1, \dots, \kappa_m$ of $\mathscr A$ such that $\mathscr A \cdot \widetilde{\Phi}$ is contained in the linear space spanned by $\kappa_1 \widetilde{\Phi}, \dots, \kappa_m \widetilde{\Phi}$ over $R(\overline{X})$? Or equivalently, does there exist $f_1, \dots, f_m \in R(\overline{X})$ such that

(2.12)
$$\kappa \tilde{\Phi} = \sum_{j=1}^{m} f_j \kappa_j \tilde{\Phi}$$

for every $\kappa \in \mathcal{A}$? If this is the case, then what is the rank of the system (2.9)–(2.11), which is defined to be the minimal number among such m?

For $f = \Phi \cdot \varphi$, $\varphi \in V$, we have:

(2.13)
$$\int_{[0,\xi\infty]_a} \Phi(\omega)\varphi(\omega) \cdot \Omega = \int_{[0,\xi\infty]_a} \Phi(\omega) \cdot b_{\chi}(\omega) \cdot Q^{\chi}\varphi(\omega) \cdot \Omega$$

because Ω is invariant under the operation Q^{χ} , i.e.,

(2.14)
$$\int_{[0,\xi_{\infty}]_{\alpha}} \Phi(\omega)(\varphi(\omega) - b_{\chi}(\omega) \cdot Q^{\chi}\varphi(\omega)) \cdot \Omega = 0.$$

This suggests us to consider the residual space

$$(2.15) V/\left\{\sum_{\chi\in X}(1-b_{\chi}(\omega)Q^{\chi})V\right\}\simeq V/\left\{\sum_{j=1}^{n}(1-b_{\chi_{j}}(\omega)Q_{j})V\right\}.$$

This can be regarded as a q-analogue of the twisted de Rham cohomology group (see [A3]). We shall denote it by $H_{\Phi}(V, d_q)$ and call it "the q-twisted cohomology group" associated with Φ .

QUESTION 2. Is $H_{\Phi}(V, d_q)$ finite dimensional? If so, how can its dimension be determined? How can one find out a basis of $H_{\Phi}(V, d_q)$?

QUESTION 3. What is the dual space of $H_{\Phi}(V, d_q)$? Is it represented by special kinds of q-cycles? By what kind of q-cycles?

QUESTION 4. Find out asymptotic solutions for $\tilde{\Phi}$ for $\alpha_j \to \pm \infty$ and $v_i, v_i' \to \pm \infty$. Classify all different kinds of asymptotics for $\tilde{\Phi}$.

We do not have any complete answer to these questions. We shall only give a few examples in the next four sections.

3. n=1, q-analogue of Jordan-Pochhammer case. A multiplicative function Φ can be written as

(3.1)
$$\Phi = t^{\alpha} \prod_{j=1}^{m} \frac{(t/x_j)_{\infty}}{(tq^{\beta_j}/x_j)_{\infty}}$$

for $u = q^{\alpha}$, q^{β_j} and $x_j \in \mathbb{C}^*$. The integral over a suitable q-cycle

$$\tilde{\Phi} = \int \Phi \, \frac{d_q t}{t}$$

is a q-analogue of Jordan-Pochhammer integral. We put $\tilde{Q}_u = \tilde{Q}$ and $\tilde{Q}_{x_j} = \tilde{Q}_j$. Then the system (2.9)–(2.11) becomes

(3.3)
$$\prod_{j=1}^{m} \left(1 - \frac{q^{\beta_j}}{x_j} \widetilde{Q} \right) \widetilde{\Phi} = \prod_{j=1}^{m} \left(1 - \frac{1}{x_j} \widetilde{Q} \right) u^{-1} \widetilde{\Phi} ,$$

(3.4)
$$\tilde{Q}_{j}\tilde{\Phi} = \frac{1 - \frac{1}{qx_{j}}\tilde{Q}}{1 - \frac{q^{\beta_{j-1}}}{x_{j}}\tilde{Q}}\tilde{\Phi}, \qquad \tilde{Q}_{j}^{-1}\tilde{\Phi} = \frac{1 - \frac{q^{\beta_{j}}}{x_{j}}\tilde{Q}}{1 - \frac{1}{x_{j}}\tilde{Q}}\tilde{\Phi},$$

$$\tilde{Q}_{\beta_j} \tilde{\Phi} = \left(1 - \frac{q^{\beta_j}}{x_j} \tilde{Q} \right) \tilde{\Phi} , \qquad \tilde{Q}_{\beta_j}^{-1} \Phi = \left(1 - \frac{q^{\beta_j - 1}}{x_j} \tilde{Q} \right)^{-1} \tilde{\Phi} .$$

 $H_{\Phi}(V, d_q)$ is spanned by a basis consisting of $\varphi_j = (1 - t/x_j)^{-1}$ for $1 \le j \le m$. Hence $\dim H_{\Phi}(V, d_q) = m$. We denote by $\langle \varphi \rangle$ the integral of $\Phi \varphi$ and put $\langle \Phi \rangle = \tilde{\Phi}$. Then we have

(3.6)
$$\tilde{Q}^{\pm 1}(\langle \varphi_1 \rangle, \cdots, \langle \varphi_m \rangle) = (\langle \varphi_1 \rangle, \cdots, \langle \varphi_m \rangle) A_{\pm},$$

(3.7)
$$\tilde{Q}_{j}^{\pm 1}(\langle \varphi_{1} \rangle, \cdots, \langle \varphi_{m} \rangle) = (\langle \varphi_{1} \rangle, \cdots, \langle \varphi_{m} \rangle) A_{\pm j},$$

(3.8)
$$\tilde{Q}_{\beta_j}^{\pm 1}(\langle \varphi_1 \rangle, \cdots, \langle \varphi_m \rangle) = (\langle \varphi_1 \rangle, \cdots, \langle \varphi_m \rangle) A_{\pm \beta_j}$$

respectively, where $A_{\pm} = ((a_{\pm;k,l}))$, $A_{\pm j} = ((a_{\pm j;k,l}))$, $A_{\pm \beta_j} = ((a_{\pm \beta_j;k,l}))$ denote matrices whose entries are rational functions in u_j , x_j and q^{β_j} . More explicitly:

PROPOSITION 3. Suppose x_i/x_j and $x_iq^{\beta_j}/x_j$ are different from 1, $q^{\pm 1}$, $q^{\pm 2}$, \cdots for each pair i, j such that $i \neq j$. Then

(i)
$$a_{\beta_r;i,j} = \frac{x_j}{x_*} q^{\beta_r} f_i(x) + \delta_{i,j} \left(1 - \frac{x_j}{x_*} q^{\beta_r} \right),$$

(ii)
$$a_{+,i,j} = -x_j f_i(x) + x_j \delta_{i,j},$$

(iii)
$$a_{r;i,j} = q^{\alpha} \frac{(1 - q^{\beta_r}) \prod\limits_{\substack{1 \le l \le m \\ l \ne r}} \left(1 - \frac{x_i}{x_l} q^{\beta_l} \right)}{\left(q \frac{x_r}{x_j} - q^{\beta_r} \right) \prod\limits_{\substack{1 \le l \le m \\ l \ne r}} \left(1 - \frac{x_i}{x_l} \right)} + \delta_{i,j} \frac{1 - \frac{x_i}{q x_r}}{1 - \frac{x_i}{x_r} q^{\beta_r - 1}}, \qquad (r \ne j),$$

$$= q^{\alpha} \frac{\prod\limits_{\substack{1 \le l \le m \\ l \ne r}} \left(1 - \frac{x_i}{x_l} q^{\beta_l} \right)}{\prod\limits_{\substack{1 \le l \le m \\ l \ne r}} \left(1 - \frac{x_i}{x_l} \right)}, \qquad (j = r),$$

where f(x) denotes the rational function

(3.9)
$$f_{i}(x) = \frac{q^{\alpha}(1 - q^{\beta_{i}})}{1 - q^{\alpha + \beta_{1} + \dots + \beta_{m}}} \prod_{\substack{1 \leq l \leq m \\ l \neq i}} \frac{\left(1 - q^{\beta_{l}} \frac{x_{i}}{x_{l}}\right)}{\left(1 - \frac{x_{i}}{x_{l}}\right)}.$$

Hence for any $\varphi \in V$ the integral $\langle \varphi \rangle$ is a linear combination of $\langle \varphi_1 \rangle, \dots, \langle \varphi_m \rangle$ over the rational function fields in u, q^{β_j}, x_j . In particular

(3.10)
$$\tilde{\Phi} = \sum_{i=1}^{m} f_i(x) \langle \varphi_i \rangle .$$

By substitution $t = x_j q$ in (3.2), the integral of Φ over $[0, x_j \infty]_q$ gives the asymptotic of $\tilde{\Phi}$ for $u \to 0$ ($\alpha \to +\infty$):

(3.11)
$$\tilde{\Phi} \sim (1-q)(qx_j)^{\alpha} \prod_{k=1}^{m} \frac{(qx_j/x_k)_{\infty}}{(q^{\beta_k+1}x_j/x_k)_{\infty}}$$

since in this case the sum (2.3) runs over only the set $[0, x_j]_q = \{x_j q^v; v = 1, 2, 3, \dots\}$. There exist exactly n such asymptotics which correspond to m linearly independent solutions of (3.3). Mimachi [M2] has solved the connection problem attached to these asymptotics.

4. Basic Lemmas and Main Theorem. From now on, we take as Φ the following function which is attached to the arrangement of A-type root system (see [A6] for polynomial versions):

(4.1)
$$\Phi = t_1^{\alpha_1} \cdots t_n^{\alpha_n} \prod_{0 \le i \le j \le n} \frac{\left(q^{\beta'_{i,j}} \frac{t_j}{t_i}\right)_{\infty}}{\left(q^{\beta_{i,j}} \frac{t_j}{t_i}\right)_{\infty}},$$

where we let $t_0 = 1$. We consider the integral

(4.2)
$$\tilde{\Phi} = \int \Phi \frac{d_q t_1}{t_1} \wedge \cdots \wedge \frac{d_q t_n}{t_n}$$

over a suitable q-cycle. It is a function depending on $u_j = q^{\alpha_j}$, $\beta_{i,j}$, $\beta'_{i,j}$.

Because of symmetry it is convenient to put $\beta'_{j,i} = 1 - \beta_{i,j}$ and $\beta_{j,i} = 1 - \beta'_{i,j}$. We may put $\beta'_{0,j} = 0$.

Many authors have investigated basic hypergeometric functions as generalizations of Heine's hypergeometric function. Except in one variable case, these seem to be included in the set of functions $\tilde{\Phi}$ of type (4.2) provided that they are not confluent. In fact, $\tilde{\Phi}$ is an extension of classical Barnes type integrals found, for example, in [S3] and [G1]. The Milne's hypergeometric functions (see [M1]) are similar to our $\tilde{\Phi}$, although they have additional parameters. For the case q=1, see also [G2] and [G3], which study Barnes integrals from the view point of Grassmannian geometry. It is not certain whether our approach is connected with Grassmannian geometry or not.

Assume the following conditions:

(\mathcal{H} -1) For arbitrary arguments $i_0, i_1, \dots, i_r, 0 \le i_v \le n$, which are different from each other,

(4.3)
$$\beta_{i_0, i_1} + \beta_{i_1, i_2} + \cdots + \beta_{i_r, i_0} \notin \mathbb{Z},$$

$$(4.4) \alpha_{i_0} + \alpha_{i_1} + \cdots + \alpha_{i_r} \notin \mathbb{Z}.$$

 $(\mathcal{H}-2)$ $\alpha_1, \alpha_2, \cdots, \alpha_n$ are all sufficiently large numbers.

