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Abstract. This paper solves the rigidity problem for branched superminimal

immersions in complex projective spaces. Bertini's theorem and Chow varieties in

algebraic geometry as well as results on Teichmϋller spaces and the deformation theory

of holomorphic maps and used.

1. Introduction. The rigidity phenomenon of superminimal surfaces in CPn was
studied by the first author in [2]. One sees that certain classes of nonsingular plane
algebraic curves as well as their quadratic transformations do generate rigid
superminimal immersions in CP2. It was also proved that superminimal immersions
generated by a generic rational curve in CP2 of any degree is rigid. For superminimal
immersions generated by plane cubics, rigidity up to finiteness was shown. These
supporting evidences lead naturally to the question: Is an arbitrary superminimal sur-
face in CPn rigid?

Following the line of thought in [2] together with further use of algebraic geometry,
we are able to solve positively the above rigidity problem under general conditions.
More precisely, we have the following:

THEOREM 1. Any compact branched superminimal immersion M-±CPn is rigid up

to finiteness. In other words, there are at most finitely many such immersions in CPn which

are isometric to the first one but mutually inequivalent under the isometry of CPn.

Furthermore, the number of possible inequivalent immersions is bounded by a constant

depending only on the area of M.

THEOREM 2. Let f: M-+CPn be any holomorphic map, where M is a compact

Riemann surface. To a generic A in PGL(n -f 1, C) regarded as a real algebraic variety,

all the branched superminimal immersions generated by Af are rigid.

Slightly more general versions of the above theorems can be found at the end of
Sections 4 and 5. When n = 2, letting the Riemann surface to vary in the moduli space,
we obtain:

THEOREM 3. Branched Superminimal immersions of genus g, degree d and area mπ
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in CP2 form an analytic space with a natural action of PGL(3, C), which contains a real

Zariski open dense set consisting of rigid superminimal surfaces. Moreover, this Zariski

open dense set intersects each orbit of the PGL(3, C) action in a real Zariski open dense

set of the orbit.

Our approach is motivated by an argument of [2], where the generic rational
curves in CP2 was treated. (The proof of Lemma 2 in [2] is incomplete. Although the
present paper supersedes it, see the last remark in Section 6.) Let/, g: M^CP2 be two
plane curves which generate branched superminimal immersions df and dg, and let F,
G be two global meromorphic lifts of/and g into C3. When d/is isometric to dg, it
was proved in [2] that

where r is some meromorphic function, and || | |2 is the Hermitian norm of C3. To
prove the rigidity for df it suffices to assert | |F | | 2 = ||G||2. When M is the Riemann
sphere, one can choose F, G to be polynomials in z. If \\F(z)\\2 = (F(z), F(z)} is regarded
as a polynomial of two independent variables z and z, the unique factorization theorem
of the polynomial ring C[z, z] gives the rigidity if both ||F(z)||2 and \\F{z) ΛF'(Z)\\2

are irreducible. This was the approach adopted in [2].

In this paper, we will consider M of arbitrary genus g. Choose a global meromorphic
lift of/ now denoted/ One can interpret | | / | | 2 as an algebraic function over Mx M.
Since the ring of algebraic functions lacks unique factorization in general, one studies
instead the zero divisor Nf of the function | | / | | 2 and applies the unique factorization
theorem for divisors. It can be prove that Nf determines / up to unitary equivalence.
With this Nf, we obtain: A. Unique factorization of Nf => rigidity up to finiteness; B.
Quantitative properties of Nf => numerical estimate of the "finiteness"; C. Nf being
prime => rigidity. A and B immediately give Theorem 1 and Theorem Γ in Section 4.
C will lead to Theorem 2, Theorem 2' of Section 5 and Theorem 3 in Section 6.

To prove Theorem 2, one first proves that NAf is prime for a generic projective
transformation A e PGL(n + 1, C) (generic in the sence of real algebraic variety); since
"being prime" is an open condition and PGL(n+ 1, C) is irreducible, it suffices to find
a single Ao such that NAof is prime. Such an Ao is furnished by Bertini's theorem. One
then proves that N{Af)k are generically prime for all the λ>th associated curves (Af)k of
Af. The curve/,_! is taken care of by the duality between CPn and its dual space
(CPn)Λ. The case of a general fk is reduced to the case offn^ί by a suitable projection
π: CPn-^CPk+1. Theorem 3 then follows from Theorem 2 and the application of the
theory of Teichmuller spaces and the deformation theory of holomorphic maps.

2. Preliminaries.

1. Superminimal surfaces in CPn. Given a compact Riemann surface M and a
nondegenerate holomorphic m a p / : M^CPn, let F(z) = (F0(z), ..., Fn(z)) be a local
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holomorphic lift of/into Cn + 1. The Gram-Schmidt process applied to the derivatives
F, F\ ..., F{k) yields a quantity dkF which is perpendicular to F, F\ ..., F ( k ~ υ . The
projectivization of dkF defines <3k/ the branched superminimal immersion of location k
generated by the holomorphic curve/. Let/k be the /t-th associated holomorphic curve
of/in CPn\ where

«•<:;:)-••

It is shown in [3] that the induced metrics satisfy

(2.2) ( W < , >„•=/?-1< , > C P — +/?< , >CP *

In particular (2.2) implies that the holomorphic map

(2.3) /»_, ®fk : M
f^άcP»>-'xCP»* S es r e i m b e d di"f c ^ - ι + D(-*+D-i

has the same induced metric as dkf. For later purpose, let/f < , ̂ cp^ — cilds2, where ds2

is any fixed metric consistent with the conformal structure of M. Then we have
q_1=qn — 0, qkφ0 for 0<k<n—l by the nondegeneracy of/in CPn, and

(2.4) Δ l o g q k = K+ 2(q2,x + q2

k +, -2q2

k),

where Δ and K are the Laplacian and the Gaussian curvature of the metric ds2.

2. Chow varieties and Bertini's Theorem. Consider the set of irreducible projec-
tive varieties I c CPL of fixed degree d and dimension k. It can be proved (cf. [6][11])
that this set, denoted CL > M, may be given the structure of a quasi-projective variety.
Moreover, one can add to this set all the formal sums X=m1X1 + +mιXh where
each Xt has degree d{ and d=mιd1 + +m^ z . The formal sums X may be viewed as
reducible subvarieties of degree d. The enlarged set denoted by CLXd is a projective
variety which contains CUkd as a Zariski open set. We call both CLkά and CLχd Chow
varieties.

To prove Theorem 3 in Section 6, one needs to prove that a specific set of divisors
NfeMx M is generically prime, where /varies in a family of holomorphic maps from
compact Riemann surfaces M to CPn. This will be done by an argument similar to the
one for Theorem 2 outlined at the end of Section 1. The fact that M itself also varies
in the Riemann moduli space Mg can be handled by a result of Teichmuller theory
which enables one to realize all the NfeMx M as curves in a common projective space.
Chow varieties then furnish the conceptual framework for the rest of the arguments.

