# FINITENESS OF A COHOMOLOGY ASSOCIATED WITH CERTAIN JACKSON INTEGRALS 

Kazuhiko Аомото

(Received December 20, 1989)


#### Abstract

A structure theorem on $q$-analogues of $b$-functions is stated. Basic properties for Jackson integrals of associated $q$-multiplicative functions are given. Finiteness of cohomology group attached to them is proved for arrangement of $A$-type root system. Some problems about the derived $q$-difference systems are posed. An example of basic hypergeometric functions are given.


1. Let $E_{n}:=E^{n}$ be the direct product of $n$ copies of an elliptic curve $E$ of modulus $q=e^{2 \pi \sqrt{-1} \tau}$ for $\operatorname{Im} \tau>0$. The first cohomology group $H^{1}\left(E_{n}, \boldsymbol{C}\right)$ has the Hodge decomposition $H^{1}\left(E_{n}, C\right)=H^{1,0}\left(E_{n}\right)+H^{0,1}\left(E_{n}\right)$, where $H^{1,0}\left(E_{n}\right)$ is isomorphic to the direct sum of $n$ copies of $H^{1,0}(E)$, the space of holomorphic 1-forms on $E$. Let $\left\{3, \cdots, 3_{n} ; 3_{n+1}, \cdots, 3_{2 n}\right\}$ be a basis of the first homology group $H_{1}\left(E_{n}, Z\right)$ such that each pair $\left\{3_{j}, 3_{n+j}\right\}$ represents a pair of canonical loops in $E$. There exists a system of holomorphic 1-forms $\theta_{1}, \cdots, \theta_{n}$ on $E_{n}$ such that

$$
\begin{align*}
& \int_{\partial_{j}} \theta_{k}=2 \pi \sqrt{-1} \delta_{j, k}  \tag{1.1}\\
& \int_{3 n+j} \theta_{k}=2 \pi \sqrt{-1} \tau \delta_{j, k}, \quad \text { Im } \quad \tau>0 .
\end{align*}
$$

We denote by $\bar{X}$ the factor space of the dual $H^{1,0}\left(E_{n}\right)^{*}$ of $H^{1,0}\left(E_{n}\right)$ with respect to the abelian subgroup $A=\left\langle j_{1}, \cdots, 3_{n}\right\rangle$ of $H_{1}\left(E_{n}, Z\right)$ generated by $3_{j}, 1 \leq j \leq n$. This is possible because $H_{1}\left(E_{n}, Z\right)$ can be contained in $H^{1,0}\left(E_{n}, C\right)^{*}$. In the same way we denote by $X$ the factor space $H_{1}\left(E_{n}, Z\right) / A$. $X$ can be assumed to be a submodule of $\bar{X}$ and has a basis $\chi_{j}=3_{n+j} \bmod A$. An arbitrary $\chi \in X$ is written uniquely as

$$
\begin{equation*}
\chi=\sum_{j=1}^{n} v_{j} \chi_{j} \quad \text { for } \quad v_{j} \in \boldsymbol{Z} \tag{1.2}
\end{equation*}
$$

The quotient $\bar{X} / X$ is canonically isomorphic to $E_{n}$. By the map

$$
\begin{equation*}
\bar{X} \ni \omega \mapsto x=\left(x_{1}=\exp \left(\left(\theta_{1}, \omega\right)\right), \cdots, x_{n}=\exp \left(\left(\theta_{n}, \omega\right)\right)\right) \in\left(C^{*}\right)^{n} \tag{1.3}
\end{equation*}
$$

for $\omega \in \bar{X}, \bar{X}$ is isomorphic to the algebraic torus $q^{\bar{X}}=\left(C^{*}\right)^{n}$ and $X$ is isomorphic to the discrete subgroup $q^{X}$ generated by $q^{\chi_{1}}=(q, 1, \cdots, 1), \cdots, q^{\chi_{n}}=(1,1, \cdots, q)$. Here $(\theta, \omega)$ denotes the canonical bilinear form on $H^{1,0}\left(E_{n}, C\right)$ and its dual.

We denote by $R(\bar{X})$ the field of rational functions on $q^{\bar{X}}$ and by $R^{\times}(\bar{X})$ the
multiplicative group $R(\bar{X})-\{0\}$. Then $X$ acts on $\bar{X}$ and also on $R(\bar{X})$ or $R^{\times}(\bar{X})$ in a natural manner. We denote these operations by $\hat{Q}_{j}$ and $Q_{j}$ as follows:

$$
\begin{gather*}
\hat{Q}_{j}\left(x_{1}, \cdots, x_{j}, \cdots, x_{n}\right) \mapsto\left(x_{1}, \cdots, x_{j-1}, q x_{j}, x_{j+1}, \cdots, x_{n}\right)  \tag{1.4}\\
Q_{j} \varphi(x)=\varphi\left(\hat{Q}_{j}(x)\right) \tag{1.5}
\end{gather*}
$$

for $x=\left(x_{1}, \cdots, x_{n}\right) \in q^{\bar{X}}$ and $\varphi \in R(\bar{X})$, respectively.
A cocycle $b_{\chi}(\omega)$ on $X$ with values in $R^{\times}(\bar{X})$ is defined by the cocycle condition

$$
\begin{equation*}
b_{\chi+\chi^{\prime}}(\omega)=b_{\chi}(\omega) \cdot b_{\chi^{\prime}}(\omega+\chi) \tag{1.6}
\end{equation*}
$$

for any $\chi, \chi^{\prime} \in X$ and $\omega \in \bar{X}$. A coboundary $b_{\chi}(\omega)$ is defined as $\varphi(\omega+\chi) / \varphi(\omega)$ for a certain $\varphi \in R^{\times}(\bar{X})$. The quotient space of the space $Z^{1}\left(X, R^{\times}(\bar{X})\right)$ of all cocycles with respect to the space $B^{1}\left(X, R^{\times}(\bar{X})\right)$ of all coboundaries defines the first cohomology group of $X$ with values in $R^{\times}(\bar{X})$ :

$$
\begin{equation*}
H^{1}\left(X, R^{\times}(\bar{X})\right) \simeq Z^{1}\left(X, R^{\times}(\bar{X})\right) / B^{1}\left(X, R^{\times}(\bar{X})\right) . \tag{1.7}
\end{equation*}
$$

$H^{1}\left(X, R^{\times}(\bar{X})\right)$ has a multiplicative group structure.
An arbitrary element $\mu \in \operatorname{Hom}(X, Z)$ can be uniquely extended to $\bar{\mu} \in$ $\operatorname{Hom}_{\boldsymbol{X}}\left(\bar{X}, \boldsymbol{C} /\left(\boldsymbol{Z}(2 \pi \sqrt{-1} \tau)^{-1}\right)\right)$ and to $q^{\mu} \in \operatorname{Hom}\left(\bar{X}, C^{*}\right)$ by

$$
\begin{equation*}
\bar{\mu}\left(\sum_{j=1}^{n} \omega_{j} \chi_{j}\right)=\sum_{j=1}^{n} \omega_{j} \mu\left(\chi_{j}\right), \quad \omega_{j} \in \boldsymbol{C} . \tag{1.8}
\end{equation*}
$$

Then the following important result holds.
Proposition 1. $H^{1}\left(X, R^{\times}(\bar{X})\right)$ is represented by cocycles of the following form:

$$
\begin{equation*}
b_{x}(\omega)=a_{\chi} \prod_{v=0}^{\mu_{0}(x)-1} q^{\bar{\mu}_{0}(\omega)+v} \cdot \prod_{i=1}^{k}\left\{\left(q^{\gamma_{i}+\bar{\mu}_{i}(\omega)}\right)_{\mu_{i}(x)}\right\}^{ \pm 1} \tag{1.9}
\end{equation*}
$$

for $\mu_{0}, \mu_{i} \in \operatorname{Hom}(X, \boldsymbol{Z})$ and $\gamma_{i} \in \boldsymbol{C}$. Here $\left(a_{\chi}\right)_{x \in X}$ denotes an element of $\operatorname{Hom}\left(X, C^{*}\right) .(a)_{n}$ means $\prod_{j=0}^{n-1}\left(1-a q^{j}\right)$ or $\prod_{j=1}^{-n}\left(1-a q^{-j}\right)^{-1}$ according as $n \geq 0$ or $n<0$. The expression (1.9) is not unique.

This result is a $q$-analogue of a result of $\mathbf{M}$. Sato which was proved as early as in 1970. He called the functions $b_{\chi}(\omega)$ " $b$-functions" and made use of them for the theory of prehomogeneous spaces and classical hypergeometric functions of Mellin-Ore type (see [S1], [S2] and also the classical papers [B] and [O2]).

The proof can be carried out in a way completely parallel to his. (See [S2] for the English version recently elaborated by M. Muro from Sato-Shintani's original [S1].)

We denote by $\Theta(t)$ the theta function on $C^{*}$ defined as the triple product $\Theta(t)=(t)_{\infty}(q / t)_{\infty}(q)_{\infty}$ where $(t)_{\infty}=\prod_{n=0}^{\infty}\left(1-t q^{n}\right)$. This is a meromorphic function on $C^{*}$.

Definition 1. A function $\varphi$ on $\bar{X}$ is said to be quasi-meromorphic if there exist $\rho_{1}, \cdots, \rho_{n} \in \boldsymbol{C}$ such that $\varphi x_{1}^{-\rho_{1}} \cdots x_{n}^{-\rho_{n}}$ is meromorphic on $q^{\bar{X}}$.

Since

$$
\begin{gather*}
Q_{j} q^{\alpha_{1} \omega_{1}+\cdots+\alpha_{n} \omega_{n}}=q^{\alpha_{j}} q^{\alpha_{1} \omega_{1}+\cdots+\alpha_{n} \omega_{n}},  \tag{1.10}\\
Q_{j}\left(q^{\bar{\mu}_{i}(\omega)+\beta_{i}}\right)_{\infty} /\left(q^{\bar{\mu}_{i}(\omega)+\beta_{i}}\right)_{\infty}=\left(1-q^{\bar{\mu}_{i}(\omega)+\beta_{i}}\right)_{\mu_{i}\left(x_{j}\right)}^{-1},  \tag{1.11}\\
Q_{j}\left(\Theta\left(q^{\mu_{0}(\omega)+\beta_{0}}\right)\right)=(-1)^{\mu_{0}\left(x_{j}\right)} q^{-\mu_{0}\left(x_{j}\right)\left(\mu_{0}(\omega)+\beta_{0}\right)} q^{-\mu_{0}\left(x_{j}\right)\left(\mu_{0}\left(x_{j}\right)-1\right) / 2} \cdot \Theta\left(q^{\mu_{0}(\omega)+\beta_{0}}\right), \tag{1.12}
\end{gather*}
$$

for $\alpha_{1}, \cdots, \alpha_{n}, \beta_{0}, \beta_{1}, \cdots, \beta_{n} \in \boldsymbol{C}$, we can solve the functional equation

$$
\begin{equation*}
\Phi(\omega+\chi)=b_{\chi}(\omega) \Phi(\omega) \tag{1.13}
\end{equation*}
$$

in the space of quasi-meromorphic functions on $\bar{X}$ :
Proposition 2. There exists a quasi-meromorphic function $\Phi(\omega)$ satisfying (1.13). The quotient $\Phi_{1}(\omega) / \Phi_{2}(\omega)$ of any two solutions $\Phi_{1}(\omega)$ and $\Phi_{2}(\omega)$ of (1.13) is doubly periodic on $q^{\bar{X}}$ and hence meromorphic on $E_{n}$.
$\Phi(\omega)$ has an expression as follows:

$$
\begin{equation*}
x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \frac{\prod_{i=1}^{k^{\prime}}\left(v_{i}^{\prime} x^{\alpha_{i}^{\prime}}\right)_{\infty}}{\prod_{i=1}^{k}\left(v_{i} x^{\mu_{i}}\right)_{\infty}} \tag{1.14}
\end{equation*}
$$

for some $\alpha_{j} \in \boldsymbol{C}, v_{i}, v_{i}^{\prime} \in C^{*}$ and $\mu_{i}, \mu_{i}^{\prime} \in \operatorname{Hom}(X, \boldsymbol{Z})$, where $x^{\mu_{i}}$ and $x^{\mu_{i}^{\prime}}$ denote $q^{\bar{\mu}_{i}(\omega)}$ and $q^{\bar{u}_{i}^{\prime}(\omega)}$, respectively.

Definition 2. A function $b_{\chi}(\omega)$ is called a $b$-function while a function $\Phi(\omega)$ of type (1.14) is called a $q$-multiplicative function.
2. $u_{j}$ will denote $q^{\alpha_{j}}$. For a function of $u_{j}, v_{i}$ and $v_{i}^{\prime}$ we denote by $\widetilde{Q}_{j}^{ \pm 1}, \widetilde{Q}_{v_{i}}^{ \pm 1}$ and $\tilde{Q}_{v_{i}^{\prime}}^{ \pm 1}$ the $q$-difference operators corresponding to the displacements $u_{j} \mapsto u_{j} q^{ \pm 1}$, $v_{i} \mapsto v_{i} q^{ \pm 1}$ and $v_{i}^{\prime} \mapsto v_{i}^{\prime} q^{ \pm 1}$, respectively. Then we have

$$
\begin{equation*}
\tilde{Q}_{j}^{ \pm v} \Phi=x_{j}^{ \pm v} \Phi, \quad \tilde{Q}_{v_{i}}^{ \pm v} \Phi=\left(v_{i} x^{\mu_{i}}\right)_{v}^{ \pm 1} \Phi, \quad \widetilde{Q}_{v_{i}}^{ \pm v} \Phi=\left(v_{i}^{\prime} x^{\mu_{i}^{\prime}}\right)_{v}^{\mp 1} \tag{2.1}
\end{equation*}
$$

respectively. Consider the operator algebra $\mathscr{A}$ over $C$ generated by $\widetilde{Q}_{j}^{ \pm 1}, \widetilde{Q}_{v_{i}}^{ \pm 1}$ and $\tilde{Q}_{v_{i}}^{ \pm 1}$ for all $i, j . \mathscr{A}$ acts on $R(\bar{X})$. We denote by $V$ the subspace of $R(\bar{X})$ spanned by $(\kappa \cdot \Phi) / \Phi$ for all $\kappa \in \mathscr{A}$. Then $\Phi \cdot V$ is the smallest $\mathscr{A}$-module in $\Phi \cdot R(\bar{X})$ containing $\Phi$.

For an arbitrary point $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right)$ of $q^{\bar{X}}$ the $X$-orbit $X \cdot \xi$

$$
\begin{equation*}
X \cdot \xi=\left\{\left(q^{v_{1}} \xi_{1}, \cdots, q^{v_{n}} \xi_{n}\right) \mid v_{1}, \cdots, v_{n} \in \boldsymbol{Z}\right\} \tag{2.2}
\end{equation*}
$$

will be denoted by $[0, \xi \infty]_{q}$ and called an $n$-dimensional " $q$-cycle". This terminology may be justified by the following.