(\mathscr{H} -3) For an arbitrary partition $\{0, 1, \dots, n\} = S_1 + S_2$ such that $0 \in V(S_1)$,

(4.5)
$$\sum_{j \in V(S_2)} \alpha_j + \sum_{i \in V(S_1), j \in V(S_2)} (\beta_{i,j} - \beta'_{i,j}) \notin \mathbf{Z}.$$

We denote by $\tilde{Q}_j^{\pm 1}$ the operations $u_j \mapsto u_j q^{\pm 1}$ for functions of $u = (u_1, \dots, u_n) = q^{\alpha_1}, \dots, q^{\alpha_n}$) by the displacements of the *j*-th coordinate u_j . Then the *q*-difference equations for $\tilde{\Phi}$ in the variables u are given by

(4.6)
$$\prod_{\substack{j=1\\j\neq r}}^{n} (\tilde{Q}_{j} - q^{\beta'_{i,j}} \tilde{Q}_{r}) u_{r}^{-1} \tilde{\Phi} = \prod_{\substack{j=1\\j\neq r}}^{n} (\tilde{Q}_{j} - q^{\beta_{j,r}} \tilde{Q}_{r}) \tilde{\Phi}.$$

(4.7)
$$\widetilde{Q}_{\beta_{i,j}} \widetilde{\Phi} = (\widetilde{Q}_i - q^{\beta_{i,j}'} \widetilde{Q}_j)^{-1} \widetilde{Q}_i \widetilde{\Phi} ,$$

$$(4.8) \widetilde{Q}_{\beta_i',i}^{-1}\widetilde{\Phi} = (\widetilde{Q}_i - q^{\beta_i',j-1}\widetilde{Q}_i)\widetilde{Q}_i^{-1}\widetilde{\Phi},$$

(4.9)
$$\widetilde{Q}_{\beta_{i,j}}\widetilde{\Phi} = (\widetilde{Q}_i - q^{\beta_{i,j}}\widetilde{Q}_j)\widetilde{Q}_i^{-1}\widetilde{\Phi},$$

$$(4.10) \widetilde{Q}_{\beta_{i,j}}^{-1}\widetilde{\Phi} = (\widetilde{Q}_i - q^{\beta_{i,j}-1}\widetilde{Q}_j)^{-1}\widetilde{Q}_i\widetilde{\Phi},$$

where $Q_{\beta_i,j}^{\pm 1}$, $Q_{\beta_i,j}^{\pm}$ and $\tilde{Q}_{\beta_i,j}^{\pm 1}$, $\tilde{Q}_{\beta_i,j}^{\pm 1}$ are the operations on V and $\tilde{\Phi} \cdot V$ respectively induced by the displacements $\beta_{i,j} \rightarrow \beta_{i,j} \pm 1$ and $\beta'_{i,j} \rightarrow \beta'_{i,j} \pm 1$. Note that

(4.12)
$$\widetilde{Q}_{\beta_{i,j}}^{\pm 1} \langle \varphi \rangle = \langle W_{i,j}^{\prime(\pm)} Q_{\beta_{i,j}}^{\pm 1} \varphi \rangle$$

for $W_{i,j}^{(\pm)} = (Q_{\beta_{i,j}}^{\pm 1} \Phi)/\Phi$ and $W_{i,j}^{((\pm))} = (Q_{\beta_{i,j}}^{\pm 1} \Phi)/\Phi$, respectively. $W_{i,j}^{(\pm)} Q_{\beta_{i,j}}^{\pm 1}$ and $W_{i,j}^{\prime((\pm))} \tilde{Q}_{\beta_{i,j}}^{\pm 1}$ are nothing but a *q-analogue of the covariant differenti*ations.

Our main result states that this system of q-difference equations is actually holonomic and has rank $(n+1)^{n-1}$. This can be shown by the aid of some results in elementary graph theory. Before stating our Theorem, we need a few preliminary lemmas.

We denote linear functions of $t_0 = 1, t_1, \dots, t_n, t_i - q^{\beta_{i,j}} t_i$, and $t_i - q^{\beta_{i,j}} t_i$ by $(i,j)_+$ and $(i,j)_-$ respectively. A rational function $\varphi = (i_1,j_1)_{\varepsilon_1}^{-1} \cdots (i_r,j_r)_{\varepsilon_r}^{-1}$ for each $\varepsilon_r = \pm 1$ defines a graph $G = G_{\omega}$ with directed edges $\overline{i_{\nu}, j_{\nu}}$ and the set of vertices $\{i_1, j_1, \dots, i_r, j_r\}$. The edge $\overline{i_v, j_v}$ is directed from i_v to j_v , i.e., $i_v \to j_v$ or from j_v to i_v , i.e., $j_v \to i_v$ according as $\varepsilon_{\nu} = +1$ or -1. We denote by $\Delta_{G} = \prod_{\nu=1}^{r} (i_{\nu}, j_{\nu})_{\varepsilon_{\nu}}$, the product of all factors $(i_1, j_1)_{\varepsilon_1}, \dots, (i_r, j_r)_{\varepsilon_r}$. For an oriented graph Γ we denote by $V(\Gamma)$ and $E(\Gamma)$ the sets of vertices and edges of Γ , respectively. To each edge e of $E(\Gamma)$ there corresponds a unique linear function $(e) = (i, j)_{\varepsilon}$ for $\varepsilon = -1$ or 1.

DEFINITION 4. Γ is said to be a spanning graph if $V(\Gamma)$ contains all the vertices $\{0, 1, \dots, n\}$. A forest is a graph without any circuit. A spanning forest F is admissible if and only if the number of edges |E(F)| equals n, i.e., F is a tree. A spanning forest F is said to be subadmissible if |E(F)| = n - 1. In this case F is a semi-tree, i.e., a disjoint union $F = F_1 + F_2$ of only two trees F_1 and F_2 such that $V(F_1)$ contains the root 0 and $V(F_2)$ is disjoint from $\{0\}$ (see [T]).

We denote by \mathcal{F}_1 and \mathcal{F}_2 the set of all admissible trees and that of all admissible semi-trees, respectively. The evaluation of (e) for $e \in E(\Gamma)$ at some point $t \in q^{\overline{X}}$ will be denoted by $\langle (e), t \rangle$. When Γ is a tree such that $0 \in V(\Gamma)$, we denote by p(j) the predecessor of a vertex j of Γ , i.e., the vertex of Γ lying in the path connecting 0 and j such that $\operatorname{dis}(\{p(j)\}, \{0\}) = \operatorname{dis}(\{j\}, \{0\}) - 1$, where dis means the distance between two vertices in the graph Γ .

LEMMA 4.1. For an arbitrary admissible tree T the equations

$$\langle (e), t \rangle = 0, \qquad e \in E(T),$$

have a unique solution.

PROOF. Indeed t_j can be uniquely solved by induction on $dis(\{0\}, \{j\})$. If j=0, then $t_j=t_0=1$. Suppose that $dis(\{0\}, \{j\})=N$ and that all t_k for dis(0, k) < N are already solved. Then t_j is uniquely solved by one of the above equations $(p(j), j)_+=0$ or $(p(j), j)_-=0$.

Lemma 4.2. For an arbitrary connected spanning graph Γ containing a circuit, we have a unique partial fraction expansion

(4.14)
$$\frac{1}{\Delta_{\Gamma}} = \sum_{e \in E(\Gamma)} \frac{1}{\Delta_{\Gamma_{e}}} \frac{1}{\langle e, \overline{t} \rangle}$$

where \overline{t} is uniquely determined by the equations $\langle (e), \overline{t} \rangle = 0$ for all $e \in E(\Gamma_e)$. Moreover each Γ_e is an admissible tree.

PROOF. Indeed, since Γ contains a circuit, the constant 1 is a linear combination of linear functions (e) for $e \in E(\Gamma)$:

$$(4.15) 1 = \sum_{e \in E(I)} a_e(e) , \text{for } a_e \in C ,$$

which is equivalent to (4.14) by division of both sides by Δ_{Γ} .

Let $\hat{\Gamma}$ be an oriented graph containing Γ , i.e., such that $E(\hat{\Gamma}) \supset E(\Gamma)$. $\hat{\Gamma} - \Gamma$ denotes the subgraph complementary to Γ in $\hat{\Gamma}$, i.e., such that $E(\hat{\Gamma} - \Gamma) = E(\hat{\Gamma}) - E(\Gamma)$. We put $\tilde{\Delta}_{\hat{\Gamma} - \Gamma} = \prod_{e \in E(\hat{\Gamma} - \Gamma)} (\tilde{e})$, where (\tilde{e}) denotes the linear function $(i, j)_{-\epsilon}$ oppsite to $(e) = (i, j)_{\epsilon}$, $\epsilon = \pm 1$.

Then the following first basic lemma holds.

LEMMA 4.3. Suppose that Γ is an admissible tree. Then

$$\frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}} = \sum_{T \in \hat{\Gamma}} \frac{c_T}{\Delta_T}$$

where T runs through all admissible spanning trees in $\hat{\Gamma}$. Each c_T is given by

$$c_T = \frac{\tilde{\Delta}_{\hat{\Gamma} - \Gamma}(t_T)}{\Delta_{\hat{\Gamma} - T}(t_T)}$$

where $t_T = (t_{T,j})_{1 \le j \le n}$ denotes the unique solution of the equations (4.13).

PROOF. We prove the lemma by induction on the number $N=|E(\hat{\Gamma}-\Gamma)|=|E(\hat{\Gamma})|$ $-|E(\Gamma)|$. When N=0, then $\hat{\Gamma}$ coincides with Γ so there is nothing to prove. Suppose the lemma has been proved for $N \leq M-1$. We must prove it for N=M. There exists at least one edge $e_0 \in E(\hat{\Gamma}-\Gamma)$. Then there exists a circuit $\mathscr C$ in $\hat{\Gamma}$ such that $e_0 \in E(\mathscr C)$ and $E(\mathscr C_{e_0}) \subset E(\Gamma)$. Then

$$\frac{(\tilde{e}_0)}{\Delta_{\mathscr{C}}} = \sum_{e \in E(\mathscr{C})} a_e \frac{1}{\Delta_{\mathscr{C}}}.$$

A fortiori

$$\frac{(\tilde{e}_0)}{\Delta_{\Gamma}} = \sum_{e \in E(\mathscr{E})} a_e \frac{1}{\Delta_{\Gamma_e}}$$

since (\tilde{e}_0) is a linear combination of $e \in E(\mathscr{C})$:

$$(\tilde{e}_0) = \sum_{e \in E(\mathscr{C})} a_e \cdot (e) .$$

Hence

(4.21)
$$\frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}} = \frac{\tilde{\Delta}_{\hat{\Gamma}_{e_0}-\Gamma} \cdot (\tilde{e}_0)}{\Delta_{\hat{\Gamma}}} = \sum_{e \in E(\mathscr{E})} a_e \frac{\tilde{\Delta}_{\hat{\Gamma}_{e_0}-\Gamma}}{\Delta_{\hat{\Gamma}}}.$$

First assume $e_0 \neq e$, i.e., $e \in E(\Gamma)$. Since $\hat{\Gamma}_{e_0} - \Gamma = \hat{\Gamma}_e - (\Gamma_e \cup \{e_0\})$ and $|E(\hat{\Gamma}_e) - E(\Gamma_e \cup \{e_0\})| = |E(\hat{\Gamma} - \Gamma)| - 1$, by the induction hypothesis we get a partial fraction

(4.22)
$$\frac{\tilde{\Delta}_{\hat{\Gamma}_{e_0} - \Gamma}}{\Delta_{\hat{\Gamma}_e}} = \sum_{T \subset \hat{\Gamma}_e} a_T^* \frac{1}{\Delta_T}$$

where T runs through all admissible spanning trees of $\hat{\Gamma}_e$. On the other hand if $e = e_0$, then $\hat{\Gamma}_{e_0} \supset \Gamma$ and we have again $|E(\hat{\Gamma}_{e_0} - \Gamma)| = |E(\hat{\Gamma} - \Gamma)| - 1$. Hence by the induction hypothesis

(4.23)
$$\frac{\tilde{\Delta}_{\hat{\Gamma}_{e_0}-\Gamma}}{\Delta_{\hat{\Gamma}_{e_0}}} = \sum_{T \subset \hat{\Gamma}_{e_0}} a_T^* \frac{1}{\Delta_T}.$$

Summing up (4.22) and (4.23), we get

$$(4.24) \qquad \frac{\widetilde{\Delta}_{\widehat{\Gamma}-\Gamma}}{\Delta_{\Gamma}} = \sum_{e \in E(\mathscr{E})} a_e \frac{\widetilde{\Delta}_{\widehat{\Gamma}_{e_0}-\Gamma}}{\Delta_{\widehat{\Gamma}_e}} = \sum_{e \in E(\mathscr{E})} a_e \sum_{T \subset \widehat{\Gamma}_e} a_T^* \frac{1}{\Delta_T}.$$

Any admissible spanning tree of $\hat{\Gamma}_e$ being also an admissible tree, we have finally the formula (4.16). The expression of (4.16) is unique. Indeed by residue calculus on both sides of (4.16), c_T is equal to (4.17).