As we will see, in the proof of Theorem 2 the set of Nf is contained in a fixed
linear system, Bertini's Theorem suffices for the arguments there (cf. [6]):

BERTINI'S THEOREM. Let V be an irreducible subvariety of dimension > 2 in CPn,

and let L be the linear system on V defined by the hyperplane cut. Then the prime elements
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form a Zarίski open set in L.

3. The Divisor Nj . Let/ : M^CPn be a holomorphic map from a compact
Riemann surface into CP" with the Fubini-Study metric, and let/ : M^>Cn+1 be a
meromorphic lift of/.

DEFINITION 3.1. To every meromorphic lift/(/?) = (/0(/?),... ,/„(/?)) of/ consider
the order of the meromorphic functions/ at point />, denoted ordp(/ ). Define the order

oτdp(J)= min ordp(/),
0<ΐ<«

where if/•(/?) = 0, we set ordp(/) = oo. Define the divisor (f) = ΣpeMordp(J)p.

Let M denote the surface M with the conjugate complex structure, and let p e M
be the point corresponding to peM. We can similarly consider CPn and the map
/ : M^CPn defined by /(/?) =/(/?), which is holomorphic. Consider a divisor D on the
variety MxM and its unique fractorization D = £*= χ ra^, where Dί9 ...,Da are distinct
prime divisors.

DEFINITION 3.2. If all the Dt's are of the form pxM or M x # in the above
decomposition, D is said to be transversal. If none of the Df's are of the form p x M or
Mxq, D is said to be skew.

Each divisor /) can be decomposed uniquely into D = Z)sk + Dtr, where the first and
second terms are skew and transversal, respectively.

DEFINITION 3.3. Given a meromorphic lift/, define a meromorphic function | |/ | | 2

on M x M by

11/112 = 11/112(/>, g) = <f(p), M>=fo<j>ΫM+ ''' +fn(p)JM.

Note that the symbol || | |2 does not represent an actual norm square.

LEMMA 3.1. In the divisor decomposition (||/||2) = ( | |/ | | 2) s k + (||/||2)tr9 w
( i ) (ll/ll2)sk^0> namely, the skew part of the divisor of the function | | / | | 2 is

effective.

(ϋ) (Il/ll2)tr = (/)x M+Mx(?).

PROOF, (i) The polar divisor of ||/||2(/?, q) can only be of the form \Ji(Pi x M)
and (Ji(Mx^), which is transversal.

(ii) Take a local coordinate z(p) around p0 e M with z(p0) = 0, we have/(z) = zmh(z),
where h is holomorphic and nonvanishing at p0, and m = ordpo(/). Using the notation
w = z(q), we have
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around (po,po)eM xM, where \\h\\2(p,q) is holomorphic and positive at (po,Po) This

implies | | / | | 2 (p, q) has order m along p0 x M. q.e.d.

It is easy to see that the divisor ( | | / | | ) s k is independent of the choice of/, which

allows:

DEFINITION 3.4. Let / : M->CPn be a holomorphic map, and let / be any

meromorphic lift of/. Define Nf to be ( | | / | | 2 ) s k .

Nj may also be defined invariantly as follows. Consider the map

(3.1)

where N=(n+ I ) 2 — 1 and the Segre embedding is given by xij = ziwj in homogeneous

coordinates. Consider the hyperplane 5 0 in CPN defined by the homogeneous equation

xo o-h +xnn = 0, which is invariant up to a unitary transformation of CPN of the

form U® 0 naturally induced by a unitary transformation U in CPn. One can verify

the following lemma without difficulty:

LEMMA 3.2. The pullback of So as a divisor on M x M through the map in (3.1) is

Nf

We will use the two notions of Nf interchangeably, whichever is convenient. The basic

fact about Nf is that it determines/up to unitary equivalence. To prove this, we need:

LEMMA 3.3. Let M, Nbe two compact Riemann surfaces, and let Fbea meromorphic

function on M x N such that the divisor of F is transversal, namely (F)sk

 = 0 Then there

exist meromorphic functions u and v defined on M and N respectively such that

F(p,q) = u(p)v(q).

PROOF. Let (F) = Σk^Pi x ΛO + Σι£M x 0j) Choose q0 e N \ { J { q 3 ) . The function

F(p, q0) is holomorphic without zeros whenever p is not any of p/s. Around (ph q0)

one can introduce a local coordinate system (z(p), w(q)) with z(/?f) = 0 and w(#o) = 0.

Since F has order k{ along p{ x N, we have F(p, q) = zki(p)h(p, q), where h is holomorphic

and nonvanishing at (ph q0). This implies that the divisor of F(p, q0) as a function of

p is YkiPi

Let us define u(p) = F(p, q0) and similarly v(q) = F(p0, q) for a suitable p0. Then we

have (u) = YJkipi and (v) = YJljqj. The function u(p)v(q) on Mx N has consequently the

same divisor as F, which implies F(p, q) = Ru(p)v(q), where R is a constant. q.e.d.

LEMMA 3.4. Nf determines f up to unitary transformations. More precisely, if we

have two holomorphic maps f and g from M to CPn such that Nf = Ng, then there exists

a unitary transformation Ufrom CPn to itself such that f—JJog.

PROOF. Take two meromorphic lifts/and g f o r / a n d g. Then by the definition

of Nf and the assumption that Nf = Ng we have ( | | / | | 2 ) s k = (ll§ll2)sk' namely,
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(Il/ll2/ll§ll2)sk = ° β y Lemma 3.3, there are two functions u(p), v(q) over M such that

Let p — q. The left hand side becomes a true norm square and therefore real. Hence
u(p)v(p) is a real function, namely

u{p)v(p) = u(p)v{p), u(jp)/υ(p) = u(p)/v(p).

The meromorphic function u(p)/v(p) is real, and therefore is a non-zero real constant
R. This implies

\\Λp)\\2 = R\\g(p)\\2\v(p)\2,

where the symbol || | |2 is understood to be an actual norm square. So we have

which means that / and g are isometric. By Calabi's rigidity result for holomorphic
curves,/and g are unitarily equivalent. q.e.d.

Now let/ 1 ?/ 2 be two holomorphic maps from M to CPm and CPn. We can define
another holomorphic map/i ®f2\ M-^CP ( m + 1 ) ( π + 1 ) ~ 1 by projectivizing

where f1(p) = (z0(p), . . . , zm(p)) and/2(/?) = (w>00), . . . , wn(p)) are the meromorphic lifts
of /i and /2, respectively. Taking the skew part of the divisor of the identity

Il/i®/2ll2=ll/ill2ll/2ll2, we get:

LEMMA 3.5. NfιQf2 = Nfi + Nf2.

