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Abstract. In this article projective toric varieties are studied from the viewpoint
of Grόbner basis theory and combinatorics. We characterize the radicals of all initial
ideals of a toric variety X^ as the Stanley-Reisner ideals of regular triangulations of its
set of weights srf'. This implies that the secondary poly tope Σ(s/) is a Minkowski summand
of the state poly tope of X^. Here the lexicographic (resp. reverse lexicographic) initial
ideals of X^ arise from triangulations by placing (resp. pulling) vertices. We also prove
that the state polytope of the Segre embedding of Pr~ι xPs~ι equals the secondary
poly tope Σ(Δr-1 x Δs_ x) of a product of simplices.

1. Introduction. A cornerstone for the interaction between combinatorics and

algebraic geometry is the theory of toric varieties [8], [16] which relates algebraic torus

actions to the combinatorial study of convex polytopes. In the present paper we investi-

gate the class of projective toric varieties from the point of view of Grόbner basis

theory [1], [7], [11], [15], [20], [21]. The methods used to study Grόbner bases here

are combinatorial rather than algebraic. Recent results on regular triangulations and

secondary polytopes [5], [10], [13] will be applied to describe, as explicitly as possible,

the initial ideals with respect to all term orders of a given projective toric variety.

Let s/ = {aι,a2, ' *, an} be a fixed subset of the lattice Zd~ί x {1} with the property

that si linearly spans Rd. A diagonal action of the d-dimensional torus (C*)d on Cn is

obtained by interpreting si as the set of weights. Since the a{ all lie in an affine hyperplane,

we get an induced (C*)d-action on projective space Pn~1. We define the projective toric

variety X^ to be the closure of the orbit (C*) d (l, 1, , 1) in P n l . The vanishing

ideal of X^ is the homogeneous prime ideal

Note that here we allow si to be any set of lattice points, which means that the embedded

toric variety X^ need not be projectively normal.

We shall be interested in Grόbner bases of the toric ideal J^ with respect to an

arbitrary term order on C\y\ : = C[yl9y2, ,j>J. In Section 2 we prove a singly-

exponential (in d) degree upper bound for these Grόbner bases and thus for the

Castelnuovo regularity of J>^. In addition, we construct an explicit universal Grόbner

basis %^ which satisfies this bound.

Our main result is a natural correspondence, to be established in Section 3, between

the distinct Grόbner bases of J^ and the regular triangulations of si. As a corollary

we find that the secondary polytope of si is a Minkowski summand of the state polytope
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In Section 4 these results are illustrated for the example where X^ is the twisted
cubic in P3. Hence s/ consists of four equidistant points on the affine line, and the
state poly tope of J^ is seen to be a planar octagon.

In Section 5 we focus our attention on lexicographic and reverse lexicographic
Grόbner bases of the toric ideal J>^, and we show that these correspond to triangulations
of stf which are obtained by placing and pulling of vertices [12], [13] respectively.

Section 6 deals with the case where stf is the vertex set of a product of simplices
Ar_ι xAs_1. Its toric variety X^aP™'1 is the Segre embedding of Pr~x x F " 1 , and its
toric ideal J>^ is the ideal of 2 x 2-minors of a generic r x ^-matrix. Using results from
algebraic combinatorics [4], [20], we prove that all initial ideals of J^ are square-free.
This implies that the state polytope of J^ equals the secondary polytope Σ(stf). It is
an open problem, suggested by GeΓfand, Kapranov and Zelevinsky [10], to find an
explicit description for the face lattice of this polytope.

2. A singly-exponential degree bound. In this section we estimate the total degree
of the polynomials in the reduced Grόbner bases of a projective toric variety. To begin
with, we recall some results from Grόbner basis theory. For details and further refer-
ences see [1], [7], [11], [15], [20], [21]. Fix a homogeneous ideal J in C[y] =
Clyχ,y2, '' ',ynl, and let "-<" be a term order on C[j>]. The monomial ideal which
is generated by the set {init<(/)|/e./} of leading monomials is denoted init^,/) and
is called the initial ideal of J> with respect to "-<". A finite subset ^ c / is a Grόbner
basis of J (with respect to "-<") provided init^,/) is generated by {init<(#)|0e^}. It is
known (see, e.g., [1], [11], [15]) that for monomials of bounded degree every term order
" < " can be represented by a weight vector ω = (ω1? , ωn)eRn, where the weight of
a monomial y\x ya

n

n equals ω^cn^ + + ωn<xn. Two term orders ω and υ are equivalent
if they define the same initial ideal initω(«/) = initυ(</). The resulting equivalence classes

(2.1) V(S, ω) = {ϋ6/?w|initω(e/) = initυ(./)}

are open, convex, polyhedral cones in Rn. The collection of cones {#(*/, ω)} is finite
and defines a polyhedral fan #"(,/), called the Grόbner fan of J> [1], [15].