The second basic lemma is as follows:

LEMMA 4.4. Let $\Gamma = \Gamma_1 + \Gamma_2$ be a semi-tree such that $0 \in V(\Gamma_1)$ and 0 is disjoint from $V(\Gamma_2)$. Let $\hat{\Gamma}$ be an admissible graph containing Γ . Then

$$\frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}} = \sum_{T \in \mathcal{F}_1} \frac{a_T}{\Delta_T} + \sum_{F \in \mathcal{F}_2, F_1 \subset \Gamma_1} \frac{b_F}{\Delta_F}$$

86 К. АОМОТО

for

(4.26)
$$a_T = \frac{\tilde{\Delta}_{\hat{\Gamma} - \Gamma}(t_T)}{\Delta_{\hat{\Gamma} - T}(t_T)} \text{ and } b_F = \lim_{\lambda \to \infty} \frac{\tilde{\Delta}_{\hat{\Gamma} - \Gamma}(t_F(\lambda))}{\Delta_{\hat{\Gamma} - F}(t_F(\lambda))},$$

where $F = F_1 + F_2$ such that $0 \in V(F_1)$ and where $t_F(\lambda)$ denotes a non-zero solution of the equations

$$(4.27) \langle (e), t \rangle = 0 for any e \in E(F).$$

This solution is not unique and can be written as $t = t_F(\lambda) = t_F^{(0)} + \lambda t_F^{(1)}$ for an arbitrary parameter $\lambda \in \mathbf{R}$. $t_F^{(0)}$ and $t_F^{(1)}$ denote real constants. $t_{F,j} = t_{F,j}^{(0)}$ is unique for $j \in F_1$ and $t_{F,j}^{(0)} = 0$ for $j \in V(F_2)$. $t_{F,j}^{(1)} = 0$ for $j \in V(F_1)$ and $t_{F,j}^{(1)}$, $j \in V(F_2)$, differ from zero and are determined uniquely except for a scalar factor.

PROOF. Choose an edge $(e_0) \in E(\hat{\Gamma})$ outside $E(\Gamma)$, such that $\Gamma \cup \{e_0\}$ is a spanning tree. Since $\hat{\Gamma} \supset \Gamma \cup \{e_0\}$, by the preceding lemma we have

(4.28)
$$\frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}} = \frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma \cup \{e_0\}} \cdot (\tilde{e}_0)}{\Delta_{\hat{\Gamma}}} = \sum_{T \in \mathcal{F}_1, T \in \hat{\Gamma}} a_T \frac{(\tilde{e}_0)}{\Delta_T},$$

for $a_T \in C$. Since each (\tilde{e}_0) is a linear combination of (e) for $e \in E(T)$ modulo constants: $(\tilde{e}_0) = c_0 + \sum_{e \in E(T)} c_e \cdot (e)$ for $c_e \in C$, and since $(e)/\Delta_T = 1/\Delta_{T_e}$, each $(\tilde{e}_0)/\Delta_T$ can be written as

$$\frac{(\tilde{e}_0)}{\Delta_T} = \sum_{e \in E(T)} a_e \frac{1}{\Delta_T} + \frac{\text{const}}{\Delta_T}.$$

 T_e is a semi-tree: $T_e \in \mathcal{F}_2$. Hence we have from (4.28) an expression

(4.30)
$$\frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}} = \sum_{T \in \mathscr{F}_1} \frac{c_T}{\Delta_T} + \sum_{F \in \mathscr{F}_2} \frac{c_F}{\Delta_F}.$$

Through residue calculus, c_T and c_F are given by $\widetilde{\Delta}_{\hat{\Gamma}-\Gamma}(t_T)/\Delta_{\hat{\Gamma}-T}(t_T)$ and $\lim_{\lambda\to\infty}\widetilde{\Delta}_{\hat{\Gamma}-\Gamma}(t_F(\lambda))/\Delta_{\hat{\Gamma}-F}(t_F(\lambda))$, respectively. We must show that $F_1\subset \Gamma_1$ for $F=F_1+F_2$. Suppose the contrary is true: $F_1 \not = \Gamma_1$, i.e., there exists an edge $e\in E(F_1)-E(\Gamma_1)$. Since for any $e\in E(F_1)$,

(4.31)
$$\lim_{\lambda \to \infty} \langle (\tilde{e}), t_F(\lambda) \rangle / \lambda = 0 \quad \text{for} \quad e \in E(F_1),$$

$$= \text{non-zero constant} \quad \text{for} \quad e \in E(F_2),$$

we have

(4.32)
$$\lim_{\lambda \to \infty} \frac{\widetilde{\Delta}_{\hat{\Gamma} - \Gamma}(t_F(\lambda))}{\Delta_{\hat{\Gamma} - F}(t_F(\lambda))} = 0.$$

Hence c_F must vanish unless $E(F_1) \subset E(\Gamma_1)$. The proof of the lemma is now complete.

One can formulate the third main lemma as follows:

LEMMA 4.5. Γ be a spanning forest with two components Γ_1 and Γ_2 such that $0 \in V(\Gamma_1)$ and $j \in V(\Gamma_2)$. Let $\hat{\Gamma}$ be an admissible graph containing Γ . Then

$$(4.33) t_j^{-1} \frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}} = \sum_{T \in \mathscr{F}_1} a_T \frac{1}{\Delta_T} + \sum_{S \in \mathscr{F}_2} b_S t_j^{-1} \frac{1}{\Delta_S}$$

where $S \in \mathcal{F}_2$ denotes a forest with two components: $S = S_1 + S_2$ such that $E(S_2) \subset E(\Gamma_2)$, $0 \in V(S_1)$ and $j \in V(S_2)$.

PROOF. According to (4.25),

$$(4.34) t_j^{-1} \frac{\widetilde{\Delta}_{\widehat{\Gamma}-\Gamma}}{\Delta_{\widehat{\Gamma}}} = \sum_{T \in \mathscr{F}_1} a_T \frac{1}{t_i \Delta_T} + \sum_{F \in \mathscr{F}_2, F_1 \subset \Gamma_1} b_F \frac{1}{t_i \Delta_F}$$

 $a_T, b_F \in C$, where $j \in V(F_2)$ since $V(S_2) \subset V(F_2)$. For each T on the right hand side we have

$$(4.35) 1 = c_0 t_j + \sum_{e \in E(T)} c_e(e), \text{for some } c_0 \text{ and } c_e \in C.$$

Hence

$$\frac{1}{t_i \Delta_T} = c_0 \frac{1}{\Delta_T} + \sum_{e \in E(T)} c_e \frac{1}{t_i \Delta_{T_e}}.$$

Since $T_e \in \mathcal{F}_2$, from (4.34) and (4.36) $t_i^{-1} \Delta_{\hat{\Gamma}-\Gamma}/\Delta_{\hat{\Gamma}}$ can be reexpressed as

(4.37)
$$\frac{\Delta_{f-\Gamma}}{t_j \Delta_{\Gamma}} = \sum_{T \in \mathscr{F}_1} a_T^* \frac{1}{\Delta_T} + \sum_{F \in \mathscr{F}_2} b_F^* \frac{1}{t_j \Delta_F},$$

for some $a_T^*, b_F^* \in \mathbb{C}$. a_T^* and b_F^* are uniquely determined by the residue formulae:

$$(4.38) a_T^* = \frac{\widetilde{\Delta}_{\widehat{\Gamma} - \Gamma}(t_T)}{t_{T,j} \Delta_{\widehat{\Gamma} - \Gamma}(t_T)} \quad \text{and} \quad b_F^* = \frac{\widetilde{\Delta}_{\widehat{\Gamma} - \Gamma}(t_F)}{\Delta_{\widehat{\Gamma} - \Gamma}(t_F)}$$

where $t_T = (t_{T,j})_{1 \le j \le n}$ denotes the solution of the equations $\langle (e), t \rangle = 0$ for all $e \in E(T)$, while $t_F = (t_{F,j})_{1 \le j \le n}$ denotes that of the equations $\langle (e), t \rangle = 0$, for all $e \in E(F)$ together with $t_j = 0$. Clearly, $t_{F,k}$ vanish for $k \in V(F_2)$. Hence $\tilde{\Delta}_{\hat{\Gamma} - \Gamma}(t_F)$ vanishes if it contains a factor $(e) \in E(F_2)$, i.e., b_F^* vanishes if $E(\hat{\Gamma} - \Gamma) \cap E(F_2) \neq \emptyset$. In other words, if b_F^* differs from zero, then $E(F_2) \subset E(\Gamma_1) \cup E(\Gamma_2)$. Being a tree such that $j \in V(F_2)$, F_2 must be contained in Γ_2 . In this way (4.33) has been proved.

DEFINITION 5. An admissible labelled tree Γ is called terminal if every edge $e \in E(\Gamma)$ is directed towards the vertex 0.

We denote by \mathcal{B} the linear space spanned by admissible forms φ_{Γ} associated with admissible labelled trees Γ with directed edges. We also denote by \mathcal{B}_0 the linear space spanned by terminal admissible forms φ_{Γ} for labelled trees with terminal directed edges.

The inclusion $\iota : \mathcal{B}_0 \mapsto V$ gives rise to a homomorphism

$$(4.39) l_*: \mathscr{B}_0 \mapsto H_{\Phi}(V, d_q).$$

Then our Main Theorem can be stated as follows:

THEOREM. Under the assumptions $(\mathcal{H}-1) \sim (\mathcal{H}-3)$, ι_* is an isomorphism. Hence $\dim H_{\Phi}(V, d_a) = (n+1)^{n-1}$.

5. Proof of Theorem.

LEMMA 5.1. Suppose Γ is an admissible tree.

$$(5.1) b_{\chi} \cdot Q^{\chi} \varphi_{\Gamma} \not\equiv 0 \mod \mathscr{B}$$

for any $\chi \in X^+$ if and only if Γ is terminal, i.e., φ_{Γ} does not admit any transformation $\varphi_{\Gamma} \mapsto b_{\chi} \cdot Q^{\chi} \varphi_{\Gamma}$ for $\chi \in X^+$, where X^+ denotes the abelian semigroup generated by χ_1, \dots, χ_n in X.