What we have done so far is sufficient to prove a general rigidity theorem up to
finiteness. However, to give explicit upper bounds, we need to determine the homology
class represented by Nf in H2{M x M). By the Kunneth formula, we have direct sum
decomposition

H2(MxM) =

The first two direct components are isomorphic to Zand their generators are represented
by cycles of the form M x q and px M respectively, which we denote by [M] and [A?].
The class represented by Nf is denoted by [N/\.

LEMMA 3.6. [Λ^/]=deg(/)([M] + [M]).

PROOF. We will use the invariant definition of Nf given in Lemma 3.2. Consider
the sequence of maps in (3.1). We may assume without loss of generality that/(M) is
not contained in the hyperplane HoczCPn defined by zo = 0. The divisor So in CPN is
linearly equivalent to the hyperplane defined by xo o = 0, which is pulled back through
the above sequence of maps to f*(H0) x M+Mx/*( f l 0 ) . Nf9 being the pullback of
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So, is then linearly equivalent to (and hence homologous to)/*(// 0) x M+Mx f*(H0).

Our lemma then follows from the fact that deg(/*(//0)) = deg(/). q.e.d.

The next three lemmas are concerned with the decomposition of Nf.

LEMMA 3.7. Let Nf = Y°i = 1miNi be the decomposition of Nf into its prime

components. Then to each component Nh there are integers at> 1 and bι>\ such that

in H2{MxM\ where Q^H^M) ® H^M).

PROOF. From the decomposition

H2(M xM) = H2(M) (x) H0(M) + H0(M) ® H2(M) + HX

we have [7VJ = αt [M] + b^M] + Qt. By definition, the divisor Nf is skew, therefore, all

the Nt are skew. We can therefore apply the natural projection M x M-+M, which sends

Nt to M. Because Nt is an analytic subvariety, the above projection from N( to M has

a positive degree, which is just at. So both a{ and b( are positive. q.e.d.

LEMMA 3.8. Under the above notation, let n0 be the number of different de-

compositions Nf = D1-\-D2, where both Dx and D2 are non-negative divisors. Then we

have no<2dcgif). Here the interchange of D1 and D2 are counted as different decomposi-

tions.

PROOF. Consider the factorization Nf = Yj

a

i= t mfli where all Nt are distinct prime

divisors and m £ > l . By Lemmas 3.6 and 3.7, we have [A^ /]=deg(/)([M] + [M]) and

[ΛΓi]=βi[Λf]+ftί[Λ/] + β ί with ai>\ and A£>1; therefore deg(f) = m1aι+ - - - + w α

β

α

This implies α<deg(/). In the worst case, all the mt and a{ are 1, and there are exactly

2 d e g ( / ) different decompositions. q.e.d.

For application to the rigidity problems, one only needs the decomposition of the

form Nf = Nfί+Nf2. This allows a refinement of the previous lemma. Observe that

Mx M has an anti-holomorphic automorphism τ defined by τ: (/?, q) -• (q,p), under

which Nf is invariant. Similarly, Nfί and Nf2 are also invariant under τ. Hence, we can

regroup the decomposition Nf = Yj

a

i = 1miNi as follows. If Nt is invariant under τ, we

keep the term w ^ ; otherwise, we group it with its image under τ. To avoid too much

notation, we will still use Nf = Yj"i=1miNi to denote the new decomposition. As a result

of this regrouping, [7VJ = ̂ ( [ M ] + \_M~\) + Qi9 where at is a positive integer and Q{ is

as in Lemma 3.7.

LEMMA 3.9 Assume that the Riemann surface M does not have nontrivial

automorphisms. Let n0 be the number of different decompositions Nf = Nfx + Nf2. Then

PROOF. From the argument above, we have \_Ni~]=ai([M] + [M]) + Qi. If there
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is an i such that a~\, then Λff is a (1, 1) correspondence between Riemann surfaces M

and M (for more about correspondence, see [5]). Therefore, N^MxM defines an

isomorphism Γ,: M-+M. If there is another index j such that a}= 1, we will similarly

have a Tp and so 77"ι ° Γ, is an automorphism of M. By the assumption of the lemma,

we have Tt= Tj and therefore N—Nj. So we have proved that all α/s are greater than

1 with at most one exception. In the worst case, let aί = \ and a2= =aa = 2 and

m2 = = mα = 1. Then we have Nf = mίNί + N2 + * * + Na, and deg(/) = mί + 2(α — 1).

The number of decompositions n0 then satisfies

^ ^ ^

q.e.d.

REMARK. In Lemmas 3.8 and 3.9, if we count the exchange of D1 and D2 as well

as Nfί and Nfl as the same decomposition, the number of different decompositions n0

can be reduced in half.

4. Rigidity up to Finiteness. We will prove Theorem 1 in this section.

LEMMA 4.1. Let dkf and dιg be two branched superminimal immersions form M to

CPn. Then we have

( i ) Nfk _ί=Ngiί and Nfk = Ngι <=> dkf and dιg differ only by a unitary transforma-

tion ofCPn;

(ii) Nfkγ = Ngι and Nfk = Ngι_ίodkf and διg differ only by an orientation

reversing isometry of CPn.

PROOF. The "<=" part is obvious. We will prove "=>". Let us begin with (i). If

Nfk_ί = Ngι_ι and Nfk = Ngι, then by Lemma 3.4, fk_ι and gk_ι are unitarily equivalent

and therefore isometric to each other. The same is true for/k and gk. So by the recursion

formula (2.4), we easily see that/ f c_ t and gt_ι are isometric to each other for all /. Now,

by the fact that q _ ί = 0 but qk Φ 0 for 0 < k < n — 1, we have k = /, and / and g isometric.

By Calabi's the rigidity theorem for holomorphic curves, we are done.

To prove (ii), we use the recursion formula inductively in reverse order and

conclude tha.tfk^ί-i and gι + i are isometric for all /. When / goes from 0 upward, / _ x

is the first fk-ι-i that vanishes, which implies that gk + ι = 0 is the first gι + i to vanish.

This means that g lies in a CPk + ι<^CPn as a non-degenerate curve. In the above induc-

tion, letting i=k—l, we see t h a t / = / 0 is isometric to gk + i-ι and therefore unitarily

equivalent to it. Notice that gk + ι-ι may be regarded as a curve in the dual space

of the above CPk + ι, so that gk + ι-i can be canonically realized in CPk + ι as an anti-

holomorphic curve. Therefore there is an orientation reversing isometry of CPn which

transforms / to gk + ι_1. This proves (ii). q.e.d.

REMARK. When (i) or (ii) of the above lemma is true, we will call dkf and διg
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unitarily equivalent or isometrically equivalent in CPn respectively.