Definition 3. The Jackson integral of a function on $q^{\bar{X}}$ over the $q$-cycle $[0, \xi \infty]_{q}$

$$
\begin{equation*}
\tilde{f}=\int_{[0, \xi \infty]_{q}} f\left(x_{1}, \cdots, x_{n}\right) \cdot \Omega \tag{2.3}
\end{equation*}
$$

for $\Omega=\left(d_{q} x_{1} / x_{1}\right) \wedge \cdots \wedge\left(d_{q} x_{n} / x_{n}\right)$ is defined to be the sum

$$
\begin{equation*}
(1-q)^{n} \sum_{-\infty<v_{1}, \cdots, v_{n}<\infty} f\left(q^{v_{1}} \xi_{1}, \cdots, q^{v_{n}} \xi_{n}\right) \tag{2.4}
\end{equation*}
$$

if it exists.
It is obvious that

$$
\begin{equation*}
\int_{\left[0, \xi_{\infty}\right]_{q}} Q_{j} f \cdot \Omega=\int_{\left[0, \xi_{\infty}\right]_{q}} f \cdot \Omega, \tag{2.5}
\end{equation*}
$$

for each $j$, and hence

$$
\begin{equation*}
\int_{\left[0, \xi_{\infty}\right]_{q}} Q^{x} f \cdot \Omega=\int_{\left[0, \xi_{\infty}\right]_{q}} f \cdot \Omega, \tag{2.6}
\end{equation*}
$$

for $Q^{\chi}=Q_{1}^{\nu_{1}} \cdots Q_{n}^{v_{n}}$.
We are particularly interested in the Jackson integral for $\Phi$ :

$$
\begin{equation*}
\tilde{\Phi}=\int_{[0, \xi \propto]_{q}} \Phi \cdot \Omega \tag{2.7}
\end{equation*}
$$

which depends analytically on $\alpha_{j}, v_{i}, v_{i}^{\prime}$ and $\xi$.
If $\Phi$ has a pole at a point of $[0, \xi \infty]_{q}$ then (2.7) does not make sense. In this case the $q$-cycle $[0, \xi \infty]_{q}$ should be regularized as follows.

First we note:
Lemma 2.1. For each i, the function

$$
\begin{equation*}
U_{i}(\omega)=q^{\mu_{i}(\omega)^{2} / 2} x_{1}^{\rho_{1}} \cdots x_{n}^{\rho_{n}} \Theta\left(v_{i} x^{\mu_{i}}\right) \tag{2.8}
\end{equation*}
$$

is invariant under the displacements $Q_{1}, \cdots, Q_{n}$, where $q^{\rho_{j}}$ denotes $(-1)^{\mu_{i}\left(x_{j}\right)} \cdot v_{i}^{\mu_{i}\left(\chi_{j}\right)}$. $q^{-\mu_{i}\left(\chi_{j}\right) / 2}$.

Proof. This follows from (1.12) and the formula $q^{\mu_{i}\left(\omega+x_{j}\right)^{2} / 2}=q^{\mu_{i}(\omega)^{2} / 2+\mu_{i}\left(x_{j}\right) \mu_{i}(\omega)+\mu_{i}\left(x_{j}\right)^{2} / 2}$.
Suppose a factor $\left(v_{i} \mu^{\mu_{i}}\right)_{\infty}$ of the denominator vanishes at a point of $[0, \xi \infty]_{q}$ so that $\Phi$ has a pole at a point of $[0, \xi \infty]_{q}$. Since $\Theta\left(v_{i} x^{\mu_{i}}\right)=\left(v_{i} x^{\mu_{i}}\right)_{\infty}\left(q v_{i}^{-1} x^{-\mu_{i}}\right)_{\infty}(q)_{\infty}, \Phi U_{i}(x)$ no longer has the factor $\left(v_{i} x^{\mu_{i}}\right)_{\infty}$ in the denominator. Moreover it satisfies the same system of difference equations (1.13) as $\Phi$. In this way, the integral $\tilde{\Phi}$ may be replaced by $\Phi \tilde{U}_{i}$ so that the zeros of $\left(v_{i} x^{\mu_{i}}\right)_{\infty}$ are avoided.

This regularization is equivalent to taking the residues of $\Phi$ at each pole lying in $[0, \xi \infty]_{q}$. We call this procedure the regularization of integration and the corresponding cycle the regularized cycle of $[0, \xi \infty]_{q}$ which will be denoted by reg $[0, \xi \infty]_{q}$.

By substitution of integration $x_{j} \mapsto x_{j} q(1 \leq j \leq n)$ and by (2.5), we have a formal system of $q$-difference equations:

$$
\begin{equation*}
\prod_{i=1}^{k}\left(v_{i}^{\prime} \widetilde{Q}_{1}^{\mu_{i}^{\prime}\left(x_{1}\right)} \cdots \tilde{Q}_{n}^{\mu_{i}^{\prime}\left(X_{n}\right)}\right)_{\mu_{i}^{\prime}\left(x_{j}\right)} \tilde{\Phi}=\prod_{i=1}^{k}\left(v_{i} \tilde{Q}_{1}^{\mu_{i}\left(x_{1}\right)} \cdots \tilde{Q}_{n}^{\mu_{i}\left(x_{n}\right)}\right)_{\mu_{i}\left(x_{j}\right)} u_{j}^{-1} \tilde{\Phi} \tag{2.9}
\end{equation*}
$$

for each $j, 1 \leq j \leq n$ and

$$
\begin{gather*}
\tilde{Q}_{v_{i}}^{ \pm 1} \tilde{\Phi}=\left(1-v_{i} \tilde{Q}_{1}^{\mu_{i}\left(x_{1}\right)} \cdots \tilde{Q}_{n}^{\mu_{i}\left(x_{n}\right)}\right)^{ \pm 1} \tilde{\Phi}  \tag{2.10}\\
\tilde{Q}_{v_{i}^{\prime}}^{ \pm 1} \tilde{\Phi}=\left(1-v_{i}^{\prime} \tilde{Q}_{1}^{\mu_{i}^{\prime}\left(x_{1}\right)} \cdots \tilde{Q}_{n}^{\mu_{i}^{i}\left(x_{n}\right)}\right)^{\mp 1} \tilde{\Phi} \tag{2.11}
\end{gather*}
$$

One may naturally ask the following questions:
Question 1. Do (2.9)-(2.11) really define a holonomic $q$-difference system in the variables $u_{j}, v_{j}$ and $v_{j}^{\prime}$ in the sense of [A4]? Namely, do there exist a finite number of elements $\kappa_{1}, \cdots, \kappa_{m}$ of $\mathscr{A}$ such that $\mathscr{A} \cdot \tilde{\Phi}$ is contained in the linear space spanned by $\kappa_{1} \tilde{\Phi}, \cdots, \kappa_{m} \tilde{\Phi}$ over $R(\bar{X})$ ? Or equivalently, does there exist $f_{1}, \cdots, f_{m} \in R(\bar{X})$ such that

$$
\begin{equation*}
\kappa \tilde{\Phi}=\sum_{j=1}^{m} f_{j} \kappa_{j} \tilde{\Phi} \tag{2.12}
\end{equation*}
$$

for every $\kappa \in \mathscr{A}$ ? If this is the case, then what is the rank of the system (2.9)-(2.11), which is defined to be the minimal number among such $m$ ?

For $f=\Phi \cdot \varphi, \varphi \in V$, we have:

$$
\begin{equation*}
\int_{[0, \xi \infty]_{q}} \Phi(\omega) \varphi(\omega) \cdot \Omega=\int_{\left[0, \xi_{\infty}\right]_{q}} \Phi(\omega) \cdot b_{\chi}(\omega) \cdot Q^{\chi} \varphi(\omega) \cdot \Omega \tag{2.13}
\end{equation*}
$$

because $\Omega$ is invariant under the operation $Q^{x}$, i.e.,

$$
\begin{equation*}
\int_{\left[0, \xi_{\infty}\right]_{q}} \Phi(\omega)\left(\varphi(\omega)-b_{\chi}(\omega) \cdot Q^{\chi} \varphi(\omega)\right) \cdot \Omega=0 \tag{2.14}
\end{equation*}
$$

This suggests us to consider the residual space

$$
\begin{equation*}
V /\left\{\sum_{x \in X}\left(1-b_{x}(\omega) Q^{x}\right) V\right\} \simeq V /\left\{\sum_{j=1}^{n}\left(1-b_{x_{j}}(\omega) Q_{j}\right) V\right\} \tag{2.15}
\end{equation*}
$$

This can be regarded as a $q$-analogue of the twisted de Rham cohomology group (see [A3]). We shall denote it by $H_{\Phi}\left(V, d_{q}\right)$ and call it "the $q$-twisted cohomology group" associated with $\Phi$.

Question 2. Is $H_{\Phi}\left(V, d_{q}\right)$ finite dimensional? If so, how can its dimension be determined? How can one find out a basis of $H_{\Phi}\left(V, d_{q}\right)$ ?

QUestion 3. What is the dual space of $H_{\Phi}\left(V, d_{q}\right)$ ? Is it represented by special kinds of $q$-cycles? By what kind of $q$-cycles?

Question 4. Find out asymptotic solutions for $\tilde{\Phi}$ for $\alpha_{j} \rightarrow \pm \infty$ and $v_{i}, v_{i}^{\prime} \rightarrow \pm \infty$. Classify all different kinds of asymptotics for $\tilde{\Phi}$.

We do not have any complete answer to these questions. We shall only give a few examples in the next four sections.
3. $n=1, q$-analogue of Jordan-Pochhammer case. A multiplicative function $\Phi$ can be written as

$$
\begin{equation*}
\Phi=t^{\alpha} \prod_{j=1}^{m} \frac{\left(t / x_{j}\right)_{\infty}}{\left(t q^{\beta_{j}} / x_{j}\right)_{\infty}} \tag{3.1}
\end{equation*}
$$

for $u=q^{\alpha}, q^{\beta_{j}}$ and $x_{j} \in C^{*}$. The integral over a suitable $q$-cycle

$$
\begin{equation*}
\tilde{\Phi}=\int \Phi \frac{d_{q} t}{t} \tag{3.2}
\end{equation*}
$$

is a $q$-analogue of Jordan-Pochhammer integral. We put $\widetilde{Q}_{u}=\tilde{Q}$ and $\tilde{Q}_{x_{j}}=\widetilde{Q}_{j}$. Then the system (2.9)-(2.11) becomes

$$
\begin{gather*}
\prod_{j=1}^{m}\left(1-\frac{q^{\beta_{j}}}{x_{j}} \tilde{Q}\right) \tilde{\Phi}=\prod_{j=1}^{m}\left(1-\frac{1}{x_{j}} \tilde{Q}\right) u^{-1} \tilde{\Phi},  \tag{3.3}\\
\tilde{Q} \tilde{\Phi}=\frac{1-\frac{1}{q x_{j}} \tilde{Q}}{1-\frac{q^{\beta_{j}-1}}{x_{j}} \tilde{Q}} \tilde{Q}, \quad \tilde{Q}_{j}^{-1} \tilde{\Phi}=\frac{1-\frac{q^{\beta_{j}}}{x_{j}} \tilde{Q}}{1-\frac{1}{x_{j}} \tilde{Q}} \tilde{\Phi},  \tag{3.4}\\
\tilde{Q}_{\beta_{j}} \tilde{\Phi}=\left(1-\frac{q^{\beta_{j}}}{x_{j}} \tilde{Q}\right) \tilde{\Phi}, \quad \tilde{Q}_{\beta_{j}}^{-1} \Phi=\left(1-\frac{q^{\beta_{j}-1}}{x_{j}} \tilde{Q}\right)^{-1} \tilde{\Phi} . \tag{3.5}
\end{gather*}
$$

$H_{\Phi}\left(V, d_{q}\right)$ is spanned by a basis consisting of $\varphi_{j}=\left(1-t / x_{j}\right)^{-1}$ for $1 \leq j \leq m$. Hence $\operatorname{dim} H_{\Phi}\left(V, d_{q}\right)=m$. We denote by $\langle\varphi\rangle$ the integral of $\Phi \varphi$ and put $\langle\Phi\rangle=\tilde{\Phi}$. Then we have

$$
\begin{align*}
& \tilde{Q}^{ \pm 1}\left(\left\langle\varphi_{1}\right\rangle, \cdots,\left\langle\varphi_{m}\right\rangle\right)=\left(\left\langle\varphi_{1}\right\rangle, \cdots,\left\langle\varphi_{m}\right\rangle\right) A_{ \pm}  \tag{3.6}\\
& \tilde{Q}_{j}^{ \pm 1}\left(\left\langle\varphi_{1}\right\rangle, \cdots,\left\langle\varphi_{m}\right\rangle\right)=\left(\left\langle\varphi_{1}\right\rangle, \cdots,\left\langle\varphi_{m}\right\rangle\right) A_{ \pm j}  \tag{3.7}\\
& \tilde{Q}_{\beta_{j}}^{ \pm 1}\left(\left\langle\varphi_{1}\right\rangle, \cdots,\left\langle\varphi_{m}\right\rangle\right)=\left(\left\langle\varphi_{1}\right\rangle, \cdots,\left\langle\varphi_{m}\right\rangle\right) A_{ \pm \beta_{j}} \tag{3.8}
\end{align*}
$$

respectively, where $A_{ \pm}=\left(\left(a_{ \pm ; k, l}\right)\right), A_{ \pm j}=\left(\left(a_{ \pm j ; k, l}\right)\right), A_{ \pm \beta_{j}}=\left(\left(a_{ \pm \beta_{j} ; k, l}\right)\right)$ denote matrices whose entries are rational functions in $u_{j}, x_{j}$ and $q^{\beta_{j}}$. More explicitly:

Proposition 3. Suppose $x_{i} / x_{j}$ and $x_{i} q^{\beta_{j}} / x_{j}$ are different from $1, q^{ \pm 1}, q^{ \pm 2}, \cdots$ for each pair $i, j$ such that $i \neq j$. Then
(i)

$$
a_{\beta_{r} ; i, j}=\frac{x_{j}}{x_{r}} q^{\beta_{r}} f_{i}(x)+\delta_{i, j}\left(1-\frac{x_{j}}{x_{r}} q^{\beta_{r}}\right),
$$

(ii)
(iii)

$$
\begin{aligned}
& a_{+; i, j}=-x_{j} f_{i}(x)+x_{j} \delta_{i, j} \\
& a_{r ; i, j}=q^{\alpha} \frac{\left(1-q^{\beta_{r}}\right) \prod_{1 \leq l \leq m}^{1 \neq r} \mid}{}\left(1-\frac{x_{i}}{x_{l}} q^{\beta_{l}}\right) \\
& \left(q \frac{x_{r}}{x_{j}}-q^{\beta_{r}}\right)_{\substack{1 \leq l \leq m \\
l \neq i}}\left(1-\frac{x_{i}}{x_{l}}\right)
\end{aligned} \delta_{i, j} \frac{1-\frac{x_{i}}{q x_{r}}}{1-\frac{x_{i}}{x_{r}} q^{\beta_{r}-1}}, \quad(r \neq j), \quad \begin{aligned}
& \prod_{\substack{1 \leq l \leq m}}\left(1-\frac{x_{i}}{x_{l}} q^{\beta_{l}}\right) \\
& =q^{\alpha} \frac{\prod_{1 \neq r}^{1 \leq l \leq m} l}{l \neq i}\left(1-\frac{x_{i}}{x_{l}}\right)
\end{aligned} \quad(j=r),
$$

where $f_{i}(x)$ denotes the rational function

$$
\begin{equation*}
f_{i}(x)=\frac{q^{\alpha}\left(1-q^{\beta_{i}}\right)}{1-q^{\alpha+\beta_{1}+\cdots+\beta_{m}}} \prod_{\substack{\leq l \leq m \\ l \neq i}} \frac{\left(1-q^{\beta_{l}} \frac{x_{i}}{x_{l}}\right)}{\left(1-\frac{x_{i}}{x_{l}}\right)} \tag{3.9}
\end{equation*}
$$

Hence for any $\varphi \in V$ the integral $\langle\varphi\rangle$ is a linear combination of $\left\langle\varphi_{1}\right\rangle, \cdots,\left\langle\varphi_{m}\right\rangle$ over the rational function fields in $u, q^{\beta_{j}}, x_{j}$. In particular

$$
\begin{equation*}
\tilde{\Phi}=\sum_{i=1}^{m} f_{i}(x)\left\langle\varphi_{i}\right\rangle \tag{3.10}
\end{equation*}
$$

By substitution $t=x_{j} q$ in (3.2), the integral of $\Phi$ over $\left[0, x_{j} \infty\right]_{q}$ gives the asymptotic of $\tilde{\Phi}$ for $u \rightarrow 0(\alpha \rightarrow+\infty)$ :

$$
\begin{equation*}
\tilde{\Phi} \sim(1-q)\left(q x_{j}\right)^{\alpha} \prod_{k=1}^{m} \frac{\left(q x_{j} / x_{k}\right)_{\infty}}{\left(q^{\beta_{k}+1} x_{j} / x_{k}\right)_{\infty}} \tag{3.11}
\end{equation*}
$$

since in this case the sum (2.3) runs over only the set $\left[0, x_{j}\right]_{q}=\left\{x_{j} q^{\nu} ; v=1,2,3, \cdots\right\}$. There exist exactly $n$ such asymptotics which correspond to $m$ linearly independent solutions of (3.3). Mimachi [M2] has solved the connection problem attached to these asymptotics.
4. Basic Lemmas and Main Theorem. From now on, we take as $\Phi$ the following function which is attached to the arrangement of A-type root system (see [A6] for polynomial versions):

$$
\begin{equation*}
\Phi=t_{1}^{\alpha_{1}} \cdots t_{n}^{\alpha_{n}} \prod_{0 \leq i \leq j \leq n} \frac{\left(q^{\beta_{i, j}^{\prime},} \frac{t_{j}}{t_{i}}\right)_{\infty}}{\left(q^{\beta_{i, j}} \frac{t_{j}}{t_{i}}\right)_{\infty}}, \tag{4.1}
\end{equation*}
$$

where we let $t_{0}=1$. We consider the integral

$$
\begin{equation*}
\tilde{\Phi}=\int \Phi \frac{d_{q} t_{1}}{t_{1}} \wedge \cdots \wedge \frac{d_{q} t_{n}}{t_{n}} \tag{4.2}
\end{equation*}
$$

over a suitable $q$-cycle. It is a function depending on $u_{j}=q^{\alpha_{j}}, \beta_{i, j}, \beta_{i, j}^{\prime}$.
Because of symmetry it is convenient to put $\beta_{j, i}^{\prime}=1-\beta_{i, j}$ and $\beta_{j, i}=1-\beta_{i, j}^{\prime}$. We may put $\beta_{0, j}^{\prime}=0$.