PROPOSITION 2.1 (Bayer and Morrison [1]). The Grόbner fan J φ * ) of a homo-
geneous ideal J aC\_y] is strongly polytopal. In other words, there exists a polytope
S^czRn whose normal fan equals

Any lattice polytope Sj having the property of Proposition 2.1 will be called a
state polytope for the ideal J. It is noteworthy that the state polytope itself is derived
from a projective toric variety, namely, from the closed (C*)n-orbit of J in the Hubert
scheme. In fact, there is a canonical family of state poly topes of J coming from the
state polytopes of the Hubert points of J in each degree.

A polynomial of the form yct—yβ (the difference of two monomials) is called a
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binomial. A binomial ideal is an ideal which is generated by binomials. It is known that

the word problem for commutative semigroups can be solved by (and is in fact equivalent

to) computing Grόbner bases for binomial ideals. Note that each step in Buchberger's

Grόbner basis algorithm (forming an S-polynomial or normal form reduction) takes

binomials to binomials.

LEMMA 2.2. Let 3F be a set of binomials in C [ j ] . Then the output and all

intermediate polynomials in a Grόbner basis computation for £F are also binomials.

Although binomial ideals have a very special structure, they behave as bad as

arbitrary ideals when it comes to computing Grόbner bases. The famous doubly-

exponential degree lower bound of Mayr & Meyer [14] is attained for a family of

binomial ideals. Since the toric ideal J>^ is binomial (cf. Lemma 2.5), it is natural

to ask whether the doubly-exponential degree bound can be improved for the subclass

of toric ideals. The affirmative answer is given by the following result.

THEOREM 2.3. The total degree of a polynomial in any reduced Grδbner basis of

J>^ is at most n(n — d)Ad, where A is the maximum of the Euclidean norms \aί\, * , | an |.

It has been pointed out by M. Stillman (private communication) that Theorem 2.3

implies an upper bound of n2(n — d)Ad for the Castelnuovo regularity of the toric ideal

J>^. An unpublished result of D. Mumford states that the Castelnuovo regularity of

any smooth projective variety has order at most bilinear in the degree and dimension.

For smooth projective toric varieties this implies the upper bound 0{dAd~1).

In order to prove Theorem 2.3, we first derive some basis facts about toric ideals.

Consider the vector space of affine dependencies on «s/,

(2.2) D(st): = {{λuλ29 - ,λ l l)eJrμ ifl 1 + λ2a2+ +λnan = 0} ,

and let Dz(s^): = D(s/)nZn denote the Z-module of integral affine dependencies.

OBSERVATION 2.4. Let OL, β be nonnegative vectors in Zn. Then the binomial ya — yβ

is contained in the toric ideal J^ if and only ifoc — βeDz(s/).

Note that every vector oceRn can be written uniquely as a difference α = α + — α_

of two nonnegaitive vectors α + , α_ with disjoint support.

LEMMA 2.5. The toric ideal J^ is generated by {ya+ —ya~ | a,eDz(s/)}.

PROOF. It follows from Observation 2.4 that the ideal (ya+— ya~ \oceDz(s/)y is

contained in J>^. In order to show the reverse inclusion, we consider the binomial ideal

(2.3) /s, = <yi-χa\y2-^ '-,yn-**>

in the (n + ί/)-variate polynomial ring C[x, y\. The toric ideal J^ = /^ n C[j>] is obtained

from^^ by eliminating the x-variables. Thus the reduced Grδbner basis of f^ with

respect to the lexicographic term order y1<y2< ''' <yn~<xι< ''' ~<xd contains a
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reduced Grόbner basis for J^. Let g be any element of that Grόbner basis. By Lemma

2.2, g is a binomial, say g=ya — yβ. By Observation 2.4, we have oc — βeDz(s/). In order

to complete the proof, we need to show that the nonnegative integer vectors α and β

have disjoint support. Suppose they did not. Then there exists a variable yt which divides

both ya and yβ. Then g/yt is also a polynomial contained in the toric ideal ^ . This is

a contradiction to g being an element of a reduced Grόbner basis for J^. •

PROOF OF THEOREM 2.3. Write eί9 , en for the standard basis in Rn. An integral

affine dependency λ = λ1eι + + Λ,πeπ e Z>Z(J/) is called elementary if

(1) Λ, is non-zero,

(2) 2 is primitive lattice point, i.e., g.c.d.(Λ,l5 Λ2> ' ' *> ̂ «)= U a n d

(3) its support supp(i): = {/|^7^0} is minimal with respect to inclusion.