Now applying Lemma 3.8 to the curve/ f c_ t ®/ k , we have no<2degifk~l®fk). Note

that from (2.2), it is easy to see that άcg(fk^i ®fk) = A(M)/π, where A(M) represents

the area of dkf as a branched minimal surface.

THEOREM 1. Let dkf be a superminimal surface from M to CPn. Among all the

superminimal surfaces isometric to dkf there are at most n0 unitarily (or no/2 isometrically)

inequivalent ones, where no<2A(M)/π.

PROOF. Let <3fc/and dιg be isometric. By (2.3),/ f e_ 1 ®/ f c and gt-ι® Qι are isometric

and hence unitarily equivalent. Therefore by this unitary equivalence and Lemma 3.5,

we have

Lemma 3.8 then implies that the divisor on both sides of the previous equation

can be decomposed into the sum of two divisors in at most n0 ways. If there are more

than n0 superminimal surfaces in CPn which are isometric to each other, at least two

of them, still called dkf and dιg, will share the same divisor decomposition. In other

words Nfk_ι=Ngι_ι and Nfk = Ngι. By Lemma 4.1, dfc/and dιg are unitarily equivalent.

The statement for the isometric equivalence follows from the remark at the end of

Section 3. q.e.d.

Similarly, Lemma 3.9 gives:

THEOREM Γ. Using the same notation as in Theorem 1 and further assuming that

M is a Riemann surface without automorphisms, we have the sharper estimate

no<2AiM)/2π + 1.

5. Generic Rigidity. We now prove Theorem 2. By Lemma 4.1 of the previous

section, the branched superminimal immersion dkf: M-+CPn is rigid if the divisors Nfk

and Nfk_ι are prime. On the other hand, Lamma 3.5 says Nfi®fl = Nfl + Nf2 and we

cannot expect to prove that Nf is prime for all / i n general. We will however show that

for a generic projective transformation A:CPn-+CPn, N{Af)k are prime for all the

associated curves (Af)k.

We will first handle the cases when k = 0 and n— 1. The other cases will be reduced

to the case k = n—\ by an appropriate projection π : CPn-^CPk+1; for this purpose, we

will enlarge the set of projective transformations of CPn to include linear rational maps.

Let / : M-^CPn be holomorphic, which is not necessarily nondegenerate.

DEFINITION 5.1. Let A: [z0, . . . , Z J H - > [ . . . Σ"j=oaijzj •] be a rational map from

CPn to itself, where (ai3) is a non-zero («+1) x (/z+1) matrix, and ker(/ί) =

{[z0,. . . , Z J G C P W | Σ ; = O ^ A - = 0 for ι = 0,...,/!}. Define Sn = {A\f(M)φker(A)}.

DEFINITION 5.2. Let AeSn a n d / = ( / 0 , . . . ,/„) be a meromorphic lift of/. Define
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Af to be the holomorphic curve with the lift

( n n \

Σ <*Ojfj, , Σ <*n]fj

Note that since ker(Λ) c CPn is the set where A fails to be regular, Af: M^CPn

is well-defined for A e Sn. We will see that if the above-mentioned π is so chosen that

ker(π) n f(M) = 0 (which implies π e Sn), πf can be deformed nicely into an Af with

AePGL (n + 1, C)c=Sn. This will be a key point in our reduction argument through π.

LEMMA 5.1. Using the previous notation, the following are equivalent, (i)

ker(Λ)n/(M) = 0; (ii) deg(Λ/) = deg(/); (iii) [^ / ]

PROOF, (i)o(ii) is standard in algebraic geometry ([10]). (ii) <=> (iii) follows from

Lemma 3.6. q.e.d.

Our main objective is to prove that NAf = {\\Af\\ 2 ) s k is prime for a generic A. Because

(5.1) \W\\\p,q)= Σ
i,j,k = 0

we are led to looking at the linear system of functions

(5.2) Lf = {Fλ(p,q)= Σ

and consider whether (FA) sk is prime. Let us first describe Lf in terms of divisors

according to a standard construction in algebraic geometry (cf. [11]). It is easy to see

that the meromorphic functionsfj(p)fk(q) over MxMdefine the holomorphic map (see

(3.1)).

(5.3) MxM^CPnxCP

DEFINITION 5.3. Let Hλ be the hyperplane in CPN defined by ΣJU = O λjkxjk = 09

and when Segre ° (/ x J)(M x M) φ Hλ, let Dλ be the pullback of Hλ via the map in

(5.3) io MxM. Define the linear system Lf of divisors

Lf = {Dλ I λ E CP{n +v2~\ Segre o (/x/)(M x M) φ //A} .

Furthermore (cf. [11]), there exists a divisor D a MxM such that Dλ = (Fλ) — D

for DλeLf, FλeLf, where D = g.c.d.jk(fjfk). In our case, since the divisors (/Jj) over

MxM are transversal, Z) is also transversal. Therefore we can decompose Dλ into skew

and transversal parts as Dλ = (Fλ)sk + ((Fλ)tr — D), where both parts are effective because

Dλ is effective.

LEMMA 5.2. [ D J = deg(/)([M] + [Af ] ) .
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PROOF. This follows from an argument similar to that in the proof of Lemma

3.6. q.e.d.

DEFINITION 5.4. Define PfczLf to be the set of all the prime divisors in Lf.

LEMMA 5.3. Pf has the following properties:

( i ) Pf is a dense Zariski open set in Lf;

(ii) DλePfo (Fλ)Λ is prime and [(FΛ) s k] = deg(/)([M] + [ M ] ) .

PROOF, (i) Since Lf is a hyperplane cut of M x M via the map in (5.3), by

Bertini's theorem Pf is a dense Zariski open set.

(ϋ) "=>": Given a Dλ e Pf, since Dλ is prime, it is either skew or transversal. From

[ D J = deg(/)([M] + [M]), we know Dλ can only be skew. The result follows from the

decomposition Dλ = (Fλ)sk + ((Fλ)ir - D).

(ϋ) "<="; From the decomposition Dλ = (Fλ)sk + ((FΛ) t r — Z>), we see Dλ>(Fλ)sk. So

if [(^λ)sk] = deg(/)([Λf] + [M]), which means if [£>λ] = [(FA) s k] 9 we must conclude that

Dλ = (Fλ)sk because nontrivial effective divisors represent nontrivial homology classes.

Hence Dλ is prime by the assumption that (Fλ)sk is prime. q.e.d

Lemma 5.3 tells us that (Fλ)sk is prime for a generic λ. As we recall from (5.1)

and (5.2), when λ = AA*, we have \\Af\\2=Fλ and thus NAf = (Fλ)sk. This motivates the

following:

DEFINITION 5.5. Define the sequence of maps Sn >SnxSn > Lf by

d(A) = (A, A) and λ(A, B) = DAB*. The second map may be seen more explicitly from the

formula λjk = Y^n

i = oaijbik,

At the pairs where AB* = 0, the map λ is not defined; however this is clearly a

Zariski closed set which does not intersect d(Sn) (because A A* cannot be zero).