Many authors have investigated basic hypergeometric functions as generalizations of Heine's hypergeometric function. Except in one variable case, these seem to be included in the set of functions $\tilde{\Phi}$ of type (4.2) provided that they are not confluent. In fact, $\tilde{\Phi}$ is an extension of classical Barnes type integrals found, for example, in [S3] and [G1]. The Milne's hypergeometric functions (see [M1]) are similar to our $\tilde{\Phi}$, although they have additional parameters. For the case $q=1$, see also [G2] and [G3], which study Barnes integrals from the view point of Grassmannian geometry. It is not certain whether our approach is connected with Grassmannian geometry or not.

Assume the following conditions:
( $\mathscr{H}-1)$ For arbitrary arguments $i_{0}, i_{1}, \cdots, i_{r}, 0 \leq i_{v} \leq n$, which are different from each other,

$$
\begin{gather*}
\beta_{i_{0}, i_{1}}+\beta_{i_{1}, i_{2}}+\cdots+\beta_{i_{r}, i_{0}} \notin \boldsymbol{Z},  \tag{4.3}\\
\alpha_{i_{0}}+\alpha_{i_{1}}+\cdots+\alpha_{i_{r}} \notin \boldsymbol{Z} . \tag{4.4}
\end{gather*}
$$

( $\mathscr{H}-2) \quad \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ are all sufficiently large numbers.
( $\mathscr{H}-3)$ For an arbitrary partition $\{0,1, \cdots, n\}=S_{1}+S_{2}$ such that $0 \in V\left(S_{1}\right)$,

$$
\begin{equation*}
\sum_{j \in V\left(S_{2}\right)} \alpha_{j}+\sum_{i \in V\left(S_{1}\right), j \in V\left(S_{2}\right)}\left(\beta_{i, j}-\beta_{i, j}^{\prime}\right) \notin Z . \tag{4.5}
\end{equation*}
$$

We denote by $\widetilde{Q}_{j}^{ \pm 1}$ the operations $u_{j} \mapsto u_{j} q^{ \pm 1}$ for functions of $u=\left(u_{1}, \cdots, u_{n}\right)=$ $q^{\alpha_{1}}, \cdots, q^{\alpha_{n}}$ ) by the displacements of the $j$-th coordinate $u_{j}$. Then the $q$-difference equations for $\tilde{\Phi}$ in the variables $u$ are given by

$$
\begin{gather*}
\prod_{\substack{j=1 \\
j \neq r}}^{n}\left(\tilde{Q}_{j}-q^{\beta_{i, j}^{\prime}} \widetilde{Q}_{r}\right) u_{r}^{-1} \tilde{\Phi}=\prod_{\substack{j=1 \\
j \neq r}}^{n}\left(\tilde{Q}_{j}-q^{\beta_{j, r}} \tilde{Q}_{r}\right) \tilde{\Phi} .  \tag{4.6}\\
\tilde{Q}_{\beta_{i, j}^{\prime}} \tilde{\Phi}=\left(\tilde{Q}_{i}-q^{\beta_{i, j}^{\prime}} \widetilde{Q}_{j}\right)^{-1} \widetilde{Q}_{i} \tilde{\Phi}, \tag{4.7}
\end{gather*}
$$

$$
\begin{gather*}
\tilde{Q}_{\beta_{i, j}^{\prime}}^{-1} \tilde{\Phi}=\left(\widetilde{Q}_{i}-q^{\beta_{i, j}^{\prime}-1} \tilde{Q}_{j}\right) \tilde{Q}_{i}^{-1} \tilde{\Phi}  \tag{4.8}\\
\widetilde{Q}_{\beta_{i, j}} \tilde{\Phi}=\left(\widetilde{Q}_{i}-q^{\beta_{i, j}} \widetilde{Q}_{j}\right) \tilde{Q}_{i}^{-1} \tilde{\Phi}  \tag{4.9}\\
\tilde{Q}_{\beta_{i, j}}^{-1} \tilde{\Phi}=\left(\widetilde{Q}_{i}-q^{\beta_{i, j}-1} \widetilde{Q}_{j}\right)^{-1} \widetilde{Q}_{i} \tilde{\Phi} \tag{4.10}
\end{gather*}
$$

where $Q_{\beta_{i, j}}^{ \pm 1}, Q_{\beta_{i, j}}^{ \pm}$and $\tilde{Q}_{\beta_{i, j}}^{ \pm 1}, \tilde{Q}_{\beta_{i, j}, 1}^{ \pm 1}$ are the operations on $V$ and $\tilde{\Phi} \cdot V$ respectively induced by the displacements $\beta_{i, j} \rightarrow \beta_{i, j} \pm 1$ and $\beta_{i, j}^{\prime} \rightarrow \beta_{i, j}^{\prime} \pm 1$. Note that

$$
\begin{align*}
& \tilde{Q}_{\beta_{i, j}}^{ \pm 1}\langle\varphi\rangle=\left\langle W_{i, j}^{( \pm)} Q_{\beta_{i, j}}^{ \pm 1} \varphi\right\rangle  \tag{4.11}\\
& \tilde{Q}_{\beta_{i, j}^{\prime}}^{ \pm 1}\langle\varphi\rangle=\left\langle W_{i, j}^{\prime( \pm)} Q_{\beta_{i, j}^{\prime}}^{ \pm 1} \varphi\right\rangle \tag{4.12}
\end{align*}
$$

for $W_{i, j}^{( \pm)}=\left(Q_{\beta_{i, j}}^{ \pm 1} \Phi\right) / \Phi$ and $W_{i, j}^{( \pm)}=\left(Q_{\beta_{i, j}}^{ \pm 1} \Phi\right) / \Phi$, respectively.
$W_{i, j}^{( \pm)} Q_{\beta_{i, j}}^{ \pm 1}$ and $W_{i, j}^{\prime( \pm)} \tilde{Q}_{\beta_{i, j}}^{ \pm 1}$ are nothing but a $q$-analogue of the covariant differentiations.

Our main result states that this system of $q$-difference equations is actually holonomic and has rank $(n+1)^{n-1}$. This can be shown by the aid of some results in elementary graph theory. Before stating our Theorem, we need a few preliminary lemmas.

We denote linear functions of $t_{0}=1, t_{1}, \cdots, t_{n}, t_{i}-q^{\beta_{i}^{\prime}, j} t_{j}$, and $t_{i}-q^{\beta_{i, j}} t_{j}$ by $(i, j)_{+}$ and $(i, j)_{\text {_ }}$ respectively. A rational function $\varphi=\left(i_{1}, j_{1}\right)_{\varepsilon_{1}}^{-1} \cdots\left(i_{r}, j_{r}\right)_{\varepsilon_{r}}^{-1}$ for each $\varepsilon_{v}= \pm 1$ defines a graph $G=G_{\varphi}$ with directed edges $\overline{i_{v}, j_{v}}$ and the set of vertices $\left\{i_{1}, j_{1}, \cdots, i_{r}, j_{r}\right\}$. The edge $\overline{i_{v}}, j_{v}$ is directed from $i_{v}$ to $j_{v}$, i.e., $i_{v} \rightarrow j_{v}$ or from $j_{v}$ to $i_{v}$, i.e., $j_{v} \rightarrow i_{v}$ according as $\varepsilon_{v}=+1$ or -1 . We denote by $\Delta_{G}=\prod_{v=1}^{r}\left(i_{v}, j_{v}\right)_{\varepsilon_{v}}$, the product of all factors $\left(i_{1}, j_{1}\right)_{\varepsilon_{1}}, \cdots,\left(i_{r}, j_{r}\right)_{\varepsilon_{r}}$. For an oriented graph $\Gamma$ we denote by $V(\Gamma)$ and $E(\Gamma)$ the sets of vertices and edges of $\Gamma$, respectively. To each edge $e$ of $E(\Gamma)$ there corresponds a unique linear function $(e)=(i, j)_{\varepsilon}$ for $\varepsilon=-1$ or 1 .

Definition 4. $\quad \Gamma$ is said to be a spanning graph if $V(\Gamma)$ contains all the vertices $\{0,1, \cdots, n\}$. A forest is a graph without any circuit. A spanning forest $F$ is admissible if and only if the number of edges $|E(F)|$ equals $n$, i.e., $F$ is a tree. A spanning forest $F$ is said to be subadmissible if $|E(F)|=n-1$. In this case $F$ is a semi-tree, i.e., a disjoint union $F=F_{1}+F_{2}$ of only two trees $F_{1}$ and $F_{2}$ such that $V\left(F_{1}\right)$ contains the root 0 and $V\left(F_{2}\right)$ is disjoint from $\{0\}$ (see [T]).

We denote by $\mathscr{F}_{1}$ and $\mathscr{F}_{2}$ the set of all admissible trees and that of all admissible semi-trees, respectively. The evaluation of $(e)$ for $e \in E(\Gamma)$ at some point $t \in q^{\bar{X}}$ will be denoted by $\langle(e), t\rangle$. When $\Gamma$ is a tree such that $0 \in V(\Gamma)$, we denote by $p(j)$ the predecessor of a vertex $j$ of $\Gamma$, i.e., the vertex of $\Gamma$ lying in the path connecting 0 and $j$ such that $\operatorname{dis}(\{p(j)\},\{0\})=\operatorname{dis}(\{j\},\{0\})-1$, where dis means the distance between two vertices in the graph $\Gamma$.

Lemma 4.1. For an arbitrary admissible tree $T$ the equations

$$
\begin{equation*}
\langle(e), t\rangle=0, \quad e \in E(T), \tag{4.13}
\end{equation*}
$$

have a unique solution.
Proof. Indeed $t_{j}$ can be uniquely solved by induction on $\operatorname{dis}(\{0\},\{j\})$. If $j=0$, then $t_{j}=t_{0}=1$. Suppose that $\operatorname{dis}(\{0\},\{j\})=N$ and that all $t_{k}$ for $\operatorname{dis}(0, k)<N$ are already solved. Then $t_{j}$ is uniquely solved by one of the above equations $(p(j), j)_{+}=0$ or $(p(j), j)_{-}=0$.

Lemma 4.2. For an arbitrary connected spanning graph $\Gamma$ containing a circuit, we have a unique partial fraction expansion

$$
\begin{equation*}
\frac{1}{\Delta_{\Gamma}}=\sum_{e \in E(\Gamma)} \frac{1}{\Delta_{\Gamma_{e}}} \frac{1}{\langle e, \bar{t}\rangle} \tag{4.14}
\end{equation*}
$$

where $\bar{t}$ is uniquely determined by the equations $\langle(e), \bar{t}\rangle=0$ for all $e \in E\left(\Gamma_{e}\right)$. Moreover each $\Gamma_{e}$ is an admissible tree.

Proof. Indeed, since $\Gamma$ contains a circuit, the constant 1 is a linear combination of linear functions ( $e$ ) for $e \in E(\Gamma)$ :

$$
\begin{equation*}
1=\sum_{e \in E(\Gamma)} a_{e}(e), \quad \text { for } \quad a_{e} \in \boldsymbol{C} \tag{4.15}
\end{equation*}
$$

which is equivalent to (4.14) by division of both sides by $\Delta_{\Gamma}$.
Let $\hat{\Gamma}$ be an oriented graph containing $\Gamma$, i.e., such that $E(\hat{\Gamma}) \supset E(\Gamma) . \hat{\Gamma}-\Gamma$ denotes the subgraph complementary to $\Gamma$ in $\hat{\Gamma}$, i.e., such that $E(\hat{\Gamma}-\Gamma)=E(\hat{\Gamma})-E(\Gamma)$. We put $\tilde{\Delta}_{\hat{\Gamma}-\Gamma}=\prod_{e \in E(\hat{\Gamma}-\Gamma)}(\tilde{e})$, where $(\tilde{e})$ denotes the linear function $(i, j)_{-\varepsilon}$ oppsite to $(e)=(i, j)_{\varepsilon}$, $\varepsilon= \pm 1$.