PROOF. Suppose Γ is terminal. We take an arbitrary $\chi = \sum_{j=1}^{n} v_j \chi_j \in X^+$. Let k be the vertex nearest to 0 in $V(\Gamma)$ such that $v_k > 0$. Then $b_{\chi} Q^{\chi} \varphi_{\Gamma}$ contains $(t_{p(k)} - q^{\beta'_{P(k),k}} t_k)^{-1} \cdots (t_{p(k)} - q^{\beta'_{P(k),k} + v_k} t_k)^{-1}$ as an irreducible factor. Hence (5.1) holds. The converse is proved below.

The first main result which we want to prove is the following.

PROPOSITION 4. An arbitrary admissible form φ_{Γ} which is not terminal is cohomologous to a linear combination of terminal admissible forms. More precisely,

(5.2)
$$\mathscr{B} = \mathscr{B}_0 + \mathscr{B} \cap \left\{ \sum_{x \in X^+} (1 - b_x Q^x) \mathscr{B} \right\}.$$

PROOF. Assume that φ_{Γ} is not terminal. Then Γ being a spanning tree, there exists an edge $e=(i,j)_-$ directed from i to j such that p(j)=i. The deleted graph Γ_e is divided into two components Γ_1 and Γ_2 such that $0 \in V(\Gamma_1)$ and that $V(\Gamma_2)$ is disjoint from $\{0\}$ (see Figure 1). We apply the transformation $t_k \mapsto t_k q$ for all $k \in V(\Gamma_2)$. Then

(5.3)
$$\frac{1}{\Delta_{\Gamma}} \Omega - q^{\alpha_{\Gamma_2} - |E(\Gamma_2)|} \frac{\tilde{\Delta}_{\hat{\Gamma} - \Gamma}}{\Delta_{\hat{\Gamma}}} \Omega \equiv 0 \mod \mathcal{B} \cap \sum_{\chi \in X^+} (1 - b_{\chi} Q^{\chi}) \mathcal{B}$$

FIGURE 1.

where $\hat{\Gamma}$ denotes a graph such that (i) $V(\hat{\Gamma}) = V(\Gamma)$ and (ii) $E(\hat{\Gamma}) = E(\Gamma_1) \cup E(\Gamma_2) \cup \bigcup_{h \in V(\Gamma_1), k \in V(\Gamma_2)} (h, k)_+$. From Proposition 1 we have

(5.4)
$$\frac{1}{\Delta_{\Gamma}} \Omega - q^{\alpha_{\Gamma_2} - |E(\Gamma_2)|} \sum_{T \in \mathscr{F}_1} a_T \frac{\Omega}{\Delta_T} \equiv 0 \mod \mathscr{B} \cap \sum_{\chi \in X^+} (1 - b_{\chi} Q^{\chi}) \mathscr{B},$$

where in particular $a_r = 1$. Hence the relation (5.3) is rewritten as

$$(5.5) \qquad (1-q^{\alpha_{\Gamma_2}-|E(\Gamma_2)|}) \frac{\Omega}{\Delta_{\Gamma}} \equiv q^{\alpha_{\Gamma_2}-|E(\Gamma_2)|} \sum_{T \in \mathscr{F}_{1}, T \neq \Gamma} a_T \frac{\Omega}{\Delta_T} \mod \mathscr{B} \cap \sum_{\chi \in X^+} (1-b_{\chi}Q^{\chi}) \mathscr{B}.$$

In this way we have $(2^n-1)(n+1)^{n-1}$ relations corresponding to non-terminal admissible forms. $(\mathcal{H}-1)\sim(\mathcal{H}-3)$ enable us to solve these equations with regard to non-terminal admissible forms, i.e., each non-terminal admissible form is cohomologous to a linear combination of terminal admissible forms. This is exactly what we wanted to prove.

Lemma 5.2. Let Γ be an arbitrary spanning forest with two components, $\Gamma \in \mathcal{F}_2$. Then $\varphi_{\Gamma} = \Omega/\Delta_{\Gamma}$ is cohomologous to a linear combination of admissible forms, i.e.,

(5.6)
$$\varphi_{\Gamma} \equiv 0 \mod \mathcal{B} + \sum_{\chi \in X} (1 - b_{\chi} Q^{\chi}) V.$$

PROOF. Γ consists of two disjoint trees Γ_1 and Γ_2 such that $0 \in V(\Gamma_1)$ and 0 is disjoint from $V(\Gamma_2)$. The lemma can be proved by induction on $|E(\Gamma_1)|$. Indeed, we can apply to Ω/Δ_{Γ} the substitution $t_j \rightarrow t_j q$ for all $j \in V(\Gamma_2)$. Then as in (5.3),

(5.7)
$$\frac{\Omega}{\Delta_{\Gamma}} - q^{\alpha_{\Gamma_2} - |E(\Gamma_2)|} \frac{\widetilde{\Delta}_{\hat{\Gamma} - \Gamma}}{\Delta_{\hat{\Gamma}}} \Omega \equiv 0 \quad \text{mod } \sum_{\chi \in X} (1 - b_{\chi} Q^{\chi}) V.$$

By Proposition 2, $\tilde{\Delta}_{\hat{\Gamma}-\Gamma}/\Delta_{\Gamma}$ can be written as

(5.8)
$$\sum_{T \in \mathcal{F}_1} a_T \frac{1}{\Delta_T} + \sum_{S \in \mathcal{F}_2} b_S \frac{1}{\Delta_S}$$

where $S = S_1 + S_2$ runs through the set of all the semi-trees such that $E(S_1) \subset E(\Gamma_1)$. a_T and b_S are given by the formula (4.26). Hence we have

$$(5.9) \qquad \frac{\Omega}{\Delta_T} - q^{\alpha_{\Gamma_2} - |E(\Gamma_2)|} \left\{ \sum_{T \in \mathscr{F}_1} a_T \frac{\Omega}{\Delta_T} + \sum_{S \in \mathscr{F}_2} b_S \frac{\Omega}{\Delta_S} \right\} \equiv 0 \quad \text{mod } \sum_{X \in X} (1 - b_X Q^X) V,$$

where b_{Γ} is given by $\sum_{h \in V(\Gamma_1), k \in V(\Gamma_2)} \beta_{h,k} - \beta'_{h,k}$. Then (5.9) can be rewritten as

$$(5.10) \qquad (1 - q^{\alpha_{\Gamma_2} - |E(\Gamma_2)| + \sum_{h \in V(\Gamma_1), k \in V(\Gamma_2)} \beta_{h, k} - \beta'_{h, k}}) \frac{\Omega}{\Delta_{\Gamma}}$$

$$\equiv q^{\alpha_{\Gamma_2} - |E(\Gamma_2)|} \left\{ \sum_{T \in \mathscr{F}_1} a_T \frac{\Omega}{\Delta_T} + \sum_{S \in \mathscr{F}_2, S_1 \subseteq \Gamma_1} b_S \frac{\Omega}{\Delta_S} \right\}$$

$$\equiv q^{\alpha_{\Gamma_2} - |E(\Gamma_2)|} \sum_{S \in \mathscr{F}_2, S_1 \subseteq \Gamma_1} b_S \frac{\Omega}{\Delta_S} \mod \mathscr{B} + \sum_{\chi \in X} (1 - b_{\chi} Q^{\chi}) V.$$

Since each Ω/Δ_S in the last part is cohomologous to an element of \mathcal{B} by the induction hypothesis, so is Ω/Δ_Γ . The proof is now complete.

LEMMA 5.3. For an arbitrary admissible form φ_{Γ} and an arbitrary j, $1 \le j \le n$, $t_j \varphi_{\Gamma}$ is cohomologous to a linear combination of admissible forms, i.e.,

$$(5.11) t_i \varphi_{\Gamma} \sim 0 \mod \mathscr{B}.$$

PROOF. Indeed, there exists a unique path $[j_0, j_1, \dots, j_{m-1}, j], j_0 = 0$ and $j_m = j$, in a tree Γ so that t_i can be written as

(5.12)
$$t_j = c_0 + \sum_{\nu=1}^m c_{\nu}(e_{\nu}),$$

for $c_0, c_v \in C$ and $(e_v) = (j_{v-1}, j_v)_+$ so that

(5.13)
$$\frac{t_j}{\Delta_{\Gamma}} = \frac{c_0}{\Delta_{\Gamma}} + \sum_{\nu=1}^{m} c_{\nu} \frac{1}{\Delta_{\Gamma_{e\nu}}}.$$

Since $\Gamma_{e_{\nu}}$ is a spanning semi-tree, we can apply Lemma 4.4 to $\Omega/\Delta_{\Gamma_{e_{\nu}}}$ so that $\Omega/\Delta_{\Gamma_{e_{\nu}}} \sim 0 \mod \mathcal{B}$. This shows $(t_{j}/\Delta_{\Gamma})\Omega \sim 0 \mod \mathcal{B}$, since $\Omega/\Delta_{\Gamma} \in \mathcal{B}$.

Similarly, we have:

LEMMA 5.4. Under the same circumstance as in Lemma 4.5, we have $t_j^{-1}\Omega/\Delta_{\Gamma} \sim 0 \mod \mathcal{B}$.

PROOF. We can apply the substitution $t_k \mapsto t_k q$ for all $k \in V(\Gamma_2)$. Then as in (5.3)

(5.14)
$$t_j^{-1} \frac{\Omega}{\Delta_r} \sim q^{\alpha_{\Gamma_2} - |E(\Gamma_2)| - 1} t_j^{-1} \frac{\tilde{\Delta}_{\hat{\Gamma} - \Gamma}}{\Delta_{\hat{\Gamma}}} \Omega .$$

By Lemma 4.4,

$$(5.15) t_j^{-1} \frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}} = \sum_{T \in \mathcal{F}_1} a_T \frac{\Omega}{\Delta_T} + \sum_{S \in \mathcal{F}_2} b_S t_j^{-1} \frac{\Omega}{\Delta_S},$$

since S is a semi-tree with two components S_1 , S_2 such that $j \in V(S_2)$, $E(S_2) \subset E(\Gamma_2)$ and $0 \in V(S_1)$. a_T and b_S are given by (4.25) for the solutions t_T and t_S of the equations: $\langle (e), t_T \rangle = 0$ for $e \in E(T)$ and $\langle (e), t_S \rangle = 0$ for $e \in E(S)$ together with $t_j = 0$, respectively. b_S vanishes unless $E(S_2) \subset E(\Gamma_2)$. Hence

$$(5.16) t_j^{-1} \frac{\Omega}{\Delta_{\Gamma}} \sim q^{\alpha_{\Gamma_2} - |E(\Gamma_2)| - 1} \left\{ \sum_{T \in \mathscr{F}_1} a_T \frac{\Omega}{\Delta_T} + \sum_{S \in \mathscr{F}_2, S_2 \subset \Gamma_2} b_S t_j^{-1} \frac{\Omega}{\Delta_S} \right\}$$

or equivalently,

$$(5.17) \qquad (1 - q^{\alpha_{\Gamma_2} - |E(\Gamma_2)| - 1}) t_j^{-1} \frac{\Omega}{\Delta_{\Gamma}}$$

$$\sim q^{\alpha_{\Gamma_2} - |E(\Gamma_2)| - 1} \left\{ \sum_{T \in \mathscr{F}_1} a_T \frac{\Omega}{\Delta_T} + \sum_{S \in \mathscr{F}_2, S_2 \subseteq \Gamma_2} b_S t_j^{-1} \frac{\Omega}{\Delta_S} \right\},$$

since $b_{\Gamma} = 1$. By induction, the system of equations (5.17) for all the forms $t_j^{-1} \varphi_{\Gamma}$, with φ_{Γ} admissible, can be solved concerning $t_i^{-1}\varphi_{\Gamma}$ in such a way that $t_i^{-1}\varphi_{\Gamma}$ is cohomologous to a linear combination of admissible ones. This implies the lemma.