Therefore we will exclude them from our consideration. Our question now is to find

an A such that λ°d(A)ePf. In view of Lemma 5.3 (ii), we make:

DEFINITION 5.6. Define S° = {A e Sn | NAf is prime, deg(4/) = deg(/)}.

From the sequence of the maps defined in Definition 5.5, we have:

LEMMA 5.4. S° = λ ~1 d~1 (Pf). Equίvalently, S® consists of all the A in Sn such that

lNAf] is prime and [NAf] = deg(/)([M] + [A/]).

PROOF. This follows by the definitions of S® and Pf together with Lemma 5.1

and Lemma 5.3 (ii). q.e.d.

LEMMA 5.5. Consider Sn as a real algebraic variety with its Zariski topology. Then

S® is a dense open set. In particular, in the real algebraic variety PGL {n+\)<^.Sn,

S® π PGL(n 4-1) is dense open.

PROOF. In Definition 5.5, if we regard Sn as a real algebraic variety and Sn x Sn
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and Lf as complex algebraic varieties, then under their Zariski topologies, both d

and λ are continuous maps. From Lemma 5.3, Pf a Lf is open, and therefore

S°n=d~xλ~1{Pf) is open in Sn. By the irreducibility of Sn, if d~1λ~ί(Pf) is non-empty,

it will also be dense in Sn. Hence we only need to prove d~1λ~1(Pf)φ0, namely

d(Sn) nλ~ \Pf)φ0. Since Pf<^LfaCP{n +1)2"* is an open dense set, there exists aλePf

such that άet(λjk) Φ 0. By defintion λ(A, B) = AB*, and we choose (A, B) = (λ, I)eSnx Sn

to infer that λ~1(Pf)φ0. The continuity of λ implies that λ~1(Pf) is also open.

Therefore, if d(Sn)nλ~1(Pf) = 0, d(Sn) will be contained in a proper subvariety of

Sn x Sn. Lifting through homogeneous coordinates, we know that the subset

{((..., aψ . . . ) , ( . . . , άφ .. .))|0</,7<«}czC2 ( M + 1 ) 2 is contained in a proper subvariety of

C 2 ( M + 1 ) 2 . This is equivalent to saying that the real linear subspace /? 2 < w + 1 > 2 cC 2 ( l l + 1 ) 2 is

contained in a proper subvariety of C 2 ( M + 1 ) 2 , which is impossible. So we have proved

the first statement.

Notice that PGL(n + 1, C) c Sn is the set of those A e Sn represented by nonsingular

matrices, it is therefore open in Sn. Since d~1λ~i(Pf) is dense open in Sn,

PGL{n+\, Qr\d~1λ~1(Pf) is non-empty and open in PGL(n+ 1, C). By the irreduci-

bility of PGL(n+ 1, C), we have proved the second statement.

Let us now prove a similar statement for the (n— l)-th associated curve/π_i

LEMMA 5.6. Let f: M^CPn be a nondegenerate holomorphic curve, andfn_1 its

(n-l)-th associated curve. Then, the set S° = {AePGL(n+l, Q\N{Af)n_ί is prime} is

open dense in the real algebraic variety Sn.

PROOF. Let (CPn)Λ denote the dual space of CPn. There is an isomorphism between

the group of projective transformations of CPn and that of (CP") Λ , denoted A <r+ A.

The associated curve fn_1: M->(CP")Λ satisfies (Af)n_1=Afn_1. Applying Lemma 5.5

to the curve/„_!, we are done. q.e.d.

To deal with the /fe's for kφO, n—\, we first introduce some notations. Given

A: Cn + 1^>Cn+\ there is a naturally induced linear transformation Ak: /\kCn + ί-+

/\kCn+1. Let Sn be given as in Definition 5.1 and let Snk denote the similar space associ-

ated with the curve fk: M->CP"k with nk given in (2.1). Let Sfk be the variety of all

linear rational maps from CP"k to itself. Clearly SnkczS*k. We also have a regular

map Wk\ Sn-^>S*k defined by A-+Ak.

We easily have:

LEMMA 5.7. Let f: M^CPn be a holomorphic curve with fk: M^CPnk its k-th

associated curve. If Ae Sn and Ak e Snk, then (Af)k and Akfk are well-defined and

We also need:

LEMMA 5.8. Letf: M->CPn be a nondegenerate holomorphic map. For each integer

k=\, • ,n, there exists a projection π: CPn-^CPk such that άeg(πf)k_1=άQg(fk_1).
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π may be viewed as an element in Sn.

PROOF. Consider a projection π : CPn-+CPkczCPn. By Lemma 5.7, if π is

properly chosen, the corresponding πk _ x: C/)Mk" * -> C P " k " 1 satisfies (π/) fc _ x = πk _ x/fc _ ι.

Therefore, it suffices to find a π e 5 n such that πk _! preserves the degree of/fc _ x. By Lemma

5.1, this is equivalent to f(M) ψ ker(π) and ker(π / c_ 1)n/ f c_ 1(M) = 0 , namely nk_1 is

regular at every point o f / ^ . ^ M ) . The existence of such a π can be proved easily by

the following geometric consideration.

The (k — l)-th assocated curve fk_γ is just the map which sends each peM to the

(k—\)-\h osculating plane of the curve/a t p. Therefore we can regard fk-ι(p) as a

(k— l)-plane in CPn. The projection πk_1 induced from the projection π sends a

(/r—l)-plane P uniquely and regularly to another (k — l)-plane ^ _ X ( P ) as long as

Pn ker(π) = 0 . Therefore, in order to insure that πk-ί be regular at all points in

fk^x{M), it suffices to have fk-λ(p)nker(π) = 0 for all peM. (Note that this also

insures that f(M) n ker(π) = 0 and therefore πeSn.) In other words, we must find a

π such that ker(π) does not intersect any/fc_1(/7). Since fk-χ(p) is just a one-parameter

family of (k — 1 )-planes depending holomorphically on p, its envelop, namely the

set E= \JpeMfk-i(p) i s a ^-dimensional algebraic variety of CPn. Therefore, a generic

(n — k— l)-plane F does not intersect E. Now choose a π with ker(π) = F. q.e.d.

LEMMA 5.9. Let f: M-*CPn be a nondegenerate holomorphic curve, and fk-χ

its (k—\)-th associated curve. Then, the ^/{^eS' I I |deg(y4/)k_1=deg(/ f c_1), N{Af)kί

is prime} is open dense in the real algebraic variety Sn. In particular, the set {Ae

PGL(n+ 1, C) I deg(4/)fc-i=deg(/k_1), N{Af)kl is prime} is open dense in the real

algebraic variety PGL(n+ 1, C).