Then the following first basic lemma holds.
Lemma 4.3. Suppose that $\Gamma$ is an admissible tree. Then

$$
\begin{equation*}
\frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}}=\sum_{T \subset \hat{\Gamma}} \frac{c_{T}}{\Delta_{T}} \tag{4.16}
\end{equation*}
$$

where $T$ runs through all admissible spanning trees in $\hat{\Gamma}$. Each $c_{T}$ is given by

$$
\begin{equation*}
c_{T}=\frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}\left(t_{T}\right)}{\Delta_{\hat{\Gamma}-T}\left(t_{T}\right)} \tag{4.17}
\end{equation*}
$$

where $t_{T}=\left(t_{T, j}\right)_{1 \leq j \leq n}$ denotes the unique solution of the equations (4.13).
Proof. We prove the lemma by induction on the number $N=|E(\hat{\Gamma}-\Gamma)|=|E(\hat{\Gamma})|$ $-|E(\Gamma)|$. When $N=0$, then $\hat{\Gamma}$ coincides with $\Gamma$ so there is nothing to prove. Suppose the lemma has been proved for $N \leq M-1$. We must prove it for $N=M$. There exists at least one edge $e_{0} \in E(\hat{\Gamma}-\Gamma)$. Then there exists a circuit $\mathscr{C}$ in $\hat{\Gamma}$ such that $e_{0} \in E(\mathscr{C})$ and $E\left(\mathscr{C}_{e_{0}}\right) \subset E(\Gamma)$. Then

$$
\begin{equation*}
\frac{\left(\tilde{e}_{0}\right)}{\Delta_{\mathscr{C}}}=\sum_{e \subset E(\mathscr{G})} a_{e} \frac{1}{\Delta_{\mathscr{Y}_{e}}} . \tag{4.18}
\end{equation*}
$$

A fortiori

$$
\begin{equation*}
\frac{\left(\tilde{e}_{0}\right)}{\Delta_{\Gamma}}=\sum_{e \in E(\mathscr{G})} a_{e} \frac{1}{\Delta_{\Gamma_{e}}} \tag{4.19}
\end{equation*}
$$

since $\left(\tilde{e}_{0}\right)$ is a linear combination of $e \in E(\mathscr{C})$ :

$$
\begin{equation*}
\left(\tilde{e}_{0}\right)=\sum_{e \in E(\mathbb{C})} a_{e} \cdot(e) . \tag{4.20}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{\tilde{\Delta}_{\hat{\Gamma}}-\Gamma}{\Delta_{\hat{\Gamma}}}=\frac{\tilde{\Lambda}_{\hat{\Gamma}_{e_{0}}-\Gamma} \cdot\left(\tilde{e}_{0}\right)}{\Delta_{\hat{\Gamma}}}=\sum_{e \in E(\boldsymbol{\xi})} a_{e} \frac{\tilde{\Lambda}_{\hat{e}_{e_{0}}-\Gamma}}{\Delta_{\hat{\Gamma}_{e}}} . \tag{4.21}
\end{equation*}
$$

First assume $e_{0} \neq e$, i.e., $e \in E(\Gamma)$. Since $\hat{\Gamma}_{e_{0}}-\Gamma=\hat{\Gamma}_{e}-\left(\Gamma_{e} \cup\left\{e_{0}\right\}\right)$ and $\mid E\left(\hat{\Gamma}_{e}\right)-$ $E\left(\Gamma_{e} \cup\left\{e_{0}\right\}\right)|=|E(\hat{\Gamma}-\Gamma)|-1$, by the induction hypothesis we get a partial fraction

$$
\begin{equation*}
\frac{\tilde{\Delta}_{\hat{\Gamma}_{e_{0}}-\Gamma}}{\Delta_{\hat{I}_{e}}}=\sum_{T \subset \hat{\Gamma}_{e}} a_{T}^{*} \frac{1}{\Delta_{T}} \tag{4.22}
\end{equation*}
$$

where $T$ runs through all admissible spanning trees of $\hat{\Gamma}_{e}$. On the other hand if $e=e_{0}$, then $\hat{\Gamma}_{e_{0}} \supset \Gamma$ and we have again $\left|E\left(\hat{\Gamma}_{e_{0}}-\Gamma\right)\right|=|E(\hat{\Gamma}-\Gamma)|-1$. Hence by the induction hypothesis

$$
\begin{equation*}
\frac{\tilde{\Delta}_{\hat{I}_{e_{0}}-\Gamma}}{\Delta_{\hat{\Gamma}_{e_{0}}}}=\sum_{T \subset \hat{\Gamma}_{e_{0}}} a_{T}^{*} \frac{1}{\Delta_{T}} \tag{4.23}
\end{equation*}
$$

Summing up (4.22) and (4.23), we get

$$
\begin{equation*}
\frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\Gamma}}=\sum_{e \in E(\mathcal{Y})} a_{e} \frac{\tilde{\Delta}_{\hat{\Gamma}_{e_{0}}-\Gamma}}{\Delta_{\hat{\Gamma}_{e}}}=\sum_{e \in E(\mathcal{G})} a_{e} \sum_{T \subset \hat{\Gamma}_{e}} a_{T}^{*} \frac{1}{\Delta_{T}} \tag{4.24}
\end{equation*}
$$

Any admissible spanning tree of $\hat{\Gamma}_{e}$ being also an admissible tree, we have finally the formula (4.16). The expression of (4.16) is unique. Indeed by residue calculus on both sides of (4.16), $c_{T}$ is equal to (4.17).

The second basic lemma is as follows:
Lemma 4.4. Let $\Gamma=\Gamma_{1}+\Gamma_{2}$ be a semi-tree such that $0 \in V\left(\Gamma_{1}\right)$ and 0 is disjoint from $V\left(\Gamma_{2}\right)$. Let $\hat{\Gamma}$ be an admissible graph containing $\Gamma$. Then

$$
\begin{equation*}
\frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}}=\sum_{T \in \mathscr{F}_{1}} \frac{a_{T}}{\Delta_{T}}+\sum_{F \in \mathscr{F}_{2}, F_{1} \subset \Gamma_{1}} \frac{b_{F}}{\Delta_{F}} \tag{4.25}
\end{equation*}
$$

for

$$
\begin{equation*}
a_{T}=\frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}\left(t_{T}\right)}{\Delta_{\hat{\Gamma}-T}\left(t_{T}\right)} \text { and } \quad b_{F}=\lim _{\lambda \rightarrow \infty} \frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}\left(t_{F}(\lambda)\right)}{\Delta_{\hat{\Gamma}-F}\left(t_{F}(\lambda)\right)}, \tag{4.26}
\end{equation*}
$$

where $F=F_{1}+F_{2}$ such that $0 \in V\left(F_{1}\right)$ and where $t_{F}(\lambda)$ denotes a non-zero solution of the equations

$$
\begin{equation*}
\langle(e), t\rangle=0 \quad \text { for any } \quad e \in E(F) . \tag{4.27}
\end{equation*}
$$

This solution is not unique and can be written as $t=t_{F}(\lambda)=t_{F}^{(0)}+\lambda t_{F}^{(1)}$ for an arbitrary parameter $\lambda \in \boldsymbol{R} . t_{F}^{(0)}$ and $t_{F}^{(1)}$ denote real constants. $t_{F, j}=t_{F, j}^{(0)}$ is unique for $j \in F_{1}$ and $t_{F, j}^{(0)}=0$ for $j \in V\left(F_{2}\right) . t_{F, j}^{(1)}=0$ for $j \in V\left(F_{1}\right)$ and $t_{F, j}^{(1)}, j \in V\left(F_{2}\right)$, differ from zero and are determined uniquely except for a scalar factor.

Proof. Choose an edge $\left(e_{0}\right) \in E(\hat{\Gamma})$ outside $E(\Gamma)$, such that $\Gamma \cup\left\{e_{0}\right\}$ is a spanning tree. Since $\hat{\Gamma} \supset \Gamma \cup\left\{e_{0}\right\}$, by the preceding lemma we have

$$
\begin{equation*}
\frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}}=\frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma \cup\left\{e_{0}\right\}} \cdot\left(\tilde{e}_{0}\right)}{\Delta_{\hat{\Gamma}}}=\sum_{T \in \mathscr{F}_{1}, r \subset \hat{\Gamma}} a_{T} \frac{\left(\tilde{e}_{0}\right)}{\Delta_{T}}, \tag{4.28}
\end{equation*}
$$

for $a_{T} \in \boldsymbol{C}$. Since each $\left(\tilde{e}_{0}\right)$ is a linear combination of $(e)$ for $e \in E(\mathrm{~T})$ modulo constants: $\left(\tilde{e}_{0}\right)=c_{0}+\sum_{e \in E(T)} c_{e} \cdot(e)$ for $c_{e} \in \boldsymbol{C}$, and since $(e) / \Delta_{T}=1 / \Delta_{T_{e}}$, each $\left(\tilde{e}_{0}\right) / \Delta_{T}$ can be written as

$$
\begin{equation*}
\frac{\left(\tilde{e}_{0}\right)}{\Delta_{T}}=\sum_{e \in E(T)} a_{e} \frac{1}{\Delta_{T_{e}}}+\frac{\text { const }}{\Delta_{T}} . \tag{4.29}
\end{equation*}
$$

$T_{e}$ is a semi-tree: $T_{e} \in \mathscr{F}_{2}$. Hence we have from (4.28) an expression

$$
\begin{equation*}
\frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}}=\sum_{T \in \mathscr{F}_{1}} \frac{c_{T}}{\Delta_{T}}+\sum_{F \in \mathscr{F}_{2}} \frac{c_{F}}{\Delta_{F}} \tag{4.30}
\end{equation*}
$$

Through residue calculus, $c_{T}$ and $c_{F}$ are given by $\tilde{\Delta}_{\hat{\Gamma}-\Gamma}\left(t_{T}\right) / \Delta_{\hat{\Gamma}-T}\left(t_{T}\right)$ and $\lim _{\lambda \rightarrow \infty} \tilde{\Delta}_{\hat{\Gamma}-\Gamma}\left(t_{F}(\lambda)\right) / \Delta_{\hat{\Gamma}-F}\left(t_{F}(\lambda)\right)$, respectively. We must show that $F_{1} \subset \Gamma_{1}$ for $F=F_{1}+F_{2}$. Suppose the contrary is true: $F_{1} \notin \Gamma_{1}$, i.e., there exists an edge $e \in E\left(F_{1}\right)-$ $E\left(\Gamma_{1}\right)$. Since for any $e \in E\left(F_{1}\right)$,

$$
\begin{align*}
\lim _{\lambda \rightarrow \infty}\left\langle(\tilde{e}), t_{F}(\lambda)\right\rangle / \lambda & =0 \quad \text { for } \quad e \in E\left(F_{1}\right),  \tag{4.31}\\
& =\text { non-zero constant } \quad \text { for } \quad e \in E\left(F_{2}\right),
\end{align*}
$$

we have

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}\left(t_{F}(\lambda)\right)}{\Delta_{\hat{\Gamma}-F}\left(t_{F}(\lambda)\right)}=0 . \tag{4.32}
\end{equation*}
$$

Hence $c_{F}$ must vanish unless $E\left(F_{1}\right) \subset E\left(\Gamma_{1}\right)$. The proof of the lemma is now complete.

One can formulate the third main lemma as follows:
Lemma 4.5. $\quad \Gamma$ be a spanning forest with two components $\Gamma_{1}$ and $\Gamma_{2}$ such that $0 \in V\left(\Gamma_{1}\right)$ and $j \in V\left(\Gamma_{2}\right)$. Let $\hat{\Gamma}$ be an admissible graph containing $\Gamma$. Then

$$
\begin{equation*}
t_{j}^{-1} \frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}}=\sum_{T \in \mathscr{F}_{1}} a_{T} \frac{1}{\Delta_{T}}+\sum_{S \in \mathscr{F}_{2}} b_{S} t_{j}^{-1} \frac{1}{\Delta_{S}} \tag{4.33}
\end{equation*}
$$

where $S \in \mathscr{F}_{2}$ denotes a forest with two components: $S=S_{1}+S_{2}$ such that $E\left(S_{2}\right) \subset E\left(\Gamma_{2}\right)$, $0 \in V\left(S_{1}\right)$ and $j \in V\left(S_{2}\right)$.

Proof. According to (4.25),

$$
\begin{equation*}
t_{j}^{-1} \frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}}=\sum_{T \in \mathscr{F}_{1}} a_{T} \frac{1}{t_{j} \Delta_{T}}+\sum_{F \in \mathscr{F}_{2}, F_{1} \subset \Gamma_{1}} b_{F} \frac{1}{t_{j} \Delta_{F}} \tag{4.34}
\end{equation*}
$$

$a_{T}, b_{F} \in C$, where $j \in V\left(F_{2}\right)$ since $V\left(S_{2}\right) \subset V\left(F_{2}\right)$. For each $T$ on the right hand side we have

$$
\begin{equation*}
1=c_{0} t_{j}+\sum_{e \in E(T)} c_{e}(e), \quad \text { for some } c_{0} \text { and } c_{e} \in \boldsymbol{C} \tag{4.35}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{1}{t_{j} \Delta_{T}}=c_{0} \frac{1}{\Delta_{T}}+\sum_{e \in E(T)} c_{e} \frac{1}{t_{j} \Delta_{T_{e}}} . \tag{4.36}
\end{equation*}
$$

Since $T_{e} \in \mathscr{F}_{2}$, from (4.34) and (4.36) $t_{j}^{-1} \Delta_{\hat{\Gamma}-\Gamma} / \Delta_{\hat{\Gamma}}$ can be reexpressed as

$$
\begin{equation*}
\frac{\hat{\Delta}_{\hat{\Gamma}-\Gamma}}{t_{j} \Delta_{\Gamma}}=\sum_{T \in \mathscr{F}_{1}} a_{T}^{*} \frac{1}{\Delta_{T}}+\sum_{F \in \mathscr{F}_{2}} b_{F}^{*} \frac{1}{t_{j} \Delta_{F}}, \tag{4.37}
\end{equation*}
$$

for some $a_{T}^{*}, b_{F}^{*} \in \boldsymbol{C} . a_{T}^{*}$ and $b_{\boldsymbol{F}}^{*}$ are uniquely determined by the residue formulae:

$$
\begin{equation*}
a_{T}^{*}=\frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}\left(t_{T}\right)}{t_{T, j} \Delta_{\hat{\Gamma}-T}\left(t_{T}\right)} \quad \text { and } \quad b_{F}^{*}=\frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}\left(t_{F}\right)}{\Delta_{\hat{\Gamma}-F}\left(t_{F}\right)} \tag{4.38}
\end{equation*}
$$

where $t_{T}=\left(t_{T, j}\right)_{1 \leq j \leq n}$ denotes the solution of the equations $\langle(e), t\rangle=0$ for all $e \in E(T)$, while $t_{F}=\left(t_{F, j}\right)_{1 \leq j \leq n}$ denotes that of the equations $\langle(e), t\rangle=0$, for all $e \in E(F)$ together with $t_{j}=0$. Clearly, $t_{F, k}$ vanish for $k \in V\left(F_{2}\right)$. Hence $\tilde{\Delta}_{\hat{\Gamma}-\Gamma}\left(t_{F}\right)$ vanishes if it contains a factor $(e) \in E\left(F_{2}\right)$, i.e., $b_{F}^{*}$ vanishes if $E(\hat{\Gamma}-\Gamma) \cap E\left(F_{2}\right) \neq \varnothing$. In other words, if $b_{F}^{*}$ differs from zero, then $E\left(F_{2}\right) \subset E\left(\Gamma_{1}\right) \cup E\left(\Gamma_{2}\right)$. Being a tree such that $j \in V\left(F_{2}\right), F_{2}$ must be contained in $\Gamma_{2}$. In this way (4.33) has been proved.

Definition 5. An admissible labelled tree $\Gamma$ is called terminal if every edge $e \in E(\Gamma)$ is directed towards the vertex 0 .

We denote by $\mathscr{B}$ the linear space spanned by admissible forms $\varphi_{\Gamma}$ associated with admissible labelled trees $\Gamma$ with directed edges. We also denote by $\mathscr{B}_{0}$ the linear space spanned by terminal admissible forms $\varphi_{\Gamma}$ for labelled trees with terminal directed edges.

The inclusion $l: \mathscr{B}_{0} \mapsto V$ gives rise to a homomorphism

$$
\begin{equation*}
i_{*}: \mathscr{B}_{0} \mapsto H_{\Phi}\left(V, d_{q}\right) . \tag{4.39}
\end{equation*}
$$

Then our Main Theorem can be stated as follows:
Theorem. Under the assumptions $(\mathscr{H}-1) \sim(\mathscr{H}-3), i_{*}$ is an isomorphism. Hence $\operatorname{dim} H_{\Phi}\left(V, d_{q}\right)=(n+1)^{n-1}$.

## 5. Proof of Theorem.

Lemma 5.1. Suppose $\Gamma$ is an admissible tree.

$$
\begin{equation*}
b_{x} \cdot Q^{x} \varphi_{\Gamma} \neq 0 \quad \bmod \mathscr{B} \tag{5.1}
\end{equation*}
$$

for any $\chi \in X^{+}$if and only if $\Gamma$ is terminal, i.e., $\varphi_{\Gamma}$ does not admit any transformation $\varphi_{\Gamma} \mapsto b_{\chi} \cdot Q^{\chi} \varphi_{\Gamma}$ for $\chi \in X^{+}$, where $X^{+}$denotes the abelian semigroup generated by $\chi_{1}, \cdots$, $\chi_{n}$ in $X$.