This the elementary affine dependencies are the scaled elementary vectors [17] of the

(n — (i)-dimensional linear subspace D(stf) of Rn. Using Cramer's rule of linear algebra,

we find that, for any given elementary affine dependency λ, there exist indices

*Ί> h> '' Ί id + i a n d a multiplier ceZ such that

(2.4) c Λ= Σ ( - i y

By Hadamard's inequality, this implies

(2.5) i

Now suppose that f(y) is an element of the reduced Grόbner basis of ^ with respect

to some term order on C\_y]. We need to show that the degree of f(y) is less than

n(n — d)Ad. Lemma 2.2 implies that f(y) is a binomial, and, with the same argument as

in the proof of Lemma 2.5, we find that f(y)=ya+ —ya- for some affine integral

dependency α e Dz(srf).

Consider the set of elementary vectors in the (n — ί/)-dimensional vector space Z)(J/).

It is known [17] that aeDz(stf)czD{srf) can be expressed as a conformal linear

combination

(2.6) * = q1λ
1+q2λ

2+'-+qn-dλ"-d

of n — delementary integral affine dependencies λ1, λ2, , λn~d. The sum in (2.6) being

conformal means that ql9 '-',qn-d are positive rational numbers and that no

cancellations occur in any coordinate slot. Equivalently,

(2.7) α + = 0 1 H + + ? B _ d λ l Γ d and α_ =qiλl + • • +qn-dλ
n-d.

We will next show that all coefficients qί9 q2, * , qn-d in the representation (2.6)

must be less or equal to 1. Suppose on the contrary that qi > 1. Then the nonnegative

integer vector α+ is componentwise larger than the nonnegative integer vector λ\, and

similarly α_ is larger than λι_. In other words, the monomial ya+ is a proper multiple
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of the monomial yλ*+, and ya~ is a proper multiple of yλ~. Hence the binomial

f(y)=ya+ — y*- can be reduced by yχι+ — yχι~ e / ^ . This is a contradiction to the

assumption that f(y) belongs to a reduced Grobner basis of J^.

We have shown that 0 < ^ 1 ? q2, , qn-d<\. For they-th coordinate of the vector

equation (2.6) we find

(2.8) \aj\<q1\λ)\ + q2\λ]\ - +qn_d\λyd\<\λ)\^λ]\' - - +\λyd\<{n-d)Λd .

Hence the degree of f(y) is bounded above by n(n — d)Ad. •

This result yields an explicit finite universal Grobner basis ^ for the toric ideal

J^. Here "universal" means that ^ is a Grobner basis of J^ for all term order on

C[j>] simultaneously [21]. Consider the (n — d)-dimensional zonotope <^: = [0, A*] +

[0, Λ2] + + [0, Am] which is generated by the set {λι, λ2, , λm) of all elementary

integral affine dependencies in Dz(<$/)czRn. We call S^ the elementary zonotope of srf.

It follows from our proof of Theorem 2.3 that the lattice points in the elementary

zonotope define a universal Grobner basis.

COROLLARY 2.6. The set%^: = {ya + —ya-\oce£>

s/n Zn} is a universal Grobner basis

for J*.

It must be remarked that the universal Grobner basis exhibited here is not minimal.

An algorithm for computing a minimal universal Grobner basis for any projective

variety has been given by Bayer and Morrison [2].

Given two poly topes Po and Pί9 we say that Pί is a Minkowski summand of Po

provided P0 = λP1+P2 for some poly tope P2 and λeR + . Recall from [11] that the

Newton polytope of a finite set of polynomials equals the Minkowski sum of the

individual Newton polytopes. By [11, Corollary 3.23], the state polytope S^ of the

toric ideal is a Minkowski summand of the Newton polytope of the universal Grobner

basis °U^. These observations imply the following structure theorem for state polytopes

of toric varieties.