PROOF. The cases of k— 1 and n are proved in Lemmas 5.5 and 5.6. Let us assume

that k takes any other value. We can apply Lemma 5.5 t o / ^ . i : M-+CP"kί. We then

have the corresponding dense open subset S^k_ίc:Snk_1. Consider the regular map

Wk_x: Sn->S*k_i defined before Lemma 5.7. What we must prove now is equivalent to

Wj~}1(S°k_ί) being dense open in Sn. By the irreducibility of Sn, it suffices to prove that

^ 7 - i ( ^ k - i ) ^s nonempty. Equivalently, we need only to find a single AeSn such that

^Ak-ifk-i i s prime and deg(^ίfc_1/fc_1) = deg(/ k _ 1 ). To this end, we know by Lemma

5.8 that there is a projection πeSn such that π:CPn->CPk a CPn and deg(πΛ_1/ f c_1) =

degΐ/fc-!). Applying Lemma 5.6 to the curve (πf)k_1=πk_1fk_1: M-^(CPk)Λ, we find

a projective transformation B of CPk such that N{Bπf)kl is prime. Since B does not

change the degree of a curve in CPk, A = Bπ will be what we are looking for. q.e.d

THEOREM 2. Let f: M->CPn be any holomorphic map (not necessarily non-

degenerate), where M is a compact Rίemann surface. To a generic projective transforma-

tion A of CPn, all the superminimal surfaces generated by the holomorphic map Af are

rigid.
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PROOF. Assume first that / is nondegenerate. By Lemmas 5.5, 5.6 and 5.9, to
each associated curve fk, A: = 0,...,«— 1, we have found a set of A in the real algebraic
variety PGL(n + 1, C) such that N(Af)k is prime. The intersection of these sets, denoted
S°, is still open and dense in PGL(n + 1, C). For A eS°, all the N(Af)k are prime. Take
an A in S° and consider superminimal surfaces dkAf and διg generated by Af and g. If
dkAf diπά dιg are isometric to each other, then by (2.3) (Af)k_1 (x) (Af)k and gι_1 ® #,
are isometric. As in the proof of Theorem 1, we have

S i n c e A e S° i m p l i e s b o t h N(Af)kl a n d N(Af)k a r e p r i m e , w e h a v e e i t h e r N(Af)kι = Ngii

and NiAf)k = Ngι, or N{Af)k_l = Ngι and N(Af)k = Ngι_ί. By Lemma 3.5, dkAf and dιg differ
by a unitary transformation or an orientation reversing isometry in CPn.

If / is degenerate, we consider / as a nondegenerate curve in a smaller space
CPmαCPn so that we can find a projective transformation B of CPm such that NiBf)k

are prime for 0<k<m— 1. However, extending 5 to a projective transformation A of
CP", we see that N(Af)k are just N(Bf)k, which are prime. The existence of this A implies
the existence of generic AePGL(n+l, C) such that N(Af)k are prime for 0<k<m— 1
by the same principle as we used in the proof of Lemmas 5.5, 5.6 and 5.9. The rest of
the argument goes exactly as in the nondegenerate case. q.e.d.

REMARK. If we consider the problem of rigidity in a larger context by allowing
different superminimal immersions to have target spaces of different dimensions, there
is a slightly more general version of Theorem 2.

THEOREM 2'. Let/: M^CPn be any holomorphic map, where Af is a compact
Riemann surface. To a generic projective transformation A of CPn, all the superminimal
surfaces dk(Af) generated by the holomorphic map Af fall into one of the following
two categories:

( i ) dk(Af) is a holomorphic or anti-holomorphic map and is rigid;
(ii) dk(Af) is neither holomorphic nor anti-holomorphic, and there are exactly

two isometrically inequivalent superminimal surfaces that are isometric to it. These two
surface are just dk(Af) itself and the holomorphic curve (Af)k_1 ® (Af)k.

6. Generic Rigidity in Moduli Space. We will construct moduli spaces of
superminimal immersions in CP2 on which the generic rigidity is proved. To motivate
the construction, notice that the area of a branched superminimal immersion, being
an integral mutiple of π, should remain constant in any continuous variation. Secondly,
a continuous family of maps h: M-+CP2 are in the same homotopy class, which is
equivalent to having the same mapping degree d defined by h^([M~\) = dH with [M]
and H the generators of H2{M, Z) and H2(CPn, Z), respectively (cf. [7]). Furthermore
we will allow the compact Riemann surfaces M to vary in the Riemann moduli space
M where g is the genus.
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In C P 2 , besides the trivial case of holomorphic or anti-holomorphic curves,

superminimal immersions df are in one to one correspondence with pairs (/, g) of

holomorphic maps from M to CP2 and ( C P 2 ) Λ , respectively, a n d / a n d g are dual to

each other. Let <3/have area mπ and mapping degree d. One easily deduces the relation

(cf [4])

m = deg(/) + deg(0), d= deg(/) - άcg(g).

It is clear now that the moduli space of all branched superminimal immersions with

fixed genus g, area mπ and degree dis identical with the space of all pairs of holomorphic

maps / and g from any compact Riemann surface M of genus g (which varies in Mg),

where/and g are dual to each other and both of them have fixed degrees.

On the other hand, due to the existence of Riemann surfaces with automorphisms,

the set of all MeMg does not form a "family" over Mg (in the sense that will be

explained in (I) below, cf. [8]). We will therefore work with the Teichmύller moduli

space Tg over which there is a universal analytic family of compact Riemann surfaces.

For reader's convenience, some results from the theory of families of holomorphic maps

presented in [9] is summarized in the following three points:

(I) Let te Tg and let Mt be the corresponding compact Riemann surface. Then

{Mt}teTg forms an analytic family of compact Riemann surfaces. More precisely, the

disjoint union Xg={JteτgMt has the structure of an analytic space and the natural

projection π: Xg-^Tg is a proper, smooth analytic map. Furthermore, Xg has an open

covering of the form Ut x Vi9 where ί/f is an open set of C and Vt is an open set of Tg,

such that to each (/?, t) e Ut x Vi9 we have π(p, t) = t. The family {Mt}teTg is universal in the

sense that any other family {Mt.}t.eT is induced by an analytic map from T to T.

(II) Let Hold(M ί 5 CP2) be the set of all nondegenerate holomorphic maps of

degree dfrom Mt to CP2. Let Fgd=\JteTHo\d(Mv CP2). Then Fgd is an analytic space,

which parametrizes a universal family of holomorphic maps {fr}reFg d. More precisely,

if b: Fgd-+Tg is the natural projection, then b will induce a family of Riemann surfaces

over Fgd, denoted {Mr}reFgd, whose total space is b*(Xg)=[JreFg dMr. The important

point is that there exists an analytic map Fgd\ b*(Xg)-+CP2 such that when restricted

to Mr, Fgά is just/., a n d / is just reFgd regarded as a map from Mr to CP2.