Proof. Suppose $\Gamma$ is terminal. We take an arbitrary $\chi=\sum_{j=1}^{n} v_{j} \chi_{j} \in X^{+}$. Let $k$ be the vertex nearest to 0 in $V(\Gamma)$ such that $v_{k}>0$. Then $b_{\chi} Q^{x} \varphi_{\Gamma}$ contains $\left(t_{p(k)}-q^{\beta_{p(k), k}^{\prime} t_{k}}\right)^{-1} \cdots\left(t_{p(k)}-q^{\beta_{p(k), k}^{\prime}+v_{k} t_{k}}\right)^{-1}$ as an irreducible factor. Hence (5.1) holds. The converse is proved below.

The first main result which we want to prove is the following.
Proposition 4. An arbitrary admissible form $\varphi_{\Gamma}$ which is not terminal is cohomologous to a linear combination of terminal admissible forms. More precisely,

$$
\begin{equation*}
\mathscr{B}=\mathscr{B}_{0}+\mathscr{B} \cap\left\{\sum_{\chi \in X^{+}}\left(1-b_{\chi} Q^{x}\right) \mathscr{B}\right\} . \tag{5.2}
\end{equation*}
$$

Proof. Assume that $\varphi_{\Gamma}$ is not terminal. Then $\Gamma$ being a spanning tree, there exists an edge $e=(i, j)_{-}$directed from $i$ to $j$ such that $p(j)=i$. The deleted graph $\Gamma_{e}$ is divided into two components $\Gamma_{1}$ and $\Gamma_{2}$ such that $0 \in V\left(\Gamma_{1}\right)$ and that $V\left(\Gamma_{2}\right)$ is disjoint from $\{0\}$ (see Figure 1). We apply the transformation $t_{k} \mapsto t_{k} q$ for all $k \in V\left(\Gamma_{2}\right)$. Then

$$
\begin{equation*}
\frac{1}{\Delta_{\Gamma}} \Omega-q^{\alpha_{\Gamma_{2}}-\left|E\left(\Gamma_{2}\right)\right|} \frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}} \Omega \equiv 0 \quad \bmod \mathscr{B} \cap \sum_{\chi \in \boldsymbol{X}^{+}}\left(1-b_{\chi} Q^{x}\right) \mathscr{B} \tag{5.3}
\end{equation*}
$$



Figure 1.
where $\hat{\Gamma}$ denotes a graph such that (i) $V(\hat{\Gamma})=V(\Gamma)$ and (ii) $E(\hat{\Gamma})=E\left(\Gamma_{1}\right) \cup$ $E\left(\Gamma_{2}\right) \cup \bigcup_{h \in V\left(\Gamma_{1}\right), k \in V\left(\Gamma_{2}\right)}(h, k)_{+}$. From Proposition 1 we have

$$
\begin{equation*}
\frac{1}{\Delta_{\Gamma}} \Omega-q^{\alpha_{\Gamma_{2}}-\left|E\left(\Gamma_{2}\right)\right|} \sum_{T \in \mathscr{F}_{1}} a_{T} \frac{\Omega}{\Delta_{T}} \equiv 0 \quad \bmod \mathscr{B} \cap \sum_{x \in X^{+}}\left(1-b_{\chi} Q^{x}\right) \mathscr{B}, \tag{5.4}
\end{equation*}
$$

where in particular $a_{\Gamma}=1$. Hence the relation (5.3) is rewritten as

$$
\begin{equation*}
\left(1-q^{\alpha_{\Gamma_{2}}-\left|E\left(\Gamma_{2}\right)\right|}\right) \frac{\Omega}{\Delta_{\Gamma}} \equiv q^{\alpha_{\Gamma_{2}-\left|E\left(\Gamma_{2}\right)\right|}} \sum_{T \in \mathscr{F}_{1}, T \neq \Gamma} a_{T} \frac{\Omega}{\Delta_{T}} \bmod \mathscr{B} \cap \sum_{\chi \in X^{+}}\left(1-b_{\chi} Q^{x}\right) \mathscr{B} . \tag{5.5}
\end{equation*}
$$

In this way we have $\left(2^{n}-1\right)(n+1)^{n-1}$ relations corresponding to non-terminal admissible forms. $(\mathscr{H}-1) \sim(\mathscr{H}-3)$ enable us to solve these equations with regard to non-terminal admissible forms, i.e., each non-terminal admissible form is cohomologous to a linear combination of terminal admissible forms. This is exactly what we wanted to prove.

Lemma 5.2. Let $\Gamma$ be an arbitrary spanning forest with two components, $\Gamma \in \mathscr{F}_{2}$. Then $\varphi_{\Gamma}=\Omega / \Delta_{\Gamma}$ is cohomologous to a linear combination of admissible forms, i.e.,

$$
\begin{equation*}
\varphi_{\Gamma} \equiv 0 \quad \bmod \mathscr{B}+\sum_{x \in X}\left(1-b_{\chi} Q^{x}\right) V . \tag{5.6}
\end{equation*}
$$

Proof. $\quad \Gamma$ consists of two disjoint trees $\Gamma_{1}$ and $\Gamma_{2}$ such that $0 \in V\left(\Gamma_{1}\right)$ and 0 is disjoint from $V\left(\Gamma_{2}\right)$. The lemma can be proved by induction on $\left|E\left(\Gamma_{1}\right)\right|$. Indeed, we can apply to $\Omega / \Delta_{\Gamma}$ the substitution $t_{j} \rightarrow t_{j} q$ for all $j \in V\left(\Gamma_{2}\right)$. Then as in (5.3),

$$
\begin{equation*}
\frac{\Omega}{\Delta_{\Gamma}}-q^{\alpha_{\Gamma_{2}}-\left|E\left(\Gamma_{2}\right)\right|} \frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}} \Omega \equiv 0 \quad \bmod \sum_{\chi \in X}\left(1-b_{\chi} Q^{\chi}\right) V \tag{5.7}
\end{equation*}
$$

By Proposition 2, $\tilde{\Delta}_{\hat{\Gamma}-\Gamma} / \Delta_{\Gamma}$ can be written as

$$
\begin{equation*}
\sum_{T \in \mathscr{F}_{1}} a_{T} \frac{1}{\Delta_{T}}+\sum_{S \in \mathscr{F}_{2}} b_{S} \frac{1}{\Delta_{S}} \tag{5.8}
\end{equation*}
$$

where $S=S_{1}+S_{2}$ runs through the set of all the semi-trees such that $E\left(S_{1}\right) \subset E\left(\Gamma_{1}\right) \cdot a_{T}$ and $b_{S}$ are given by the formula (4.26). Hence we have

$$
\begin{equation*}
\frac{\Omega}{\Delta_{T}}-q^{\alpha_{\Gamma_{2}}-\left|E\left(\Gamma_{2}\right)\right|}\left\{\sum_{T \in \mathscr{F}_{1}} a_{T} \frac{\Omega}{\Delta_{T}}+\sum_{S \in \mathscr{F}_{2}} b_{S} \frac{\Omega}{\Delta_{S}}\right\} \equiv 0 \quad \bmod \sum_{x \in X}\left(1-b_{\chi} Q^{\chi}\right) V \tag{5.9}
\end{equation*}
$$

where $b_{\Gamma}$ is given by $\sum_{h \in V\left(\Gamma_{1}\right), k \in V\left(\Gamma_{2}\right)} \beta_{h, k}-\beta_{h, k}^{\prime}$. Then (5.9) can be rewritten as

$$
\begin{align*}
(1- & q^{\left.\alpha \Gamma_{2}-\left|E\left(\Gamma_{2}\right)\right|+\Sigma_{h \in} \in\left(\Gamma_{1}\right), k \in V\left(\Gamma_{2}\right)^{\beta} \beta_{h, k}-\beta_{h, k}^{\prime}\right)} \frac{\Omega}{\Delta_{\Gamma}}  \tag{5.10}\\
& \equiv q^{\alpha_{\Gamma_{2}}-\left|E\left(\Gamma_{2}\right)\right|}\left\{\sum_{T \in \mathcal{F}_{1}} a_{T} \frac{\Omega}{\Delta_{T}}+\sum_{S \in \mathscr{F}_{2}, S_{1} \varsubsetneqq \Gamma_{1}} b_{S} \frac{\Omega}{\Delta_{S}}\right\}
\end{align*}
$$

$$
\equiv q^{\alpha} \Gamma_{2}-\left|E\left(\Gamma_{2}\right)\right| \sum_{S \in \mathscr{F}_{2}, S_{1 \neq} \subsetneq \Gamma_{1}} b_{S} \frac{\Omega}{\Delta_{S}} \quad \bmod \mathscr{B}+\sum_{\chi \in X}\left(1-b_{\chi} Q^{\chi}\right) V
$$

Since each $\Omega / \Delta_{S}$ in the last part is cohomologous to an element of $\mathscr{B}$ by the induction hypothesis, so is $\Omega / \Delta_{\Gamma}$. The proof is now complete.

Lemma 5.3. For an arbitrary admissible form $\varphi_{\Gamma}$ and an arbitrary $j, 1 \leq j \leq n, t_{j} \varphi_{\Gamma}$ is cohomologous to a linear combination of admissible forms, i.e.,

$$
\begin{equation*}
t_{j} \varphi_{\Gamma} \sim 0 \quad \bmod \mathscr{B} . \tag{5.11}
\end{equation*}
$$

Proof. Indeed, there exists a unique path $\left[j_{0}, j_{1}, \cdots, j_{m-1}, j\right], j_{0}=0$ and $j_{m}=j$, in a tree $\Gamma$ so that $t_{j}$ can be written as

$$
\begin{equation*}
t_{j}=c_{0}+\sum_{v=1}^{m} c_{v}\left(e_{v}\right) \tag{5.12}
\end{equation*}
$$

for $c_{0}, c_{v} \in \boldsymbol{C}$ and $\left(e_{v}\right)=\left(j_{v-1}, j_{v}\right)_{+}$so that

$$
\begin{equation*}
\frac{t_{j}}{\Delta_{\Gamma}}=\frac{c_{0}}{\Delta_{\Gamma}}+\sum_{v=1}^{m} c_{v} \frac{1}{\Delta_{\Gamma_{e_{v}}}} . \tag{5.13}
\end{equation*}
$$

Since $\Gamma_{e_{v}}$ is a spanning semi-tree, we can apply Lemma 4.4 to $\Omega / \Delta_{\Gamma_{e_{v}}}$ so that $\Omega / \Delta_{\Gamma_{e_{v}}} \sim 0 \bmod \mathscr{B}$. This shows $\left(t_{j} / \Delta_{\Gamma}\right) \Omega \sim 0 \bmod \mathscr{B}$, since $\Omega / \Delta_{\Gamma} \in \mathscr{B}$.

Similarly, we have:
Lemma 5.4. Under the same circumstance as in Lemma 4.5, we have $t_{j}^{-1} \Omega / \Delta_{\Gamma} \sim$ $0 \bmod \mathscr{B}$.

Proof. We can apply the substitution $t_{k} \mapsto t_{k} q$ for all $k \in V\left(\Gamma_{2}\right)$. Then as in (5.3)

$$
\begin{equation*}
t_{j}^{-1} \frac{\Omega}{\Delta_{\Gamma}} \sim q^{\alpha \Gamma_{2}-\left|E\left(\Gamma_{2}\right)\right|-1} t_{j}^{-1} \frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}} \Omega . \tag{5.14}
\end{equation*}
$$

By Lemma 4.4,

$$
\begin{equation*}
t_{j}^{-1} \frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}}=\sum_{T \in \mathscr{F}_{1}} a_{T} \frac{\Omega}{\Delta_{T}}+\sum_{S \in \mathscr{F}_{2}} b_{S} t_{j}^{-1} \frac{\Omega}{\Delta_{S}}, \tag{5.15}
\end{equation*}
$$

since $S$ is a semi-tree with two components $S_{1}, S_{2}$ such that $j \in V\left(S_{2}\right), E\left(S_{2}\right) \subset E\left(\Gamma_{2}\right)$ and $0 \in V\left(S_{1}\right) . a_{T}$ and $b_{S}$ are given by (4.25) for the solutions $t_{T}$ and $t_{S}$ of the equations: $\left\langle(e), t_{T}\right\rangle=0$ for $e \in E(T)$ and $\left\langle(e), t_{S}\right\rangle=0$ for $e \in E(S)$ together with $t_{j}=0$, respectively. $b_{S}$ vanishes unless $E\left(S_{2}\right) \subset E\left(\Gamma_{2}\right)$. Hence

$$
\begin{equation*}
t_{j}^{-1} \frac{\Omega}{\Delta_{\Gamma}} \sim q^{\alpha \Gamma_{2}-\left|E\left(\Gamma_{2}\right)\right|-1}\left\{\sum_{T \in \mathscr{F}_{1}} a_{T} \frac{\Omega}{\Delta_{T}}+\sum_{S \in \mathscr{F}_{2}, S_{2} \subset \Gamma_{2}} b_{S} t_{j}^{-1} \frac{\Omega}{\Delta_{S}}\right\} \tag{5.16}
\end{equation*}
$$

or equivalently,

$$
\begin{align*}
& \left(1-q^{\alpha_{\Gamma_{2}}-\left|E\left(\Gamma_{2}\right)\right|-1}\right) t_{j}^{-1} \frac{\Omega}{\Delta_{\Gamma}}  \tag{5.17}\\
& \quad \sim q^{\alpha_{\Gamma_{2}}-\left|E\left(\Gamma_{2}\right)\right|-1}\left\{\sum_{T \in \mathscr{F}_{1}} a_{T} \frac{\Omega}{\Delta_{T}}+\sum_{S \in \mathscr{F}_{2}, S_{2} \not \Gamma_{2}} b_{S} t_{j}^{-1} \frac{\Omega}{\Delta_{S}}\right\},
\end{align*}
$$

since $b_{\Gamma}=1$. By induction, the system of equations (5.17) for all the forms $t_{j}^{-1} \varphi_{\Gamma}$, with $\varphi_{\Gamma}$ admissible, can be solved concerning $t_{j}^{-1} \varphi_{\Gamma}$ in such a way that $t_{j}^{-1} \varphi_{\Gamma}$ is cohomologous to a linear combination of admissible ones. This implies the lemma.

Proposition 5. For an arbitrary admissible $\dot{\varphi}_{\Gamma}=\Omega / \Delta_{\Gamma}$ and any $j, 1 \leq j \leq n$, we have $t_{j}^{-1} \varphi_{\Gamma} \sim 0 \bmod \mathscr{B}$.

Proof. As in the proof of Lemma 5.3 there exists a unique path $\left[j_{0}, j_{1}, \cdots, j_{m-1}, j\right]$ in $\Gamma$ such that (5.12) holds. (5.12) implies

$$
\begin{equation*}
\frac{1}{t_{j} \prod_{v=1}^{m}\left(e_{v}\right)}=\frac{1}{c_{0}} \frac{1}{\Delta_{\Gamma}}-\sum_{v=1}^{m} \frac{c_{v}}{c_{0}} \frac{1}{\prod_{k \neq v}^{m}\left(e_{k}\right)} \tag{5.18}
\end{equation*}
$$

(remark that $c_{0} \neq 0$ by hypothesis), i.e.,

$$
\begin{equation*}
\frac{1}{t_{j} \Delta_{\Gamma}}=\frac{1}{c_{0} \Delta_{\Gamma}}-\sum_{v=1}^{m} \frac{c_{v}}{c_{0}} \frac{1}{\Delta_{\Gamma_{v}}} \tag{5.19}
\end{equation*}
$$

From Lemma $4.4 \Omega / \Delta_{\Gamma_{e_{\nu}}} \sim 0 \bmod \mathscr{B}$, whence Proposition 5 follows.
Corollary. $\quad W_{0, j}^{(+)} Q_{\beta_{0}, j} \varphi \sim 0 \bmod \mathscr{B}, W_{i, j}^{(+)} Q_{\beta_{i, j}} \varphi \sim 0 \bmod \mathscr{B}, W_{i, j}^{(-)} Q_{\beta_{i, j}}^{-1} \varphi \sim 0 \bmod \mathscr{B}$ for an admissible $\varphi$.