PROPOSITION 5. For an arbitrary admissible $\varphi_{\Gamma} = \Omega/\Delta_{\Gamma}$ and any j, $1 \le j \le n$, we have $t_i^{-1}\varphi_{\Gamma} \sim 0 \mod \mathscr{B}$

As in the proof of Lemma 5.3 there exists a unique path $[j_0, j_1, \dots, j_{m-1}, j]$ in Γ such that (5.12) holds. (5.12) implies

(5.18)
$$\frac{1}{t_j \prod_{v=1}^{m} (e_v)} = \frac{1}{c_0} \frac{1}{\Delta_{\Gamma}} - \sum_{v=1}^{m} \frac{c_v}{c_0} \frac{1}{\prod_{k \neq v}^{m} (e_k)}$$

(remark that $c_0 \neq 0$ by hypothesis), i.e.,

(5.19)
$$\frac{1}{t_j \Delta_{\Gamma}} = \frac{1}{c_0 \Delta_{\Gamma}} - \sum_{\nu=1}^{m} \frac{c_{\nu}}{c_0} \frac{1}{\Delta_{\Gamma_{e\nu}}}.$$

From Lemma 4.4 $\Omega/\Delta_{\Gamma_{e_n}} \sim 0 \mod \mathcal{B}$, whence Proposition 5 follows.

Corollary. $W_{0,j}^{(+)}Q_{\beta_{0,j}}\varphi \sim 0 \mod \mathcal{B}, \ W_{i,j}^{(+)}Q_{\beta_{i,j}}\varphi \sim 0 \mod \mathcal{B}, \ W_{i,j}^{(-)}Q_{\beta_{i,j}}^{-1}\varphi \sim 0 \mod \mathcal{B}$ for an admissible φ .

PROOF. Indeed, $W_{\beta_{0,j}}^{(+)}Q_{\beta_{0,j}}\varphi_{\Gamma} = (1-q^{\beta_{0,j}-1}Q_{j})\varphi_{\Gamma}$ or $(1-q^{\beta_{0,j}}Q_{j})\varphi_{\Gamma}$ according as $(0,j)_{-} \in E(\Gamma)$ or not. Similarly, $W_{i,j}^{(-)}Q_{\beta_{i,j}}\varphi_{\Gamma} = Q_{i}^{-1}(Q_{i}-q^{\beta_{i,j}-1}Q_{j})\varphi_{\Gamma}$ or $Q_{i}^{-1}(Q_{i}-q^{\beta_{i,j}}Q_{j})\varphi_{\Gamma}$ according as $(i,j)_{-} \in E(\Gamma)$ or not, while $W_{i,j}^{(-)}Q_{\beta_{i,j}}^{-1}\varphi_{\Gamma} = Q_{i}^{-1}(Q_{i}-q^{\beta_{i,j}}Q_{j})\varphi_{\Gamma}$ or $Q_{i}^{-1}(Q_{i}-q^{\beta_{i,j}-1}Q_{j})\varphi_{\Gamma}$ according as $(i,j)_{+} \in E(\Gamma)$ or not.

PROPOSITION 6. (i) $W_{i,j}^{\prime(+)}Q_{\beta_{i,j}}\varphi_{\Gamma} \sim 0 \mod \mathcal{B}$. $W_{i,j}^{(-)}Q_{\beta_{i,j}}^{-1}\varphi_{\Gamma} \sim 0 \mod \mathcal{B}$, for $0 \le i \le j \le n$.

(ii)
$$W_{i,j}^{(-)}Q_{\beta_{i,j}}^{-1}\varphi_{\Gamma} \sim 0 \mod \mathcal{B}, \text{ for } 0 \leq i \leq j \leq n.$$

PROOF. Suppose first that $E(\Gamma)$ does not contain the form $(i, j)_+$. We denote by $\hat{\Gamma}$ the graph obtained from Γ by adding the edge $(i, j)_+$ to Γ such that $E(\hat{\Gamma}) = E(\Gamma) \cup \{(i, j)_+\}$ and $V(\hat{\Gamma}) = V(\Gamma)$. $\hat{\Gamma}$ contains a circuit \mathscr{C} which itself contains $(i, j)_+$. Then from Lemma 4.2,

(5.20)
$$\frac{1}{\Delta_{\hat{\Gamma}}} = \sum_{e \in E(\mathscr{E})} a_e \frac{1}{\Delta_{\Gamma_e}}.$$

92 К. АОМОТО

Since each Γ_e is a tree such that $0 \in V(\Gamma_e)$, Ω/Δ_{Γ_e} is admissible, i.e., $W'_{i,j}^{(+)}Q_{\beta'_i}\Omega/\Delta_{\Gamma} \sim 0$ mod \mathcal{B} . Suppose on the contrary $E(\Gamma)$ contains the form $(i,j)_+$. Then

(5.21)
$$W_{i,j}^{\prime(+)}Q_{\beta_{i,j}}\frac{\Omega}{\Lambda_{\Gamma}} = \frac{\Omega}{(t_i - q^{\beta_{i,j}}t_j)(t_i - q^{\beta_{i,j}+1}t_j) \prod_{e \in E(\Gamma_e)} (e)}.$$

 $\Gamma_{(i,j)_+}$ consists of two components of disjoint trees Γ_1 and Γ_2 such that $\{0,i\} \subset V(\Gamma_1)$ and $\{j\} \subset V(\Gamma_2)$. We apply to $W'^{(+)}_{i,j}Q_{\beta'_{i,j}}\Omega/\Delta_{\Gamma}$ the substitution $t_k \mapsto q^{-1}t_k$ for all $k \in V(\Gamma_2)$. Then

$$(5.22) W_{i,j}^{\prime(+)}Q_{\beta_{i,j}^{\prime}}\frac{\Omega}{\Lambda_{\Gamma}} \sim q^{-\alpha_{\Gamma_2}+|E(\Gamma_2)|}\frac{\tilde{\Lambda}_{\hat{\Gamma}-\Gamma}}{\Lambda_{\hat{\Gamma}}}\Omega,$$

where $\hat{\Gamma}$ is a graph containing Γ such that

$$(5.23) V(\hat{\Gamma}) = V(\Gamma) ,$$

(5.24)
$$E(\hat{\Gamma}) = E(\Gamma_1) \cup E(\Gamma_2) \cup \bigcup_{h \in V(\Gamma_1), k \in V(\Gamma_2)} (h, k)_- \cup \{(i, j)_+\},$$

where $(h, k) \neq (i, j)$. From Lemma 4.3 we have the partial fraction on the right hand side of (5.21). Hence the proposition follows.

From Propositions 3 and 4 applied to an arbitrary admissible form φ_{Γ}

$$Q_i^{\pm 1} \varphi_{\Gamma} \sim 0 \mod \mathcal{B}_0$$

$$(5.26) W_{i,j}^{\prime(\pm)} Q_{g_i}^{\pm 1} \varphi_{\Gamma} \sim 0 \mod \mathcal{B}_0$$

$$(5.27) W_{i,j}^{(\pm)} Q_{\beta_i,j}^{\pm 1} \varphi_{\Gamma} \sim 0 \mod \mathcal{B}_0.$$

Since $\Phi V = \mathcal{A}\Phi = \mathcal{A}(\Phi \mathcal{B}_0)$, an arbitrary element $\varphi \in V$ is cohomologous to an element of \mathcal{B}_0 : $\varphi \sim 0 \mod \mathcal{B}_0$. This implies the following:

Proposition 7. The map ι_* defined in (4.39) is a surjection.

We can now prove the Theorem in Section 4.

PROOF OF THEOREM. For each unoriented admissible labelled tree \hat{T} , the point $\bar{t} = (\bar{t}_j)_{1 \le j \le n} \in q^{\bar{X}}$ is defined by the equations: $\bar{t}_{p(j)} = q^{\beta'_{p(j)}, j} \bar{t}_j$, and $\bar{t}_0 = 1$. We can construct a cycle $c(T) = c(\bar{t})$ consisting of countable points given by

(5.28)
$$q^{\beta'_{p(j),j}} t_j / t_{p(j)} \in q^{\mathbf{Z}^+}.$$

To each \hat{T} corresponds a unique terminal admissible tree and vice versa. Thus the set of unoriented admissible labelled trees is in one-to one correspondence with that of terminal admissible forms. The number of such trees is equal to $\mu = (n+1)^{n-1}$. Let T_1, \dots, T_{μ} be the totality of them. We must prove that these are linearly independent in $H_{\Phi}(V, d_{\theta})$. It is sufficient to prove that the determinant of the period matrix

 $M = ((\varphi_{T_i}, c(T_j)))_{1 \le i, j \le \mu}$ does not vanish. This can be shown by asymptotic argument as follows.

We consider the integration of the functions $\Phi \varphi$, $\varphi \in \mathcal{B}_0$, over the cycle c(T). The function Φ has no pole on c(T) if and only if T is standard, i.e., p(j) < j for each $j \in V(T)$. If T is not standard, we replace c(T) by its regularization reg c(T) by taking the residues of $\Phi \varphi$ at the poles of $\Phi \varphi$. The crucial fact is the following:

LEMMA 5.5. For $\alpha_j = \eta_j N + \alpha'_j \ (\eta_j \in \mathbf{Z}^+, \alpha'_j \in \mathbf{C}), \ N \to +\infty$, the integral of an terminal admissible form ϕ_{T^*}

(5.29)
$$\int_{\sigma(T)} \Phi \varphi_{T^*} \Omega \sim (1-q)^n (q)_{\infty}^n \overline{t}_1^{\alpha_1 - \delta_1} \cdots \overline{t}_n^{\alpha_n - \delta_n} \left(1 + O\left(\frac{1}{N}\right) \right)$$

or

(5.30)
$$\sim (1-q)^n (q)_{\infty}^n \, \overline{t}_1^{\alpha_1 - \delta_1} \cdots \, \overline{t}_n^{\alpha_n - \delta_n} \, O\left(\frac{1}{N}\right),$$

according as $T^* = T$ or $T^* \neq T$, where $\delta_j + 1$ denotes the degree of the vertex j in T^* . The same holds for the integration over reg c(T).

PROOF. The function Φ has an expression

(5.31)
$$\Phi = (t_1^{\eta_1} \cdots t_n^{\eta_n})^N t_1^{\alpha_1'} \cdots t_n^{\alpha_n'} \prod_{0 \le i < j \le n} \frac{(q^{\beta_{i,j}} t_j / t_i)_{\infty}}{(q^{\beta_{i,j}} t_j / t_i)_{\infty}}.$$

By assumption the function $|t_1^{\eta_1} \cdots t_n^{\eta_n}|$ has maximal value at $t = \overline{t}$ on c(T) or reg c(T). It is unique, i.e., $|t_1^{\eta_1} \cdots t_n^{\eta_n}| < |\overline{t}_1^{\eta_1} \cdots \overline{t}_n^{\eta_n}|$ on $c(T) - \{\overline{t}\}$. If $T^* \neq T$, then the factors $1 - q^{\beta_{i,j}'}t_j/t_{p(j)}$ appear in the numerator of Φ/Δ_T , while if $T^* = T$, all the factors $1 - q^{\beta_{p(j),j}'}t_j/t_{p(j)}$ disappear. Since all these factors vanish on c(T) or reg c(T), Φ vanishes at $t = \overline{t}(T^*)$ for $T^* \neq T$, while Φ is equal to

(5.32)
$$\overline{t_1^{\alpha_1} \cdots t_n^{\alpha_n}} \frac{(q)_{\infty}^n}{\prod_{j=1}^n (q^{\beta_{i,j}} \overline{t_j} / \overline{t_{p(j)}})} \quad \text{for} \quad T^* = T.$$

This shows that the period matrix M is asymptotically equal to a diagonal matrix whose entries are represented by the principal terms in (5.29) for each unoriented admissible labelled tree T. In other words, the matrix M is non-singular for sufficiently large $\alpha_1, \dots, \alpha_n$. Hence $\varphi_{T_1}, \dots, \varphi_{T_n}$ are linearly independent in $H_{\Phi}(V, d_q)$. The theorem has been proved.