PROPOSITION 2.7. The state polytope S^ of the toric ideal J^ is a Minkowski

summand of the derived zonotope £{[α + , # - ] \oceS^nZn}.

Proposition 2.7 follows from Corollary 2.6 because the Netwon polytope of the

binomial ya+ —ya~ is the line segment [α + , α_] .

3. Regular triangulations and initial ideals. In order to state our main result, we

need to recall the definition of a regular triangulation. (For details see [5], [10], [13].)

A polyhedral subdivision A of stf is a polyhedral subdivision of the (d— l)-polytope

conv(j^) with vertices in s/\ If all cells in A are simplices, then A is a triangulation of

es/. Every vector ω = {ωu , ωn)eRn induces a subdivision Aω of s/ as follows. Con-

sider the convex d-polytope Pω:=con\{(a1,ω1),(a2,ω2), , (an, ωn)} which is ob-
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tained by lifting si according to the height vector ω. The lower envelope of Pω is a

polyhedral (d— l)-ball which maps bijectively onto conv(j/). Let Aω be the image under

this projection.

If the height vector ω is chosen sufficiently generic, then Δω is a triangulation of

si. A triangulation of si is called regular if it equals Aω for some ω. For any regular

triangulation A of s#', the set ^(si, A): = {ω e R n | Aω = A} is a convex polyhedral cone.

The cones ^(si, A), where A ranges over all regular triangulations, are the maximal

cells of a polyhedral fan 2F(si\ called the secondary fan of si. It was shown in [10]

that there exists an (n — d)-po\y tope Σ(si) in /?", called a secondary poly tope, whose

normal fan equals the secondary fan 3F(si\ See also [5] for an alternative geometric

construction.

The Stanley-Reίsner ideal IΔ of any simplicial complex A on {1, 2, , n} is the

ideal in C[yuy2, ' *, J>J generated by all monomials of the form yτiyτ2' -yτι where

{̂ i, τ 2 , * *, τ j is not a face of A [18]. We establish the following correspondence

between the regular triangulations of si and the distinct Grόbner bases of the toric

ideal J>^.

THEOREM 3.1. Let ωeRn be a weight vector which defines a term order for the

toric ideal J^. Then the polyhedral subdivision A=Δω is a regular triangulation of si

whose Stanley-Reίsner ideal IΔ equals the radical of the initial ideal initω(J^).

We obtain the following two corollaries from Theorem 3.1.

COROLLARY 3.2. The Grδbnerfan ^(J>J) is a refinemen t of the secondary fan !F(si).

COROLLARY 3.3. The secondary poly tope Σ(si) is a Minkowski summand of the

state poly tope Sj^ of the toric ideal J^.

Corollary 3.2 follows directly from the definitions of the secondary fan and the

Grόbner fan. Corollary 3.3 follows from Corollary 3.2 because the normal fan of a

polytope Pγ refines the normal fan of another polytope P2 if and only if P2 is a

Minkowski summand of Px [11, Lemma 2.1.5].

PROOF OF THEOREM 3.1. Let us first suppose that A = Aω is a triangulation, and

thus ω is in the interior of ^(s/, A). We will show that the ideal IΔ is contained in

rad(initω(jy). Let τ = {τ l5 τ 2 , , τ j be a non-face of A, i.e., yτχyZ2' yτι e IA. Then there

exists a face σ = {σu σ2, * , σk} of A such that

relint conv{aσi, aσ2, • ,aσj n relint conv{ατi, aX2, , aτι} # 0 .

Pick positive integers λl9 λ2, , λk and μu μ2, , μι such that

(3.1) λιaσι + λ2aσ2+ - - +λkaσk = μ1aτι+μ2aτ2+ - - +μxaτχ.

By Observation 2.4, the binomial f(y):=yμiyμ2 -y

μι-yλίyλ2 yλk [s contained in

the toric ideal J^. Since σ is a face while τ is not a face of A, we have the inequality



GROBNER BASES OF TORIC VARIETIES 255

<Σlj^iωτjtij' Therefore iτάtω(f)=y^" y», and consequently ytίyτ2- yτιe
J^)).