(III) Since b*(Xg) is a family, locally it is a product as explained in (I) so that we

can use a pair (/?, r) to specify the point of b*(Xg) in a small neighborhood. Here p

varies in an open set of C, and r varies in an open set of Fgd. For any fixed r, p is

regarded as a local coordinate of Mr. With these, we can summarize the above discrip-

tion of a "family of holomorphic maps" in the equation

(6.1) Fg,d(p,r)=fr(p).

For our purpose, we must consider pairs of holomorphic maps / and g which are

dual to each other and have fixed degrees. Consider the families {/r}r6f d l and {gs}seFg,d2

of holomorphic maps from {Mt}teT to CP2 and (CP2)A, respectively.
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DEFINITION 6.1. Define

Fg,dud2 = {{r, s)eFβtdιxFβtd2\b(r) = b(s),fr and gs, are dual to each other.}.

The condition b(r) = b(s)eTg means fr and gs have the same domain Mb(r) = Mbis).

LEMMA 6.1. Fgdίd2 is an analytic subspace of Fg dί x Fgdl.

PROOF. Fgdχdl is defined to be a subset of Fgdl x Fgdl by two conditions. The first

condition b(r) = b(s) is clearly a closed condition. We will now prove that the second

condition that fr and gs are dual to each other is also closed as well. Given

{ro,so)eFgdlxFgd2, let b(ro) = b(so) = to so that the maps fr and gs have the same

domain MtQ. Choose a point p0 e M l 0 such that/?0 is a smooth point of all three functions

fr,fr and gr, where/, is the dual curve of/r. From (6.1), the families {/r} and {gs} have

local representation fr(p), gs(p) around (p0, r0) and (p0, s0) which are analytic when

regarded as functions of (/?, r) and (/?, s), respectively. If we take (/?, r) and (/?, s) to be

in small enough neighborhoods Oγ and O2 of (p0, r0) and (p0, s0), respectively, then

for each fixed r and s, the maps fr(p), fr(p) and gr{p) will be smooth.

Take a nowhere vanishing holomorphic lift F(p, r) of Fg d(p, r) around (/?0, r 0). By

(6.1), we can define fr(p) = F{p, r). For a fixed r, fr(p) gives a local lift of/r around

p0, and /r(/7) Λ/X/?) is a nowhere vanishing local holomorphic lift of the dual curve

fr, since fr is smooth locally. We can define a similar local lift gs(p) for gs.

The condition that fr and gs are dual to each other is equivalent to the fact that

fr(p) = gs(p) holds in a small open set UeMb(r) = Mb{s). In terms of the local lifts intro-

duced above, this is equivalent to saying that

(6.2) (fr(P)*f'r(p))*§s(P) = O

holds in U, which is clearly a closed condition. Here, we use the convention e0 Λ eι =e2,

e1 Λe2 = e0,e2 Aeo = ex with respect to the orthonormal basis e0, eί9 e2. q.e.d.

To study the generic rigidity in the moduli space of superminimal surfaces naturally

identified with Fgdud2, we will first prove that the divisor NfreMr x Mr is prime for a

generic r. For this purpose, we will realize all Nfr as curves in a common projective space

and apply the concept of Chow variety introduced in Section 2. According to a theorem

in the theory of Teichmuler space (cf. [8]), the family {Mt}teT of compact Riemann

surfaces can be simultaneously embedded into the common space CP5g~6. (When

0 = 1 , CP5g~6 should be replaced by CP2.) More precisely, there is an analytic map

Eg\ Xg-^CP5θ~6 such that when restricted to each Mt9 the map Eg is an embedding

et\ Mt^CP5g~6 of degree 6g — 6. In this way, we can always identify Mr with

er(Mr)c:CP5g~6. Recall that the family {Mr}reFg d is induced from the family {Mt}teTg

through an analytic map b: Fgd-±Tg. It is clear that we thus have an induced analytic

map
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such that when restricted to each Mn the map Egd is an embedding er: Mr -• CP5g~6.

We can then consider the map

E9,d x Fβti: *•(*,) - CP5g~6 x C7>2

whose restriction to Mr is an embedding erxfr\ Mr-+CP5g~6 xCP2. Identifying Mr

with its image er(Mr)czCP5g~6, we see that the image er x/r(MΓ) c C P 5 * " 6 x C P 2 can

be thought of as the graph of the map fr.

Recall from (3.1) that Nfr is the pullback of SO through the sequence

Mr x MrΆcP2xO>2 Ά CP8 .

We will consider the family of complex surfaces {Mt x Mt}teTg and the corresponding

family of analytic maps {fr xfr \reFgd}\ notice that Mt a n d ^ vary anti-holomorphically

with respect to t and r, we must consequently regard the two families as real analytic

families. To each fixed reFgd, there is an embedding

erxer: MrxMr-> CP5g~6 x~CP5g~6

and an analytic map/ r xfr: Mr x Mr-+CP2 x CP2 so that we can consider

Mr x Mr

 e'x*'xf'xf; CP
5g-6 x CP5*-6 x CP2 x CP2

i d e n t i t y x S e g r e C p 5 g . 6 χ — 5 g _ 6 χ C j p 8

DEFINITION 6.2. Define Gr to be the image of the above map, and define Ro to be

CP5g~6xCP5g~6xSoc: CP5g-6xCP5g-6xCP8 .

Gr can be thought of as the graph of/r x fr, which is a surface of degree 2(6g — 6 + d)2,

and Gr n Ro can be thought of as 7V/r. With this interpretation of Nfr, we have:

LEMMA 6.2. Let Wg>d = {re Fgd | Nfr = GrnR0 is prime}. Then Wg4 is Zariskί open

dense in Fgd considered as a real analytic space.

PROOF. Consider the sequence of maps Fgd -> C1-> C2 defined by Γ H Gr and

G\-^> Gn /?0, where C\ is the variety consisting of all the surfaces G of degree

2{6g-6 + d)2 in CP5g~6 x CP5g~6 x CP8aCP9i5g-5)2-1 which does not lie entirely in

Ro, and C 2 is the variety consisting of all curves of degree 2d(6g — 6 + d) in CP5g~6

χ-Cp59 - 6 χCP8ciCP9i5g~5)2-1. The map r\->Gr is real analytic, and the mapGi-*

Gr\R0 is complex analytic because G and Ro intersect properly in CP5g~6 xCP5g~6

x CP8 (cf. [6]). Here both Cι and C 2 are sub varieties of appropriate Chow varieties.