COROLLARY. $\langle \varphi_{T_1} \rangle, \cdots, \langle \varphi_{T_n} \rangle$ satisfy the normal holonomic q-difference equations

$$(5.33) \tilde{Q}_{j}^{\pm 1}(\langle \varphi_{T_{1}} \rangle, \cdots, \langle \varphi_{T_{\mu}} \rangle) = (\langle \varphi_{T_{1}} \rangle, \cdots, \langle \varphi_{T_{\mu}} \rangle) A_{j}^{\pm}, \quad 1 \leq j \leq n,$$

$$(5.34) \tilde{Q}_{\beta_{i,j}}^{\pm 1}(\langle \varphi_{T_1} \rangle, \cdots, \langle \varphi_{T_u} \rangle) = (\langle \varphi_{T_1} \rangle, \cdots, \langle \varphi_{T_u} \rangle) A_{\pm \beta_{i,j}}, \quad 0 \le i < j \le n,$$

$$(5.35) \tilde{Q}_{\beta'_{i,j}}^{\pm 1}(\langle \varphi_{T_1} \rangle, \cdots, \langle \varphi_{T_{\mu}} \rangle) = (\langle \varphi_{T_1} \rangle, \cdots, \langle \varphi_{T_{\mu}} \rangle) A_{\pm \beta'_{i,j}}, 1 \leq i < j \leq n,$$

respectively. Here A_j^{\pm} , $A_{\pm\beta_i,j}$ and $A_{\pm\beta_i',j}$ denote matrices of degree μ over the rational function field $C((u_l,q^{\beta_{k,l}},q^{\beta_{k,l}})_{0\leq k< l\leq n})$. These are equivalent to $(4.6)\sim(4.10)$.

REMARK. The set of all directions $\eta = (\eta_1, \dots, \eta_n) \in \mathbb{Z}^n - \{0\}$ giving inequivalent asymptotic behaviours of $\tilde{\Phi}$ are divided into a finite set of rational polyhedral cones in \mathbb{Q}^n . This defines an *n*-dimensional toric variety which may be singular in general (see [O1] for the definition). The connection coefficients among asymptotic solutions along different directions η can be described in terms of transition matrices on this variety. The combinatorial structure of them will be presented elsewhere (see [A5]).

6. The basic hypergeometric function of third order. The case n=2 is given by the basic hypergeometric function

(6.1)
$${}_{3}\varphi_{2}\begin{pmatrix} a,b,c\\d,e \end{pmatrix} x = \sum_{n=0}^{\infty} \frac{(a;q)_{n}(b;q)_{n}(c;q)_{n}}{(d;q)_{n}(e;q)_{n}(q;q)_{n}} x^{n},$$

for $a, b, c, d, e \in \mathbb{C}$ and $(a; q)_n = (a)_{\infty}/(aq^n)_{\infty}$ etc., such that $d, e \neq 1, q^{-1}, q^{-2}, \cdots$. It has an integral representation

for $b=q^{\alpha_1}$ and $c=q^{\alpha_2}$. This integral coincides with (4.2) by putting $\alpha_1\mapsto\alpha_1-\alpha_2,\ \alpha_2\mapsto\alpha_2,\ q^{\beta_0,1}=q,\ q^{\beta_0,2}=a_0x,\ q^{\beta_0,1}=b_1/a_1,\ q^{\beta_0,2}=x,\ q^{\beta_1,2}=q$ and $q^{\beta_1,2}=b_2/a_2$ in (4.2). For brevity we put $\beta_{0,1}=\beta_1,\ \beta_{0,2}=\beta_2,\ \beta_{1,2}=\beta'$ and $\beta_{1,2}=\beta$. We have $\dim\mathcal{B}_0=3$ due to the Theorem. The basis is given by

(6.3)
$$\varphi_{T_1} = \frac{\Omega}{(1 - t_1)(1 - t_2)}, \quad \varphi_{T_2} = \frac{\Omega}{(1 - t_1)(t_1 - q^{\beta'}t_2)} \quad \text{and} \quad \varphi_{T_3} = \frac{\Omega}{(1 - t_2)(t_1 - q^{\beta - 1}t_2)}$$

corresponding to the terminal admissible trees T_1 , T_2 and T_3 , respectively as in Figure 2. In addition to these it is also convenient to consider the forms

(6.4)
$$\varphi_{T_4} = \frac{\Omega}{(1 - t_1)(t_1 - q^{\beta'} t_2)} \quad \text{and} \quad \varphi_{T_5} = \frac{\Omega}{(1 - t_1)(t_1 - q^{\beta^{-1}} t_2)}$$

corresponding to the admissible trees T_4 and T_5 which are not terminal (see Figure 2). There are two linear relations among them as follows:

FIGURE 2.

(6.5)
$$\varphi_{T_4} \sim q^{\alpha_1 - 1} \left\{ \frac{1 - q^{\beta_1}}{1 - q^{\beta - 1}} \varphi_{T_1} + \frac{1 - q^{\beta_1 + \beta - 1}}{1 - q^{\beta - 1}} \varphi_{T_3} + \frac{1 - q^{\beta_1}}{1 - q^{1 - \beta}} \varphi_{T_5} \right\},$$

(6.6)
$$\varphi_{T_5} \sim q^{\alpha_2} \left\{ \frac{1 - q^{\beta_2}}{1 - q^{\beta'}} \varphi_{T_1} + \frac{q^{\beta_2} - q^{\beta'}}{1 - q^{\beta'}} \varphi_{T_2} + \frac{1 - q^{\beta_2}}{1 - q^{\beta'}} \varphi_{T_4} \right\}.$$

From these relations one can solve φ_{T_4} aand φ_{T_5} as linear combinations of φ_{T_1} , φ_{T_2} and φ_{T_3} , provided $(1-q^{1-\beta})(1-q^{\beta'})-q^{\alpha_1+\alpha_2-1}(1-q^{\beta_1})(1-q^{\beta_2})\neq 0$, i.e.,

(6.7)
$$\varphi_{T_4} \sim 0 \mod \mathcal{B}_0 \text{ and } \varphi_{T_5} \sim 0 \mod \mathcal{B}_0$$

To find the formulae for \tilde{Q}_1 and \tilde{Q}_2 one needs the following:

LEMMA 6.1. We have the relations

$$(6.8) \qquad (1-q^{\alpha_{1}+\beta_{1}})\left\langle \frac{\Omega}{1-t_{2}}\right\rangle + q^{\alpha_{1}+\beta_{1}}(q^{\beta-1}-q^{\beta'-1})\left\langle \frac{\Omega}{t_{1}-q^{\beta-1}t_{2}}\right\rangle$$

$$= q^{\alpha_{1}}\left\{\frac{(1-q^{\beta_{1}})(1-q^{\beta'-1})}{1-q^{\beta-1}}\langle \varphi_{T_{1}}\rangle + \frac{(1-q^{\beta_{1}})(1-q^{\beta'-\beta})}{1-q^{1-\beta}}\langle \varphi_{T_{5}}\rangle + \frac{(q^{\beta-1}-q^{\beta'-1})(1-q^{\beta_{1}+\beta-1})}{1-q^{\beta-1}}\langle \varphi_{T_{3}}\rangle\right\}.$$

(6.9)
$$(1 - q^{\alpha_1 + \alpha_2 + \beta_1 + \beta_2 - 1}) \left\langle \frac{\Omega}{t_1 - q^{\beta'} t_2} \right\rangle$$

$$= q^{\alpha_1 + \alpha_2 - 1} \left\{ \frac{(1 - q^{\beta_1})(1 - q^{\beta_2})}{1 - q^{\beta'}} \left\langle \varphi_{T_1} \right\rangle + \frac{(1 - q^{\beta_1})(q^{\beta_2} - q^{\beta'})}{1 - q^{\beta'}} \left\langle \varphi_{T_2} \right\rangle$$

$$+ \frac{(1 - q^{\beta_2})(1 - q^{\beta_1 + \beta'})}{1 - q^{\beta'}} \left\langle \varphi_{T_4} \right\rangle \right\},$$

$$(6.10) \qquad (1 - q^{\alpha_{2} + \beta_{2} + \beta - \beta'}) \left\langle \frac{\Omega}{1 - t_{1}} \right\rangle + q^{\alpha_{2} + \beta_{2}} (1 - q^{\beta - \beta'}) \left\langle \frac{\Omega}{t_{1} - q^{\beta'} t_{2}} \right\rangle$$

$$= q^{\alpha_{2}} \left\{ \frac{(1 - q^{\beta_{2}})(1 - q^{\beta})}{1 - q^{\beta'}} \left\langle \varphi_{T_{1}} \right\rangle + \frac{(1 - q^{\beta_{2} - \beta'})(q^{\beta} - q^{\beta'})}{1 - q^{\beta'}} \left\langle \varphi_{T_{2}} \right\rangle + \frac{(1 - q^{\beta_{2}})(q^{\beta'} - q^{\beta})}{1 - q^{\beta'}} \left\langle \varphi_{T_{4}} \right\rangle \right\},$$

$$\left\langle \frac{\Omega}{t_{1} - q^{\beta - 1} t_{2}} \right\rangle = q^{\alpha_{2}} \left\{ (1 - q^{\beta_{2}}) \left\langle \varphi_{T_{4}} \right\rangle + q^{\beta_{2}} \left\langle \frac{\Omega}{t_{1} - q^{\beta'} t_{2}} \right\rangle \right\}.$$

$$(6.11)$$

(6.8)–(6.11) can be derived as in the proof of Lemma 5.2. They enable us to express $\langle \Omega/(1-t_1)\rangle$, $\langle \Omega/(1-t_2)\rangle$, $\langle \Omega/(t_1-q^{\beta'}t_2)\rangle$ and $\langle \Omega/(t_1-q^{\beta^{-1}}t_2)\rangle$ in terms of $\langle \varphi_{T_j}\rangle$, $1 \le j \le 5$. Since

$$(6.12) \tilde{Q}_1 \langle \varphi_{T_1} \rangle = \langle \varphi_{T_1} \rangle - \left\langle \frac{\Omega}{1 - t_2} \right\rangle, \quad \tilde{Q}_1 \langle \varphi_{T_2} \rangle = \langle \varphi_{T_2} \rangle - \left\langle \frac{\Omega}{t_1 - q^{\beta'} t_2} \right\rangle,$$

(6.13)
$$\tilde{Q}_{1}\langle \varphi_{T_{4}}\rangle = \left\langle \frac{\Omega}{1-t_{2}} \right\rangle - q^{\beta'} \left\langle \frac{\Omega}{t_{1}-q^{\beta'}t_{2}} \right\rangle + q^{\beta'} \langle \varphi_{T_{4}}\rangle ,$$