Conversely suppose that rad(initω(j^)) is not contained in IΔ. Then there exists a
binomial f(v)=vμi' * 'Vμι — vAl* * 'Vλk in the toric ideal «/rf such that τ is a face of zl
and yμ[ j / 1 is the leading monomial of f(y). This means that £ i = x ω ^ <Σj= 1 ωτ,μj>
which is a contradiction to ω e ^ ( i , zl). Hence rad(initω(t/^)) = /J.

Suppose now that ω is contained in the common boundary of two cones ^(si, Δ)
and <€(si, zl ')• Then we can find disjoint faces σ of A and τ of Δ' which intersect in si.
Considering the binomial f(y) e J^ as above, this implies that the weight vector ω gives
a tie between the two monomials of /(y).

We finally suppose that ωeRn is any vector which defines a term order for the
toric ideal J^. We have shown that ω lies in the interior of a unique cone ^(s/9 Δ).
This containment remains valid if ω is replaced by an equivalent term order, and
therefore we have ^ ( ^ , ω)^^(j/, A). Clearly, Δ = Δω is the regular triangulation induced
by the height vector ω. We have seen that under this assumption, rad(initC0(e/af)) = /J.
This completes the proof of Theorem 3.1. •

4. An Example: the twisted cubic in P3. In this section we illustrate our results
by computing the Grόbner fan and state poly tope of a toric curve in 3-space. Calculations
of the state polytope of the twisted cubic in this and other coordinate systems were
also presented by Bayer and Morrison at the 1988 Sundance Conference (see [2]).

The twisted cubic A^<=P3 is the 1-dimensional projective toric variety defined by
four equidistant points on the affine line, say, s/ = {(0, 1), (1, 1), (2, 1), (3,1)}. Its vanish-
ing ideal, the toric ideal «/̂ , is the kernel of the ring map

C[α, b, c, d] -• C[x l 9 x2] j a\-+x2, b\-^x1x2, c\-^xjx2, dv-+x\x2.

(Here we use the variable names a, b, c, d rather than yu y2, j 3 , >>4.) I
n terms of

generators, the ideal of the twisted cubic can be written as

J^ = (ac-b\ ad-be, bd-c2} .

In the sequel we identify the variable a with the point (0, 1), b with (1, 1), c with (2, 1),
and dwith (3, 1).

The set si has four triangulations which are all regular. These triangulations are,
in terms of their maximal simplices,

Δ1 = {ab,bc,cd} , Δ2 = {ac, cd} , Δ3 = {ad} , ΔA = {ab,bd] .

Using the methods of [5], [10], we see that the secondary polytope Σ{si) is a quadran-
gle in R4 with vertices

^ = ( 1 , 2 , 2 , 1 ) , φA2 = (2, 0,3,1), 0J3=(3,O,O,3), 0 J 4 = (1, 3, 0, 2).

So, the maximal cells of the secondary fan J%s/) are the cones of inner normals of Σ(si)\
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x)= {(ω1? ω 2, ω 3, ω 4 )e/? 4 :ωι — 2ω2 + ω 3 >0, ω 2 — 2ω3 + ω 4 >0}

l 2)={(ω i? ω2> ω3> ω 4 )G/? 4 :ω 1 —3ω3 + 2ω 4 >0, — ω1 + 2ω2 — ω 3 >0}

3 )={(ω l 5 ω 2, ω 3, ω 4 )e/? 4 : — 2ω1 + 3ω2 —ω 4 >0, — ω x + 3ω3 + 2ω 4>0}

4) = {(ω1, ω 2, ω 3, ω 4 )e/? 4 : — ω 2 + 2 ω 3 — ω 4 > 0 , 2ωx — 3ω2 + ω 4 >0} .

It can be shown that the following polynomials form a universal Grόbner basis for J^\

% = {ac-b2, ad-bc, bd-c2, ad2-c\ a2d-b3} .

Up to equivalence, there are eight term orders for the ideal J^. For each term order

we list a representative weight vector ωe/? 4, its initial ideals i n i t ^ ^ ) , and its radical

(1) ω = (l, 0, 0, 1), init^J'^) = (ac, ad, Ad>, rad(initω(^)) = (ac, ad, bά} = IΔl ,

(2) ω = (1, 1, 0, 2), initω(«/J = (ab, A2, A</>, rad(initω0/J) = <A, ̂ > = /^ 2,

(3) ω = (0, 2, 0,1), init^J^) = (ad2, A 2, Ac, Ad>, rad(initω(J^)) = (b, ad} = IΔl,

(4) ω = (0, 2, 1, 1), imiω(J^) = (b2, be, bd, c3>, rad(initω(^)) = <A, c> = / J 3 ,