Proof. Indeed, $W_{\beta_{0, j}}^{(+)} Q_{\beta_{0, j}} \varphi_{\Gamma}=\left(1-q^{\beta_{0, j}-1} Q_{j}\right) \varphi_{\Gamma}$ or $\left(1-q^{\beta_{0, j}} Q_{j}\right) \varphi_{\Gamma}$ according as $(0, j)_{-} \in E(\Gamma)$ or not. Similarly, $W_{i, j}^{(-)} Q_{\beta_{i, j}} \varphi_{\Gamma}=Q_{i}^{-1}\left(Q_{i}-q^{\beta_{i, j}-1} Q_{j}\right) \varphi_{\Gamma}$ or $Q_{i,}^{-1}\left(Q_{i}-\right.$ $\left.q^{\beta_{i, j}} Q_{j}\right) \varphi_{\Gamma}$ according as $(i, j)_{-} \in E(\Gamma)$ or not, while $W_{i, j}^{\prime(-)} Q_{\beta_{i}, j}^{-1} \varphi_{\Gamma}=Q_{i}^{-1}\left(Q_{i}-q^{\beta_{i, j}^{\prime}} Q_{j}\right) \varphi_{\Gamma}$ or $Q_{i}^{-1}\left(Q_{i}-q^{\beta_{i, j}^{\prime}-1} Q_{j}\right) \varphi_{\Gamma}$ according as $(i, j)_{+} \in E(\Gamma)$ or not.

Proposition 6. (i) $W_{i, j}^{\prime(+)} Q_{\beta_{i, j}^{\prime}} \varphi_{\Gamma} \sim 0 \bmod \mathscr{B}$.
(ii) $\quad W_{i, j}^{(-)} Q_{\beta_{i, j}}^{-1} \varphi_{\Gamma} \sim 0 \bmod \mathscr{B}$, for $0 \leq i \leq j \leq n$.

Proof. Suppose first that $E(\Gamma)$ does not contain the form $(i, j)_{+}$. We denote by $\hat{\Gamma}$ the graph obtained from $\Gamma$ by adding the edge $(i, j)_{+}$to $\Gamma$ such that $E(\hat{\Gamma})=E(\Gamma) \cup\left\{(i, j)_{+}\right\}$ and $V(\hat{\Gamma})=V(\Gamma) . \hat{\Gamma}$ contains a circuit $\mathscr{C}$ which itself contains $(i, j)_{+}$. Then from Lemma 4.2,

$$
\begin{equation*}
\frac{1}{\Delta_{\hat{\Gamma}}}=\sum_{e \in E(\mathscr{C})} a_{e} \frac{1}{\Delta_{\Gamma_{e}}} . \tag{5.20}
\end{equation*}
$$

Since each $\Gamma_{e}$ is a tree such that $0 \in V\left(\Gamma_{e}\right), \Omega / \Delta_{\Gamma_{e}}$ is admissible, i.e., $W_{i, j}^{\prime(+)} Q_{B_{i}^{\prime} ;} \Omega / \Delta_{\Gamma} \sim 0$ $\bmod \mathscr{B}$. Suppose on the contrary $E(\Gamma)$ contains the form $(i, j)_{+}$. Then

$$
\begin{equation*}
W_{i, j}^{\prime(+)} Q_{\beta_{i, j}^{\prime}} \frac{\Omega}{\Delta_{\Gamma}}=\frac{\Omega}{\left(t_{i}-q^{\beta_{i, j}^{\prime}} t_{j}\right)\left(t_{i}-q^{\beta_{i, j}^{\prime}+1} t_{j}\right) \prod_{e \in E\left(\Gamma_{e}\right)}(e)} . \tag{5.21}
\end{equation*}
$$

$\Gamma_{(i, j)+}$ consists of two components of disjoint trees $\Gamma_{1}$ and $\Gamma_{2}$ such that $\{0, i\} \subset V\left(\Gamma_{1}\right)$ and $\{j\} \subset V\left(\Gamma_{2}\right)$. We apply to $W_{i, j}^{\prime(+)} Q_{\beta_{i, j}^{\prime}} \Omega / \Delta_{\Gamma}$ the substitution $t_{k} \mapsto q^{-1} t_{k}$ for all $k \in V\left(\Gamma_{2}\right)$. Then

$$
\begin{equation*}
W_{i, j}^{\prime(+)} Q_{\beta_{i, j}^{\prime}} \frac{\Omega}{\Delta_{\Gamma}} \sim q^{-\alpha_{\Gamma_{2}}+\left|E\left(\Gamma_{2}\right)\right|} \frac{\tilde{\Delta}_{\hat{\Gamma}-\Gamma}}{\Delta_{\hat{\Gamma}}} \Omega, \tag{5.22}
\end{equation*}
$$

where $\hat{\Gamma}$ is a graph containing $\Gamma$ such that

$$
\begin{gather*}
V(\hat{\Gamma})=V(\Gamma),  \tag{5.23}\\
E(\hat{\Gamma})=E\left(\Gamma_{1}\right) \cup E\left(\Gamma_{2}\right) \cup \bigcup_{h \in V\left(\Gamma_{1}\right), k \in V\left(\Gamma_{2}\right)}(h, k)_{-} \cup\left\{(i, j)_{+}\right\}, \tag{5.24}
\end{gather*}
$$

where $(h, k) \neq(i, j)$. From Lemma 4.3 we have the partial fraction on the right hand side of (5.21). Hence the proposition follows.

From Propositions 3 and 4 applied to an arbitrary admissible form $\varphi_{\Gamma}$

$$
\begin{array}{cc}
Q_{i}^{ \pm 1} \varphi_{\Gamma} \sim 0 & \bmod \mathscr{B}_{0} \\
W_{i, j}^{\prime \pm)} Q_{\beta_{i, j}}^{ \pm 1} \varphi_{\Gamma} \sim 0 & \bmod \mathscr{B}_{0} \\
W_{i, j}^{( \pm)} Q_{\beta_{i, j}}^{ \pm 1} \varphi_{\Gamma} \sim 0 & \bmod \mathscr{B}_{0} . \tag{5.27}
\end{array}
$$

Since $\Phi V=\mathscr{A} \Phi=\mathscr{A}\left(\Phi \mathscr{B}_{0}\right)$, an arbitrary element $\varphi \in V$ is cohomologous to an element of $\mathscr{B}_{0}: \varphi \sim 0 \bmod \mathscr{B}_{0}$. This implies the following:

Proposition 7. The map $i_{*}$ defined in (4.39) is a surjection.
We can now prove the Theorem in Section 4.
Proof of Theorem. For each unoriented admissible labelled tree $\hat{T}$, the point $\bar{t}=\left(\bar{t}_{j}\right)_{1 \leq j \leq n} \in q^{\bar{X}}$ is defined by the equations: $\bar{t}_{p(j)}=q^{\beta_{p(j), j}^{\prime}} \bar{t}_{j}$, and $\bar{t}_{0}=1$. We can construct a cycle $c(T)=c(\bar{t})$ consisting of countable points given by

$$
\begin{equation*}
q^{\beta_{p(j), j}^{\prime}} t_{j} / t_{p(j)} \in q^{\mathbf{z}^{+}} \tag{5.28}
\end{equation*}
$$

To each $\hat{T}$ corresponds a unique terminal admissible tree and vice versa. Thus the set of unoriented admissible labelled trees is in one-to one correspondence with that of terminal admissible forms. The number of such trees is equal to $\mu=(n+1)^{n-1}$. Let $T_{1}, \cdots, T_{\mu}$ be the totality of them. We must prove that these are linearly independent in $H_{\Phi}\left(V, d_{q}\right)$. It is sufficient to prove that the determinant of the period matrix
$M=\left(\left(\varphi_{T_{i}}, c\left(T_{j}\right)\right)\right)_{1 \leq i, j \leq \mu}$ does not vanish. This can be shown by asymptotic argument as follows.

We consider the integration of the functions $\Phi \varphi, \varphi \in \mathscr{B}_{0}$, over the cycle $c(T)$. The function $\Phi$ has no pole on $c(T)$ if and only if $T$ is standard, i.e., $p(j)<j$ for each $j \in V(T)$. If $T$ is not standard, we replace $c(T)$ by its regularization reg $c(T)$ by taking the residues of $\Phi \varphi$ at the poles of $\Phi \varphi$. The crucial fact is the following:

Lemma 5.5. For $\alpha_{j}=\eta_{j} N+\alpha_{j}^{\prime}\left(\eta_{j} \in \boldsymbol{Z}^{+}, \alpha_{j}^{\prime} \in \boldsymbol{C}\right), N \rightarrow+\infty$, the integral of an terminal admissible form $\varphi_{T^{*}}$

$$
\begin{equation*}
\int_{c(T)} \Phi \varphi_{T^{*}} \Omega \sim(1-q)^{n}(q)_{\infty}^{n} \bar{t}_{1}^{\alpha_{1}-\delta_{1}} \cdots \bar{t}_{n}^{\alpha_{n}-\delta_{n}}\left(1+O\left(\frac{1}{N}\right)\right) \tag{5.29}
\end{equation*}
$$

or

$$
\begin{equation*}
\sim(1-q)^{n}(q)_{\infty}^{n} \bar{t}_{1}^{\alpha_{1}}-\delta_{1} \cdots \bar{t}_{n}^{\alpha_{n}}-\delta_{n} O\left(\frac{1}{N}\right) \tag{5.30}
\end{equation*}
$$

according as $T^{*}=T$ or $T^{*} \neq T$, where $\delta_{j}+1$ denotes the degree of the vertex $j$ in $T^{*}$. The same holds for the integration over reg $c(T)$.

Proof. The function $\Phi$ has an expression

$$
\begin{equation*}
\Phi=\left(t_{1}^{\eta_{1}} \cdots t_{n}^{\eta_{n}}\right)^{N} t_{1}^{\alpha_{1}^{\prime}} \cdots t_{n}^{\alpha_{n}^{\prime}} \prod_{0 \leq i<j \leq n} \frac{\left(q^{\beta_{i, j}^{\prime}} t_{j} / t_{i}\right)_{\infty}}{\left(q^{\beta_{i, j}} t_{j} / t_{i}\right)_{\infty}} . \tag{5.31}
\end{equation*}
$$

By assumption the function $\left|t_{1}^{\eta_{1}} \cdots t_{n}^{\eta_{n}}\right|$ has maximal value at $t=\bar{t}$ on $c(T)$ or reg $c(T)$. It is unique, i.e., $\left|t_{1}^{\eta_{1}} \cdots t_{n}^{\eta_{n}}\right|<\left|\bar{t}_{1}^{\eta_{1}} \cdots \cdot \bar{t}_{n}^{\eta_{n}}\right|$ on $c(T)-\{\bar{t}\}$. If $T^{*} \neq T$, then the factors $1-q^{\beta_{i, j}^{\prime}{ }_{j} / t_{p(j)}}$ appear in the numerator of $\Phi / \Delta_{T}$, while if $T^{*}=T$, all the factors $1-q^{\beta_{p(j), j}^{\prime} t_{j} / t_{p(j)}}$ disappear. Since all these factors vanish on $c(T)$ or reg $c(T), \Phi$ vanishes at $t=\bar{t}\left(T^{*}\right)$ for $T^{*} \neq T$, while $\Phi$ is equal to

$$
\begin{equation*}
\bar{t}_{1}^{\alpha_{1}} \cdots \bar{t}_{n}^{\alpha_{n}} \frac{(q)_{\infty}^{n}}{\prod_{j=1}^{n}\left(q^{\beta_{i}, j} \bar{t}_{j} / t_{p(j)}\right)} \quad \text { for } \quad T^{*}=T . \tag{5.32}
\end{equation*}
$$

This shows that the period matrix $M$ is asymptotically equal to a diagonal matrix whose entries are represented by the principal terms in (5.29) for each unoriented admissible labelled tree $T$. In other words, the matrix $M$ is non-singular for sufficiently large $\alpha_{1}, \cdots, \alpha_{n}$. Hence $\varphi_{T_{1}}, \cdots, \varphi_{T_{n}}$ are linearly independent in $H_{\Phi}\left(V, d_{q}\right)$. The theorem has been proved.

Corollary. $\left\langle\varphi_{T_{1}}\right\rangle, \cdots,\left\langle\varphi_{T_{\mu}}\right\rangle$ satisfy the normal holonomic $q$-difference equations

$$
\begin{equation*}
\tilde{Q}_{j}^{ \pm 1}\left(\left\langle\varphi_{T_{1}}\right\rangle, \cdots,\left\langle\varphi_{T_{\mu}}\right\rangle\right)=\left(\left\langle\varphi_{T_{1}}\right\rangle, \cdots,\left\langle\varphi_{T_{\mu}}\right\rangle\right) A_{j}^{ \pm}, \quad 1 \leq j \leq n, \tag{5.33}
\end{equation*}
$$

$$
\begin{array}{ll}
\tilde{Q}_{\beta_{i, j}}^{ \pm 1}\left(\left\langle\varphi_{T_{1}}\right\rangle, \cdots,\left\langle\varphi_{T_{\mu}}\right\rangle\right)=\left(\left\langle\varphi_{T_{1}}\right\rangle, \cdots,\left\langle\varphi_{T_{\mu}}\right\rangle\right) A_{ \pm \beta_{i, j}}, \quad 0 \leq i<j \leq n, \\
\tilde{Q}_{\beta_{i, j}}^{ \pm}\left(\left\langle\varphi_{T_{1}}\right\rangle, \cdots,\left\langle\varphi_{T_{\mu}}\right\rangle\right)=\left(\left\langle\varphi_{T_{1}}\right\rangle, \cdots,\left\langle\varphi_{T_{\mu}}\right\rangle\right) A_{ \pm \beta_{i, j}^{\prime}}, \quad 1 \leq i<j \leq n, \tag{5.35}
\end{array}
$$

respectively. Here $A_{j}^{ \pm}, A_{ \pm \beta_{i, j}, j}$ and $A_{ \pm \beta_{i, j}^{\prime}}$ denote matrices of degree $\mu$ over the rational function field $\boldsymbol{C}\left(\left(u_{l}, q^{\beta_{k, l}}, q^{\beta_{k, l}, l}\right)_{0 \leq k<l \leq n}\right)$. These are equivalent to (4.6)~(4.10).