(6.14)
$$\widetilde{Q}_{2} \langle \varphi_{T_{1}} \rangle = \langle \varphi_{T_{1}} \rangle - \left\langle \frac{\Omega}{1 - t_{1}} \right\rangle,$$

(6.15)
$$\tilde{Q}_{2} \langle \varphi_{T_{2}} \rangle = q^{-\beta'} \left\{ \langle \varphi_{T_{2}} \rangle - \left\langle \frac{\Omega}{1 - t_{1}} \right\rangle - \left\langle \frac{\Omega}{t_{1} - q^{\beta'} t_{2}} \right\rangle \right\},$$

(6.16)
$$\tilde{Q}_{2} \langle \varphi_{T_{4}} \rangle = \langle \varphi_{T_{4}} \rangle - \left\langle \frac{\Omega}{t_{1} - q^{\beta'} t_{2}} \right\rangle,$$

we get from the formulae (6.8)–(6.11) the following:

LEMMA 6.2.

$$(6.17) \qquad \tilde{Q}_{1}\langle\varphi_{T_{2}}\rangle = \langle\varphi_{T_{2}}\rangle - \frac{q^{\alpha_{1}+\alpha_{2}-1}}{1-q^{\alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{2}-1}} \left\{ \frac{(1-q^{\beta_{1}})(1-q^{\beta_{2}})}{1-q^{\beta'}} \langle\varphi_{T_{1}}\rangle + \frac{(1-q^{\beta_{1}})(q^{\beta_{2}}-q^{\beta'})}{(1-q^{\beta'})} \langle\varphi_{T_{2}}\rangle + \frac{(1-q^{\beta_{1}+\beta'})(1-q^{\beta_{2}})}{1-q^{\beta'}} \langle\varphi_{T_{4}}\rangle \right\},$$

$$(6.18) \qquad \tilde{Q}_{1}\langle\varphi_{T_{1}}\rangle + \frac{q^{\beta}-q^{\beta'}}{1-q^{\alpha_{1}+\beta_{1}}} \tilde{Q}_{1}\langle\varphi_{T_{2}}\rangle + \frac{q^{\beta}-q^{\beta'}}{1-q^{\alpha_{1}+\beta_{1}}} \langle\varphi_{T_{1}}\rangle + \frac{q^{\beta}-q^{\beta'}}{1-q^{\alpha_{1}+\beta_{1}}} \langle\varphi_{T_{2}}\rangle + \frac{q^{\beta'}-q^{\beta}}{1-q^{\alpha_{1}+\beta_{1}}} \langle\varphi_{T_{4}}\rangle,$$

$$(6.19) \qquad \tilde{Q}_{1} \langle \varphi_{T_{1}} \rangle - q^{\beta'} \tilde{Q}_{1} \langle \varphi_{T_{2}} \rangle + \tilde{Q}_{1} \langle \varphi_{T_{4}} \rangle = \langle \varphi_{T_{1}} \rangle - q^{\beta'} \langle \varphi_{T_{2}} \rangle + q^{\beta'} \langle \varphi_{T_{4}} \rangle .$$

$$(6.20) \qquad \tilde{Q}_{2} \langle \varphi_{T_{1}} \rangle + \frac{q^{\alpha_{2} + \beta_{2}} (1 - q^{\beta - \beta'})}{1 - q^{\alpha_{2} + \beta_{2} + \beta - \beta'}} \tilde{Q}_{2} \langle \varphi_{T_{4}} \rangle$$

$$\begin{split} & = \langle \varphi_{T_{1}} \rangle + \frac{q^{\alpha_{2} + \beta_{2}} (1 - q^{\beta - \beta'})}{1 - q^{\alpha_{2} + \beta_{2} + \beta - \beta'}} \langle \varphi_{T_{4}} \rangle - \frac{q^{\alpha_{2}}}{1 - q^{\alpha_{2} + \beta_{2} + \beta - \beta'}} \left\{ \frac{(1 - q^{\beta_{2}})(1 - q^{\beta})}{1 - q^{\beta'}} \langle \varphi_{T_{1}} \rangle \right. \\ & \left. - \frac{(1 - q^{\beta - \beta'})(q^{\beta'} - q^{\beta_{2}})}{1 - q^{\beta'}} \langle \varphi_{T_{2}} \rangle + \frac{(1 - q^{\beta_{2}})(q^{\beta'} - q^{\beta})}{1 - q^{\beta'}} \langle \varphi_{T_{4}} \rangle \right\} \end{split}$$

$$(6.21) \qquad \tilde{Q}_{2} \langle \varphi_{T_{2}} \rangle - q^{-\beta'} \tilde{Q}_{2} \langle \varphi_{T_{1}} \rangle = -q^{-\beta'} \langle \varphi_{T_{1}} \rangle + q^{-\beta'} \langle \varphi_{T_{2}} \rangle$$

$$- \frac{q^{\alpha_{1} + \alpha_{2} - \beta' - 1}}{1 - q^{\alpha_{1} + \alpha_{2} + \beta_{1} + \beta_{2} - 1}} \left\{ \frac{(1 - q^{\beta_{1}})(1 - q^{\beta_{2}})}{(1 - q^{\beta'})} \langle \varphi_{T_{1}} \rangle + \frac{(1 - q^{\beta_{1}})(q^{\beta_{2}} - q^{\beta'})}{1 - q^{\beta'}} \langle \varphi_{T_{2}} \rangle \right.$$

$$+ \frac{(1 - q^{\beta_{1} + \beta'})(1 - q^{\beta_{2}})}{1 - q^{\beta'}} \langle \varphi_{T_{4}} \rangle \right\},$$

$$\begin{split} \tilde{Q}_{2}\langle\varphi_{T_{4}}\rangle &= \langle\varphi_{T_{4}}\rangle - \frac{q^{\alpha_{1}+\alpha_{2}-1}}{(1-q^{\alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{2}-1})} & \left\{ \frac{(1-q^{\beta_{1}})(1-q^{\beta_{2}})}{1-q^{\beta'}} \left\langle \varphi_{T_{1}} \right\rangle \right. \\ &\left. + \frac{(1-q^{\beta_{1}})(q^{\beta_{2}}-q^{\beta'})}{1-q^{\beta'}} \left\langle \varphi_{T_{2}} \right\rangle + \frac{(1-q^{\beta_{2}})(1-q^{\beta_{1}+\beta'})}{1-q^{\beta'}} \left\langle \varphi_{T_{4}} \right\rangle \right\}, \end{split}$$

so that

$$(6.23) \quad \tilde{Q}_{2}\langle\varphi_{T_{2}}\rangle - q^{-\beta'}\tilde{Q}_{2}\langle\varphi_{T_{1}}\rangle - q^{-\beta'}\tilde{Q}_{2}\langle\varphi_{T_{4}}\rangle = q^{-\beta'}\{\langle\varphi_{T_{2}}\rangle - \langle\varphi_{T_{1}}\rangle - \langle\varphi_{T_{4}}\rangle\}.$$

To compute the formulae for \tilde{Q}_1^{-1} and \tilde{Q}_2^{-1} , one needs the following two lemmas, which can be obtained as in the proof of lemma 5.4.

LEMMA 6.3.

$$(6.24) \qquad (1 - q^{\alpha_{1} + \beta' - \beta - 1}) \left\langle \frac{\Omega}{t_{1}(1 - t_{2})} \right\rangle$$

$$= q^{\alpha_{1} - 1} \left\{ \frac{1 - q^{\beta' - 1}}{1 - q^{\beta - 1}} \langle \varphi_{T_{1}} \rangle + \frac{1 - q^{\beta' - \beta}}{1 - q^{\beta - 1}} \langle \varphi_{T_{3}} \rangle + \frac{1 - q^{\beta' - \beta}}{1 - q^{1 - \beta}} \langle \varphi_{T_{5}} \rangle \right\},$$

$$(6.25) \qquad (1 - q^{\alpha_{1} + \alpha_{2} - 2}) \left\langle \frac{\Omega}{t_{1}(t_{1} - q^{\beta'}t_{2})} \right\rangle$$

$$= -q^{\alpha_{1} + \alpha_{2} - \beta' - 2} (1 - q^{\beta_{2}}) \left\langle \frac{\Omega}{t_{1}(1 - t_{2})} \right\rangle + q^{\alpha_{1} + \alpha_{2} - 2} \left\{ \frac{(1 - q^{\beta_{1}})(1 - q^{\beta_{2}})}{1 - q^{\beta'}} \langle \varphi_{T_{1}} \rangle + \frac{(1 - q^{\beta_{1}})(q^{\beta_{2}} - q^{\beta'})}{1 - q^{\beta'}} \langle \varphi_{T_{2}} \rangle + q^{-\beta'} \frac{(1 - q^{\beta_{1} + \beta'})(1 - q^{\beta_{2}})}{1 - q^{\beta'}} \langle \varphi_{T_{4}} \rangle \right\},$$

$$(6.26) \qquad (1-q^{\alpha_{1}+\alpha_{2}-2})\left\langle \frac{\Omega}{t_{1}(t_{1}-q^{\beta-1}t_{2})} \right\rangle$$

$$= -q^{\alpha_{1}+\alpha_{2}-\beta-1}(1-q^{\beta_{2}})\left\langle \frac{\Omega}{t_{1}(1-t_{2})} \right\rangle + q^{\alpha_{1}+\alpha_{2}-2} \left\{ \frac{(1-q^{\beta_{1}})(1-q^{\beta_{2}})}{1-q^{\beta-1}} \left\langle \varphi_{T_{1}} \right\rangle + \frac{(1-q^{\beta_{1}})(1-q^{\beta_{2}-\beta+1})}{1-q^{1-\beta}} \left\langle \varphi_{T_{5}} \right\rangle + q^{1-\beta} \frac{(1-q^{\beta_{1}+\beta-1})(1-q^{\beta_{2}})}{(1-q^{\beta-1})} \left\langle \varphi_{T_{3}} \right\rangle \right\}.$$

LEMMA 6.4

$$(6.27) \qquad (1-q^{\alpha_{2}-1})\left\langle \frac{\Omega}{(1-t_{1})t_{2}} \right\rangle = q^{\alpha_{2}-1} \left\{ \frac{(q^{\beta}-q^{\beta'})(q^{\beta'}-q^{\beta_{2}})}{1-q^{\beta'}} \left\langle \varphi_{T_{2}} \right\rangle \right. \\ \left. + \frac{(1-q^{\beta})(1-q^{\beta_{2}})}{1-q^{\beta'}} \left\langle \varphi_{T_{1}} \right\rangle + \frac{(q^{\beta'}-q^{\beta})(1-q^{\beta_{2}})}{1-q^{\beta'}} \left\langle \varphi_{T_{4}} \right\rangle \right\}$$

$$(6.28) \qquad (1-q^{\alpha_{1}+\alpha_{2}-2})\left\langle \frac{\Omega}{t_{2}(t_{1}-q^{\beta'}t_{2})} \right\rangle \\ = q^{\alpha_{1}+\alpha_{2}-2}(1-q^{\beta_{1}})\left\langle \frac{\Omega}{t_{2}(1-t_{1})} \right\rangle + q^{\alpha_{1}+\alpha_{2}-2} \left\{ q^{\beta'} \frac{(1-q^{\beta_{1}})(q^{\beta_{2}}-q^{\beta'})}{(1-q^{\beta'})} \left\langle \varphi_{T_{2}} \right\rangle \right. \\ \left. + \frac{(1-q^{\beta_{1}})(1-q^{\beta_{2}})}{1-q^{\beta'}} \left\langle \varphi_{T_{1}} \right\rangle + \frac{(1-q^{\beta_{1}+\beta'})(1-q^{\beta_{2}})}{1-q^{\beta'}} \left\langle \varphi_{T_{4}} \right\rangle \right\},$$

$$(6.29) \qquad (1-q^{\alpha_{1}+\alpha_{2}-2})\left\langle \frac{\Omega}{t_{2}(t_{1}-q^{\beta-1}t_{2})} \right\rangle \\ = q^{\alpha_{1}+\alpha_{2}-2}(1-q^{\beta_{1}})\left\langle \frac{\Omega}{t_{2}(1-t_{1})} \right\rangle + q^{\alpha_{1}+\alpha_{2}-2} \left\{ \frac{(1-q^{\beta_{1}})(1-q^{\beta_{2}})}{1-q^{\beta-1}} \left\langle \varphi_{T_{1}} \right\rangle \right.$$