(5) ω = (0, 1, 1, 0), i n i t j y j = <A2, Ac, c2>, rad(initω(j^)) = (b, c> = / J 3 ,

(6) ω = (1, 1, 2, 0), initJJ^) = <αc, A3, Ac, c2>, radίinit j^)) = (b, c> = / J 3 ,

(7) ω = (1, 0, 2, 0), initω(,/^) = <αc, a2d, be, c2>, radOnit^e/^)) = (ad, c> = / J 4 ,

(8) ω = (2, 0, 1, 1), iniU/rf) = <αc, ad, c2>, rad(initω(j^)) = < ^ , c> = / j 4 .

The Grόbner fan ^{JJ) has eight maximal cones and is a refinement of the secondary

fan ^(s/). For instance, the cone ^(stf, Δ2) consists of the two Grόbner regions given

in (2) and (3). The quadrangle Σ(s/) is a Minkowski summand of the state polytope

of J^, an octagon with normal fan

5. Lexicographic and reverse lexicographic term orders. In this section we show

that the most prominent G r ό b n e r basis term orders correspond to the most prominent

triangulations. Fix a sign vector σ = (σί, •• ,σ I I )e{ —, + } " and fix a permutat ion

π = ( π 1 ? π 2 , , πn) of {1, 2, •••,«}. We define the (σ, π)-lexicographic term order on the

polynomial ring C\_yu , yn~\ by saying that yl^yl*2 - - -yι^n is larger than yJ

π\yJ

π

2

2' -yJ^n

if, either /t + + in >j\ H- +jn, or if /t + + in =j\ + +jn and the first non-zero

entry in the vector (σ1(i1—j1), o2(i2— j 2 ) , *, σn(/n~7n)) *s positive. In the special case

where σ = ( + , + , + , • • • , + ) we obtain the degree lexicographic order induced by

yni>~yπ2>'''' ^ Ά n ' a n ( ^ m t n e c a s e w n e r e σ = ( —,—, — ,•••,—) we obtain the reverse

lexicographic order induced by yπι<yπ2< ' ' ' <yπn-

In the following we fix an affine set s/czZd and its toric ideal J^a C\_yu , j j .

Then the (σ, π)-lexicographic term order can be represented by the weight vector

ω = Σn

i=ίσiR
i eπ. where R»0 is a sufficiently large real number.

Lifting the affine set s/ according to the height vector ω corresponds to the

lexicographic extension defined by the string [π^1, π 2

2 , , πσ

n

n~\ in the dual oriented
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matroίd to si (see [6]). (Note that dual oriented matroids correspond to Gale transforms

of polytope theory [13] and that lexicographic extensions are called principal in [3].)

The resulting triangulation A(σ, π) = Δω of si depends only on the oriented matroid.

We call A(σ, π) the (σ, π)-lexicographic triangulation of si. The following is a direct

consequence of Theorem 3.1.

PROPOSITION 5.1. The radical of the initial ideal of J^ with respect to the

(σ, π)-lexicographic term order is the Stanley-Reisner ideal of the (σ, π)-lexicographic

triangulation Δ(σ, π) of si.

A geometric description of the lexicographic triangulation Δ(σ, π) is given in [13,

Section 2]. If we assume for simplicity that s/ = {aί, a2, , an} is in general position

and that π = (l, 2, •••,«), then this description specializes as follows:

(1) If n = d, then A(σ, π) consists just of the simplex (aί9 a2, , ad).

(2) \ϊn>d and σ1=—, then A(σ, π) is the triangulation of si obtained by joining

the point a1 with every face of the simplicial polytope P.

(3) If n>d and σx = + , then Δ{σ,n) consists of the (inductively constructed)

lexicographic triangulation A(σ\σ1,π\π1) of si' = {a2, ' ' *, an} plus all

simplices (al9 ah, , aik) such that {ah, , aik\ is a face of conv(j/') visible

from a1.

The operations (2) and (3) are known in polytope theory as placing and pulling of

vertices. Of particular importance are the special cases where σ is all positive or all

negative. I fσ = ( + , + , + , , + ) then Δ(σ, π) is the triangulation of si obtained by

placing vertices in the order an, an_x, •, aί. If σ = ( —, —, —, , —), then A(σ, π) is

the triangulation of si obtained by pulling vertices in the order al9 a2, , an. These

canonical triangulations have been considered by many authors, including [3], [12],

[19].