Remark. The set of all directions $\eta=\left(\eta_{1}, \cdots, \eta_{n}\right) \in \boldsymbol{Z}^{n}-\{0\}$ giving inequivalent asymptotic behaviours of $\tilde{\Phi}$ are divided into a finite set of rational polyhedral cones in $\boldsymbol{Q}^{\boldsymbol{n}}$. This defines an $n$-dimensional toric variety which may be singular in general (see [O1] for the definition). The connection coefficients among asymptotic solutions along different directions $\eta$ can be described in terms of transition matrices on this variety. The combinatorial structure of them will be presented elsewhere (see [A5]).
6. The basic hypergeometric function of third order. The case $n=2$ is given by the basic hypergeometric function

$$
{ }_{3} \varphi_{2}\left(\left.\begin{array}{l}
a, b, c  \tag{6.1}\\
d, e
\end{array} \right\rvert\, x\right)=\sum_{n=0}^{\infty} \frac{(a ; q)_{n}(b ; q)_{n}(c ; q)_{n}}{(d ; q)_{n}(e ; q)_{n}(q ; q)_{n}} x^{n},
$$

for $a, b, c, d, e \in \boldsymbol{C}$ and $(a ; q)_{n}=(a)_{\infty} /\left(a q^{n}\right)_{\infty}$ etc., such that $d, e \neq 1, q^{-1}, q^{-2}, \cdots$. It has an integral representation

$$
\begin{gather*}
{ }_{3} \varphi_{2}\left(\left.\begin{array}{l}
a, b, c \\
d, e
\end{array} \right\rvert\, x\right)=\frac{\left(a_{1}\right)_{\infty}\left(a_{2}\right)_{\infty}\left(b_{1} / a_{1}\right)_{\infty}\left(b_{2} / a_{2}\right)_{\infty}}{\left(b_{1}\right)_{\infty}\left(b_{2}\right)_{\infty}(q)_{\infty}^{2}(1-q)^{2}} .  \tag{6.2}\\
\int_{1 \geq \tau_{1} \geq \tau_{2}>0} \tau_{1}^{\alpha_{1}-\alpha_{2}} \tau_{2}^{\alpha_{2}} \frac{\left(\tau_{1} q\right)_{\infty}\left(q \tau_{2} / \tau_{1}\right)_{\infty}\left(a_{0} \tau_{2} x\right)_{\infty}}{\left(b_{1} \tau_{1} / a_{1}\right)_{\infty}\left(b_{2} \tau_{2} /\left(a_{2} / \tau_{1}\right)\right)_{\infty}\left(\tau_{2} x\right)_{\infty}} \frac{d_{q} \tau_{1} \wedge d_{q} \tau_{2}}{\tau_{1} \tau_{2}}
\end{gather*}
$$

for $b=q^{\alpha_{1}}$ and $c=q^{\alpha_{2}}$. This integral coincides with (4.2) by putting $\alpha_{1} \mapsto \alpha_{1}-\alpha_{2}, \alpha_{2} \mapsto \alpha_{2}$, $q^{\beta_{0,1}^{\prime}}=q, q^{\beta_{0,2}^{\prime}}=a_{0} x, q^{\beta_{0,1}}=b_{1} / a_{1}, q^{\beta_{0,2}}=x, q^{\beta_{1,2}^{\prime}}=q$ and $q^{\beta_{1,2}}=b_{2} / a_{2}$ in (4.2). For brevity we put $\beta_{0,1}=\beta_{1}, \beta_{0,2}=\beta_{2}, \beta_{1,2}=\beta^{\prime}$ and $\beta_{1,2}=\beta$. We have $\operatorname{dim} \mathscr{B}_{0}=3$ due to the Theorem. The basis is given by

$$
\begin{equation*}
\varphi_{T_{1}}=\frac{\Omega}{\left(1-t_{1}\right)\left(1-t_{2}\right)}, \quad \varphi_{T_{2}}=\frac{\Omega}{\left(1-t_{1}\right)\left(t_{1}-q^{\beta^{\prime}} t_{2}\right)} \quad \text { and } \quad \varphi_{T_{3}}=\frac{\Omega}{\left(1-t_{2}\right)\left(t_{1}-q^{\beta-1} t_{2}\right)} \tag{6.3}
\end{equation*}
$$

corresponding to the terminal admissible trees $T_{1}, T_{2}$ and $T_{3}$, respectively as in Figure 2. In addition to these it is also convenient to consider the forms

$$
\begin{equation*}
\varphi_{T_{4}}=\frac{\Omega}{\left(1-t_{1}\right)\left(t_{1}-q^{\beta^{\prime}} t_{2}\right)} \quad \text { and } \quad \varphi_{T_{5}}=\frac{\Omega}{\left(1-t_{1}\right)\left(t_{1}-q^{\beta-1} t_{2}\right)} \tag{6.4}
\end{equation*}
$$

corresponding to the admissible trees $T_{4}$ and $T_{5}$ which are not terminal (see Figure 2). There are two linear relations among them as follows:



Figure 2.

$$
\begin{gather*}
\varphi_{T_{4}} \sim q^{\alpha_{1}-1}\left\{\frac{1-q^{\beta_{1}}}{1-q^{\beta-1}} \varphi_{T_{1}}+\frac{1-q^{\beta_{1}+\beta-1}}{1-q^{\beta-1}} \varphi_{T_{3}}+\frac{1-q^{\beta_{1}}}{1-q^{1-\beta}} \varphi_{T_{5}}\right\},  \tag{6.5}\\
\varphi_{T_{5}} \sim q^{\alpha_{2}}\left\{\frac{1-q^{\beta_{2}}}{1-q^{\beta^{\prime}}} \varphi_{T_{1}}+\frac{q^{\beta_{2}}-q^{\beta^{\prime}}}{1-q^{\beta^{\prime}}} \varphi_{T_{2}}+\frac{1-q^{\beta_{2}}}{1-q^{\beta^{\prime}}} \varphi_{T_{4}}\right\} . \tag{6.6}
\end{gather*}
$$

From these relations one can solve $\varphi_{T_{4}}$ aand $\varphi_{T_{5}}$ as linear combinations of $\varphi_{T_{1}}, \varphi_{T_{2}}$ and $\varphi_{T_{3}}$, provided $\left(1-q^{1-\beta}\right)\left(1-q^{\beta^{\prime}}\right)-q^{\alpha_{1}+\alpha_{2}-1}\left(1-q^{\beta_{1}}\right)\left(1-q^{\beta_{2}}\right) \neq 0$, i.e.,

$$
\begin{equation*}
\varphi_{T_{4}} \sim 0 \quad \bmod \mathscr{B}_{0} \quad \text { and } \quad \varphi_{T_{5}} \sim 0 \quad \bmod \mathscr{B}_{0} \tag{6.7}
\end{equation*}
$$

To find the formulae for $\widetilde{Q}_{1}$ and $\widetilde{Q}_{2}$ one needs the following:
Lemma 6.1. We have the relations

$$
\begin{align*}
& \left(1-q^{\alpha_{1}+\beta_{1}}\right)\left\langle\frac{\Omega}{1-t_{2}}\right\rangle+q^{\alpha_{1}+\beta_{1}}\left(q^{\beta-1}-q^{\beta^{\prime}-1}\right)\left\langle\frac{\Omega}{t_{1}-q^{\beta-1} t_{2}}\right\rangle  \tag{6.8}\\
& =q^{\alpha_{1}}\left\{\frac{\left(1-q^{\beta_{1}}\right)\left(1-q^{\beta^{\prime}-1}\right)}{1-q^{\beta-1}}\left\langle\varphi_{T_{1}}\right\rangle+\frac{\left(1-q^{\beta_{1}}\right)\left(1-q^{\beta^{\prime}-\beta}\right)}{1-q^{1-\beta}}\left\langle\varphi_{T_{5}}\right\rangle\right. \\
& \left.\quad+\frac{\left(q^{\beta-1}-q^{\beta^{\prime}-1}\right)\left(1-q^{\beta_{1}+\beta-1}\right)}{1-q^{\beta-1}}\left\langle\varphi_{T_{3}}\right\rangle\right\} .
\end{align*}
$$

$$
\begin{align*}
(1- & \left.q^{\alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{2}-1}\right)\left\langle\frac{\Omega}{t_{1}-q^{\beta^{\prime}} t_{2}}\right\rangle  \tag{6.9}\\
= & q^{\alpha_{1}+\alpha_{2}-1}\left\{\frac{\left(1-q^{\beta_{1}}\right)\left(1-q^{\beta_{2}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{1}}\right\rangle+\frac{\left(1-q^{\beta_{1}}\right)\left(q^{\beta_{2}}-q^{\beta^{\prime}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{2}}\right\rangle\right. \\
& \left.+\frac{\left(1-q^{\beta_{2}}\right)\left(1-q^{\beta_{1}+\beta^{\prime}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{4}}\right\rangle\right\}
\end{align*}
$$

$$
\begin{align*}
(1- & \left.q^{\alpha_{2}+\beta_{2}+\beta-\beta^{\prime}}\right)\left\langle\frac{\Omega}{1-t_{1}}\right\rangle+q^{\alpha_{2}+\beta_{2}}\left(1-q^{\beta-\beta^{\prime}}\right)\left\langle\frac{\Omega}{t_{1}-q^{\beta^{\prime}} t_{2}}\right\rangle  \tag{6.10}\\
= & q^{\alpha_{2}}\left\{\frac{\left(1-q^{\beta_{2}}\right)\left(1-q^{\beta}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{1}}\right\rangle+\frac{\left(1-q^{\beta_{2}-\beta^{\prime}}\right)\left(q^{\beta}-q^{\beta^{\prime}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{2}}\right\rangle\right. \\
& \left.+\frac{\left(1-q^{\beta_{2}}\right)\left(q^{\beta^{\prime}}-q^{\beta}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{4}}\right\rangle\right\},
\end{align*}
$$

$$
\begin{equation*}
\left\langle\frac{\Omega}{t_{1}-q^{\beta-1} t_{2}}\right\rangle=q^{\alpha_{2}}\left\{\left(1-q^{\beta_{2}}\right)\left\langle\varphi_{T_{4}}\right\rangle+q^{\beta_{2}}\left\langle\frac{\Omega}{t_{1}-q^{\beta^{\prime}} t_{2}}\right\rangle\right\} . \tag{6.11}
\end{equation*}
$$

(6.8)-(6.11) can be derived as in the proof of Lemma 5.2. They enable us to express $\left\langle\Omega /\left(1-t_{1}\right)\right\rangle,\left\langle\Omega /\left(1-t_{2}\right)\right\rangle,\left\langle\Omega /\left(t_{1}-q^{\beta^{\prime}} t_{2}\right)\right\rangle$ and $\left\langle\Omega /\left(t_{1}-q^{\beta-1} t_{2}\right)\right\rangle$ in terms of $\left\langle\varphi_{T_{j}}\right\rangle$, $1 \leq j \leq 5$. Since

$$
\begin{equation*}
\tilde{Q}_{1}\left\langle\varphi_{T_{1}}\right\rangle=\left\langle\varphi_{T_{1}}\right\rangle-\left\langle\frac{\Omega}{1-t_{2}}\right\rangle, \quad \tilde{Q}_{1}\left\langle\varphi_{T_{2}}\right\rangle=\left\langle\varphi_{T_{2}}\right\rangle-\left\langle\frac{\Omega}{t_{1}-q^{\beta^{\prime}} t_{2}}\right\rangle, \tag{6.12}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{Q}_{1}\left\langle\varphi_{T_{4}}\right\rangle=\left\langle\frac{\Omega}{1-t_{2}}\right\rangle-q^{\beta^{\prime}}\left\langle\frac{\Omega}{t_{1}-q^{\beta^{\prime}} t_{2}}\right\rangle+q^{\beta^{\prime}}\left\langle\varphi_{T_{4}}\right\rangle, \tag{6.13}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{Q}_{2}\left\langle\varphi_{T_{1}}\right\rangle=\left\langle\varphi_{T_{1}}\right\rangle-\left\langle\frac{\Omega}{1-t_{1}}\right\rangle \tag{6.14}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{Q}_{2}\left\langle\varphi_{T_{2}}\right\rangle=q^{-\beta^{\prime}}\left\{\left\langle\varphi_{T_{2}}\right\rangle-\left\langle\frac{\Omega}{1-t_{1}}\right\rangle-\left\langle\frac{\Omega}{t_{1}-q^{\beta^{\prime}} t_{2}}\right\rangle\right\}, \tag{6.15}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{Q}_{2}\left\langle\varphi_{T_{4}}\right\rangle=\left\langle\varphi_{T_{4}}\right\rangle-\left\langle\frac{\Omega}{t_{1}-q^{\beta^{t^{2}} t_{2}}}\right\rangle, \tag{6.16}
\end{equation*}
$$

we get from the formulae (6.8)-(6.11) the following:

## Lemma 6.2.

$$
\begin{align*}
\tilde{Q}_{1}\left\langle\varphi_{T_{2}}\right\rangle= & \left\langle\varphi_{T_{2}}\right\rangle-\frac{q^{\alpha_{1}+\alpha_{2}-1}}{1-q^{\alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{2}-1}}\left\{\frac{\left(1-q^{\beta_{1}}\right)\left(1-q^{\beta_{2}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{1}}\right\rangle\right.  \tag{6.17}\\
& \left.+\frac{\left(1-q^{\beta_{1}}\right)\left(q^{\beta_{2}}-q^{\beta^{\prime}}\right)}{\left(1-q^{\beta^{\prime}}\right)}\left\langle\varphi_{T_{2}}\right\rangle+\frac{\left(1-q^{\beta_{1}+\beta^{\prime}}\right)\left(1-q^{\beta_{2}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{4}}\right\rangle\right\},
\end{align*}
$$

$$
\begin{align*}
& \tilde{Q}_{1}\left\langle\varphi_{T_{1}}\right\rangle+\frac{q^{\beta}-q^{\beta^{\prime}}}{1-q^{\alpha_{1}+\beta_{1}}} \tilde{Q}_{1}\left\langle\varphi_{T_{2}}\right\rangle  \tag{6.18}\\
& \quad=\frac{1-q^{\alpha_{1}}}{1-q^{\alpha_{1}+\beta_{1}}}\left\langle\varphi_{T_{1}}\right\rangle+\frac{q^{\beta}-q^{\beta^{\prime}}}{1-q^{\alpha_{1}+\beta_{1}}}\left\langle\varphi_{T_{2}}\right\rangle+\frac{q^{\beta^{\prime}}-q^{\beta}}{1-q^{\alpha_{1}+\beta_{1}}}\left\langle\varphi_{T_{4}}\right\rangle,
\end{align*}
$$

$$
\begin{align*}
& \tilde{Q}_{2}\left\langle\varphi_{T_{2}}\right\rangle-q^{-\beta^{\prime}} \tilde{Q}_{2}\left\langle\varphi_{T_{1}}\right\rangle=-q^{-\beta^{\prime}}\left\langle\varphi_{T_{1}}\right\rangle+q^{-\beta^{\prime}}\left\langle\varphi_{T_{2}}\right\rangle  \tag{6.21}\\
& \quad-\frac{q^{\alpha_{1}+\alpha_{2}-\beta^{\prime}-1}}{1-q^{\alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{2}-1}}\left\{\frac{\left(1-q^{\beta_{1}}\right)\left(1-q^{\beta_{2}}\right)}{\left(1-q^{\beta^{\prime}}\right)}\left\langle\varphi_{T_{1}}\right\rangle+\frac{\left(1-q^{\beta_{1}}\right)\left(q^{\beta_{2}}-q^{\beta^{\prime}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{2}}\right\rangle\right. \\
& \left.\quad+\frac{\left(1-q^{\beta_{1}+\beta^{\prime}}\right)\left(1-q^{\beta_{2}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{4}}\right\rangle\right\},
\end{align*}
$$

$$
\begin{align*}
\tilde{Q}_{2}\left\langle\varphi_{T_{4}}\right\rangle= & \left.\left\langle\varphi_{T_{4}}\right\rangle-\frac{q^{\alpha_{1}+\alpha_{2}-1}}{\left(1-q^{\alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{2}-1}\right.}\right)\left\{\frac{\left(1-q^{\beta_{1}}\right)\left(1-q^{\beta_{2}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{1}}\right\rangle\right.  \tag{6.22}\\
& \left.+\frac{\left(1-q^{\beta_{1}}\right)\left(q^{\beta_{2}}-q^{\beta^{\prime}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{2}}\right\rangle+\frac{\left(1-q^{\beta_{2}}\right)\left(1-q^{\beta_{1}+\beta^{\prime}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{4}}\right\rangle\right\},
\end{align*}
$$

so that

$$
\begin{equation*}
\tilde{Q}_{2}\left\langle\varphi_{T_{2}}\right\rangle-q^{-\beta^{\prime}} \tilde{Q}_{2}\left\langle\varphi_{T_{1}}\right\rangle-q^{-\beta^{\prime}} \tilde{Q}_{2}\left\langle\varphi_{T_{4}}\right\rangle=q^{-\beta^{\prime}}\left\{\left\langle\varphi_{T_{2}}\right\rangle-\left\langle\varphi_{T_{1}}\right\rangle-\left\langle\varphi_{T_{4}}\right\rangle\right\} . \tag{6.23}
\end{equation*}
$$

To compute the formulae for $\tilde{Q}_{1}^{-1}$ and $\tilde{Q}_{2}^{-1}$, one needs the following two lemmas, which can be obtained as in the proof of lemma 5.4.