 $\left. + \frac{(1 - q^{\beta_1 + \beta - 1})(1 - q^{\beta_2})}{1 - a^{\beta - 1}} \langle \varphi_{T_3} \rangle + q^{\beta - 1} \frac{(1 - q^{\beta_1})(1 - q^{\beta_2 - \beta + 1})}{1 - a^{1 - \beta}} \langle \varphi_{T_5} \rangle \right\}.$

From these two lemmas one can express

(6.30)
$$\left\langle \frac{\Omega}{t_1(1-t_2)} \right\rangle, \quad \left\langle \frac{\Omega}{t_1(t_1-q^{\beta'}t_2)} \right\rangle, \quad \left\langle \frac{\Omega}{t_1(t_1-q^{\beta-1}t_2)} \right\rangle$$

and

(6.31)
$$\left\langle \frac{\Omega}{t_2(1-t_1)} \right\rangle, \quad \left\langle \frac{\Omega}{t_2(t_1-q^{\beta'}t_2)} \right\rangle, \quad \left\langle \frac{\Omega}{t_2(t_1-q^{\beta-1}t_2)} \right\rangle$$

as linear combinations of $\langle \varphi_{T_1} \rangle$, $\langle \varphi_{T_2} \rangle$, $\langle \varphi_{T_3} \rangle$, $\langle \varphi_{T_4} \rangle$, and $\langle \varphi_{T_5} \rangle$. Since we have

(6.32)
$$\widetilde{Q}_{1}^{-1} \langle \varphi_{T_{1}} \rangle = \langle \varphi_{T_{1}} \rangle + \left\langle \frac{\Omega}{t_{1}(1-t_{2})} \right\rangle,$$

(6.33)
$$\widetilde{Q}_{1}^{-1} \langle \varphi_{T_{2}} \rangle = \langle \varphi_{T_{2}} \rangle + \left\langle \frac{\Omega}{t_{1}(t_{1} - q^{\beta'}t_{2})} \right\rangle,$$

$$(6.34) \tilde{Q}_{1}^{-1}\langle \varphi_{T_{4}}\rangle = -q^{-\beta'}\left\langle \frac{\Omega}{t_{1}(1-t_{2})}\right\rangle + \left\langle \frac{\Omega}{t_{1}(t_{1}-q^{\beta'}t_{2})}\right\rangle + q^{-\beta'}\langle \varphi_{T_{4}}\rangle,$$

(6.35)
$$\tilde{Q}_{2}^{-1} \langle \varphi_{T_{1}} \rangle = q^{\alpha_{2}-1} \left\{ \left\langle \frac{\Omega}{t_{2}(1-t_{1})} \right\rangle + \frac{(1-q^{\beta})(1-q^{\beta_{2}})}{1-q^{\beta'}} \langle \varphi_{T_{1}} \rangle \right. \\ \left. + \frac{(q^{\beta'}-q^{\beta})(q^{\beta_{2}}-q^{\beta'})}{1-q^{\beta'}} \langle \varphi_{T_{2}} \rangle + \frac{(q^{\beta'}-q^{\beta})(1-q^{\beta_{2}})}{1-q^{\beta'}} \langle \varphi_{T_{4}} \rangle \right\},$$

(6.36)
$$\widetilde{Q}_{2}^{-1} \langle \varphi_{T_{2}} \rangle = \left\langle \frac{\Omega}{t_{2}(1-t_{1})} \right\rangle + \left\langle \frac{\Omega}{t_{2}(t_{1}-q^{\beta'}t_{2})} \right\rangle + q^{-\beta'} \langle \varphi_{T_{2}} \rangle ,$$

(6.37)
$$\widetilde{Q}_{2}^{-1} \langle \varphi_{T_{4}} \rangle = \left\langle \frac{\Omega}{t_{2}(1-t_{1})} \right\rangle + \left\langle \frac{\Omega}{t_{2}(t_{1}-q^{\beta-1}t_{2})} \right\rangle + q^{1-\beta} \langle \varphi_{T_{5}} \rangle ,$$

we can conclude:

PROPOSITION 8. $\tilde{Q}_{1}^{\pm 1}\langle \varphi_{T_{j}}\rangle$ and $\tilde{Q}_{2}^{\pm 1}\langle \varphi_{T_{j}}\rangle$, $1\leq j\leq 3$, are written as linear combinations of $\langle \varphi_{T_{1}}\rangle$, $\langle \varphi_{T_{2}}\rangle$, $\langle \varphi_{T_{3}}\rangle$, $\langle \varphi_{T_{4}}\rangle$, $\langle \varphi_{T_{5}}\rangle$, respectively.

Since $\tilde{Q}_{\beta'}^{-1}$ and \tilde{Q}_{β} are written by using $\tilde{Q}_{1}^{\pm 1}$ and \tilde{Q}_{2} as

(6.38)
$$\tilde{Q}_{\beta'}^{-1} = \tilde{Q}_1^{-1} (\tilde{Q}_1 - q^{\beta'-1} \tilde{Q}_2) \quad \text{for } \langle \varphi_{T_1} \rangle, \quad \langle \varphi_{T_3} \rangle,$$

(6.39)
$$\tilde{Q}_{\beta'}^{-1} = \tilde{Q}_1^{-1} (\tilde{Q}_1 - q^{\beta'} \tilde{Q}_2) \quad \text{for } \langle \varphi_{T_2} \rangle,$$

(6.40)
$$\tilde{Q}_{\beta} = \tilde{Q}_{1}^{-1} (\tilde{Q}_{1} - q^{\beta} \tilde{Q}_{2}) \quad \text{for } \langle \varphi_{T,} \rangle, \langle \varphi_{T,} \rangle,$$

(6.41)
$$\tilde{Q}_{\beta} = \tilde{Q}_{1}^{-1} (\tilde{Q}_{1} - q^{\beta - 1} \tilde{Q}_{2}) \quad \text{for } \langle \varphi_{T_{3}} \rangle,$$

we get the following:

PROPOSITION 9. $\tilde{Q}_{\beta'}^{-1}\langle \varphi_{T_j}\rangle$ and $\tilde{Q}_{\beta}\langle \varphi_{T_j}\rangle$, $1 \leq j \leq 3$, are written explicitly as linear combinations of $\langle \varphi_{T_1}\rangle$, $\langle \varphi_{T_2}\rangle$, $\langle \varphi_{T_3}\rangle$, $\langle \varphi_{T_4}\rangle$ and $\langle \varphi_{T_5}\rangle$ through the formulae (6.38)–(6.41). The latter are expressible as linear combinations of $\langle \varphi_{T_1}\rangle$, $\langle \varphi_{T_2}\rangle$ and $\langle \varphi_{T_3}\rangle$ through (6.5)–(6.6).

The formulae for $\tilde{Q}_i^{\pm 1}$, \tilde{Q}_{β} and $\tilde{Q}_{\beta'}^{-1}$ give a complete system of contiguous relations for the basic hypergeometric series $_3\varphi_2$.

REMARK. To prove the Theorem we have used asymptotic behaviours of integrals. However it is desirable and is probably possible to give a *purely algebraic proof* of the

Theorem.

The author is grateful to M. Kita for useful suggestion of formulating a q-analogue of b-functions. He is also grateful to the referee for careful reading and several improvements.

REFERENCES

- [A1] G. E. Andrews, Problems and prospects for basic hypergeometric functions, in Theory and Application of Special Functions (R. Askey, ed., 192–224, Academic Press, Boston, 1975.
- [A2] G. E. Andrews, q-series: Their development and application in analysis, number theory, combinatorics, and computer algebra, Regional Conference Series in Math. 66, Amer. Math. Soc., 1986.
- [A3] К. Аомото, Gauss-Manin connection of integral of difference products, J. Math. Soc. Japan 39 (1987), 191–208.
- [A4] K. AOMOTO, A note on holonomic q-difference systems, in Algebraic Analysis (M. Kashiwara and T. Kawai, eds.) Academic Press, Boston, 1989, 25–28.
- [A5] K. Aomoto, Connection coefficients of Jackson integrals of extended Selberg type, preprint.
- [A6] R. ASKEY, Some basic hypergeometric extensions of integrals of Selberg and Andrews, SIAM J. Math. Anal., 11 (1980), 938-951.
- [A7] R. Askey, Beta integrals in Ramanujan's papers, his unpublished work and further examples, Ramanujan Revisited, Academic Press, 1988.
- [B] G. Bellardinelli, Fonctions hypergéométriques de plusieures variables et resolutions analytiques des equations algébriques générales, Paris, Gauthiers Villars, 1960.
- [G1] G. GASPER AND M. RAHMAN, Basic hypergeometric series, Encyclopedia of Math. and Its Applications, Cambridge University Press, 1990.
- [G2] I. M. GELFAND AND M. I. GRAEV, Hypergeometric functions associated with the Grassmannian $G_{3,6}$, Soviet Math. Dokl. 35 (1987), 298–303.
- [G3] I. M. GELFAND AND M. I. GRAEV, Generalized hypergeometric functions on the Grassmannian G_{3,6}, preprint translated from Russian into English by T. Sasaki, 1987.
- [H] F. HARARY, Graph theory, Addison Wesley, Reading, 1969.
- [M1] S. C. MILNE, A q-analogue of the Gauss summation theorem for hypergeometric series in U(n), Ad. in Math. 72 (1988), 59–131.
- [M2] K. MIMACHI, Connection problem in holonomic q-difference system associated with a Jackson integral of Jordan-Pochhammer type, Nagoya, Math. J. 116 (1989), 149–161.
- [M3] J. W. Moon, Various proofs of Cayley's formula for counting trees, in A Seminar on Graph Theory (F. Harary, ed.) Holt, Rinehart and Winton, Texas, 1967, 70-78.
- [O1] T. Oda, Lectures on torus embedding and applications, Tata Institute Fundamental Research, Bombay, 1978.
- [O2] O. Ore, Sur la forme des fonctions hypergéométriques de plusieurs variables, J. Math. Pures et Appl. 9 (1930), 311-326.
- [O3] P. Orlik, Introduction to arrangements, mimeographed notes, Univ. Wisconsin, 1988.
- [S1] M. Sato, Theory of prehomogeneous vector spaces, written by T. Shintani (in Japanese), Sugaku no Ayumi, 15-1, 1970, 85–157.
- [S2] M. Sato, Theory of prehomogeneous vector spaces, Algebraic Part, the English translation of Sato's lecture from Shintani's notes, (translated by Muro), to appear in Nagoya Math. J.
- [S3] L. J. Slater, Generalized hypergeometric functios, Cambridge Univ. Press, 1966.
- [T] J. Tits, Sur le groupe des automorphismes d'un arbre, Essays on Topology and Related Topics, Mem. dédiés à G. de Rham, Springer, Berlin, 1970.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE NAGOYA UNIVERSITY NAGOYA 464–01 JAPAN