COROLLARY 5.2. Under the correspondence of Theorem 3.1, the lexicographic

Grδbner bases of the toric ideal J^ correspond to triangulations by placing vertices\ and

the reverse lexicographic Grδbner bases correspond to triangulations by pulling vertices.

We close this section with an example of a 2-dimensional toric variety in P5. All

initial ideals have been computed using the computer algebra system MACAULAY.

EXAMPLE 5.3. Let <stf = {a,b,c,d,e,f}^Z5 where α = (0, 4, 1), ft = (7, 3,1), c =

(4, 5, 1), d=(0, 0, 1), έ? = (3, 2, 1), / = (4, 0, 1). Thus si is a pentagon in the affine plane

with edges ad, df, fb, be, ca and the point e in its center. As in Section 4, we identify

each point with a variable via the ring map C[α, ft, c, d, e, / ] -• C[x 1 ? x2, x 3 ] ,

whose kernel is the toric ideal </ .̂ We fix the permutation π = (a, ft, c, d, e, / ) .

First consider the sign vector σ i = ( + , + , + , + , + , + ) . The (σl9 π)-lexicographic
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term order on C\_a, b, c, d, e, /] is the degree lexicographic order induced by the variable

ordering a>b>c>d>e>f. This term order is represented by the weight vector

ωλ = (R5, R4, R3, R2, R, 1) for R»0 sufficiently large. The initial ideal initωi(J^) equals

<c8d5f7, be11, bc3d3f2, b2de2, b3cd4, b5d5, ae4f4, ae6f,

ae8,acf3,ab,a2f3,a2e5f,a3e4f}.

Its radical, rad(initωi(J^)) = <feβ, bd, ae, ab, af} = IAiσuπ) is the Stanley-Reisner ideal of

the triangulation A(σ1,π) = {acd,bcf,cef,cde,def} by placing vertices in the order

/, e, d, c, b, a.

The choice R = 4 is large enough for the (σ1, π)-lexicographic triangulation, but it

is not large enough for the (σ l 5 π)-lexicographic term order. For ω 2 = (1024, 256, 64,

16, 4, 1) the initial ideal initω2(</^) becomes

( c V 2 / 5 , bc3d3f2, b2de2, b3e13, b3cd4, b4d5, ae6f, ae8, acf3, ab, a2f3, a2e5f, a3e*f}

whose radical is still IΔ{σun) = (Jbe9 bd, ae, ab, af}.

Note that a different choice of sign vector may still result in the same triangula-

tion. For σ 3 = ( + , + , + , - , - , - ) and ω 3=(1024, 256, 64, - 1 6 , - 4 , - 1 ) we

get

i n i t ω 3 ( ^ ) =

(c5dψ, bc3d3f2, b2de2, b3e13, b3cd*, b5d\ ae4f\ ae6f, ae8, acf3, ab, aψ, a2e5f, a3e4f)

whose radical is still IΔ(σuπ) = (]be, bd, ae, ab, af}.

Let us now look at the reverse lexicographic term order induced by the variable

ordering a<b< <f. This is the (σ4, π)-lexicographic term order for σ 4 = ( —, —,

— , — , — , — ) , and it is represented by the negated weight vector ω 4 : = — ω1. We compute

initω4(SJ = <b2c2d4, bc3d4, c4d4, b4d5, b3cd5, ce, bde3, de4, e9, eηf, c4d3f2, c2f3} .

Its radical, rad(initω4(J^)) = <cd, bd, e, cf}, is the Stanley-Reisner ideal of the

triangulation A(σ4, π) = {abc, abf, adf) by pulling vertices in the order a, b, c, d, e, f.

We finally consider the (σ5, π)-lexicographic term order given by the sign vector

σ5 = ( + , —, + , + , + , +) . Here the radical of the initial ideal equals <e, cf, af, ab}. This

is the Stanley-Reisner ideal of the triangulation A(σ5,π) = {acd,bcd,bdf}, which is

obtained by first placing a in s/ and afterwards pulling b in {b, c,d,e, / } .

6. On products of simplices. An important toric variety is the Segre embedding

of the product of projective spaces Pr~x x P 5 " 1 into P " " 1 . Its set of weights is the

point configuration srf = {ei®e'jeZr + s\ί=\, , r ; y = l , ,s], where eu ,er

denotes the standard basis of Rr and e\, , e's denotes the standard basis of Rs. Thus

s/ consists of the vertices of the product Δr_ι x Δs_γ of a regular (r— l)-simplex with

a regular (s— l)-simplex.