Lemma 6.3.

$$
\begin{align*}
& \left(1-q^{\alpha_{1}+\beta^{\prime}-\beta-1}\right)\left\langle\frac{\Omega}{t_{1}\left(1-t_{2}\right)}\right\rangle  \tag{6.24}\\
& \quad=q^{\alpha_{1}-1}\left\{\frac{1-q^{\beta^{\prime}-1}}{1-q^{\beta-1}}\left\langle\varphi_{T_{1}}\right\rangle+\frac{1-q^{\beta^{\prime}-\beta}}{1-q^{\beta-1}}\left\langle\varphi_{T_{3}}\right\rangle+\frac{1-q^{\beta^{\prime}-\beta}}{1-q^{1-\beta}}\left\langle\varphi_{T_{5}}\right\rangle\right\} \\
& \left(1-q^{\alpha_{1}+\alpha_{2}-2}\right)\left\langle\frac{\Omega}{t_{1}\left(t_{1}-q^{\beta^{\prime}} t_{2}\right)}\right\rangle  \tag{6.25}\\
& =-q^{\alpha_{1}+\alpha_{2}-\beta^{\prime}-2}\left(1-q^{\beta_{2}}\right)\left\langle\frac{\Omega}{t_{1}\left(1-t_{2}\right)}\right\rangle+q^{\alpha_{1}+\alpha_{2}-2}\left\{\frac{\left(1-q^{\beta_{1}}\right)\left(1-q^{\beta_{2}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{1}}\right\rangle\right. \\
& \left.\quad+\frac{\left(1-q^{\beta_{1}}\right)\left(q^{\beta_{2}}-q^{\beta^{\prime}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{2}}\right\rangle+q^{-\beta^{\prime}} \frac{\left(1-q^{\beta_{1}+\beta^{\prime}}\right)\left(1-q^{\beta_{2}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{4}}\right\rangle\right\}
\end{align*}
$$

$$
\begin{align*}
(1- & \left.q^{\alpha_{1}+\alpha_{2}-2}\right)\left\langle\frac{\Omega}{t_{1}\left(t_{1}-q^{\beta-1} t_{2}\right)}\right\rangle  \tag{6.26}\\
= & -q^{\alpha_{1}+\alpha_{2}-\beta-1}\left(1-q^{\beta_{2}}\right)\left\langle\frac{\Omega}{t_{1}\left(1-t_{2}\right)}\right\rangle+q^{\alpha_{1}+\alpha_{2}-2}\left\{\frac{\left(1-q^{\beta_{1}}\right)\left(1-q^{\beta_{2}}\right)}{1-q^{\beta-1}}\left\langle\varphi_{T_{1}}\right\rangle\right. \\
& \left.+\frac{\left(1-q^{\beta_{1}}\right)\left(1-q^{\beta_{2}-\beta+1}\right)}{1-q^{1-\beta}}\left\langle\varphi_{T_{5}}\right\rangle+q^{1-\beta} \frac{\left(1-q^{\beta_{1}+\beta-1}\right)\left(1-q^{\beta_{2}}\right)}{\left(1-q^{\beta-1}\right)}\left\langle\varphi_{T_{3}}\right\rangle\right\} .
\end{align*}
$$

## Lemma 6.4.

$$
\begin{align*}
\left(1-q^{\alpha_{2}-1}\right)\left\langle\frac{\Omega}{\left(1-t_{1}\right) t_{2}}\right\rangle & =q^{\alpha_{2}-1}\left\{\frac{\left(q^{\beta}-q^{\beta^{\prime}}\right)\left(q^{\beta^{\prime}}-q^{\beta_{2}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{2}}\right\rangle\right.  \tag{6.27}\\
& \left.+\frac{\left(1-q^{\beta}\right)\left(1-q^{\beta_{2}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{1}}\right\rangle+\frac{\left(q^{\beta^{\prime}}-q^{\beta}\right)\left(1-q^{\beta_{2}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{4}}\right\rangle\right\}
\end{align*}
$$

$$
\begin{align*}
(1- & \left.q^{\alpha_{1}+\alpha_{2}-2}\right)\left\langle\frac{\Omega}{t_{2}\left(t_{1}-q^{\beta^{\prime}} t_{2}\right)}\right\rangle  \tag{6.28}\\
= & q^{\alpha_{1}+\alpha_{2}-2}\left(1-q^{\beta_{1}}\right)\left\langle\frac{\Omega}{t_{2}\left(1-t_{1}\right)}\right\rangle+q^{\alpha_{1}+\alpha_{2}-2}\left\{q^{\beta^{\prime}} \frac{\left(1-q^{\beta_{1}}\right)\left(q^{\beta_{2}}-q^{\beta^{\prime}}\right)}{\left(1-q^{\beta^{\prime}}\right)}\left\langle\varphi_{T_{2}}\right\rangle\right. \\
& \left.+\frac{\left(1-q^{\beta_{1}}\right)\left(1-q^{\beta_{2}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{1}}\right\rangle+\frac{\left(1-q^{\beta_{1}+\beta^{\prime}}\right)\left(1-q^{\beta_{2}}\right)}{1-q^{\beta^{\prime}}}\left\langle\varphi_{T_{4}}\right\rangle\right\}
\end{align*}
$$

$$
\begin{align*}
(1- & \left.q^{\alpha_{1}+\alpha_{2}-2}\right)\left\langle\frac{\Omega}{t_{2}\left(t_{1}-q^{\beta-1} t_{2}\right)}\right\rangle  \tag{6.29}\\
= & q^{\alpha_{1}+\alpha_{2}-2}\left(1-q^{\beta_{1}}\right)\left\langle\frac{\Omega}{t_{2}\left(1-t_{1}\right)}\right\rangle+q^{\alpha_{1}+\alpha_{2}-2}\left\{\frac{\left(1-q^{\beta_{1}}\right)\left(1-q^{\beta_{2}}\right)}{1-q^{\beta-1}}\left\langle\varphi_{T_{1}}\right\rangle\right. \\
& \left.+\frac{\left(1-q^{\beta_{1}+\beta-1}\right)\left(1-q^{\beta_{2}}\right)}{1-q^{\beta-1}}\left\langle\varphi_{T_{3}}\right\rangle+q^{\beta-1} \frac{\left(1-q^{\beta_{1}}\right)\left(1-q^{\beta_{2}-\beta+1}\right)}{1-q^{1-\beta}}\left\langle\varphi_{T_{5}}\right\rangle\right\}
\end{align*}
$$

From these two lemmas one can express

$$
\begin{equation*}
\left\langle\frac{\Omega}{t_{1}\left(1-t_{2}\right)}\right\rangle,\left\langle\frac{\Omega}{t_{1}\left(t_{1}-q^{\left.\beta^{\prime} t_{2}\right)}\right.}\right\rangle,\left\langle\frac{\Omega}{t_{1}\left(t_{1}-q^{\beta-1} t_{2}\right)}\right\rangle \tag{6.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\frac{\Omega}{t_{2}\left(1-t_{1}\right)}\right\rangle,\left\langle\frac{\Omega}{t_{2}\left(t_{1}-q^{\beta^{\prime}} t_{2}\right)}\right\rangle,\left\langle\frac{\Omega}{t_{2}\left(t_{1}-q^{\beta-1} t_{2}\right)}\right\rangle \tag{6.31}
\end{equation*}
$$

as linear combinations of $\left\langle\varphi_{T_{1}}\right\rangle,\left\langle\varphi_{T_{2}}\right\rangle,\left\langle\varphi_{T_{3}}\right\rangle,\left\langle\varphi_{T_{4}}\right\rangle$, and $\left\langle\varphi_{T_{5}}\right\rangle$. Since we have

$$
\begin{gather*}
\tilde{Q}_{2}^{-1}\left\langle\varphi_{T_{2}}\right\rangle=\left\langle\frac{\Omega}{t_{2}\left(1-t_{1}\right)}\right\rangle+\left\langle\frac{\Omega}{t_{2}\left(t_{1}-q^{\beta^{\prime}} t_{2}\right)}\right\rangle+q^{-\beta^{\prime}}\left\langle\varphi_{T_{2}}\right\rangle,  \tag{6.36}\\
\tilde{Q}_{2}^{-1}\left\langle\varphi_{T_{4}}\right\rangle=\left\langle\frac{\Omega}{t_{2}\left(1-t_{1}\right)}\right\rangle+\left\langle\frac{\Omega}{t_{2}\left(\mathrm{t}_{1}-q^{\beta-1} t_{2}\right)}\right\rangle+q^{1-\beta}\left\langle\varphi_{T_{5}}\right\rangle, \tag{6.37}
\end{gather*}
$$

we can conclude:
Proposition 8. $\tilde{Q}_{1}^{ \pm 1}\left\langle\varphi_{T_{j}}\right\rangle$ and $\widetilde{Q}_{2}^{ \pm 1}\left\langle\varphi_{T_{j}}\right\rangle, 1 \leq j \leq 3$, are written as linear combinations of $\left\langle\varphi_{T_{1}}\right\rangle,\left\langle\varphi_{T_{2}}\right\rangle,\left\langle\varphi_{T_{3}}\right\rangle,\left\langle\varphi_{T_{4}}\right\rangle,\left\langle\varphi_{T_{5}}\right\rangle$, respectively.

Since $\tilde{Q}_{\beta^{\prime}}^{-1}$ and $\tilde{Q}_{\beta}$ are written by using $\tilde{Q}_{1}^{ \pm 1}$ and $\tilde{Q}_{2}$ as

$$
\begin{gather*}
\tilde{Q}_{\beta^{\prime}}^{-1}=\tilde{Q}_{1}^{-1}\left(\tilde{Q}_{1}-q^{\beta^{\prime}-1} \tilde{Q}_{2}\right) \quad \text { for }\left\langle\varphi_{T_{1}}\right\rangle,\left\langle\varphi_{T_{3}}\right\rangle,  \tag{6.38}\\
\tilde{Q}_{\beta^{\prime}}^{-1}=\tilde{Q}_{1}^{-1}\left(\tilde{Q}_{1}-q^{\beta^{\prime}} \tilde{Q}_{2}\right) \quad \text { for }\left\langle\varphi_{T_{2}}\right\rangle,  \tag{6.39}\\
\tilde{Q}_{\beta}=\tilde{Q}_{1}^{-1}\left(\tilde{Q}_{1}-q^{\beta} \tilde{Q}_{2}\right) \quad \text { for } \quad\left\langle\varphi_{T_{1}}\right\rangle,\left\langle\varphi_{T_{2}}\right\rangle,  \tag{6.40}\\
\tilde{Q}_{\beta}=\tilde{Q}_{1}^{-1}\left(\tilde{Q}_{1}-q^{\beta-1} \tilde{Q}_{2}\right) \quad \text { for }\left\langle\varphi_{T_{3}}\right\rangle, \tag{6.41}
\end{gather*}
$$

we get the following:
Proposition 9. $\tilde{Q}_{\beta^{\prime}}^{-1}\left\langle\varphi_{T_{j}}\right\rangle$ and $\tilde{Q}_{\beta}\left\langle\varphi_{T_{j}}\right\rangle, 1 \leq j \leq 3$, are written explicitly as linear combinations of $\left\langle\varphi_{T_{1}}\right\rangle,\left\langle\varphi_{T_{2}}\right\rangle,\left\langle\varphi_{T_{3}}\right\rangle,\left\langle\varphi_{T_{4}}\right\rangle$ and $\left\langle\varphi_{T_{5}}\right\rangle$ through the formulae (6.38)-(6.41). The latter are expressible as linear combinations of $\left\langle\varphi_{T_{1}}\right\rangle,\left\langle\varphi_{T_{2}}\right\rangle$ and $\left\langle\varphi_{T_{3}}\right\rangle$ through (6.5)-(6.6).

The formulae for $\tilde{Q}_{i}^{ \pm 1}, \widetilde{Q}_{\beta}$ and $\tilde{Q}_{\beta^{\prime}}^{-1}$ give a complete system of contiguous relations for the basic hypergeometric series ${ }_{3} \varphi_{2}$.

Remark. To prove the Theorem we have used asymptotic behaviours of integrals. However it is desirable and is probably possible to give a purely algebraic proof of the

## Theorem.

The author is grateful to M. Kita for useful suggestion of formulating a $q$-analogue of $b$-functions. He is also grateful to the referee for careful reading and several improvements.

## References

[A1] G. E. Andrews, Problems and prospects for basic hypergeometric functions, in Theory and Application of Special Functions (R. Askey, ed., 192-224, Academic Press, Boston, 1975.
[A2] G. E. Andrews, $q$-series: Their development and application in analysis, number theory, combinatorics, and computer algebra, Regional Conference Series in Math. 66, Amer. Math. Soc., 1986.
[A3] K. Аомото, Gauss-Manin connection of integral of difference products, J. Math. Soc. Japan 39 (1987), 191-208.
[A4] K. Аомото, A note on holonomic $q$-difference systems, in Algebraic Analysis (M. Kashiwara and T. Kawai, eds.) Academic Press, Boston, 1989, 25-28.
[A5] K. Аомото, Connection coefficients of Jackson integrals of extended Selberg type, preprint.
[A6] R. Askey, Some basic hypergeometric extensions of integrals of Selberg and Andrews, SIAM J. Math. Anal., 11 (1980), 938-951.
[A7] R. Askey, Beta integrals in Ramanujan's papers, his unpublished work and further examples, Ramanujan Revisited, Academic Press, 1988.
[B] G. Bellardinelli, Fonctions hypergéométriques de plusieures variables et resolutions analytiques des equations algébriques générales, Paris, Gauthiers Villars, 1960.
[G1] G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia of Math. and Its Applications, Cambridge University Press, 1990.
[G2] I. M. Gelfand and M. I. Graev, Hypergeometric functions associated with the Grassmannian $G_{3,6}$, Soviet Math. Dokl. 35 (1987), 298-303.
[G3] I. M. Gelfand and M. I. Graev, Generalized hypergeometric functions on the Grassmannian $G_{3,6}$, preprint translated from Russian into English by T. Sasaki, 1987.
[H] F. Harary, Graph theory, Addison Wesley, Reading, 1969.
[M1] S. C. Milne, A $q$-analogue of the Gauss summation theorem for hypergeometric series in $U(n)$, Ad. in Math. 72 (1988), 59-131.
[M2] K. Mimachi, Connection problem in holonomic $q$-difference system associated with a Jackson integral of Jordan-Pochhammer type, Nagoya, Math. J. 116 (1989), 149-161.
[M3] J. W. Moon, Various proofs of Cayley's formula for counting trees, in A Seminar on Graph Theory (F. Harary, ed.) Holt, Rinehart and Winton, Texas, 1967, 70-78.
[O1] T. Oda, Lectures on torus embedding and applications, Tata Institute Fundamental Research, Bombay, 1978.
[O2] O. Ore, Sur la forme des fonctions hypergéométriques de plusieurs variables, J. Math. Pures et Appl. 9 (1930), 311-326.
[O3] P. Orlik, Introduction to arrangements, mimeographed notes, Univ. Wisconsin, 1988.
[S1] M. Sato, Theory of prehomogeneous vector spaces, written by T. Shintani (in Japanese), Sugaku no Ayumi, 15-1, 1970, 85-157.
[S2] M. Sato, Theory of prehomogeneous vector spaces, Algebraic Part, the English translation of Sato's lecture from Shintani's notes, (translated by Muro), to appear in Nagoya Math. J.
[S3] L. J. Slater, Generalized hypergeometric functios, Cambridge Univ. Press, 1966.
[T] J. Tits, Sur le groupe des automorphismes d'un arbre, Essays on Topology and Related Topics, Mem. dédiés à G. de Rham, Springer, Berlin, 1970.

Department of Mathematics
Faculty of Science
Nagoya University
Nagoya $464-01$
Japan