Note that a generic element in a Chow variety is irreducible; hence by the same argument

as in the proof of Lemma 5.5, our lemma will be proved if in each irreducible component

of Fgd, we can find at least one r such that Nfr = GrnR0 is prime. But this will follow



100 Q.-S. CHI AND X. MO

from Lemma 5.5 because for any projective transformation A : CP2^CP2, the map Afr

is still in Fgd and lies in the same irreducible component of Fgd as fr. That Afr and fr

lie in the same irreducible component of Fgd follows from the fact that the connected

group PGL(3, C) acts continuously on Fgd by fr\->Afr, which therefore leaves the

irreducible components of Fgd invariant. q.e.d.

LEMMA 6.3. Let Wg4udl = {(/„ gs)eFgdud21 Nfr and Ngs are prime). Then Wg%dud2

is Zariski open dense in Fgdldl regarded as a real analytic space.

PROOF. Note that for each (fr,gs)eFgdίd2 and each projective transformation

A : CP2-*CP2, (Af, Ags) is still in Fgdud2 and lie in the same irreducible component as

(fn θs)- The same argument as in the proof of Lemma 6.2 holds. q.e.d.

Recall that Fgdudl can be regarded as an analytic family of superminimal surfaces

of degree d=dι—d2 and area mπ = (dί+d2)π in CP2. The group PGL(3, C) acts on

Fg,dud2 by (/'/) *-> (4fi 4f)i which induces an analytic fibration (cf. [9])

PGLQ, C) -> Fβtdud2^Fβtdui2/PGL(39 C).

In terms of this fibration, Theorom 2 can be interpreted as fiberwise generic rigidity.

By Lemma 6.3 and the argument in the proof of Theorem 2, we can immediately

generalize the statement of Theorem 2 to generic rigidity on the total space Fgdudl,

namely, each reWgdud2 gives a rigid superminimal surface, and being Zariski open

dense, Wgdudl intersects each fiber of Fgdχd2 in a Zariski open dense set.

The action of the Teichmuller modular group Γg on Tg naturally induces an action

of Γg on Fgdίd2. The quotient space FgdudJΓg is actually the set of branched

superminimal immersions of genus g, degree d and area mπ. It is clear that Wg4ud2 in

Lemma 6.3 is invariant under Γg. Hence WgdχdJΓg is Zariski open dense in the real

analytic space FgdudJΓg. We have thus arrived at the following:

THEOREM 3. Superminimal surfaces of genus g, degree d and area mπ in CP2 form

an analytic variety FgJudJΓg with a natural action of PGL(3, C), on which there is a

Zariski open dense set WgdudJΓg consisting of rigid superminimal surfaces. Moreover,

this Zariski open dense set intersects each orbit of the PGL{3,C)-action in a Zariski open

dense set of the orbit.

It should be mentioned that the Brill-Noether theory of algebraic curves guarantees
the existence of nonempty Fgdud2 under general conditions on g and dλ (cf. [1]).

RAMARK. The proof of Lemma 2 in [2] is incomplete, where Lemma 3 does not

yield an example with irreducible | | ^ | | 2 and | |^ Λ ι//||2 as long as d e g ^ > 4 . To construct

an example for any degree, one can either quote Theorem 2 of this paper, or exhibit a

concrete irreducible polynomial as follows. Consider the one-parameter family

f(z, z) = 2 + z + tz + tzz + znzn. When t = 0, /0(z, z) = 2 + z -h znzn, which is irreducible in z

and z. Consequently there is a small real to>0 such that/ ί 0(z, z) is irreducible, because
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the set of irreducible polynomials in z and z is Zariski open among all polynomials in

z and z of degree n. By changing z to toz, ft0(z, z) can be rewritten as

F=2 + z + z + zz + tQn2»zn. S e t ψ(z) = (l, 1 + z, ^ n / 2 z n ) . T h e n ||ιAII2 = ̂  w h i c h is

irreducible. Similarly by changing z to z~x with respect to F, we see that the polynomial

G = ton + zn~1zn + znzn~1 +zn~1zn~1 +2znzn is irreducible. In particular, setting μ =

(ton/2, zn~x+z\ z"), we have | |μ| |2 = G. Let τ = (l, z, z"). It is clear that T Λ T ' = ( ( « - 1)Z",

— nzn~ι, 1) is linearly equivalent to μ, that is, μ = A (τ AT') with AeGL(3, C). Here we

identify (e0, e l 5 e2)
 a n d (A Λ e2, e2

 Λ eo> eo Λ ^i) a s t n e standard basis of C 3 and /\2C3,

respectively. Then φ = (A~1)tτ satisfies ψ Aψ' = μ. Hence | | ^ A ^ ' | | 2 = G is irreducible.

Of course, this argument is just a concrete realization of Theorem 2 of this paper

in the sphere case in CP2. Note also that Lemma 3 in [2] is precisely Theorem 2 in

the case of plane cubic cuspidal curves.

REFERENCES

[ 1 ] E. ARBARELLO, M. CORNALBA, P. GRIFFITHS AND J. HARRIS, Geometry of Algebraic Curves, Volume I,

Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985.

[ 2 ] Q.-S. CHI, Rigidity of superminimal immersions of compact Riemann surfaces into CP2, Tόhoku

Math. J. 42 (1990), 439^55.

[ 3 ] Q-S. CHI AND Y. ZHENG, Rigidity of pseudo-holomorphic curves of constant curvature in Grassmann

manifolds, Trans. Amer. Math. Soc. 313 (1989), 393^06.

[ 4 ] J. EELLS AND J. C. WOOD, Harmonic maps from surfaces to complex projective spaces, Adv. in Math.

49 (1983), 217-263.

[ 5 ] P. GRIFFITHS AND J. HARRIS, Principles of Algebraic Geometry, Wiley-Interscience, New York,

Chichester, Brisbane, Toronto, 1978.

[ 6 ] W. HODGE AND D. PEDOE, Methods of Algebraic Geometry, Volume II, Cambridge Univ. Press,

London, New York, 1952.

[ 7 ] S.-T. Hu, Homotopy Theory, Acedemic Press Inc., New York, London, 1959.

[ 8 ] S. NAG, The Complex Analytic Theory of Teichmϋller Spaces, John Wiley & Sons, Inc. New York,

Chichester, Brisbane, Toronto, Singapore, 1988.

[ 9 ] M. NAMBA, Families of Meromorphic Functions on Compact Riemann Surfaces, Lecture Notes in

Math. 767, Springer-Verlag, Berlin, Heidelberg, New York, 1979.

[10] M. NAMBA, Geometry of Projective Algebraic Curves, Pure and Applied Math. 88, Marcel Decker,

New York, 1984.

[11] I. R. SHAFAREVICH, Basic Algebraic Geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1974.

DEPARTMENT OF MATHEMATICS

WASHINGTON UNIVERSITY

ST. LOUIS, MO 63130

U.S.A.