Let C [ Γ ] be the polynomial ring on a generic (r x ^-matrix Y=(yij). The toric
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ideal J^ is the kernel of the ring map

C[T\^>C[xu '"9xr9x'ί9 -',x's] , y^Xi x),

and it is generated by the 2 x 2-minors yikyji—yuyjk of Y. For a combinatorial study of

the determinantal ring

we refer to [4] and [20]. In this section we prove the following result.

THEOREM 6.1. For any term order ω on C [ F ] , i n i t ω ( ^ ) is a square-free monomial

ideal.

Using the results of Section 3, this implies a combinatorial characterization of the

Grόbner fan and state poly tope of the ideal J^.

COROLLARY 6.2. The state poly tope S^ of the 2 x 2-determinantal ideal J>^ equals

the secondary poly tope Σ(s/). Hence the distinct Grόbner bases of J^ are in one-to-one

correspondence with the regular triangulations of the product of simplices Ar_x x As_ι.

Recall that the f-vector of a ^-dimensional simplicial complex A is the vector

f(A) = (fo(A), fi(A), , fd(A)) where f(A) denotes the number of /-dimensional faces

of A [18]. The key ingredient in our proof of Theorem 6.1 is the following result due

to Billera, Cushman and Sanders [4, p. 387] (see also [19, Corollary 2.7]).

LEMMA 6.3. All triangulations of Ar_1 x As_ι have the same f-vector.

For the purposes of this section, we need the following reformulation of Lemma 6.3.

LEMMA 6.4. Let A and A be any two triangulations of Ar_1 xAs_1. Then their

Stanley-Reisner ideals IΔ and /j have the same Hubert function.

Lemma 6.4 follows direcly from Lemma 6.3 because the Hubert function of the

Stanley-Reisner ideal of any simplicial complex can be read off from its /-vector (see

[18]). We will now describe a specific regular triangulation of a product of simplices

(see [4] and [9, page 67]). Let ω = (ω 1 1 ? ω 1 2 , , ω r s) where ωij = Ri(s~j) for some large

R»0. This height vector induces the staircase triangulation Aω whose maximal cells are

or

These simplices are indexed by the staircase paths through the matrix Y starting at

yίί = yhh and ending at yir+s_ljr+s_1=yrs. The following lemma is a special case of the

results in [20].

LEMMA 6.5. The weight vector ω defines a term order for J^ , and the set of

2 x 2-minors of Y is the reduced Grδbner basis with respect to ω. This implies
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i n i U ^ ) = rad(initJJ^)) = IAω = <{yikyβ\i<j andk>l}} .

PROOF OF THEOREM 6.1. Let ώeRrs be any term order for J^9 and let A be the
corresponding regular triangulation of Ar_γ x As_1. By Lemma 6.4, its Stanley-Reisner
ideal /j has the same Hubert function as the ideal IΔω in Lemma 6.5. By a well-known
result of Grόber basis theory, the homogeneous ideal J^ and all its initial ideals have
the same Hubert function. This implies that /j and initώ(J^) have the same Hubert
function. On the other hand, /j equals the radical of initώ(J^) by Theorem 3.1. But an
ideal can have the same Hubert function as its radical only if it is equal to its radical.
Hence

is square-free. This completes our proof of Theorem 6.1. •

It is an open problem due to GePfand, Kapranov & Zelevinsky [10] to find an ex-
plicit description of all triangulations of Ar_x x As_1. As an illustration for this ques-
tion, we give a lexicographic triangulation of A 2 x A 2 which is not a staircase triangu-
lation.

Let v denote the lexicographic term order on C[ F] induced by the variable ordering

Then

* 711^32, JΊlJ>33, ^12^23^31, JΊ^SS* ^13^22, ^21^33, ^22^31* ̂ 22^33) •

The corresponding lexicographic triangulation equals

^v = {^11^12^13^21731, ^12^13^21^31^32, ^12^1 3721^23^32,

712721722723732,

This triangulation is not isomorphic to any staircase triangulation of A2 x A2 because
no vertex ytj lies in all six 4-simplices. This example also shows that the 2 x 2-minors
of a 3 x 3-matrix are not a universal Grόbner basis.
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